1
|
Daghrery A, Dal-Fabbro R, Xu J, Kaigler D, de Ruijter M, Gawlitta D, Malda J, Bottino MC. Niche-inspired collagen infused melt electrowritten scaffolds for craniofacial bone regeneration. BIOMATERIALS ADVANCES 2025; 170:214222. [PMID: 39923603 PMCID: PMC11893008 DOI: 10.1016/j.bioadv.2025.214222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/08/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
Advances in tissue engineering are focused on devising improved therapeutics to reconstruct craniofacial bones. In cell-based strategies, biomaterials with specific physicochemical properties can mimic natural environments, supporting stem cell renewal, survivability, and cell fate. This study highlights the engineering of a 3D-printed (Melt Electrowritten, MEW) fluorinated‑calcium phosphate (F/CaP)-coated polymeric scaffold infused with collagen (COL) that boosts the performance of transplanted alveolar bone-derived mesenchymal stem cells (aBMSCs). Electron microscopy revealed micron-sized (2.7 μm) polymeric fibers forming a porous (500 μm fiber strand spacing) composite scaffold with a uniform F/CaP coating homogeneously infiltrated with collagen. In vitro, our findings underscored the cytocompatibility of the collagen-infused F/CaP-coated composite scaffold, fostering a suitable environment for aBMSCs proliferation and differentiation. Cells within the F/CaP-coated constructs exhibited upregulated osteogenic gene activity, and the addition of collagen augmented the expression of critical bone-forming genes (i.e., Runx2 and OCN). After in vivo implantation, the scaffolds integrated well with the surrounding host tissue, supporting extensive blood vessel infiltration. Notably, the collagen-infused F/CaP-coated composite scaffolds showed an increased CD31-positive vessel growth compared to the non-coated counterparts. At 8 weeks, aBMSCs-laden F/CaP-Coated+COL composite scaffolds exhibited robust bone formation, creating connecting bony bridges in calvarial defects. Importantly, F/CaP-Coated+COL composite scaffolds displayed pronounced OCN expression, indicating enhanced osteogenic potential. Thus, the engineered F/CaP-coated polymeric scaffold laden with aBMSCs and infused with collagen has proven effective in supporting cell growth, vascularization, and rapid bone regeneration, suggesting potential for future clinical use.
Collapse
Affiliation(s)
- Arwa Daghrery
- Department of Restorative Dental Sciences, School of Dentistry, Jazan University, Jazan, Saudi Arabia; Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Jinping Xu
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Darnell Kaigler
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Mylène de Ruijter
- Regenerative Medicine Center Utrecht, Utrecht, the Netherlands; Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Debby Gawlitta
- Regenerative Medicine Center Utrecht, Utrecht, the Netherlands; Department of Oral and Maxillofacial Surgery & Special Dental Care (Division of Surgical Specialties), Utrecht University, Utrecht, the Netherlands
| | - Jos Malda
- Regenerative Medicine Center Utrecht, Utrecht, the Netherlands; Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
2
|
Daghrery A, Araújo IJDS, Marques JF, Alipour M, Ünsal RBK, Chathoth BM, Sivaramakrishnan G, Delgadillo-Barrera S, Chaurasia A. Role of exosomes in dental and craniofacial regeneration - A review. Tissue Cell 2025; 93:102684. [PMID: 39740273 DOI: 10.1016/j.tice.2024.102684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND The treatment of congenital deformities, traumatic injuries, infectious diseases, and tumors in the craniomaxillofacial (CMF) region is complex due to the intricate nature of the tissues involved. Conventional treatments such as bone grafts and cell transplantation face limitations, including the need for multiple surgeries, complications, and safety concerns. OBJECTIVE This paper aims to provide a comprehensive analysis of the role of exosomes (EXOs) in CMF and dental tissue regeneration and to explore their potential applications in regenerative dental medicine. METHODS An extensive review of advancements in tissue engineering, materials sciences, and nanotechnology was conducted to evaluate the development of delivery systems for EXOs-based therapies. The analysis included how EXOs, as nanovesicles released by cells, can be modified to target specific cells or loaded with functional molecules for drug or gene delivery. RESULTS EXOs have emerged as a promising alternative to cell transplant therapy, offering a safer method for cell communication and epigenetic control. EXOs transport important proteins and genetic materials, facilitating intercellular communication and delivering therapeutics effectively. The potential of EXOs in personalized medicine, particularly in diagnosing, customizing treatment, and predicting patient responses, is highlighted. CONCLUSION EXO-mediated therapy holds significant potential for advancing tissue regeneration, offering targeted, personalized treatment options with reduced side effects. However, challenges in purification, production, and standardized protocols need to be addressed before its clinical application can be fully realized.
Collapse
Affiliation(s)
- Arwa Daghrery
- Department of Restorative Dental Sciences, School of Dentistry, Jazan University, Jazan, Kingdom of Saudi Arabia.
| | | | - Joana Faria Marques
- Faculdade de Medicina Dentária, Universidade de Lisboa, Cidade Universitária, Lisboa 1600-277, Portugal.
| | - Mahdieh Alipour
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Iran; Departments of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, USA.
| | - Revan Birke Koca Ünsal
- Department of Periodontology, University of Kyrenia, Faculty of Dentistry, Kyrenia, Cyprus.
| | | | | | - Sara Delgadillo-Barrera
- Grupo de Investigacion Básica y Aplicada en Odontología - IBAPO, Facultad de Odontologia, Universidad Nacional de Colombia, Bogotá, Colombia.
| | - Akhilanand Chaurasia
- Department of Oral Medicine and Radiology, Faculty of Dental Sciences. King George's Medical University, Lucknow, India.
| |
Collapse
|
3
|
de Carvalho ABG, Cardoso LM, Anselmi C, Dal-Fabbro R, Campos TMB, Borges ALS, Saavedra GDSFA, Bottino MC. Melt electrowriting of bioglass-laden poly(ε-caprolactone) scaffolds for bone regeneration. J Mater Chem B 2025; 13:3864-3875. [PMID: 39992649 PMCID: PMC11849773 DOI: 10.1039/d4tb02835j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 02/14/2025] [Indexed: 02/26/2025]
Abstract
Novel and promising biomaterials for bone tissue engineering have been investigated over the years. Aiming to contribute to this progress, this study developed and evaluated polycaprolactone (PCL) scaffolds with 5% (w/w) 58S-bioactive glass (58S-BG) fabricated via melt electrowriting (MEW). Morphological and chemical characterization of the scaffolds was conducted. The biological potential was assessed in vitro with alveolar bone-derived mesenchymal stem cells through cytotoxicity, adhesion, protein production, alkaline phosphatase activity, and mineral nodule formation assays. In vivo, scaffolds implanted in rats were analyzed for biocompatibility, inflammation, and degradation using H&E staining and immunohistochemical markers for angiogenesis and macrophage polarization. Statistical analysis was performed at a 5% significance level. Appropriate fiber alignment but a higher fiber diameter was found for PCL + BG5% compared to PCL scaffolds (p = 0.002). EDS spectra confirmed the presence of BG's chemical components for BG-laden scaffolds, attesting to BG particle incorporation into the filaments. Raman spectroscopy evidenced the chemical nature of the BG powder, and FTIR spectra revealed -OH stretching for PCL + BG5%, evidencing its hydrophilic potential. None of the scaffolds were cytotoxic, and BG-laden formulation increased cell viability after 7 days (p = 0.0006), also showing greater cell adhesion/spreading over time compared to pristine PCL scaffolds. BG's presence also increased the mineral matrix formation (p ≤ 0.0021) over 21 days and retained ALP activity after 14 days (p = 0.705) compared to PCL. In vivo, PCL scaffolds retained fiber alignment and preserved their volume throughout the evaluation, showing minimal structural alteration. In contrast, PCL + BG5% scaffolds showed more visible structural changes at 28 days. Despite this, the PCL + BG5% formulation remained biocompatible and significantly promoted angiogenesis compared to pristine PCL scaffolds. In sum, BG-laden scaffolds were successfully melt electrowritten, retaining the scaffolds' porous architecture, showing appropriate properties, including cell viability, adhesion, mineralized nodule deposition, biocompatibility, and angiogenesis, indicating that these materials are a promising alternative for enhancing bone tissue regeneration.
Collapse
Affiliation(s)
- Ana Beatriz Gomes de Carvalho
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
- Department of Dental Materials and Prosthodontics, São Paulo State University, São José dos Campos, SP, Brazil
| | - Lais Medeiros Cardoso
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
- Department of Dental Materials and Prosthodontics, São Paulo State University, Araraquara, SP, Brazil
| | - Caroline Anselmi
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
- Department of Morphology and Pediatric Dentistry, São Paulo State University, Araraquara, SP, Brazil
| | - Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
| | | | - Alexandre Luiz Souto Borges
- Department of Dental Materials and Prosthodontics, São Paulo State University, São José dos Campos, SP, Brazil
| | | | - Marco C Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Fischer NG, de Souza Araújo IJ, Daghrery A, Yu B, Dal-Fabbro R, Dos Reis-Prado AH, Silikas N, Rosa V, Aparicio C, Watts DC, Bottino MC. Guidance on biomaterials for periodontal tissue regeneration: Fabrication methods, materials and biological considerations. Dent Mater 2025; 41:283-305. [PMID: 39794220 DOI: 10.1016/j.dental.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025]
Abstract
Regeneration of the multiple tissues and interfaces in the periodontal complex necessitates multidisciplinary evaluation to establish structure/function relationships. This article, an initiative of the Academy of Dental Materials, provides guidance for performing chemical, structural, and mechanical characterization of materials for periodontal tissue regeneration, and outlines important recommendations on methods of testing bioactivity, biocompatibility, and antimicrobial properties of biomaterials/scaffolds for periodontal tissue engineering. First, we briefly summarize periodontal tissue engineering fabrication methods. We then highlight critical variables to consider when evaluating a material for periodontal tissue regeneration, and the fundamental tests used to investigate them. The recommended tests and designs incorporate relevant international standards and provide a framework for characterizing newly developed materials focusing on the applicability of those tests for periodontal tissue regeneration. The most common methods of biofabrication (electrospinning, injectable hydrogels, fused deposition modelling, melt electrowriting, and bioprinting) and their specific applications in periodontal tissue engineering are reviewed. The critical techniques for morphological, chemical, and mechanical characterization of different classes of materials used in periodontal regeneration are then described. The major advantages and drawbacks of each assay, sample sizes, and guidelines on specimen preparation are also highlighted. From a biological standpoint, fundamental methods for testing bioactivity, the biocompatibility of materials, and the experimental models for testing the antimicrobial potential are included in this guidance. In conclusion, researchers performing studies on periodontal tissue regeneration will have this guidance as a tool to assess essential properties and characteristics of their materials/scaffold-based strategies.
Collapse
Affiliation(s)
- Nicholas G Fischer
- Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Isaac J de Souza Araújo
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Arwa Daghrery
- Department of Restorative Dental Sciences, School of Dentistry, Jazan University, Jazan 82943, KSA; Department of Cariology, Restorative Sciences and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, MI 48109, USA
| | - Baiqing Yu
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, MI 48109, USA
| | - Alexandre H Dos Reis-Prado
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, MI 48109, USA; Department of Restorative Dentistry, School of Dentistry, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
| | - Nikolaos Silikas
- Dental Biomaterials, Dentistry, The University of Manchester, Manchester, United Kingdom
| | - Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore
| | - Conrado Aparicio
- BOBI-Bioinspired Oral Biomaterials and Interfaces, UPC-Universitat Politènica de Catalunya, Barcelona 08010, Spain; Catalan Institute for Research and Advanced Studies (ICREA), Barcelona 08010, Spain; SCOI - Study and Control of Oral Infections, Faculty of Odontology, UIC Barcelona-Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain; IBEC - Institute for Bioengineering of Catalonia, Barcelona, Spain
| | - David C Watts
- School of Medical Sciences and Photon Science Institute, University of Manchester, United Kingdom
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
5
|
Sousa AC, Alvites R, Lopes B, Sousa P, Moreira A, Coelho A, Santos JD, Atayde L, Alves N, Maurício AC. Three-Dimensional Printing/Bioprinting and Cellular Therapies for Regenerative Medicine: Current Advances. J Funct Biomater 2025; 16:28. [PMID: 39852584 PMCID: PMC11765675 DOI: 10.3390/jfb16010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/26/2025] Open
Abstract
The application of three-dimensional (3D) printing/bioprinting technologies and cell therapies has garnered significant attention due to their potential in the field of regenerative medicine. This paper aims to provide a comprehensive overview of 3D printing/bioprinting technology and cell therapies, highlighting their results in diverse medical applications, while also discussing the capabilities and limitations of their combined use. The synergistic combination of 3D printing and cellular therapies has been recognised as a promising and innovative approach, and it is expected that these technologies will progressively assume a crucial role in the treatment of various diseases and conditions in the foreseeable future. This review concludes with a forward-looking perspective on the future impact of these technologies, highlighting their potential to revolutionize regenerative medicine through enhanced tissue repair and organ replacement strategies.
Collapse
Affiliation(s)
- Ana Catarina Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Rui Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
- Instituto Universitário de Ciências da Saúde (CESPU), Instituto Universitário de Ciências da Saúde (IUCS), Avenida Central de Gandra 1317, Gandra, 4585-116 Paredes, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Alícia Moreira
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - André Coelho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - José Domingos Santos
- REQUIMTE-LAQV, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, UP, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| | - Luís Atayde
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic Institute of Leiria, Rua de Portugal—Zona Industrial, 2430-028 Marinha Grande, Portugal;
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
6
|
Dai Y, Wang P, Mishra A, You K, Zong Y, Lu WF, Chow EKH, Preshaw PM, Huang D, Chew JRJ, Ho D, Sriram G. 3D Bioprinting and Artificial Intelligence-Assisted Biofabrication of Personalized Oral Soft Tissue Constructs. Adv Healthc Mater 2024:e2402727. [PMID: 39690752 DOI: 10.1002/adhm.202402727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Indexed: 12/19/2024]
Abstract
Regeneration of oral soft tissue defects, including mucogingival defects associated with the recession or loss of gingival and/or mucosal tissues around teeth and implants, is crucial for restoring oral tissue form, function, and health. This study presents a novel approach using three-dimensional (3D) bioprinting to fabricate individualized grafts with precise size, shape, and layer-by-layer cellular organization. A multicomponent polysaccharide/fibrinogen-based bioink is developed, and bioprinting parameters are optimized to create shape-controlled oral soft tissue (gingival) constructs. Rheological, printability, and shape-fidelity assays, demonstrated the influence of thickener concentration and print parameters on print resolution and shape fidelity. Artificial intelligence (AI)-derived tool enabled streamline the iterative bioprinting parameter optimization and analysis of the interaction between the bioprinting parameters. The cell-laden polysaccharide/fibrinogen-based bioinks exhibited excellent cellular viability and shape fidelity of shape-controlled, full-thickness gingival tissue constructs over the 18-day culture period. While variations in thickener concentrations within the bioink minimally impact the cellular organization and morphogenesis (gingival epithelial, connective tissue, and basement membrane markers), they influence the shape fidelity of the bioprinted constructs. This study represents a significant step toward the biofabrication of personalized soft tissue grafts, offering potential applications in the repair and regeneration of mucogingival defects associated with periodontal disease and dental implants.
Collapse
Affiliation(s)
- Yichen Dai
- Faculty of Dentistry, National University of Singapore, Singapore, 119085, Singapore
| | - Peter Wang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, 117456, Singapore
| | - Apurva Mishra
- Faculty of Dentistry, National University of Singapore, Singapore, 119085, Singapore
| | - Kui You
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, 117456, Singapore
| | - Yuheng Zong
- Faculty of Dentistry, National University of Singapore, Singapore, 119085, Singapore
| | - Wen Feng Lu
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117602, Singapore
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore, 117602, Singapore
| | - Edward Kai-Hua Chow
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, 117456, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Philip M Preshaw
- Faculty of Dentistry, National University of Singapore, Singapore, 119085, Singapore
- School of Dentistry, University of Dundee, Dundee, DD1 4HN, UK
| | - Dejian Huang
- Department of Food, Science and Technology, National University of Singapore, Singapore, 117542, Singapore
| | - Jacob Ren Jie Chew
- Faculty of Dentistry, National University of Singapore, Singapore, 119085, Singapore
- National University Centre for Oral Health Singapore, National University Hospital, Singapore, 119085, Singapore
| | - Dean Ho
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, 117456, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- The Bia-Echo Asia Centre for Reproductive Longevity and Equality (ACRLE), National University of Singapore, Singapore, 117456, Singapore
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore, 119085, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117583, Singapore
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore, 117602, Singapore
| |
Collapse
|
7
|
Jain P, Kathuria H, Ramakrishna S, Parab S, Pandey MM, Dubey N. In Situ Bioprinting: Process, Bioinks, and Applications. ACS APPLIED BIO MATERIALS 2024; 7:7987-8007. [PMID: 38598256 DOI: 10.1021/acsabm.3c01303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Traditional tissue engineering methods face challenges, such as fabrication, implantation of irregularly shaped scaffolds, and limited accessibility for immediate healthcare providers. In situ bioprinting, an alternate strategy, involves direct deposition of biomaterials, cells, and bioactive factors at the site, facilitating on-site fabrication of intricate tissue, which can offer a patient-specific personalized approach and align with the principles of precision medicine. It can be applied using a handled device and robotic arms to various tissues, including skin, bone, cartilage, muscle, and composite tissues. Bioinks, the critical components of bioprinting that support cell viability and tissue development, play a crucial role in the success of in situ bioprinting. This review discusses in situ bioprinting techniques, the materials used for bioinks, and their critical properties for successful applications. Finally, we discuss the challenges and future trends in accelerating in situ printing to translate this technology in a clinical settings for personalized regenerative medicine.
Collapse
Affiliation(s)
- Pooja Jain
- Faculty of Dentistry, National University of Singapore, Singapore 119805, Singapore
| | - Himanshu Kathuria
- Nusmetics Pte Ltd, E-Centre@Redhill, 3791 Jalan Bukit Merah, Singapore 159471, Singapore
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanotechnology and Sustainability, National University of Singapore, Singapore 117581, Singapore
| | - Shraddha Parab
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan India, 333031
| | - Murali M Pandey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan India, 333031
| | - Nileshkumar Dubey
- Faculty of Dentistry, National University of Singapore, Singapore 119805, Singapore
- ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore 119805, Singapore
| |
Collapse
|
8
|
Arora V, Lin RYT, Tang YL, Tan KS, Rosa V, Sriram G, Dubey N. Development and characterization of nitazoxanide-loaded poly(ε-caprolactone) membrane for GTR/GBR applications. Dent Mater 2024; 40:2164-2172. [PMID: 39443226 DOI: 10.1016/j.dental.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE Guided tissue/guided bone regeneration (GTR/GBR) membranes are widely used for periodontal bone regeneration, but their success depends on a bacteria-free environment. Systemic antibiotic treatment often proves inadequate, moreover, the increasing prevalence of antibiotic resistance in oral infections exacerbates this challenge. This study aimed to fabricate antibacterial membranes using a new class of antibiotics for local drug delivery, to eradicate infections and promote tissue regeneration. METHODS Membranes loaded with nitazoxanide (NTZ) were fabricated via electrospinning using poly(ε-caprolactone) (PCL) with varying concentrations of NTZ (0 %, 2.5 %, and 5 % w/w) relative to the polymer weight. Morphochemical of NTZ-loaded membranes were assessed using scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and Fourier Transform Infrared spectroscopy (FTIR). Mechanical properties were evaluated using universal testing machine and NTZ release profile from membranes was determined by spectrophotometer (λmax = 444) for 14 days. Antimicrobial efficacy against periodontal pathogens, cell compatibility and mineralization were evaluated using periodontal ligament stem cells (PDLSCs). RESULTS Optimized spinning parameter maintained a uniform fiber diameter and successful loading of NTZ was confirmed by SEM-EDS and FTIR. NTZ incorporation did not significantly affect mechanical properties, whereas the drug release kinetics showed an initial burst, followed by sustained release over 14 days. NTZ-loaded membranes demonstrated antibacterial activity against Aggregatibacter actinomycetemcomitans (Aa) and Fusobacterium nucleatum (Fn). Importantly, the presence of NTZ showed minimal cell toxicity; however, it reduced the mineralization potential compared with that of the pure PCL membrane, which increased over time. SIGNIFICANCE Taken together, these findings established that NTZ-loaded membranes could be promising barrier membrane to counteract microbial environment and aid periodontal bone regeneration.
Collapse
Affiliation(s)
- Varuni Arora
- Faculty of Dentistry, National University of Singapore, Singapore 119085, Singapore
| | - Ruby Yu-Tong Lin
- Faculty of Dentistry, National University of Singapore, Singapore 119085, Singapore
| | - Yi Ling Tang
- Faculty of Dentistry, National University of Singapore, Singapore 119085, Singapore
| | - Kai Soo Tan
- Faculty of Dentistry, National University of Singapore, Singapore 119085, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore 119085, Singapore
| | - Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, Singapore 119085, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore 119085, Singapore
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore 119085, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore 119085, Singapore; NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117602, Singapore
| | - Nileshkumar Dubey
- Faculty of Dentistry, National University of Singapore, Singapore 119085, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore 119085, Singapore; Division of Cariology and Operative Dentistry, Department of Comprehensive Dentistry, University of Maryland School of Dentistry, Baltimore, MD 21201, United States.
| |
Collapse
|
9
|
de Souza Araújo I, Perkins RS, Ibrahim MM, Huang GTJ, Zhang W. Bioprinting PDLSC-Laden Collagen Scaffolds for Periodontal Ligament Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59979-59990. [PMID: 39467547 PMCID: PMC11551894 DOI: 10.1021/acsami.4c13830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/30/2024]
Abstract
Periodontitis and severe trauma are major causes of damage to the periodontal ligament (PDL). Repairing the native conditions of the PDL is essential for the stability of the tissue and its interfaces. Bioprinting periodontal ligament stem cells (PDLSCs) is an interesting approach to guide the regeneration of PDL and interfacial integration. Herein, a collagen-based bioink mimicking the native extracellular matrix conditions and carrying PDLSCs was tested to guide the periodontal ligament organization. The bioink was tested at two different concentrations (10 and 15 mg/mL) and characterized by swelling and degradation, microstructural organization, and rheological properties. The biological properties were assessed after loading PDLSCs into bioinks for bioprinting. The characterization was performed through cell viability, alizarin red assay, and expression for ALP, COL1A1, RUNX2, and OCN. The in vivo biocompatibility of the PDLSC-laden bioinks was verified using subcutaneous implantation in mice. Later, the ability of the bioprinted PDLSC-laden bioinks on dental root fragments to form PDL was also investigated in vivo in mice for 4 and 10 weeks. The bioinks demonstrated typical shear-thinning behavior, a porous microstructure, and stable swelling and degradation characteristics. Both concentrations were printable and provided suitable conditions for a high cell survival, proliferation, and differentiation. PDLSC-laden bioinks demonstrated biocompatibility in vivo, and the bioprinted scaffolds on the root surface evidenced PDLSC alignment, organization, and PDLSC migration to the root surface. The versatility of collagen-based bioinks provides native ECM conditions for PDLSC proliferation, alignment, organization, and differentiation, with translational applications in bioprinting scaffolds for PDL regeneration.
Collapse
Affiliation(s)
- Isaac
J. de Souza Araújo
- Department
of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Rachel S. Perkins
- Department
of Orthopaedic Surgery and Biomedical Engineering, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Mohamed Moustafa Ibrahim
- Department
of Ophthalmology, Hamilton Eye Institute, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Department
of Pharmaceutics, Faculty of Pharmacy, Mansoura
University, Mansoura 35516, Egypt
| | - George T.-J. Huang
- Department
of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Department
of Physiology, College of Medicine, University
of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Department
of Endodontics, The University of Tennessee
Health Science Center, Memphis, Tennessee 38163, United States
| | - Wenjing Zhang
- Department
of Genetics, Genomics & Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
10
|
Rosa V, Silikas N, Yu B, Dubey N, Sriram G, Zinelis S, Lima AF, Bottino MC, Ferreira JN, Schmalz G, Watts DC. Guidance on the assessment of biocompatibility of biomaterials: Fundamentals and testing considerations. Dent Mater 2024; 40:1773-1785. [PMID: 39129079 DOI: 10.1016/j.dental.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Assessing the biocompatibility of materials is crucial for ensuring the safety and well-being of patients by preventing undesirable, toxic, immune, or allergic reactions, and ensuring that materials remain functional over time without triggering adverse reactions. To ensure a comprehensive assessment, planning tests that carefully consider the intended application and potential exposure scenarios for selecting relevant assays, cell types, and testing parameters is essential. Moreover, characterizing the composition and properties of biomaterials allows for a more accurate understanding of test outcomes and the identification of factors contributing to cytotoxicity. Precise reporting of methodology and results facilitates research reproducibility and understanding of the findings by the scientific community, regulatory agencies, healthcare providers, and the general public. AIMS This article aims to provide an overview of the key concepts associated with evaluating the biocompatibility of biomaterials while also offering practical guidance on cellular principles, testing methodologies, and biological assays that can support in the planning, execution, and reporting of biocompatibility testing.
Collapse
Affiliation(s)
- Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore.
| | - Nikolaos Silikas
- Dental Biomaterials, Dentistry, The University of Manchester, Manchester, United Kingdom.
| | - Baiqing Yu
- Faculty of Dentistry, National University of Singapore, Singapore.
| | - Nileshkumar Dubey
- ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore; Division of Cariology and Operative Dentistry, Department of Comprehensive Dentistry, University of Maryland School of Dentistry, Baltimore, United States.
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore.
| | - Spiros Zinelis
- School of Dentistry National and Kapodistrian University of Athens (NKUA), Greece.
| | - Adriano F Lima
- Dental Research Division, Paulista University, Sao Paulo, Brazil.
| | - Marco C Bottino
- School of Dentistry, University of Michigan, Ann Arbor, USA.
| | - Joao N Ferreira
- Center of Excellence for Innovation for Oral Health and Healthy Longevity, Faculty of Dentistry, Chulalongkorn University, Thailand.
| | - Gottfried Schmalz
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany; Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.
| | - David C Watts
- School of Medical Sciences and Photon Science Institute, University of Manchester, United Kingdom.
| |
Collapse
|
11
|
de Carvalho ABG, Rahimnejad M, Oliveira RLMS, Sikder P, Saavedra GSFA, Bhaduri SB, Gawlitta D, Malda J, Kaigler D, Trichês ES, Bottino MC. Personalized bioceramic grafts for craniomaxillofacial bone regeneration. Int J Oral Sci 2024; 16:62. [PMID: 39482290 PMCID: PMC11528123 DOI: 10.1038/s41368-024-00327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 11/03/2024] Open
Abstract
The reconstruction of craniomaxillofacial bone defects remains clinically challenging. To date, autogenous grafts are considered the gold standard but present critical drawbacks. These shortcomings have driven recent research on craniomaxillofacial bone reconstruction to focus on synthetic grafts with distinct materials and fabrication techniques. Among the various fabrication methods, additive manufacturing (AM) has shown significant clinical potential. AM technologies build three-dimensional (3D) objects with personalized geometry customizable from a computer-aided design. These layer-by-layer 3D biomaterial structures can support bone formation by guiding cell migration/proliferation, osteogenesis, and angiogenesis. Additionally, these structures can be engineered to degrade concomitantly with the new bone tissue formation, making them ideal as synthetic grafts. This review delves into the key advances of bioceramic grafts/scaffolds obtained by 3D printing for personalized craniomaxillofacial bone reconstruction. In this regard, clinically relevant topics such as ceramic-based biomaterials, graft/scaffold characteristics (macro/micro-features), material extrusion-based 3D printing, and the step-by-step workflow to engineer personalized bioceramic grafts are discussed. Importantly, in vitro models are highlighted in conjunction with a thorough examination of the signaling pathways reported when investigating these bioceramics and their effect on cellular response/behavior. Lastly, we summarize the clinical potential and translation opportunities of personalized bioceramics for craniomaxillofacial bone regeneration.
Collapse
Affiliation(s)
- Ana Beatriz G de Carvalho
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Department of Dental Materials and Prosthodontics, São Paulo State University, São José dos Campos, SP, Brazil
| | - Maedeh Rahimnejad
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Rodrigo L M S Oliveira
- Federal University of São Paulo, Institute of Science and Technology, São José dos Campos, SP, Brazil
| | - Prabaha Sikder
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, USA
| | - Guilherme S F A Saavedra
- Department of Dental Materials and Prosthodontics, São Paulo State University, São José dos Campos, SP, Brazil
| | - Sarit B Bhaduri
- Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, Toledo, OH, USA
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
| | - Jos Malda
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Darnell Kaigler
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Eliandra S Trichês
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Federal University of São Paulo, Institute of Science and Technology, São José dos Campos, SP, Brazil
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Dal-Fabbro R, Anselmi C, Swanson WB, Medeiros Cardoso L, Toledo PTA, Daghrery A, Kaigler D, Abel A, Becker ML, Soliman S, Bottino MC. Amino Acid-Based Poly(ester urea) Biodegradable Membrane for Guided Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53419-53434. [PMID: 39329195 DOI: 10.1021/acsami.4c09742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Barrier membranes (BM) for guided bone regeneration (GBR) aim to support the osteogenic healing process of a defined bony defect by excluding epithelial (gingival) ingrowth and enabling osteoprogenitor and stem cells to proliferate and differentiate into bone tissue. Currently, the most widely used membranes for these approaches are collagen-derived, and there is a discrepancy in defining the optimal collagen membrane in terms of biocompatibility, strength, and degradation rates. Motivated by these clinical observations, we designed a collagen-free membrane based on l-valine-co-l-phenylalanine-poly(ester urea) (PEU) copolymer via electrospinning. Degradation and mechanical properties of these membranes were performed on as-spun and water-aged samples. Alveolar-bone-derived stem cells (AvBMSCs) were seeded on the PEU BM to assess their cell compatibility and osteogenic characteristics, including cell viability, attachment/spreading, proliferation, and mineralized tissue-associated gene expression. In vivo, PEU BMs were subcutaneously implanted in rats to evaluate their potential to cause inflammatory responses and facilitate angiogenesis. Finally, critical-size calvarial defects and a periodontal model were used to assess the regenerative capacity of the electrospun PEU BM compared to clinically available Cytoflex synthetic membranes. PEU BM demonstrated equal biocompatibility to Cytoflex with superior mechanical performance in strength and elasticity. Additionally, after 14 days, PEU BM exhibited a higher expression of BGLAP/osteocalcin and superior in vivo performance-less inflammation and increased CD31 and VWF expression over time. When placed in critical-sized defects in the calvaria of rats, the PEU BM led to robust bone formation with high expression of osteogenesis and angiogenesis markers. Moreover, our membrane enhanced alveolar bone and cementum regeneration in an established periodontal model after 8 weeks. We demonstrate that the PEU BM exhibits favorable clinical properties, including mechanical stability, cytocompatibility, and facilitated bone formation in vitro and in vivo. This highlights its suitability for GBR in periodontal and craniofacial bone defects.
Collapse
Affiliation(s)
- Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48104, United States
| | - Caroline Anselmi
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48104, United States
- Department of Morphology and Pediatric Dentistry, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo 01049-010, Brazil
| | - W Benton Swanson
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48104, United States
| | - Lais Medeiros Cardoso
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48104, United States
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo 01049-010, Brazil
| | - Priscila T A Toledo
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48104, United States
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo 01049-010, Brazil
| | - Arwa Daghrery
- Department of Restorative Dental Sciences, School of Dentistry, Jazan University, Jazan 82943, Kingdom of Saudi Arabia
| | - Darnell Kaigler
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48104, United States
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48104, United States
| | - Alexandra Abel
- Departments of Chemistry, Mechanical Engineering and Material Science, Orthopaedic Surgery, Duke University, Durham, North Carolina 27710, United States
| | - Matthew L Becker
- Departments of Chemistry, Mechanical Engineering and Material Science, Orthopaedic Surgery, Duke University, Durham, North Carolina 27710, United States
| | - Sherif Soliman
- Matregenix, Inc., Mission Viejo, California 92691, United States
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48104, United States
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48104, United States
| |
Collapse
|
13
|
Sexton B, Han Y, Dal-Fabbro R, Xu J, Kaigler D, Bottino MC. The role of fibroblast growth factor-2 in modulating the differentiation of periodontal ligament and alveolar bone-derived stem cells. Arch Oral Biol 2024; 165:106027. [PMID: 38870610 DOI: 10.1016/j.archoralbio.2024.106027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
OBJECTIVE This study examined how range concentrations of Fibroblast Growth Factor-2 (FGF-2) influence the differentiation and activity of human-derived periodontal ligament (hPDLSCs) and alveolar bone-derived stem cells (haBMSCs). DESIGN hPDLSCs and haBMSCs were cultured with varying concentrations of FGF-2 (0, 1, 2.5, 5, 10, 20 ng/mL) and monitored for osteogenic differentiation through alkaline phosphatase (ALP) activity and quantification of gene expression (qRT-PCR) for osteogenesis markers. Additionally, alizarin red staining and a hydroxyproline colorimetric assay evaluated and quantified osteogenic matrix mineralization and collagen deposition. Statistical analyses were performed using one-way ANOVA or two-way ANOVA for multiple comparisons between groups. RESULTS At low FGF-2 concentrations, hPDLSCs differentiated toward an osteogenic lineage, whereas higher concentrations of FGF-2 inhibited osteogenesis and promoted fibroblastic differentiation. The effect of FGF-2 at the lowest concentration tested (1 ng/mL) led to significantly higher ALP activity than osteogenically induced positive controls at early time points and equivalent RUNX2 expression at early and later time points. FGF-2 supplementation of haBMSC cultures was sufficient, at all concentrations, to increase ALP activity at an earlier time point. Mineralization of haBMSC cultures increased significantly within 5-20 ng/mL FGF-2 concentrations under basal growth media conditions (α-minimal essential medium supplemented with 15 % fetal bovine serum and 1 % penicillin/streptomycin). CONCLUSIONS FGF-2 has a dual capacity in promoting osteogenic and fibroblastic differentiation within hPDLSCs contingent upon the dosage and timing of administration, alongside supporting osteogenic differentiation in haBMSCs. These findings underscore the need for precision growth factors dosing when considering the design of biomaterials for periodontal regeneration.
Collapse
Affiliation(s)
- Benjamin Sexton
- Department of Biologic and Materials Science, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Yuanyuan Han
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Jinping Xu
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Darnell Kaigler
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
14
|
Yuan X, Zhu W, Yang Z, He N, Chen F, Han X, Zhou K. Recent Advances in 3D Printing of Smart Scaffolds for Bone Tissue Engineering and Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403641. [PMID: 38861754 DOI: 10.1002/adma.202403641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Indexed: 06/13/2024]
Abstract
The repair and functional reconstruction of bone defects resulting from severe trauma, surgical resection, degenerative disease, and congenital malformation pose significant clinical challenges. Bone tissue engineering (BTE) holds immense potential in treating these severe bone defects, without incurring prevalent complications associated with conventional autologous or allogeneic bone grafts. 3D printing technology enables control over architectural structures at multiple length scales and has been extensively employed to process biomimetic scaffolds for BTE. In contrast to inert and functional bone grafts, next-generation smart scaffolds possess a remarkable ability to mimic the dynamic nature of native extracellular matrix (ECM), thereby facilitating bone repair and regeneration. Additionally, they can generate tailored and controllable therapeutic effects, such as antibacterial or antitumor properties, in response to exogenous and/or endogenous stimuli. This review provides a comprehensive assessment of the progress of 3D-printed smart scaffolds for BTE applications. It begins with an introduction to bone physiology, followed by an overview of 3D printing technologies utilized for smart scaffolds. Notable advances in various stimuli-responsive strategies, therapeutic efficacy, and applications of 3D-printed smart scaffolds are discussed. Finally, the review highlights the existing challenges in the development and clinical implementation of smart scaffolds, as well as emerging technologies in this field.
Collapse
Affiliation(s)
- Xun Yuan
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Wei Zhu
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Zhongyuan Yang
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Ning He
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Feng Chen
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Xiaoxiao Han
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
15
|
Liu Y, Liang L, Rajan SS, Damade Y, Zhang X, Mishra K, Qu L, Dubey N. Recent advances in additive manufacturing for tooth restorations. APPLIED MATERIALS TODAY 2024; 39:102275. [DOI: 10.1016/j.apmt.2024.102275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
16
|
de Morais LA, de Souza Neto FN, Hosida TY, dos Santos DM, de Almeida BC, Frollini E, Filho SPC, Barbosa DDB, de Camargo ER, Delbem ACB. Synthesis, Characterization, and Evaluation of the Antimicrobial Effects and Cytotoxicity of a Novel Nanocomposite Based on Polyamide 6 and Trimetaphosphate Nanoparticles Decorated with Silver Nanoparticles. Antibiotics (Basel) 2024; 13:340. [PMID: 38667015 PMCID: PMC11047323 DOI: 10.3390/antibiotics13040340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/29/2024] Open
Abstract
This study aimed to develop a polymeric matrix of polyamide-6 (P6) impregnated with trimetaphosphate (TMP) nanoparticles and silver nanoparticles (AgNPs), and to evaluate its antimicrobial activity, surface free energy, TMP and Ag+ release, and cytotoxicity for use as a support in dental tissue. The data were subjected to statistical analysis (p < 0.05). P6 can be incorporated into TMP without altering its properties. In the first three hours, Ag+ was released for all groups decorated with AgNPs, and for TMP, the release only occurred for the P6-TMP-5% and P6-TMP-10% groups. In the inhibition zones, the AgNPs showed activity against both microorganisms. The P6-TMP-2.5%-Ag and P6-TMP-5%-Ag groups with AgNPs showed a greater reduction in CFU for S. mutans. For C. albicans, all groups showed a reduction in CFU. The P6-TMP groups showed higher cell viability, regardless of time (p < 0.05). The developed P6 polymeric matrix impregnated with TMP and AgNPs demonstrated promising antimicrobial properties against the tested microorganisms, making it a potential material for applications in scaffolds in dental tissues.
Collapse
Affiliation(s)
- Leonardo Antônio de Morais
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Rua José Bonifácio, 1193, Araçatuba 16015-050, São Paulo, Brazil; (L.A.d.M.); (F.N.d.S.N.); (T.Y.H.); (B.C.d.A.); (D.d.B.B.)
| | - Francisco Nunes de Souza Neto
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Rua José Bonifácio, 1193, Araçatuba 16015-050, São Paulo, Brazil; (L.A.d.M.); (F.N.d.S.N.); (T.Y.H.); (B.C.d.A.); (D.d.B.B.)
| | - Thayse Yumi Hosida
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Rua José Bonifácio, 1193, Araçatuba 16015-050, São Paulo, Brazil; (L.A.d.M.); (F.N.d.S.N.); (T.Y.H.); (B.C.d.A.); (D.d.B.B.)
| | - Danilo Martins dos Santos
- Sao Carlos Institute of Chemistry, University of Sao Paulo, Av. Trabalhador Sao-Carlense, 400, São Carlos 13566-590, São Paulo, Brazil; (D.M.d.S.); (E.F.); (S.P.C.F.)
| | - Bianca Carvalho de Almeida
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Rua José Bonifácio, 1193, Araçatuba 16015-050, São Paulo, Brazil; (L.A.d.M.); (F.N.d.S.N.); (T.Y.H.); (B.C.d.A.); (D.d.B.B.)
| | - Elisabete Frollini
- Sao Carlos Institute of Chemistry, University of Sao Paulo, Av. Trabalhador Sao-Carlense, 400, São Carlos 13566-590, São Paulo, Brazil; (D.M.d.S.); (E.F.); (S.P.C.F.)
| | - Sergio Paulo Campana Filho
- Sao Carlos Institute of Chemistry, University of Sao Paulo, Av. Trabalhador Sao-Carlense, 400, São Carlos 13566-590, São Paulo, Brazil; (D.M.d.S.); (E.F.); (S.P.C.F.)
| | - Debora de Barros Barbosa
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Rua José Bonifácio, 1193, Araçatuba 16015-050, São Paulo, Brazil; (L.A.d.M.); (F.N.d.S.N.); (T.Y.H.); (B.C.d.A.); (D.d.B.B.)
| | - Emerson Rodrigues de Camargo
- Center for Exact Sciences and Technology, Federal University of São Carlos (UFSCAR), Av. Trab. São Carlense, 400, São Carlos 13566-590, São Paulo, Brazil;
| | - Alberto Carlos Botazzo Delbem
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Rua José Bonifácio, 1193, Araçatuba 16015-050, São Paulo, Brazil; (L.A.d.M.); (F.N.d.S.N.); (T.Y.H.); (B.C.d.A.); (D.d.B.B.)
| |
Collapse
|
17
|
Kouhi M, de Souza Araújo IJ, Asa'ad F, Zeenat L, Bojedla SSR, Pati F, Zolfagharian A, Watts DC, Bottino MC, Bodaghi M. Recent advances in additive manufacturing of patient-specific devices for dental and maxillofacial rehabilitation. Dent Mater 2024; 40:700-715. [PMID: 38401992 DOI: 10.1016/j.dental.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/26/2024]
Abstract
OBJECTIVES Customization and the production of patient-specific devices, tailoring the unique anatomy of each patient's jaw and facial structures, are the new frontiers in dentistry and maxillofacial surgery. As a technological advancement, additive manufacturing has been applied to produce customized objects based on 3D computerized models. Therefore, this paper presents advances in additive manufacturing strategies for patient-specific devices in diverse dental specialties. METHODS This paper overviews current 3D printing techniques to fabricate dental and maxillofacial devices. Then, the most recent literature (2018-2023) available in scientific databases reporting advances in 3D-printed patient-specific devices for dental and maxillofacial applications is critically discussed, focusing on the major outcomes, material-related details, and potential clinical advantages. RESULTS The recent application of 3D-printed customized devices in oral prosthodontics, implantology and maxillofacial surgery, periodontics, orthodontics, and endodontics are presented. Moreover, the potential application of 4D printing as an advanced manufacturing technology and the challenges and future perspectives for additive manufacturing in the dental and maxillofacial area are reported. SIGNIFICANCE Additive manufacturing techniques have been designed to benefit several areas of dentistry, and the technologies, materials, and devices continue to be optimized. Image-based and accurately printed patient-specific devices to replace, repair, and regenerate dental and maxillofacial structures hold significant potential to maximize the standard of care in dentistry.
Collapse
Affiliation(s)
- Monireh Kouhi
- Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Isaac J de Souza Araújo
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, MI, United States
| | - Farah Asa'ad
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lubna Zeenat
- School of Engineering, Deakin University, Geelong 3216, Australia; Department of Biomedical Engineering, IIT Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Sri Sai Ramya Bojedla
- Department of Biomedical Engineering, IIT Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Falguni Pati
- Department of Biomedical Engineering, IIT Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Ali Zolfagharian
- School of Engineering, Deakin University, Geelong 3216, Australia
| | - David C Watts
- School of Medical Sciences, University of Manchester, Manchester, UK
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, MI, United States; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Mahdi Bodaghi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK.
| |
Collapse
|
18
|
Chen X, Liu Z, Ma R, Lu J, Zhang L. Electrospun nanofibers applications in caries lesions: prevention, treatment and regeneration. J Mater Chem B 2024; 12:1429-1445. [PMID: 38251708 DOI: 10.1039/d3tb02616g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Dental caries is a multifactorial disease primarily mediated by biofilm formation, resulting in a net loss of mineral content and degradation of organic matrix in dental hard tissues. Caries lesions of varying depths can result in demineralization of the superficial enamel, the formation of deep cavities extending into the dentin, and even pulp infection. Electrospun nanofibers (ESNs) exhibit an expansive specific surface area and a porous structure, closely mimicking the unique architecture of the natural extracellular matrix (ECM). This unique topography caters to the transport of small molecules and facilitates localized therapeutic drug delivery, offering great potential in regulating cell behavior, and thereby attracting interest in ESNs' applications in the treatment of caries lesions and the reconditioning of the affected dental tissues. Thus, this review aims to consolidate the recent developments in ESNs' applications for caries lesions. This review begins with an introduction to the electrospinning technique and provides a comprehensive overview of the biological properties and modification methods of ESNs, followed by an introduction outlining the basic pathological processes, classification and treatment requirements of caries lesions. Finally, the review offers a detailed examination of the research progress on the ESNs' application in caries lesions and concludes by addressing the limitations.
Collapse
Affiliation(s)
- Xiangshu Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No.14, Section 3, Renmin Road South, Chengdu, 610041, China
| | - Zhenqi Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No.14, Section 3, Renmin Road South, Chengdu, 610041, China
| | - Rui Ma
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Junzhuo Lu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No.14, Section 3, Renmin Road South, Chengdu, 610041, China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No.14, Section 3, Renmin Road South, Chengdu, 610041, China
| |
Collapse
|
19
|
Han Y, Dal-Fabbro R, Mahmoud AH, Rahimnejad M, Xu J, Castilho M, Dissanayaka WL, Bottino MC. GelMA/TCP nanocomposite scaffold for vital pulp therapy. Acta Biomater 2024; 173:495-508. [PMID: 37939819 PMCID: PMC10964899 DOI: 10.1016/j.actbio.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/11/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
Pulp capping is a necessary procedure for preserving the vitality and health of the dental pulp, playing a crucial role in preventing the need for root canal treatment or tooth extraction. Here, we developed an electrospun gelatin methacryloyl (GelMA) fibrous scaffold incorporating beta-tricalcium phosphate (TCP) particles for pulp capping. A comprehensive morphological, physical-chemical, and mechanical characterization of the engineered fibrous scaffolds was performed. In vitro bioactivity, cell compatibility, and odontogenic differentiation potential of the scaffolds in dental pulp stem cells (DPSCs) were also evaluated. A pre-clinical in vivo model was used to determine the therapeutic role of the GelMA/TCP scaffolds in promoting hard tissue formation. Morphological, chemical, and thermal analyses confirmed effective TCP incorporation in the GelMA nanofibers. The GelMA+20%TCP nanofibrous scaffold exhibited bead-free morphology and suitable mechanical and degradation properties. In vitro, GelMA+20%TCP scaffolds supported apatite-like formation, improved cell spreading, and increased deposition of mineralization nodules. Gene expression analysis revealed upregulation of ALPL, RUNX2, COL1A1, and DMP1 in the presence of TCP-laden scaffolds. In vivo, analyses showed mild inflammatory reaction upon scaffolds' contact while supporting mineralized tissue formation. Although the levels of Nestin and DMP1 proteins did not exceed those associated with the clinical reference treatment (i.e., mineral trioxide aggregate), the GelMA+20%TCP scaffold exhibited comparable levels, thus suggesting the emergence of differentiated odontoblast-like cells capable of dentin matrix secretion. Our innovative GelMA/TCP scaffold represents a simplified and efficient alternative to conventional pulp-capping biomaterials. STATEMENT OF SIGNIFICANCE: Vital pulp therapy (VPT) aims to preserve dental pulp vitality and avoid root canal treatment. Biomaterials that bolster mineralized tissue regeneration with ease of use are still lacking. We successfully engineered gelatin methacryloyl (GelMA) electrospun scaffolds incorporated with beta-tricalcium phosphate (TCP) for VPT. Notably, electrospun GelMA-based scaffolds containing 20% (w/v) of TCP exhibited favorable mechanical properties and degradation, cytocompatibility, and mineralization potential indicated by apatite-like structures in vitro and mineralized tissue deposition in vivo, although not surpassing those associated with the standard of care. Collectively, our innovative GelMA/TCP scaffold represents a simplified alternative to conventional pulp capping materials such as MTA and Biodentine™ since it is a ready-to-use biomaterial, requires no setting time, and is therapeutically effective.
Collapse
Affiliation(s)
- Yuanyuan Han
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States; Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Abdel H Mahmoud
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Maedeh Rahimnejad
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Jinping Xu
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Miguel Castilho
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Waruna L Dissanayaka
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
20
|
Jahangirnezhad M, Mahmoudinezhad SS, Moradi M, Moradi K, Rohani A, Tayebi L. Bone Scaffold Materials in Periodontal and Tooth-supporting Tissue Regeneration: A Review. Curr Stem Cell Res Ther 2024; 19:449-460. [PMID: 36578254 DOI: 10.2174/1574888x18666221227142055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND OBJECTIVES Periodontium is an important tooth-supporting tissue composed of both hard (alveolar bone and cementum) and soft (gingival and periodontal ligament) sections. Due to the multi-tissue architecture of periodontium, reconstruction of each part can be influenced by others. This review focuses on the bone section of the periodontium and presents the materials used in tissue engineering scaffolds for its reconstruction. MATERIALS AND METHODS The following databases (2015 to 2021) were electronically searched: ProQuest, EMBASE, SciFinder, MRS Online Proceedings Library, Medline, and Compendex. The search was limited to English-language publications and in vivo studies. RESULTS Eighty-three articles were found in primary searching. After applying the inclusion criteria, seventeen articles were incorporated into this study. CONCLUSION In complex periodontal defects, various types of scaffolds, including multilayered ones, have been used for the functional reconstruction of different parts of periodontium. While there are some multilayered scaffolds designed to regenerate alveolar bone/periodontal ligament/cementum tissues of periodontium in a hierarchically organized construct, no scaffold could so far consider all four tissues involved in a complete periodontal defect. The progress and material considerations in the regeneration of the bony part of periodontium are presented in this work to help investigators develop tissue engineering scaffolds suitable for complete periodontal regeneration.
Collapse
Affiliation(s)
- Mahmood Jahangirnezhad
- Department of Periodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sadaf Sadat Mahmoudinezhad
- Department of Periodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Melika Moradi
- Department of Periodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kooshan Moradi
- Department of Periodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Rohani
- Department of Periodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, WI, 53233, USA
| |
Collapse
|
21
|
Liang C, Wang G, Liang C, Li M, Sun Y, Tian W, Liao L. Hierarchically patterned triple-layered gelatin-based electrospun membrane functionalized by cell-specific extracellular matrix for periodontal regeneration. Dent Mater 2024; 40:90-101. [PMID: 37923673 DOI: 10.1016/j.dental.2023.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVES Regenerating the periodontium poses a critical challenge in oral medicine. To repair various periodontal defects, it is necessary to adopt a bio-scaffold that provides both the architecture and bioactive cues for local stem cells to migrate, reside, proliferate, and differentiate. The objective of this study is to combine a cell-specific decellularized extracellular matrix (ECM) and a biomimetic electrospinning scaffold to regenerate severely destructed periodontium. METHODS SEM, water contact angle (WCA), live/dead staining, swelling ratio, tensile test and immune-fluorescent staining were used to define the suitable topography for certain dental stem cells seeding and culturing. Transwell assay, CCK-8, Alizarin Red staining and PCR immune-fluorescent staining were used to determine ideal cell-specific ECM for PDLSCs/BMSCs migration, viability, and oriented differentiation. A biodegradable triple-layered electrospun scaffold (TLS) was fabricated by electrospinning with aligned fibers on both surfaces and a polyporous structure in the middle. The morphology and inter-porous structure of the TLS were characterized by SEM and mercury intrusion porosimetry (MIP). The surface of the TLS was functionalized with cell-specific ECM (Bi-ECM-TLS) through decellularization of the cell sheets cultured on the scaffold. The regenerative outcome of Bi-ECM-TLS was assessed by an in-situ rat periodontal defect model. Micro-CT, HE-staining, Masson's trichome staining, Sirius Red staining and Immunofluorescent staining were used for histological analysis. RESULTS Aligned Gelatin/PCL fibrous membrane (GPA) was most effective for both PDLSCs and BMSCs in culture with WCA around 50 degrees and better mechanical strength than the rest. MSCs favored the same type of ECM (cell-specific ECM), and their regenerative properties were effectively induced with better chemotaxis, proliferative and differentiating behaviors. TLS characterization showed that TLS possessed aligned-random-aligned structure and inter-porous structure. In a rat model of periodontal defects, the TLS functionalized by BMSC-specific ECM for bone regeneration and PDLSC-specific ECM demonstrated highest BV/TV ratio, best bone structure and ligament fiber orientation and blood vessel formation, suggesting optimal performance in regenerating both alveolar bone and periodontal ligaments over TLS, single-ECM loaded TLS and r-Bi-ECM-TLS. SIGNIFICANCE This study highlights the importance of combining a cell-specific decellularized ECM and a biomimetic electrospinning scaffold for targeted periodontal tissue regeneration, with potential implications for periodontal tissue engineering and improved patient outcomes.
Collapse
Affiliation(s)
- Chao Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Sichuan 610041, China
| | - Guanyu Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Sichuan 610041, China
| | - Cheng Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Sichuan 610041, China
| | - Maojiao Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Sichuan 610041, China
| | - Yanping Sun
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Sichuan 610041, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Sichuan 610041, China.
| | - Li Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Sichuan 610041, China.
| |
Collapse
|
22
|
Mahmoud AH, Han Y, Dal-Fabbro R, Daghrery A, Xu J, Kaigler D, Bhaduri SB, Malda J, Bottino MC. Nanoscale β-TCP-Laden GelMA/PCL Composite Membrane for Guided Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:32121-32135. [PMID: 37364054 PMCID: PMC10982892 DOI: 10.1021/acsami.3c03059] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Major advances in the field of periodontal tissue engineering have favored the fabrication of biodegradable membranes with tunable physical and biological properties for guided bone regeneration (GBR). Herein, we engineered innovative nanoscale beta-tricalcium phosphate (β-TCP)-laden gelatin methacryloyl/polycaprolactone (GelMA/PCL-TCP) photocrosslinkable composite fibrous membranes via electrospinning. Chemo-morphological findings showed that the composite microfibers had a uniform porous network and β-TCP particles successfully integrated within the fibers. Compared with pure PCL and GelMA/PCL, GelMA/PCL-TCP membranes led to increased cell attachment, proliferation, mineralization, and osteogenic gene expression in alveolar bone-derived mesenchymal stem cells (aBMSCs). Moreover, our GelMA/PCL-TCP membrane was able to promote robust bone regeneration in rat calvarial critical-size defects, showing remarkable osteogenesis compared to PCL and GelMA/PCL groups. Altogether, the GelMA/PCL-TCP composite fibrous membrane promoted osteogenic differentiation of aBMSCs in vitro and pronounced bone formation in vivo. Our data confirmed that the electrospun GelMA/PCL-TCP composite has a strong potential as a promising membrane for guided bone regeneration.
Collapse
Affiliation(s)
- Abdel H Mahmoud
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yuanyuan Han
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, 999077 Hong Kong, China
| | - Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Arwa Daghrery
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Restorative Dental Sciences, School of Dentistry, Jazan University, Jazan 45142, Kingdom of Saudi Arabia
| | - Jinping Xu
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Darnell Kaigler
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sarit B Bhaduri
- Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, Toledo, Ohio 43606-3390, United States
- EEC Division, Directorate of Engineering, The National Science Foundation, Alexandria, Virginia 22314, United States
| | - Jos Malda
- Regenerative Medicine Center Utrecht, 3584 CT Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3508 TC Utrecht, the Netherlands
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Ut Utrecht, The Netherlands
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
23
|
Toledo PTA, Anselmi C, Dal-Fabbro R, Mahmoud AH, Abel AK, Becker ML, Delbem ACB, Bottino MC. Calcium Trimetaphosphate-Loaded Electrospun Poly(Ester Urea) Nanofibers for Periodontal Tissue Engineering. J Funct Biomater 2023; 14:350. [PMID: 37504845 PMCID: PMC10381820 DOI: 10.3390/jfb14070350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
The objective of this research was to create and appraise biodegradable polymer-based nanofibers containing distinct concentrations of calcium trimetaphosphate (Ca-TMP) for periodontal tissue engineering. Poly(ester urea) (PEU) (5% w/v) solutions containing Ca-TMP (15%, 30%, 45% w/w) were electrospun into fibrous scaffolds. The fibers were evaluated using SEM, EDS, TGA, FTIR, XRD, and mechanical tests. Degradation rate, swelling ratio, and calcium release were also evaluated. Cell/Ca-TMP and cell/scaffold interaction were assessed using stem cells from human exfoliated deciduous teeth (SHEDs) for cell viability, adhesion, and alkaline phosphatase (ALP) activity. Analysis of variance (ANOVA) and post-hoc tests were used (α = 0.05). The PEU and PEU/Ca-TMP-based membranes presented fiber diameters at 469 nm and 414-672 nm, respectively. Chemical characterization attested to the Ca-TMP incorporation into the fibers. Adding Ca-TMP led to higher degradation stability and lower dimensional variation than the pure PEU fibers; however, similar mechanical characteristics were observed. Minimal calcium was released after 21 days of incubation in a lipase-enriched solution. Ca-TMP extracts enhanced cell viability and ALP activity, although no differences were found between the scaffold groups. Overall, Ca-TMP was effectively incorporated into the PEU fibers without compromising the morphological properties but did not promote significant cell function.
Collapse
Affiliation(s)
- Priscila T. A. Toledo
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (P.T.A.T.); (C.A.); (R.D.-F.); (A.H.M.)
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil;
| | - Caroline Anselmi
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (P.T.A.T.); (C.A.); (R.D.-F.); (A.H.M.)
- Department of Morphology and Pediatric Dentistry, School of Dentistry, São Paulo State University (UNESP), Araraquara 14801-385, SP, Brazil
| | - Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (P.T.A.T.); (C.A.); (R.D.-F.); (A.H.M.)
| | - Abdel H. Mahmoud
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (P.T.A.T.); (C.A.); (R.D.-F.); (A.H.M.)
| | - Alexandra K. Abel
- Departments of Chemistry, Mechanical Engineering and Material Science, Orthopaedic Surgery, Duke University, Durham, NC 27708, USA; (A.K.A.); (M.L.B.)
| | - Matthew L. Becker
- Departments of Chemistry, Mechanical Engineering and Material Science, Orthopaedic Surgery, Duke University, Durham, NC 27708, USA; (A.K.A.); (M.L.B.)
| | - Alberto C. B. Delbem
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil;
| | - Marco C. Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (P.T.A.T.); (C.A.); (R.D.-F.); (A.H.M.)
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
24
|
Marques JROF, González-Alva P, Yu-Tong Lin R, Ferreira Fernandes B, Chaurasia A, Dubey N. Advances in tissue engineering of cancer microenvironment-from three-dimensional culture to three-dimensional printing. SLAS Technol 2023; 28:152-164. [PMID: 37019216 DOI: 10.1016/j.slast.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/27/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
Cancer treatment development is a complex process, with tumor heterogeneity and inter-patient variations limiting the success of therapeutic intervention. Traditional two-dimensional cell culture has been used to study cancer metabolism, but it fails to capture physiologically relevant cell-cell and cell-environment interactions required to mimic tumor-specific architecture. Over the past three decades, research efforts in the field of 3D cancer model fabrication using tissue engineering have addressed this unmet need. The self-organized and scaffold-based model has shown potential to study the cancer microenvironment and eventually bridge the gap between 2D cell culture and animal models. Recently, three-dimensional (3D) bioprinting has emerged as an exciting and novel biofabrication strategy aimed at developing a 3D compartmentalized hierarchical organization with the precise positioning of biomolecules, including living cells. In this review, we discuss the advancements in 3D culture techniques for the fabrication of cancer models, as well as their benefits and limitations. We also highlight future directions associated with technological advances, detailed applicative research, patient compliance, and regulatory challenges to achieve a successful bed-to-bench transition.
Collapse
Affiliation(s)
- Joana Rita Oliveira Faria Marques
- Oral Biology and Biochemistry Research Group (GIBBO), Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), Faculdade de Medicina Dentária, Universidade de Lisboa, Lisboa, Portugal
| | - Patricia González-Alva
- Tissue Bioengineering Laboratory, Postgraduate Studies and Research Division, Faculty of Dentistry, National Autonomous University of Mexico (UNAM), 04510, Mexico, CDMX, Mexico
| | - Ruby Yu-Tong Lin
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Beatriz Ferreira Fernandes
- Oral Biology and Biochemistry Research Group (GIBBO), Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), Faculdade de Medicina Dentária, Universidade de Lisboa, Lisboa, Portugal
| | - Akhilanand Chaurasia
- Department of Oral Medicine, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Nileshkumar Dubey
- Faculty of Dentistry, National University of Singapore, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore.
| |
Collapse
|
25
|
Santonocito S, Ferlito S, Polizzi A, Ronsivalle V, Reitano G, Lo Giudice A, Isola G. Impact exerted by scaffolds and biomaterials in periodontal bone and tissue regeneration engineering: new challenges and perspectives for disease treatment. EXPLORATION OF MEDICINE 2023:215-234. [DOI: 10.37349/emed.2023.00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/12/2022] [Indexed: 10/01/2024] Open
Abstract
The periodontium is an appropriate target for regeneration, as it cannot restore its function following disease. Significantly, the periodontium's limited regenerative capacity could be enhanced through the development of novel biomaterials and therapeutic approaches. Notably, the regenerative potential of the periodontium depends not only on its tissue-specific architecture and function but also on its ability to reconstruct distinct tissues and tissue interfaces, implying that the development of tissue engineering techniques can offer new perspectives for the organized reconstruction of soft and hard periodontal tissues. With their biocompatible structure and one-of-a-kind stimulus-responsive property, hydrogels have been utilized as an excellent drug delivery system for the treatment of several oral diseases. Furthermore, bioceramics and three-dimensional (3D) printed scaffolds are also appropriate scaffolding materials for the regeneration of periodontal tissue, bone, and cartilage. This work aims to examine and update material-based, biologically active cues and the deployment of breakthrough bio-fabrication technologies to regenerate the numerous tissues that comprise the periodontium for clinical and scientific applications.
Collapse
Affiliation(s)
- Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania 95124, Italy
| | - Salvatore Ferlito
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, Catania 95123, Italy
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania 95124, Italy
| | - Vincenzo Ronsivalle
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania 95124, Italy
| | - Giuseppe Reitano
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania 95124, Italy
| | - Antonino Lo Giudice
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania 95124, Italy
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania 95124, Italy
| |
Collapse
|
26
|
Altunbek M, Afghah SF, Fallah A, Acar AA, Koc B. Design and 3D Printing of Personalized Hybrid and Gradient Structures for Critical Size Bone Defects. ACS APPLIED BIO MATERIALS 2023; 6:1873-1885. [PMID: 37071829 DOI: 10.1021/acsabm.3c00107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Treating critical-size bone defects with autografts, allografts, or standardized implants is challenging since the healing of the defect area necessitates patient-specific grafts with mechanically and physiologically relevant structures. Three-dimensional (3D) printing using computer-aided design (CAD) is a promising approach for bone tissue engineering applications by producing constructs with customized designs and biomechanical compositions. In this study, we propose 3D printing of personalized and implantable hybrid active scaffolds with a unique architecture and biomaterial composition for critical-size bone defects. The proposed 3D hybrid construct was designed to have a gradient cell-laden poly(ethylene glycol) (PEG) hydrogel, which was surrounded by a porous polycaprolactone (PCL) cage structure to recapitulate the anatomical structure of the defective area. The optimized PCL cage design not only provides improved mechanical properties but also allows the diffusion of nutrients and medium through the scaffold. Three different designs including zigzag, zigzag/spiral, and zigzag/spiral with shifting the zigzag layers were evaluated to find an optimal architecture from a mechanical point of view and permeability that can provide the necessary mechanical strength and oxygen/nutrient diffusion, respectively. Mechanical properties were investigated experimentally and analytically using finite element analysis (FEA), and computational fluid dynamics (CFD) simulation was used to determine the permeability of the structures. A hybrid scaffold was fabricated via 3D printing of the PCL cage structure and a PEG-based bioink comprising a varying number of human bone marrow mesenchymal stem cells (hBMSCs). The gradient bioink was deposited inside the PCL cage through a microcapillary extrusion to generate a mineralized gradient structure. The zigzag/spiral design for the PCL cage was found to be mechanically strong with sufficient and optimum nutrient/gas axial and radial diffusion while the PEG-based hydrogel provided a biocompatible environment for hBMSC viability, differentiation, and mineralization. This study promises the production of personalized constructs for critical-size bone defects by printing different biomaterials and gradient cells with a hybrid design depending on the need for a donor site for implantation.
Collapse
Affiliation(s)
- Mine Altunbek
- Nanotechnology Research and Application Center, Sabanci University, Istanbul 34956, Turkey
- University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Seyedeh Ferdows Afghah
- Nanotechnology Research and Application Center, Sabanci University, Istanbul 34956, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Ali Fallah
- Nanotechnology Research and Application Center, Sabanci University, Istanbul 34956, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Istanbul 34906, Turkey
| | - Anil Ahmet Acar
- Nanotechnology Research and Application Center, Sabanci University, Istanbul 34956, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Bahattin Koc
- Nanotechnology Research and Application Center, Sabanci University, Istanbul 34956, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Istanbul 34906, Turkey
| |
Collapse
|
27
|
Nanotechnology in tissue engineering and regenerative medicine. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1363-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
28
|
Daghrery A, de Souza Araújo IJ, Castilho M, Malda J, Bottino MC. Unveiling the potential of melt electrowriting in regenerative dental medicine. Acta Biomater 2023; 156:88-109. [PMID: 35026478 PMCID: PMC11046422 DOI: 10.1016/j.actbio.2022.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/08/2021] [Accepted: 01/05/2022] [Indexed: 01/18/2023]
Abstract
For nearly three decades, tissue engineering strategies have been leveraged to devise effective therapeutics for dental, oral, and craniofacial (DOC) regenerative medicine and treat permanent deformities caused by many debilitating health conditions. In this regard, additive manufacturing (AM) allows the fabrication of personalized scaffolds that have the potential to recapitulate native tissue morphology and biomechanics through the utilization of several 3D printing techniques. Among these, melt electrowriting (MEW) is a versatile direct electrowriting process that permits the development of well-organized fibrous constructs with fiber resolutions ranging from micron to nanoscale. Indeed, MEW offers great prospects for the fabrication of scaffolds mimicking tissue specificity, healthy and pathophysiological microenvironments, personalized multi-scale transitions, and functional interfaces for tissue regeneration in medicine and dentistry. Excitingly, recent work has demonstrated the potential of converging MEW with other AM technologies and/or cell-laden scaffold fabrication (bioprinting) as a favorable route to overcome some of the limitations of MEW for DOC tissue regeneration. In particular, such convergency fabrication strategy has opened great promise in terms of supporting multi-tissue compartmentalization and predetermined cell commitment. In this review, we offer a critical appraisal on the latest advances in MEW and its convergence with other biofabrication technologies for DOC tissue regeneration. We first present the engineering principles of MEW and the most relevant design aspects for transition from flat to more anatomically relevant 3D structures while printing highly-ordered constructs. Secondly, we provide a thorough assessment of contemporary achievements using MEW scaffolds to study and guide soft and hard tissue regeneration, and draw a parallel on how to extrapolate proven concepts for applications in DOC tissue regeneration. Finally, we offer a combined engineering/clinical perspective on the fabrication of hierarchically organized MEW scaffold architectures and the future translational potential of site-specific, single-step scaffold fabrication to address tissue and tissue interfaces in dental, oral, and craniofacial regenerative medicine. STATEMENT OF SIGNIFICANCE: Melt electrowriting (MEW) techniques can further replicate the complexity of native tissues and could be the foundation for novel personalized (defect-specific) and tissue-specific clinical approaches in regenerative dental medicine. This work presents a unique perspective on how MEW has been translated towards the application of highly-ordered personalized multi-scale and functional interfaces for tissue regeneration, targeting the transition from flat to anatomically-relevant three-dimensional structures. Furthermore, we address the value of convergence of biofabrication technologies to overcome the traditional manufacturing limitations provided by multi-tissue complexity. Taken together, this work offers abundant engineering and clinical perspectives on the fabrication of hierarchically MEW architectures aiming towards site-specific implants to address complex tissue damage in regenerative dental medicine.
Collapse
Affiliation(s)
- Arwa Daghrery
- Department of Cardiology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, Michigan, United States; Department of Restorative Dental Sciences, School of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Isaac J de Souza Araújo
- Department of Cardiology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, Michigan, United States
| | - Miguel Castilho
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Jos Malda
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - Marco C Bottino
- Department of Cardiology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, Michigan, United States; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan, United States.
| |
Collapse
|
29
|
Sufaru IG, Macovei G, Stoleriu S, Martu MA, Luchian I, Kappenberg-Nitescu DC, Solomon SM. 3D Printed and Bioprinted Membranes and Scaffolds for the Periodontal Tissue Regeneration: A Narrative Review. MEMBRANES 2022; 12:membranes12090902. [PMID: 36135920 PMCID: PMC9505571 DOI: 10.3390/membranes12090902] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 05/31/2023]
Abstract
Numerous technologies and materials were developed with the aim of repairing and reconstructing the tissue loss in patients with periodontitis. Periodontal guided bone regeneration (GBR) and guided tissue regeneration (GTR) involves the use of a membrane which prevents epithelial cell migration, and helps to maintain the space, creating a protected area in which tissue regeneration is favored. Over the time, manufacturing procedures of such barrier membranes followed important improvements. Three-dimensional (3D) printing technology has led to major innovations in periodontal regeneration methods, using technologies such as inkjet printing, light-assisted 3D printing or micro-extrusion. Besides the 3D printing of monophasic and multi-phasic scaffolds, bioprinting and tissue engineering have emerged as innovative technologies which can change the way we see GTR and GBR.
Collapse
Affiliation(s)
- Irina-Georgeta Sufaru
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| | - Georgiana Macovei
- Department of Oral and Dental Diagnostics, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| | - Simona Stoleriu
- Department of Cariology and Restorative Dental Therapy, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| | - Maria-Alexandra Martu
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| | - Ionut Luchian
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| | | | - Sorina Mihaela Solomon
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| |
Collapse
|
30
|
Daghrery A, Bottino MC. Advanced biomaterials for periodontal tissue regeneration. Genesis 2022; 60:e23501. [PMID: 36113074 PMCID: PMC9557988 DOI: 10.1002/dvg.23501] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/27/2022] [Accepted: 08/16/2022] [Indexed: 12/30/2022]
Abstract
The periodontium is a suitable target for regenerative intervention, since it does not functionally restore itself after disease. Importantly, the limited regeneration capacity of the periodontium could be improved with the development of novel biomaterials and therapeutic strategies. Of note, the regenerative potential of the periodontium depends not only on its tissue-specific architecture and function, but also on its ability to reconstruct distinct tissues and tissue interfaces, suggesting that the advancement of tissue engineering approaches can ultimately offer new perspectives to promote the organized reconstruction of soft and hard periodontal tissues. Here, we discuss material-based, biologically active cues, and the application of innovative biofabrication technologies to regenerate the multiple tissues that comprise the periodontium.
Collapse
Affiliation(s)
- Arwa Daghrery
- Department of Restorative Dental Sciences, School of DentistryJazan UniversityJazanKingdom of Saudi Arabia
| | - Marco C. Bottino
- Department of Biomedical Engineering, College of EngineeringUniversity of MichiganAnn ArborMichiganUSA,Department of Cariology, Restorative Sciences, and EndodonticsUniversity of Michigan, School of DentistryAnn ArborMichiganUSA
| |
Collapse
|
31
|
Jain P, Kathuria H, Dubey N. Advances in 3D bioprinting of tissues/organs for regenerative medicine and in-vitro models. Biomaterials 2022; 287:121639. [PMID: 35779481 DOI: 10.1016/j.biomaterials.2022.121639] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022]
Abstract
Tissue/organ shortage is a major medical challenge due to donor scarcity and patient immune rejections. Furthermore, it is difficult to predict or mimic the human disease condition in animal models during preclinical studies because disease phenotype differs between humans and animals. Three-dimensional bioprinting (3DBP) is evolving into an unparalleled multidisciplinary technology for engineering three-dimensional (3D) biological tissue with complex architecture and composition. The technology has emerged as a key driver by precise deposition and assembly of biomaterials with patient's/donor cells. This advancement has aided in the successful fabrication of in vitro models, preclinical implants, and tissue/organs-like structures. Here, we critically reviewed the current state of 3D-bioprinting strategies for regenerative therapy in eight organ systems, including nervous, cardiovascular, skeletal, integumentary, endocrine and exocrine, gastrointestinal, respiratory, and urinary systems. We also focus on the application of 3D bioprinting to fabricated in vitro models to study cancer, infection, drug testing, and safety assessment. The concept of in situ 3D bioprinting is discussed, which is the direct printing of tissues at the injury or defect site for reparative and regenerative therapy. Finally, issues such as scalability, immune response, and regulatory approval are discussed, as well as recently developed tools and technologies such as four-dimensional and convergence bioprinting. In addition, information about clinical trials using 3D printing has been included.
Collapse
Affiliation(s)
- Pooja Jain
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India; Faculty of Dentistry, National University of Singapore, Singapore
| | - Himanshu Kathuria
- Department of Pharmacy, National University of Singapore, 117543, Singapore; Nusmetic Pte Ltd, Makerspace, I4 Building, 3 Research Link Singapore, 117602, Singapore.
| | - Nileshkumar Dubey
- Faculty of Dentistry, National University of Singapore, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore.
| |
Collapse
|
32
|
Webb BCW, Glogauer M, Santerre JP. The Structure and Function of Next-Generation Gingival Graft Substitutes-A Perspective on Multilayer Electrospun Constructs with Consideration of Vascularization. Int J Mol Sci 2022; 23:5256. [PMID: 35563649 PMCID: PMC9099797 DOI: 10.3390/ijms23095256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/10/2022] Open
Abstract
There is a shortage of suitable tissue-engineered solutions for gingival recession, a soft tissue defect of the oral cavity. Autologous tissue grafts lead to an increase in morbidity due to complications at the donor site. Although material substitutes are available on the market, their development is early, and work to produce more functional material substitutes is underway. The latter materials along with newly conceived tissue-engineered substitutes must maintain volumetric form over time and have advantageous mechanical and biological characteristics facilitating the regeneration of functional gingival tissue. This review conveys a comprehensive and timely perspective to provide insight towards future work in the field, by linking the structure (specifically multilayered systems) and function of electrospun material-based approaches for gingival tissue engineering and regeneration. Electrospun material composites are reviewed alongside existing commercial material substitutes', looking at current advantages and disadvantages. The importance of implementing physiologically relevant degradation profiles and mechanical properties into the design of material substitutes is presented and discussed. Further, given that the broader tissue engineering field has moved towards the use of pre-seeded scaffolds, a review of promising cell options, for generating tissue-engineered autologous gingival grafts from electrospun scaffolds is presented and their potential utility and limitations are discussed.
Collapse
Affiliation(s)
- Brian C. W. Webb
- Faculty of Dentistry, University of Toronto, 124 Edward St, Toronto, ON M5G 1G6, Canada; (B.C.W.W.); (M.G.)
- Institute of Biomedical Engineering, University of Toronto, 164 Collage St Room 407, Toronto, ON M5S 3G9, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, 124 Edward St, Toronto, ON M5G 1G6, Canada; (B.C.W.W.); (M.G.)
| | - J. Paul Santerre
- Faculty of Dentistry, University of Toronto, 124 Edward St, Toronto, ON M5G 1G6, Canada; (B.C.W.W.); (M.G.)
- Institute of Biomedical Engineering, University of Toronto, 164 Collage St Room 407, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
33
|
Anderson M, Dubey N, Bogie K, Cao C, Li J, Lerchbacker J, Mendonça G, Kauffmann F, Bottino MC, Kaigler D. Three-dimensional printing of clinical scale and personalized calcium phosphate scaffolds for alveolar bone reconstruction. Dent Mater 2022; 38:529-539. [PMID: 35074166 PMCID: PMC9016367 DOI: 10.1016/j.dental.2021.12.141] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/20/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Alveolar bone defects can be highly variable in their morphology and, as the defect size increases, they become more challenging to treat with currently available therapeutics and biomaterials. This investigation sought to devise a protocol for fabricating customized clinical scale and patient-specific, bioceramic scaffolds for reconstruction of large alveolar bone defects. METHODS Two types of calcium phosphate (CaP)-based bioceramic scaffolds (alginate/β-TCP and hydroxyapatite/α-TCP, hereafter referred to as hybrid CaP and Osteoink™, respectively) were designed, 3D printed, and their biocompatibility with alveolar bone marrow stem cells and mechanical properties were determined. Following scaffold optimization, a workflow was developed to use cone beam computed tomographic (CBCT) imaging to design and 3D print, defect-specific bioceramic scaffolds for clinical-scale bone defects. RESULTS Osteoink™ scaffolds had the highest compressive strength when compared to hybrid CaP with different infill orientation. In cell culture medium, hybrid CaP degradation resulted in decreased pH (6.3) and toxicity to stem cells; however, OsteoInk™ scaffolds maintained a stable pH (7.2) in culture and passed the ISO standard for cytotoxicity. Finally, a clinically feasible laboratory workflow was developed and evaluated using CBCT imaging to engineer customized and defect-specific CaP scaffolds using OsteoInk™. It was determined that printed scaffolds had a high degree of accuracy to fit the respective clinical defects for which they were designed (0.27 mm morphological deviation of printed scaffolds from digital design). SIGNIFICANCE From patient to patient, large alveolar bone defects are difficult to treat due to high variability in their complex morphologies and architecture. Our findings shows that Osteoink™ is a biocompatible material for 3D printing of clinically acceptable, patient-specific scaffolds with precision-fit for use in alveolar bone reconstructive procedures. Collectively, emerging digital technologies including CBCT imaging, 3D surgical planning, and (bio)printing can be integrated to address this unmet clinical challenge.
Collapse
Affiliation(s)
- Margaret Anderson
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Nileshkumar Dubey
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Faculty of Dentistry, National University of Singapore, Singapore
| | - Kath Bogie
- Case Western Reserve University, Cleveland, OH, USA
| | - Chen Cao
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Junying Li
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | | | - Gustavo Mendonça
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Frederic Kauffmann
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Darnell Kaigler
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
34
|
Yuan Y, Chen L, Shi Z, Chen J. Micro/Nanoarchitectonics of 3D Printed Scaffolds with Excellent Biocompatibility Prepared Using Femtosecond Laser Two-Photon Polymerization for Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:391. [PMID: 35159735 PMCID: PMC8839747 DOI: 10.3390/nano12030391] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 11/17/2022]
Abstract
The fabrication of high-precision scaffolds with excellent biocompatibility for tissue engineering has become a research hotspot. Two-photon polymerization (TPP) can break the optical diffraction limit and is used to fabricate high-resolution three-dimensional (3D) microstructures. In this study, the biological properties, and machinability of photosensitive gelatin methacrylate (GelMA) hydrogel solutions are investigated, and the biocompatibility of 3D scaffolds using a photosensitive GelMA hydrogel solution fabricated by TPP is also evaluated. The biological properties of photosensitive GelMA hydrogel solutions are evaluated by analyzing their cytotoxicity, swelling ratio, and degradation ratio. The experimental results indicate that: (1) photosensitive GelMA hydrogel solutions with remarkable biological properties and processability are suitable for cell attachment. (2) a micro/nano 3D printed scaffold with good biocompatibility is fabricated using a laser scanning speed of 150 μm/s, laser power of 7.8 mW, layer distance of 150 nm and a photosensitive GelMA hydrogel solution with a concentration of 12% (w/v). Micro/nano additive manufacturing will have broad application prospects in the tissue engineering field.
Collapse
Affiliation(s)
- Yanping Yuan
- Faculty of Materials and Manufacturing, Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China; (L.C.); (Z.S.); (J.C.)
- Key Laboratory of Trans-Scale Laser Manufacturing Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
- Beijing Engineering Research Center of 3D Printing for Digital Medical Health, Beijing University of Technology, Beijing 100124, China
| | - Lei Chen
- Faculty of Materials and Manufacturing, Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China; (L.C.); (Z.S.); (J.C.)
- Key Laboratory of Trans-Scale Laser Manufacturing Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
- Beijing Engineering Research Center of 3D Printing for Digital Medical Health, Beijing University of Technology, Beijing 100124, China
| | - Ziyuan Shi
- Faculty of Materials and Manufacturing, Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China; (L.C.); (Z.S.); (J.C.)
- Key Laboratory of Trans-Scale Laser Manufacturing Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
- Beijing Engineering Research Center of 3D Printing for Digital Medical Health, Beijing University of Technology, Beijing 100124, China
| | - Jimin Chen
- Faculty of Materials and Manufacturing, Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China; (L.C.); (Z.S.); (J.C.)
- Key Laboratory of Trans-Scale Laser Manufacturing Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
- Beijing Engineering Research Center of 3D Printing for Digital Medical Health, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
35
|
Ferreira JA, Kantorski KZ, Dubey N, Daghrery A, Fenno JC, Mishina Y, Chan HL, Mendonça G, Bottino MC. Personalized and Defect-Specific Antibiotic-Laden Scaffolds for Periodontal Infection Ablation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49642-49657. [PMID: 34637255 DOI: 10.1021/acsami.1c11787] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Periodontitis compromises the integrity and function of tooth-supporting structures. Although therapeutic approaches have been offered, predictable regeneration of periodontal tissues remains intangible, particularly in anatomically complex defects. In this work, personalized and defect-specific antibiotic-laden polymeric scaffolds containing metronidazole (MET), tetracycline (TCH), or their combination (MET/TCH) were created via electrospinning. An initial screening of the synthesized fibers comprising chemo-morphological analyses, cytocompatibility assessment, and antimicrobial validation against periodontopathogens was accomplished to determine the cell-friendly and anti-infective nature of the scaffolds. According to the cytocompatibility and antimicrobial data, the 1:3 MET/TCH formulation was used to obtain three-dimensional defect-specific scaffolds to treat periodontally compromised three-wall osseous defects in rats. Inflammatory cell response and new bone formation were assessed by histology. Micro-computerized tomography was performed to assess bone loss in the furcation area at 2 and 6 weeks post implantation. Chemo-morphological and cell compatibility analyses confirmed the synthesis of cytocompatible antibiotic-laden fibers with antimicrobial action. Importantly, the 1:3 MET/TCH defect-specific scaffolds led to increased new bone formation, lower bone loss, and reduced inflammatory response when compared to antibiotic-free scaffolds. Altogether, our results suggest that the fabrication of defect-specific antibiotic-laden scaffolds holds great potential toward the development of personalized (i.e., patient-specific medication) scaffolds to ablate infection while affording regenerative properties.
Collapse
Affiliation(s)
- Jessica A Ferreira
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
| | - Karla Z Kantorski
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
- Post-Graduate Program in Oral Sciences (Periodontology Unit), School of Dentistry, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - Nileshkumar Dubey
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
| | - Arwa Daghrery
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
| | - J Christopher Fenno
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
| | - Hsun-Liang Chan
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
| | - Gustavo Mendonça
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
| |
Collapse
|