1
|
Chen Y, Li P, Huang W, Yang N, Zhang X, Cai K, Chen Y, Xie Z, Gong J, Liao Q. Structural characterization and immunomodulatory activity of an exopolysaccharide isolated from Bifidobacterium adolescentis. Int J Biol Macromol 2025; 304:140747. [PMID: 39922339 DOI: 10.1016/j.ijbiomac.2025.140747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/22/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Bifidobacterium adolescentis is a key probiotic that has been proven to possess various bioactivities. A water-soluble heteropolysaccharide (BEP-1A) was isolated from the probiotic and systematically investigated for the first time. The molecular weight of BEP-1A was calculated to be 9.69 × 106 Da. Combined with monosaccharide composition, Fourier transform infrared (FT-IR) spectroscopy, methylation and nuclear magnetic resonance (NMR) analysis, BEP-1A was composed of mannose, glucose and galactose at a molar ratio of 0.11⁚4.30⁚1.32. The backbone included β-1,2-Glcp, β-1,3-Glcp, α-1,4-Glcp, α-1,4-Galp, α-1,6-Galp and α-1,3-Manp, with the branch at the O-2 position of α-1,6-Galp, consisting of α-1,2-Galp and α-1-Glcp. Moreover, a filamentous structure of BEP-1A was detected by scanning electron microscopy (SEM). BEP-1A presented high thermal stability based on thermogravimetric analysis (TGA). X-ray diffractometry (XRD) results revealed that BEP-1A was an amorphous molecule without a crystal structure. Furthermore, BEP-1A significantly increased the viability of RAW 264.7 macrophages, improved phagocytosis, and promoted the secretion of nitric oxide (NO), reactive oxygen species (ROS), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) and inducible nitric oxide synthase (iNOS). BEP-1A was also found to induce the nuclear translocation of the NF-κB subunit p65 and upregulate the phosphorylation of p65 and IκB-α, which suggested that the NF-κB pathway was involved in the BEP-1A-induced immunomodulatory effect. Overall, this study provides a theoretical basis for the development of BEP-1A as an immunomodulator in pharmaceuticals and functional foods.
Collapse
Affiliation(s)
- Ye Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China
| | - Pei Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China
| | - Wenyi Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China
| | - Na Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China
| | - Xingyuan Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China
| | - Kaiwei Cai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China
| | - Yanlong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangming District, Gongchang Road, Shenzhen, Guangdong Province 518106, China
| | - Jing Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China.
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China.
| |
Collapse
|
2
|
Kumar A, Devi R, Dhalaria R, Tapwal A, Verma R, Rashid S, Elossaily GM, Khan KA, Chen K, Verma T. Nutritional, Nutraceutical, and Medicinal Potential of Cantharellus cibarius Fr.: A Comprehensive Review. Food Sci Nutr 2025; 13:e4641. [PMID: 39803245 PMCID: PMC11717058 DOI: 10.1002/fsn3.4641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/20/2024] [Accepted: 11/16/2024] [Indexed: 01/16/2025] Open
Abstract
Mushrooms are considered as nutraceutical foods that can effectively prevent diseases such as cancer and other serious life-threatening conditions include neurodegeneration, hypertension, diabetes, and hypercholesterolemia. The Cantharellus cibarius, also known as the "Golden chanterelle" or "Golden girolle," is a significant wild edible ectomycorrhizal mushroom. It is renowned for its delicious, apricot-like aroma and is highly valued in various culinary traditions worldwide. It is well known for its nutritional, nutraceutical, and therapeutic properties. The high nutritional value of C. cibarius is attributed to its abundant carbohydrates, proteins, β-glucans, dietary fiber, and low-fat content. It also contains medicinal polysaccharides (β-glucans), proteins (lectins and selenoproteins), important fatty acids (linoleic and omega-6), vitamins, and minerals (N, P, K, Ca, Zn, Ag, Se, etc.). The sporocarp of C. cibarius contains a diverse array of bioactive metabolites, including flavonoids, phenolics, sterols, fatty acids, organic acids, indole groups, carbohydrates, vitamins (tocopherols), amino acids, enzymes, bioelements, carotenoids, and 5'-nucleotides. C. cibarius has a wide array of biological properties, such as antioxidant, anticancer, anti-inflammatory, antifungal, antibacterial, anthelmintic, insecticidal, antihypoxia, antihyperglycemic, wound-healing, cytotoxic, and iron-chelating activity. Thus, the present review gives an overview of C. cibarius, covering its chemical composition, ecological significance, postharvest preservation strategies, and potential applications in dietary supplements, nutraceuticals, and pharmaceuticals. It also dives into the etymology, taxonomy, and global distribution of the renowned "Golden Chanterelle." Furthermore, there is a need to valorize waste materials created during production and processing, as well as to acquire a thorough understanding of the mechanisms of action of bioactive compounds in mushrooms.
Collapse
Affiliation(s)
| | - Reema Devi
- Department of BiotechnologyASBASJS Memorial CollegePunjabIndia
| | - Rajni Dhalaria
- Department of BiotechnologyASBASJS Memorial CollegePunjabIndia
| | | | - Rachna Verma
- Department of BiotechnologyASBASJS Memorial CollegePunjabIndia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of PharmacyPrince Sattam Bin Abdulaziz UniversityAl‐KharjSaudi Arabia
| | - Gehan M. Elossaily
- Department of Basic Medical Sciences, College of MedicineAlMaarefa UniversityRiyadhSaudi Arabia
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products (CBRP), and Unit of Bee Research and Honey ProductionKing Khalid UniversityAbhaSaudi Arabia
| | - Kow‐Tong Chen
- Department of Occupational MedicineTainan Municipal Hospital (Managed by ShowChwan Medical Care Corporation)TainanTaiwan
- Department of Public Health, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Tarun Verma
- Department of Dairy Science and Food Technology, Institute of Agricultural SciencesBanaras Hindu UniversityVaranasiIndia
| |
Collapse
|
3
|
Ma M, Yan F, Jing J, Chen K, Wang P, Wang C, Chen Q. Structure analysis and immunomodulatory activity of novel oligosaccharide from Nicotiana tabacum roots. Carbohydr Res 2024; 545:109303. [PMID: 39488882 DOI: 10.1016/j.carres.2024.109303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
A novel oligosaccharide (NTRP60-W-2) with an average molecular weight of 1377 Da was isolated and purified from Nicotiana tabacum roots. Its structural characteristics and immunomodulatory properties were investigated. Structural analysis revealed that NTRP60-W-2 was composed exclusively of glucose, featuring →1)-α-D-Glcp-(6→ backbone. Immunological assays demonstrated that NTRP60-W-2 significantly enhanced cell viability, nitric oxide production and cytokine secretion (IL-6 and TNF-α) in RAW264.7 cells. These findings provide a foundation for further exploration of Nicotiana tabacum carbohydrates and their potential biological activities.
Collapse
Affiliation(s)
- Ming Ma
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co. Ltd., Chongqing, 400060, PR China
| | - Fengdie Yan
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Jing Jing
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co. Ltd., Chongqing, 400060, PR China
| | - Kunyan Chen
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co. Ltd., Chongqing, 400060, PR China
| | - Peng Wang
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co. Ltd., Chongqing, 400060, PR China
| | - Changguo Wang
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co. Ltd., Chongqing, 400060, PR China.
| | - Qianfeng Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
4
|
Liu X, Dong M, Li Y, Li L, Zhang Y, Wang C, Wang N, Wang D. Structural properties of glucan from Russula griseocarnosa and its immunomodulatory activities mediated via T cell differentiation. Carbohydr Polym 2024; 339:122214. [PMID: 38823900 DOI: 10.1016/j.carbpol.2024.122214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 06/03/2024]
Abstract
The polysaccharide, RGP2, was isolated from Russula griseocarnosa and its immunostimulatory effects were confirmed in cyclophosphamide (CTX)-induced immunosuppressed mice. Following purification via chromatography, structural analysis revealed that RGP2 had a molecular weight of 11.82 kDa and consisted of glucose (Glc), galactose (Gal), mannose, glucuronic acid and glucosamine. Bond structure analysis and nuclear magnetic resonance characterization confirmed that the main chain of RGP2 was formed by →6)-β-D-Glcp-(1→, →3)-β-D-Glcp-(1→ and →6)-α-D-Galp-(1→, which was substituted at O-3 of →6)-β-D-Glcp-(1→ by β-D-Glcp-(1→. RGP2 was found to ameliorate pathological damage in the spleen and enhance immune cell activity in immunosuppressed mice. Based on combined multiomics analysis, RGP2 altered the abundance of immune-related microbiota (such as Lactobacillus, Faecalibacterium, and Bacteroides) in the gut and metabolites (uridine, leucine, and tryptophan) in the serum. Compared with immunosuppressed mice, RGP2 also restored the function of antigen-presenting cells, promoted the polarization of macrophages into the M1 phenotype, positively affected the differentiation of helper T cells, and inhibited regulatory T cell differentiation through the protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) pathway, ultimately exerting an immune boosting function. Overall, our findings highlight therapeutic strategies to alleviate CTX-induced immunosuppression in a clinical setting.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Sciences, Jilin University, Changchun 130012, China; School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, China.
| | - Mingyuan Dong
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yuan Li
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Yongfeng Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Chunyue Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, 6/F, 3 Sassoon Road, Pokfulam 000000, Hong Kong.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
5
|
Liu X, Dong M, Li Y, Li L, Zhang Y, Zhou A, Wang D. Structural characterization of Russula griseocarnosa polysaccharide and its improvement on hematopoietic function. Int J Biol Macromol 2024; 263:130355. [PMID: 38395281 DOI: 10.1016/j.ijbiomac.2024.130355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
The hematopoietic function of a polysaccharide derived from Russula griseocarnosa was demonstrated in K562 cells, and subsequently purified through chromatography to obtain RGP1. RGP1 is a galactan composed of 1,6-α-D-Galp as the main chain, with partial substitutions. A -CH3 substitution was detected at O-3 of 1,6-α-D-Galp. The possible branches at O-2 of 1,6-α-D-Galp was α-L-Fucp. In mice with cyclophosphamide (CTX)-induced hematopoietic dysfunction, RGP1 alleviated bone marrow damage and multinucleated giant cell infiltration of the spleen, increased the number of long-term hematopoietic stem cells, and regulated the levels of myeloid cells in the peripheral blood. Furthermore, RGP1 promoted the differentiation of activated T cells and CD4+ T cells without affecting natural killer cells and B cells. Proteomic analysis, detection of cytokines, and western blotting revealed that RGP1 could alleviate hematopoietic dysfunction by promoting the activation of CD4+ T cells and the Janus kinase/ signal transducer and activator of transcription 3 pathway. The present study provides experimental evidence to support the application of RGP1 in CTX-induced hematopoietic dysfunction.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Sciences, Jilin University, Changchun 130012, China; School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin 300131, China.
| | - Mingyuan Dong
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yuan Li
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Andong Zhou
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
6
|
Jang AY, Kim M, Rod-In W, Nam YS, Yoo TY, Park WJ. In vitro immune-enhancing effects of Platycodon grandiflorum combined with Salvia plebeian via MAPK and NF-κB signaling in RAW264.7 cells. PLoS One 2024; 19:e0297512. [PMID: 38306362 PMCID: PMC10836713 DOI: 10.1371/journal.pone.0297512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/30/2023] [Indexed: 02/04/2024] Open
Abstract
The immune-enhancing activity of the combination of Platycodon grandiflorum and Salvia plebeian extracts (PGSP) was evaluated through macrophage activation using RAW264.7 cells. PGSP (250-1000 μg/mL) showed a higher release of NO in a dose-dependent manner. The results showed that PGSP could significantly stimulate the production of PGE2, COX-2, TNF-α, IL-1β, and IL-6 in RAW264.7 cells and promote iNOS, COX-2, TNF-α, IL-1β, IL-4, and IL-6 mRNA expression. Western blot analysis demonstrated that the protein expression of iNOS and COX-2 and the phosphorylation of ERK, JNK, p38, and NF-κB p65 were greatly increased in PGSP-treated cells. PGSP also promoted the phagocytic activity of RAW264.7 cells. All these results indicated that PGSP might activate macrophages through MAPK and NF-κB signaling pathways. Taken together, PGSP may be considered to have immune-enhancing activity and might be used as a potential immune-enhancing agent.
Collapse
Affiliation(s)
- A-Yeong Jang
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
- Department of Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
| | - Minji Kim
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
| | - Weerawan Rod-In
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
- Department of Agricultural Science, Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok, Thailand
| | | | | | - Woo Jung Park
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
- Department of Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
| |
Collapse
|
7
|
Summat T, Wangtueai S, You S, Rod-in W, Park WJ, Karnjanapratum S, Seesuriyachan P, Surayot U. In Vitro Anti-Inflammatory Activity and Structural Characteristics of Polysaccharides Extracted from Lobonema smithii Jellyfish. Mar Drugs 2023; 21:559. [PMID: 37999383 PMCID: PMC10672681 DOI: 10.3390/md21110559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
Crude polysaccharides were extracted from the white jellyfish (Lobonema smithii) using water extraction and fractionated using ion-exchange chromatography to obtain three different fractions (JF1, JF2, and JF3). The chemical characteristics of four polysaccharides were investigated, along with their anti-inflammatory effect in LPS-stimulated RAW264.7 cells. All samples mainly consisted of neutral sugars with minor contents of proteins and sulphates in various proportions. Glucose, galactose, and mannose were the main constituents of the monosaccharides. The molecular weights of the crude polysaccharides and the JF1, JF2, and JF3 fractions were 865.0, 477.6, 524.1, and 293.0 kDa, respectively. All polysaccharides were able to decrease NO production, especially JF3, which showed inhibitory activity. JF3 effectively suppressed iNOS, COX-2, IL-1β, IL-6, and TNF-α expression, while IL-10 expression was induced. JF3 could inhibit phosphorylated ERK, JNK, p38, and NF-κB p65. Furthermore, flow cytometry showed the impact of JF3 on inhibiting CD11b and CD40 expression. These results suggest that JF3 could inhibit NF-κB and MAPK-related inflammatory pathways. The structural characterisation revealed that (1→3)-linked glucopyranosyl, (1→3,6)-linked galactopyranosyl, and (1→3,6)-linked glucopyranosyl residues comprised the main backbone of JF3. Therefore, L. smithii polysaccharides exhibit good anti-inflammatory activity and could thus be applied as an alternative therapeutic agent against inflammation.
Collapse
Affiliation(s)
- Thitikan Summat
- College of Maritime Studies and Management, Chiang Mai University, Samut Sakhon 74000, Thailand; (T.S.); (S.W.)
| | - Sutee Wangtueai
- College of Maritime Studies and Management, Chiang Mai University, Samut Sakhon 74000, Thailand; (T.S.); (S.W.)
| | - SangGuan You
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea; (S.Y.); (W.R.-i.); (W.J.P.)
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea
| | - Weerawan Rod-in
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea; (S.Y.); (W.R.-i.); (W.J.P.)
- Department of Agricultural Science, Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Woo Jung Park
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea; (S.Y.); (W.R.-i.); (W.J.P.)
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea
| | - Supatra Karnjanapratum
- Division of Marine Product Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | | | - Utoomporn Surayot
- College of Maritime Studies and Management, Chiang Mai University, Samut Sakhon 74000, Thailand; (T.S.); (S.W.)
| |
Collapse
|
8
|
Fernandes A, Rodrigues PM, Pintado M, Tavaria FK. A systematic review of natural products for skin applications: Targeting inflammation, wound healing, and photo-aging. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154824. [PMID: 37119762 DOI: 10.1016/j.phymed.2023.154824] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/04/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Every day the skin is constantly exposed to several harmful factors that induce oxidative stress. When the cells are incapable to maintain the balance between antioxidant defenses and reactive oxygen species, the skin no longer can keep its integrity and homeostasis. Chronic inflammation, premature skin aging, tissue damage, and immunosuppression are possible consequences induced by sustained exposure to environmental and endogenous reactive oxygen species. Skin immune and non-immune cells together with the microbiome are essential to efficiently trigger skin immune responses to stress. For this reason, an ever-increasing demand for novel molecules capable of modulating immune functions in the skin has risen the level of their development, particularly in the field of natural product-derived molecules. PURPOSE In this review, we explore different classes of molecules that showed evidence in modulate skin immune responses, as well as their target receptors and signaling pathways. Moreover, we describe the role of polyphenols, polysaccharides, fatty acids, peptides, and probiotics as possible treatments for skin conditions, including wound healing, infection, inflammation, allergies, and premature skin aging. METHODS Literature was searched, analyzed, and collected using databases, including PubMed, Science Direct, and Google Scholar. The search terms used included "Skin", "wound healing", "natural products", "skin microbiome", "immunomodulation", "anti-inflammatory", "antioxidant", "infection", "UV radiation", "polyphenols", "polysaccharides", "fatty acids", "plant oils", "peptides", "antimicrobial peptides", "probiotics", "atopic dermatitis", "psoriasis", "auto-immunity", "dry skin", "aging", etc., and several combinations of these keywords. RESULTS Natural products offer different solutions as possible treatments for several skin conditions. Significant antioxidant and anti-inflammatory activities were reported, followed by the ability to modulate immune functions in the skin. Several membrane-bound immune receptors in the skin recognize diverse types of natural-derived molecules, promoting different immune responses that can improve skin conditions. CONCLUSION Despite the increasing progress in drug discovery, several limiting factors need future clarification. Understanding the safety, biological activities, and precise mechanisms of action is a priority as well as the characterization of the active compounds responsible for that. This review provides directions for future studies in the development of new molecules with important pharmaceutical and cosmeceutical value.
Collapse
Affiliation(s)
- A Fernandes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - P M Rodrigues
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - M Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - F K Tavaria
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
9
|
Qian L, Du M, Yang X, Wang Q, Huang S, Ma Y, Sun Y. Microanalysis Characterization and Immunomodulatory Effect for Selenium-Enriched Polysaccharide from Morchella esculenta (L.) Pers. Molecules 2023; 28:molecules28072885. [PMID: 37049647 PMCID: PMC10096435 DOI: 10.3390/molecules28072885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Morchella esculenta (L.) Pers., referred to as Morel, is a medicinal and edible homologous fungus, which contains many bioactive substances. In Morel, polysaccharides are the most abundant and have various bioactivities. In the present work, two novel polysaccharides, Se-MPS and MPS, were prepared and purified from selenium-enriched (Se-enriched) and common Morel mycelia, respectively, and their structural and immunomodulatory properties were evaluated. The results show that Se-enriched treatment significantly changed the polysaccharides' chemical composition, molecular weight, and sugar chain configuration. In addition, the Se-enriched treatment also improved the polysaccharides' fragmentation and thermal stability. Importantly, Se-enriched Morel polysaccharide (Se-MPS) could significantly enhance phagocytosis of RAW 264.7 macrophage cells and, remarkably, activate their immune response via activating the TLR4-TRAF6-MAPKs-NF-κB cascade signaling pathway, finally exerting an immunomodulatory function. Based on these findings, selenium-enriched Morel polysaccharide appears to have more potential for development and utilization in functional foods or medicines than ordinary Morel polysaccharide.
Collapse
Affiliation(s)
- Lijuan Qian
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Mengxiang Du
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Xiaoyan Yang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Qian Wang
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang 233100, China
| | - Shengwei Huang
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang 233100, China
| | - Yuhan Ma
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang 233100, China
| | - Yujun Sun
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang 233100, China
| |
Collapse
|
10
|
Hwang CH, Kim KT, Lee NK, Paik HD. Immune-Enhancing Effect of Heat-Treated Levilactobacillus brevis KU15159 in RAW 264.7 Cells. Probiotics Antimicrob Proteins 2023; 15:175-184. [PMID: 36178579 PMCID: PMC9523639 DOI: 10.1007/s12602-022-09996-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2022] [Indexed: 01/18/2023]
Abstract
Probiotics are alive microbes that present beneficial to the human's health. They influence immune responses through stimulating antibody production, activating T cells, and altering cytokine expression. The probiotic characteristics of Levilactobacillus brevis KU15159 were evaluated on the tolerance and adherence to gastrointestinal conditions. L. brevis KU15159 was safe in a view of producing various useful enzymes and antibiotic sensitivity. Heat-treated L. brevis KU15159 increased production of nitric oxide (NO) and phagocytic activity in RAW 264.7 cells. In addition, heat-treated L. brevis KU15159 upregulated the expression of inducible nitric oxide synthase (iNOS) and proinflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, at protein as well as mRNA levels. In addition, the mitogen-activated protein kinase (MAPK) pathway, which regulates the immune system, was activated by heat-treated L. brevis KU15159. Therefore, L. brevis KU15159 exhibited an immune-enhancing effect by the MAPK pathway in macrophage.
Collapse
Affiliation(s)
- Chang-Hoon Hwang
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Kee-Tae Kim
- Research Center, WithBio Inc., Seoul, 05029, Republic of Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
11
|
Khatua S, Acharya K. Antioxidation and immune-stimulatory actions of cold alkali extracted polysaccharide fraction from Macrocybe lobayensis, a wild edible mushroom. 3 Biotech 2022; 12:247. [PMID: 36033910 PMCID: PMC9411380 DOI: 10.1007/s13205-022-03317-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/16/2022] [Indexed: 11/01/2022] Open
Abstract
Mushroom β-glucans are presently gaining widespread attention, being one of the promising healthy compounds with excellent antioxidative and immunomodulatory activities. Conventionally, hot water extraction procedure is followed to isolate the polymers where the residue is discarded after filtration. However, the remnants still contain plenty of bioactive components that could provide a unique opportunity for the discovery of novel therapeutic agents. In this backdrop, the present study was aimed to expand utilization of a popularly edible mushroom, Macrocybe lobayensis, by re-cycling left-over material that has passed through traditional aqueous process. For that, the residue was immersed in alkaline solution followed by ethanol precipitation and repeated washing resulting preparation of a water soluble and partially purified polysaccharidic fraction (ML-CAP). Chemical and molecular characterization by FT-IR, HPTLC, GC-MS, GPC and spectroscopy unveiled that ML-CAP was consisted of a homo-polymer with Mw of ~ 122 kDa. The backbone was mainly composed of β-glucan where galactose was identified as the second most abundant unit. Subsequently, the fraction exhibited potent antioxidant activity in terms of radical scavenging, chelating ability and reducing power. Furthermore, strong immune enhancing property was also recorded as the polymer, particularly at the concentration of 100 µg/ml, triggered murine macrophage functionality in terms of cell proliferation, phagocytosis, pseudopods formation and nitric oxide production. The study thus advocates for potential application and further extraction of hot water extracted mushroom residue in drug development and nutraceutical industries, as the example of ML-CAP showed promising biological effects.
Collapse
Affiliation(s)
- Somanjana Khatua
- Department of Botany, Krishnagar Government College, Krishnagar, West Bengal 741101 India
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal 700019 India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal 700019 India
| |
Collapse
|
12
|
Wei H, Wang Y, Li W, Qiu Y, Hua C, Zhang Y, Guo Z, Xie Z. Immunomodulatory activity and active mechanisms of a low molecular polysaccharide isolated from Lanzhou lily bulbs in RAW264.7 macrophages. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
13
|
Mechanisms of RAW264.7 macrophages immunomodulation mediated by polysaccharide from mung bean skin based on RNA-seq analysis. Food Res Int 2022; 154:111017. [DOI: 10.1016/j.foodres.2022.111017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 12/11/2022]
|
14
|
Liu X, Hasan KMF, Wei S. Immunological regulation, effects, extraction mechanisms, healthy utilization, and bioactivity of edible fungi: A comprehensive review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.13970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiaoyi Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education; Department of Nutrition and Food Hygiene, School of Public Health Guizhou Medical University Guizhou China
| | | | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education; Department of Nutrition and Food Hygiene, School of Public Health Guizhou Medical University Guizhou China
| |
Collapse
|
15
|
Liu Y, Hu H, Cai M, Liang X, Wu X, Wang A, Chen X, Li X, Xiao C, Huang L, Xie Y, Wu Q. Whole genome sequencing of an edible and medicinal mushroom, Russula griseocarnosa, and its association with mycorrhizal characteristics. Gene 2022; 808:145996. [PMID: 34634440 DOI: 10.1016/j.gene.2021.145996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/13/2021] [Accepted: 10/04/2021] [Indexed: 01/27/2023]
Abstract
Russula griseocarnosa is a well-known ectomycorrhizal mushroom, which is mainly distributed in the Southern China. Although several scholars have attempted to isolate and cultivate fungal strains, no accurate method for culture of artificial fruiting bodies has been presented owing to difficulties associated with mycelium growth on artificial media. Herein, we sequenced R. griseocarnosa genome using the second- and third-generation sequencing technologies, followed by de novo assembly of high-throughput sequencing reads, and GeneMark-ES, BLAST, CAZy, and other databases were utilized for functional gene annotation. We also constructed a phylogenetic tree using different species of fungi, and also conducted comparative genomics analysis of R. griseocarnosa against its four representative species. In addition, we evaluated the accuracy of one already sequenced genome of R. griseocarnosa based on the internal transcribed spacer (ITS) sequencing of that type of species. The assembly process resulted in identification of 230 scaffolds with a total genome size of 50.67 Mbp. The gene prediction showed that R. griseocarnosa genome included 14,229 coding sequences (CDs). In addition, 470 RNAs were predicted with 155 transfer RNAs (tRNAs), 49 ribosomal RNAs (rRNAs), 41 small noncoding RNAs (sRNAs), 42 small nuclear RNAs (snRNAs), and 183 microRNAs (miRNAs). The predicted protein sequences of R. griseocarnosa were analyzed to indicate the existence of carbohydrate-active enzymes (CAZymes), and the results revealed that 153 genes encoded CAZymes, which were distributed in 58 CAZyme families. These enzymes included 78 glycoside hydrolases (GHs), 34 glycosyl transferases (GTs), 30 auxiliary activities (AAs), 2 carbohydrate esterases (CEs), 8 carbohydrate-binding modules (CBMs), and only one polysaccharide lyase (PL). Compared with other fungi, R. griseocarnosa had fewer CAZymes, and the number and distribution of CAZymes were similar to other mycorrhizal fungi, such as Tricholoma matsutake and Suillus luteus. Well-defined effector proteins that were associated with mycorrhiza-induced small-secreted proteins (MiSSPs) were not found in R. griseocarnosa, which indicated that there may be some special effector proteins to interact with host plants in R. griseocarnosa. The genome of R. griseocarnosa may provide new insights into the energy metabolism of ectomycorrhizal (ECM) fungi, a reference to study ecosystem and evolutionary diversification of R. griseocarnosa, as well as promoting the study of artificial domestication.
Collapse
Affiliation(s)
- Yuanchao Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China; Guangdong Yuewei Edible Mushroom Technology Co., Ltd., Guangzhou, China
| | - Huiping Hu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China; Guangdong Yuewei Edible Mushroom Technology Co., Ltd., Guangzhou, China
| | - Manjun Cai
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaowei Liang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaoxian Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ao Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaoguang Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiangmin Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China; Guangdong Yuewei Edible Mushroom Technology Co., Ltd., Guangzhou, China
| | - Chun Xiao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Longhua Huang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yizhen Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China; Guangdong Yuewei Edible Mushroom Technology Co., Ltd., Guangzhou, China
| | - Qingping Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.
| |
Collapse
|
16
|
Surayot U, Wangtueai S, You S, Techapun C, Phimolsiripol Y, Leksawasdi N, Krusong W, Barba FJ, Seesuriyachan P. Sulphation and Hydrolysis Improvements of Bioactivities, and Immuno-Modulatory Properties of Edible Amanita hemibapha Subspecies javanica (Corner and Bas) Mucilage Polysaccharide as a Potential in Personalized Functional Foods. J Fungi (Basel) 2021; 7:847. [PMID: 34682268 PMCID: PMC8540376 DOI: 10.3390/jof7100847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/23/2022] Open
Abstract
In this study, the mucilage polysaccharide (MP) from Amanita hemibapha subspecies javanica was prepared by hot water extraction and ethanol precipitation and then fractionated using anion-exchange chromatography equipped with a DEAE Sepharose fast flow column. The most immune-enhancing polysaccharide fraction 2 (MPF2) was subjected to a structural modification such as hydrolysis or over-sulphation. The sulphate and molecular weight (Mw) of over-sulphated (OS1-3) and hydrolysed (HS1-3) derivatives of MPF2 differed between 9.85% and 14.2% and 32.8 and 88.1 × 103 g/mol, respectively. Further, the immune-enhancing properties of MPF2 and its derivatives were tested on RAW264.7 and NK cells through various in vitro assays. Interestingly, a low molecular weight of HS1-3 significantly increased the nitric oxide (NO) production (p < 0.05) more than MPF2, indicating that Mw is a major factor in RAW264.7 cell stimulation. In addition, RAW264.7 cells produced various cytokines by up-regulating mRNA expression levels and the activation of nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. On the other hand, OS1-3-treated natural killer (NK) cells induced cytotoxicity in HepG2 cells through the expression of IFN-γ, Grandzyme-B, perforin, NKp30, and FasL. These results demonstrated that sulphate derivatives play an important role in NK cell activation. Further, this study also explores how polysaccharide binds to RAW264.7 and NK cells. MPF2 and HS3 may activate RAW264.7 cells via binding to TLR4 receptors, and OS2 could be activated through the CR3 signalling pathways.
Collapse
Affiliation(s)
- Utoomporn Surayot
- College of Maritime Studies and Management, Chiang Mai University, Samut Sakhon 74000, Thailand; (U.S.); (S.W.)
| | - Sutee Wangtueai
- College of Maritime Studies and Management, Chiang Mai University, Samut Sakhon 74000, Thailand; (U.S.); (S.W.)
| | - Sangguan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangwon 210-702, Korea;
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangwon 210-720, Korea
| | - Charin Techapun
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (C.T.); (Y.P.); (N.L.)
| | - Yuthana Phimolsiripol
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (C.T.); (Y.P.); (N.L.)
- Cluster of Agro Bio-Circular-Green Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Noppol Leksawasdi
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (C.T.); (Y.P.); (N.L.)
- Cluster of Agro Bio-Circular-Green Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Warawut Krusong
- Division of Fermentation Technology, Faculty of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| | - Francisco J. Barba
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain;
| | - Phisit Seesuriyachan
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (C.T.); (Y.P.); (N.L.)
- Cluster of Agro Bio-Circular-Green Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Advanced Manufacturing and Management Technology Research Center (AM2Tech), Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
17
|
Liu Y, Li QZ, Li LDJ, Zhou XW. Immunostimulatory effects of the intracellular polysaccharides isolated from liquid culture of Ophiocordyceps sinensis (Ascomycetes) on RAW264.7 cells via the MAPK and PI3K/Akt signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2021; 275:114130. [PMID: 33892066 DOI: 10.1016/j.jep.2021.114130] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/01/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chinese Cordyceps (DongChong XiaCao), a parasitic complex of a fungus Ophiocordyceps sinensis and a caterpillar, is a traditional Chinese medicine. Polysaccharides extracted from O. sinensis have immunomodulatory effects on macrophages. However, the mechanism of polysaccharides on macrophage and the composition of polysaccharides are not known. AIM OF STUDY We aimed to investigate composition and structure of the intracellular polysaccharides from O. sinensis mycelia (designed as OSP), and evaluate its the immunomodulatory effect on macrophages and its underlying mechanism. MATERIALS AND METHODS We performed a liquid-state fermentation of O. sinensis to produce mycelia. The DEAE-Sephadex-A25 cellulose column and Sephadex-G100 gel column chromatography were employed to purify and character the intracellular OSP. Macrophages RAW264.7 cells were employed to evaluate OSP's immunomodulatory activity and the possible mechanism responsible for the activation of macrophages in vitro. RESULTS The average molecular weight of OSP was distributed at 27,972 Da, OSP was composed of xylose, mannose, glucose, and galactose with the ratio of 2.9 : 6.6 : 166 : 2.6, with a trace amount of fucose, arabinose and rhamnose. The phagocytosis of RAW264.7 cells was improved significantly and remarkable changes were observed in the morphology with OSP-treated cells. Real-time quantitative polymerase chain reaction (RT-qPCR) analysis demonstrated that OSP had an ability to regulate the mRNA expression of pro-inflammatory and anti-inflammatory cytokines, and to induce the mRNA expression level of iNOS in a concentration dependent manner in RAW264.7 cells. Western blotting analysis showed that the regulation of NO and cytokines was mediated through mitogen-activated protein kinase (MAPK) and PI3K/Akt signaling pathways. CONCLUSION This study demonstrated that OSP was with a capacity to activate macrophage cells RAW264.7 for an improvement of immunomodulation activities, which was through regulation of inflammatory mediators via MAPK and PI3K/Akt signaling pathways.
Collapse
Affiliation(s)
- Yan Liu
- School of Agriculture and Biology, And Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Qi-Zhang Li
- School of Agriculture and Biology, And Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Liu-Ding-Ji Li
- School of Agriculture and Biology, And Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xuan-Wei Zhou
- School of Agriculture and Biology, And Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
18
|
Xu W, Zhao M, Fu X, Hou J, Wang Y, Shi F, Hu S. Molecular mechanisms underlying macrophage immunomodulatory activity of Rubus chingii Hu polysaccharides. Int J Biol Macromol 2021; 185:907-916. [PMID: 34242647 DOI: 10.1016/j.ijbiomac.2021.07.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 01/01/2023]
Abstract
The present study was to investigate the mechanisms involved in macrophage activation by polysaccharides from the fruits of Rubus chingii Hu (RFPs). The results showed that RFPs enhanced pinocytic and phagocytic activity, promoted the expression and secretion of inflammatory factors (ROS, PTGS2, iNOS, IL-6, IL-10 and TNF-α) and chemokines (CCL2 and CXCL10), and boosted the expression of accessory and costimulatory molecules (CD40, CD80, CD86, MHC-I and MHC-II). RNA-Seq analysis identified 2564 DEGs, 1710 GO terms and 101 KEGG pathways. TNF was identified as the core gene via analysis of pathway information integration and PPI network. The western blot analysis combined with functional verification assay confirmed that MAPK, NF-κB and Jak-STAT pathways were essential to RFPs-mediated macrophage activation. TLR2 was revealed to be the functional receptor and involved in the early recognition of RFPs. These results indicated that RFPs modulated macrophage immune response mainly through TLR2-dependent MAPK, NF-κB and Jak-STAT pathways.
Collapse
Affiliation(s)
- Wei Xu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China; Center for Veterinary Sciences, Zhejiang University, Hangzhou, China; Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China.
| | - Ming Zhao
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China.
| | - Xinyu Fu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China.
| | - Jing Hou
- Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, China.
| | - Yong Wang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China.
| | - Fushan Shi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China; Center for Veterinary Sciences, Zhejiang University, Hangzhou, China; Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China.
| | - Songhua Hu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
19
|
Rod-in W, Talapphet N, Monmai C, Jang AY, You S, Park WJ. Immune enhancement effects of Korean ginseng berry polysaccharides on RAW264.7 macrophages through MAPK and NF-κB signalling pathways. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1934419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Weerawan Rod-in
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung, Korea
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, Korea
| | - Natchanok Talapphet
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung, Korea
| | - Chaiwat Monmai
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung, Korea
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, Korea
| | - A.-yeong Jang
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung, Korea
| | - SangGuan You
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung, Korea
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, Korea
| | - Woo Jung Park
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung, Korea
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, Korea
| |
Collapse
|
20
|
Structural characteristics and in vitro and in vivo immunoregulatory properties of a gluco-arabinan from Angelica dahurica. Int J Biol Macromol 2021; 183:90-100. [PMID: 33872613 DOI: 10.1016/j.ijbiomac.2021.04.077] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023]
Abstract
A water-soluble polysaccharide identified here as ADP80-2 was acquired from Angelica dahurica. ADP80-2 was a gluco-arabinan composed of arabinose and a trace of glucose with a molecular weight of 9950 g/mol. The backbone of ADP80-2 comprised →5)-α-L-Araf-(1→, →3, 5)-α-L-Araf-(1→, →6)-α-D-Glcp-(1→, with a terminal branch α-L-Araf-(1 → residue. In terms of immunoregulatory activity, ADP80-2 can significantly promote the phagocytosis, the production of nitric oxide (NO), and the secretion of cytokines (IL-6, IL-1β, and TNF-α) of macrophage. In addition to the cellular immunomodulatory activities, the chemokines related to immunoregulation were significantly increased in the zebrafish model after treated with ADP80-2. These biological results indicated that ADP80-2 with immunomodulatory effects was expected to be useful for the development of new immunomodulatory agents. Simultaneously, the discovery of ADP80-2 further revealed the chemical composition of A. dahurica used as a traditional Chinese medicine and spice.
Collapse
|
21
|
Um Y, Eo HJ, Kim HJ, Kim K, Jeon KS, Jeong JB. Wild simulated ginseng activates mouse macrophage, RAW264.7 cells through TRL2/4-dependent activation of MAPK, NF-κB and PI3K/AKT pathways. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113218. [PMID: 32755650 DOI: 10.1016/j.jep.2020.113218] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng (Panax ginseng Meyer) is a very well-known traditional herbal medicine that has long been used to enhance the body's immunity. Because it is a type of ginseng, it is believed that wild simulated ginseng (WSG) also has immune-enhancing activity. However, study on the immune-enhancing activity of WSG is quite insufficient compared to ginseng. AIM OF THE STUDY In this study, we evaluated immune-enhancing activity of WSG through macrophage activation to provide a scientific basis for the immune enhancing activity of WSG. MATERIALS AND METHODS The effect of WSG on viability of RAW264.7 cells was evaluated by MTT assay. The NO level was measured by Griess reagent. The expression levels of mRNA or protein in WSG-treated RAW264.7 cells were analyzed by RT-PCR and Western blot, respectively. RESULTS WSG increased the production of immunomodulators such as NO, iNOS, COX-2, IL-1β, IL-6 and TNF-α and activated phagocytosis in mouse macrophages RAW264.7 cells. Inhibition of TLR2 and TLR4 reduced the production of immunomodulators induced by WSG. WSG activated MAPK, NF-κB and PI3K/AKT signaling pathways, and inhibition of such signaling activation blocked WSG-mediated production of immunomodulators. In addition, activation of MAPK, NF-κB and PI3K/AKT signaling pathways by WSG was reversed by TLR2 or TLR4 inhibition. CONCLUSION Based on the results of this study, WSG is thought to activate macrophages through the production of immunomodulators and phagocytosis activation through TLR2/4-dependent MAPK, NF-κB and PI3K/AKT signaling pathways. Therefore, it is thought that WSG have the potential to be used as an agent for enhancing immunity.
Collapse
Affiliation(s)
- Yurry Um
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju, 36040, Republic of Korea.
| | - Hyun Ji Eo
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju, 36040, Republic of Korea.
| | - Hyun Jun Kim
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju, 36040, Republic of Korea.
| | - Kiyoon Kim
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju, 36040, Republic of Korea.
| | - Kwon Seok Jeon
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju, 36040, Republic of Korea.
| | - Jin Boo Jeong
- Department of Medicinal Plant Resources, Andong National University, Andong, 36729, Republic of Korea.
| |
Collapse
|
22
|
Xu Z, Lin R, Hou X, Wu J, Zhao W, Ma H, Fan Z, Li S, Zhu Y, Zhang D. Immunomodulatory mechanism of a purified polysaccharide isolated from Isaria cicadae Miquel on RAW264.7 cells via activating TLR4-MAPK-NF-κB signaling pathway. Int J Biol Macromol 2020; 164:4329-4338. [DOI: 10.1016/j.ijbiomac.2020.09.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/29/2020] [Accepted: 09/05/2020] [Indexed: 12/19/2022]
|
23
|
Chaisuwan W, Jantanasakulwong K, Wangtueai S, Phimolsiripol Y, Chaiyaso T, Techapun C, Phongthai S, You S, Regenstein JM, Seesuriyachan P. Microbial exopolysaccharides for immune enhancement: Fermentation, modifications and bioactivities. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100564] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
24
|
Mahabati M, Aipire A, Yuan P, Liu X, Cai S, Aimaier A, Ziyayiding D, Yasheng M, Abudujilile D, Li J. Comparison of structural characteristics and immunoregulatory activities of polysaccharides from four natural plants. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1743647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Mahepali Mahabati
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Adila Aipire
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Pengfei Yuan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Xiaoying Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Shanshan Cai
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Alimu Aimaier
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Dilinigeer Ziyayiding
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Mayila Yasheng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Dilinazi Abudujilile
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| |
Collapse
|
25
|
Xu W, Fang S, Wang Y, Zhang T, Hu S. Molecular mechanisms associated with macrophage activation by Rhizoma Atractylodis Macrocephalae polysaccharides. Int J Biol Macromol 2020; 147:616-628. [PMID: 31931060 DOI: 10.1016/j.ijbiomac.2020.01.081] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 11/28/2022]
Abstract
The present study was to elucidate the mechanisms underlying macrophage activation by total polysaccharides from Rhizoma Atractylodis Macrocephalae (RAMPtp). The results showed that RAMPtp significantly promoted productions of NO, ROS, cytokines and chemokines, enhanced pinocytic and phagocytic activity, and upregulated expressions of accessory and costimulatory molecules. RNA-seq analysis presented 2868 DEGs and 737 GO terms. PPI network analysis in combination with KEGG pathways as well as the western blot and functional verification assays indicated that NF-κB and STATs were the key regulators modulating the expressions of core gene TNF-α and IL-6 individually, and the transposition activation of NF-κB was identified as an early event in macrophage activation induced by RAMPtp. The involvements of MAPKs and PI3K-Akt pathways were also determined. These results indicated that immune response and immune function were regulated in RAMPtp-stimulated macrophages via a complex interaction network, in which NF-κB and Jak-STAT signaling pathways played a pivotal role.
Collapse
Affiliation(s)
- Wei Xu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| | - Sijia Fang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| | - Yong Wang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| | - Tao Zhang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing 102206, PR China.
| | - Songhua Hu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
26
|
In Vivo and In Vitro Study of Immunostimulation by Leuconostoc lactis-Produced Gluco-Oligosaccharides. Molecules 2019; 24:molecules24213994. [PMID: 31694180 PMCID: PMC6864623 DOI: 10.3390/molecules24213994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/16/2022] Open
Abstract
Glycosyltransferase-producing Leuconostoc lactis CCK940 produces CCK- oligosaccharides, gluco-oligosaccharide molecules, using sucrose and maltose as donor and acceptor molecules, respectively. In this study, the immunostimulatory activities of CCK-oligosaccharides on RAW264.7 macrophages and BALB/c mice were evaluated. CCK-oligosaccharides induced the expression of phosphorylated-p38, extracellular-signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) and upregulation of phagocytic activity in RAW264.7 macrophages, suggesting their involvement in mitogen-activated protein kinase (MAPK) signaling pathway and phagocytosis. When CCK-oligosaccharides were administered to mice intraperitoneally injected with cyclophosphamide (CY), spleen indices and expressions of interleukin (IL)-6, IL–10, and tumor necrosis factor-α increased, compared with those in only CY-treated group. These findings suggest that CCK-oligosaccharides can be used as an effective immunostimulating agent.
Collapse
|
27
|
Yu F, Zhang Y, Song J, Liang J. The complete mitochondrial genome of a wild edible mushroom, Russula griseocarnosa. MITOCHONDRIAL DNA PART B-RESOURCES 2019; 4:3368-3369. [PMID: 33365997 PMCID: PMC7707367 DOI: 10.1080/23802359.2019.1674215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Russula griseocarnosa is a wild edible ectomycorrhizal mushroom in southern China. In this study, we assembled the complete mitochondrial genome of R. griseocarnosa. Its total length was 60995 bp with a GC content of 21% and contained a total of 52 genes, including 14 standard protein-coding genes, two rRNA genes, 21 tRNA genes and 15 free-standing open reading frames (ORFs). Phylogenetic analysis reflected that the evolutionary processes between R. griseocarnosa and some agaricomycetes.
Collapse
Affiliation(s)
- Fei Yu
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Yongjie Zhang
- College of Life Science, Shanxi University, Taiyuan, China
| | - Jie Song
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Junfeng Liang
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| |
Collapse
|
28
|
Meng XL, Chen ML, Chen CL, Gao CC, Li C, Wang D, Liu HS, Xu CB. Bisbenzylisoquinoline alkaloids of lotus (Nelumbo nucifera Gaertn.) seed embryo inhibit lipopolysaccharide-induced macrophage activation via suppression of Ca2+-CaM/CaMKII pathway. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1638889] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Xue-Lian Meng
- School of Pharmaceutical Science, Liaoning University, Shenyang, People’s Republic of China
- Research Center for Natural Product Pharmacy of Liaoning Province, Shenyang, China
| | - Man-Ling Chen
- School of Pharmaceutical Science, Liaoning University, Shenyang, People’s Republic of China
| | - Chang-Lan Chen
- School of Pharmaceutical Science, Liaoning University, Shenyang, People’s Republic of China
- Research Center for Natural Product Pharmacy of Liaoning Province, Shenyang, China
| | - Cheng-Cheng Gao
- School of Pharmaceutical Science, Liaoning University, Shenyang, People’s Republic of China
| | - Chao Li
- School of Pharmaceutical Science, Liaoning University, Shenyang, People’s Republic of China
| | - Dan Wang
- School of Pharmaceutical Science, Liaoning University, Shenyang, People’s Republic of China
- Research Center for Natural Product Pharmacy of Liaoning Province, Shenyang, China
| | - Hong-Sheng Liu
- Research Center for Computer Simulating and Information Processing of Bio-macromolecules of Liaoning Province, Shenyang, People’s Republic of China
| | - Cheng-Bin Xu
- School of Environmental Science, Liaoning University, Shenyang, People’s Republic of China
| |
Collapse
|
29
|
Yu F, Song J, Liang J, Wang S, Lu J. Whole genome sequencing and genome annotation of the wild edible mushroom, Russula griseocarnosa. Genomics 2019; 112:603-614. [PMID: 31004699 DOI: 10.1016/j.ygeno.2019.04.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 01/30/2023]
Abstract
Russula griseocarnosa is a species of edible ectomycorrhizal fungi with medicinal properties that grows in southern China. Total DNA was isolated from a fresh fruiting body of R. griseocarnosa and subjected to sequencing using Illumina Hiseq with the PacBio RS sequencing platform. Here, we present the 64.81 Mb draft genome map of R. griseocarnosa based on 471 scaffolds and 16,128 coding protein genes. The gene annotation of protein coding genes was used to obtain corresponding annotations by blastp. Phylogenetic analysis revealed a close evolutionary relationship of R. griseocarnosa to Heterobasidion irregulare and Stereum hirsutum in the core Russulales clade. The R. griseocarnosa genome encodes a repertoire of enzymes engaged in carbohydrate and polysaccharide metabolism, along with cytochrome P450s and secondary metabolite biosynthesis. The genome content of R. griseocarnosa provides insights into the genetic basis of its reported medicinal properties and serves as a reference for comparative genomics of fungi.
Collapse
Affiliation(s)
- Fei Yu
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China; Nanjing Forestry University, Nanjing 210037, China
| | - Jie Song
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Junfeng Liang
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China.
| | - Shengkun Wang
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Junkun Lu
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| |
Collapse
|
30
|
Tian Y, Rao H, Fu W, Tao S, Xue WT. Effect of digestion on the immunoreactivity and proinflammatory properties of recombinant peanut allergen Ara h 1. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1592123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Yang Tian
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
- College of Food Science and Nutritional Engineering, China Agriculture University, Beijing, People’s Republic of China
| | - Huan Rao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
- College of Food Science and Nutritional Engineering, China Agriculture University, Beijing, People’s Republic of China
| | - Wenhui Fu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
- College of Food Science and Nutritional Engineering, China Agriculture University, Beijing, People’s Republic of China
| | - Sha Tao
- College of Information and Electrical Engineering, China Agricultural University, Beijing, People’s Republic of China
| | - Wen-Tong Xue
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
- College of Food Science and Nutritional Engineering, China Agriculture University, Beijing, People’s Republic of China
| |
Collapse
|
31
|
Nie L, Xiao Q, Liu S, Li B, Duan J, Fan Y, Guo L, He C, Zhu H. Immune-enhancing effects of polysaccharides MLN-1 from by-product of Mai-luo-ning in vivo and in vitro. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1582612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Linfeng Nie
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’s Republic of China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Qiuping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Shuangshuang Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Bo Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Yanhong Fan
- Wujiang Agricultural Commission, Suzhou, People’s Republic of China
| | - Liwei Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Chenghua He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’s Republic of China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Huaxu Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
32
|
Khatua S, Acharya K. Alkali treated antioxidative crude polysaccharide from Russula alatoreticula potentiates murine macrophages by tunning TLR/NF-κB pathway. Sci Rep 2019; 9:1713. [PMID: 30737411 PMCID: PMC6368593 DOI: 10.1038/s41598-018-37998-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/12/2018] [Indexed: 11/25/2022] Open
Abstract
In our previous research, Russula alatoreticula was demonstrated as a novel species, ethnic myco-food and reservoir of hot water extractable polysaccharides. However, residue after the hydrothermal process still offer plenty of medicinal carbohydrates that could easily be extracted by using alkali solvent. Thus, the present work was attempted to prepare crude polysaccharide using remainder of the conventional method and subsequently a β-glucan enriched fraction, RualaCap, was isolated. The bio-polymers displayed pronounced therapeutic efficacy as evident by radical scavenging, chelating ability, reducing power and total antioxidant capacity. In addition, strong immune-enhancing potential was also observed indicated by augmentation in macrophage viability, phagocytic uptake, nitric oxide (NO) production and reactive oxygen species (ROS) synthesis. Alongside, the polysaccharides effectively triggered transcriptional activation of Toll like receptor (TLR)-2, TLR-4, nuclear factor kappa B (NF-κB), cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, Iκ-Bα, interferon (IFN)-γ and interleukin (IL)-10 genes explaining mode of action. Taken together, our results signify possibility of RualaCap as a potent nutraceutical agent and enhance importance of R. alatoreticula especially in the field of innate immune stimulation.
Collapse
Affiliation(s)
- Somanjana Khatua
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
33
|
Xiu L, Zhang H, Hu Z, Liang Y, Guo S, Yang M, Du R, Wang X. Immunostimulatory activity of exopolysaccharides from probiotic Lactobacillus casei WXD030 strain as a novel adjuvant in vitro and in vivo. FOOD AGR IMMUNOL 2018. [DOI: 10.1080/09540105.2018.1513994] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Lei Xiu
- State Key Laboratory of Reproductive Regulation & Breding of Grassland Livestock, School of life Science, Inner Mongolia University, Hohhot, People’s Republic of China
| | - Haochi Zhang
- State Key Laboratory of Reproductive Regulation & Breding of Grassland Livestock, School of life Science, Inner Mongolia University, Hohhot, People’s Republic of China
| | - Zhongpeng Hu
- State Key Laboratory of Reproductive Regulation & Breding of Grassland Livestock, School of life Science, Inner Mongolia University, Hohhot, People’s Republic of China
| | - Yanchen Liang
- State Key Laboratory of Reproductive Regulation & Breding of Grassland Livestock, School of life Science, Inner Mongolia University, Hohhot, People’s Republic of China
| | - Shuai Guo
- State Key Laboratory of Reproductive Regulation & Breding of Grassland Livestock, School of life Science, Inner Mongolia University, Hohhot, People’s Republic of China
| | - Ming Yang
- The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Ruiping Du
- Animal Nutrition Institute, Agriculture and Animal Husbandry Academy of Inner Mongolia, Hohhot, People’s Republic of China
| | - Xiao Wang
- State Key Laboratory of Reproductive Regulation & Breding of Grassland Livestock, School of life Science, Inner Mongolia University, Hohhot, People’s Republic of China
| |
Collapse
|