1
|
Kim BG, Choi HS, Choe YH, Jeon HM, Heo JY, Cheon YH, Kang KM, Lee SI, Jeong BK, Kim M. Low-Dose Radiotherapy Attenuates Experimental Autoimmune Arthritis by Inducing Apoptosis of Lymphocytes and Fibroblast-Like Synoviocytes. Immune Netw 2024; 24:e32. [PMID: 39246617 PMCID: PMC11377951 DOI: 10.4110/in.2024.24.e32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024] Open
Abstract
Low-dose radiotherapy (LDRT) has been explored as a treatment option for various inflammatory diseases; however, its application in the context of rheumatoid arthritis (RA) is lacking. This study aimed to elucidate the mechanism underlying LDRT-based treatment for RA and standardize it. LDRT reduced the total numbers of immune cells, but increased the apoptotic CD4+ T and B220+ B cells, in the draining lymph nodes of collagen induced arthritis and K/BxN models. In addition, it significantly reduced the severity of various pathological manifestations, including bone destruction, cartilage erosion, and swelling of hind limb ankle. Post-LDRT, the proportion of apoptotic CD4+ T and CD19+ B cells increased significantly in the PBMCs derived from human patients with RA. LDRT showed a similar effect in fibroblast-like synoviocytes as well. In conclusion, we report that LDRT induces apoptosis in immune cells and fibro-blast-like synoviocytes, contributing to attenuation of arthritis.
Collapse
Affiliation(s)
- Bo-Gyu Kim
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University Hospital, Jinju 52727, Korea
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Hoon Sik Choi
- Department of Radiation Oncology, Gyeongsang National University Changwon Hospital, Changwon 51472, Korea
- Department of Radiation Oncology and Institute of Health Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Yong-ho Choe
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University Hospital, Jinju 52727, Korea
- Department of Veterinary Obstetrics, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
- Lillehei Heart Institute and Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN 55414, USA
| | - Hyun Min Jeon
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University Hospital, Jinju 52727, Korea
| | - Ji Yeon Heo
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University Hospital, Jinju 52727, Korea
| | - Yun-Hong Cheon
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University Hospital, Jinju 52727, Korea
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
- Department of Internal Medicine, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Ki Mun Kang
- Department of Radiation Oncology, Gyeongsang National University Changwon Hospital, Changwon 51472, Korea
- Department of Radiation Oncology and Institute of Health Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Sang-Il Lee
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University Hospital, Jinju 52727, Korea
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
- Department of Internal Medicine, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Bae Kwon Jeong
- Department of Radiation Oncology and Institute of Health Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
- Department of Radiation Oncology, Gyeongsang National University Hospital, Jinju 52727, Korea
| | - Mingyo Kim
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University Hospital, Jinju 52727, Korea
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
- Department of Internal Medicine, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| |
Collapse
|
2
|
Brooks AL, Conca J, Glines WM, Waltar AE. How the Science of Radiation Biology Can Help Reduce the Crippling Fear of Low-level Radiation. HEALTH PHYSICS 2023; 124:407-424. [PMID: 36989223 DOI: 10.1097/hp.0000000000001677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
ABSTRACT The fear of radiation has been present almost since the discovery of radiation, but has intensified since the "dawn of the atomic age" over 75 y ago. This fear has often served as an impediment to the safe and beneficial uses of radiation and radioactive material. The underlying causes of such fear are varied, can be complex, and are often not associated with any scientific knowledge or understanding. The authors believe that a clear understanding of the current scientific knowledge and understanding of the effects of radiation exposure may be useful in helping to allay some of the fear of radiation. This manuscript attempts to (1) address several scientific questions that we believe have contributed to the fear of radiation, (2) review the data derived from research that can be used to address these questions, and (3) summarize how the results of such scientific research can be used to help address the fear of low-dose and low-dose-rate radiation. Several examples of how fear of radiation has affected public perception of radiological events are discussed, as well as a brief history of the etiology of radiation fear. Actions needed to reduce the public fear of radiation and help fulfill the full societal benefits of radiation and radioactive materials are suggested.
Collapse
Affiliation(s)
- Antone L Brooks
- Research Professor Emeritus, Washington State University, Chief Scientist, DOE Low Dose Program, 6802 W. 13th Avenue, Kennewick, WA 99338
| | - James Conca
- President UFA Ventures, Inc., Richland, WA, Science writer for Forbes
| | - Wayne M Glines
- Senior Technical Advisor (retired), Department of Energy, 2315 Camas Avenue, Richland, WA 99354
| | - Alan E Waltar
- Professor and Head (retired), Department of Nuclear Engineering, Texas A&M University, Past President, American Nuclear Society, 12449 Ingalls Creek Road, Peshastin, WA 98847
| |
Collapse
|
3
|
Paithankar JG, Gupta SC, Sharma A. Therapeutic potential of low dose ionizing radiation against cancer, dementia, and diabetes: evidences from epidemiological, clinical, and preclinical studies. Mol Biol Rep 2023; 50:2823-2834. [PMID: 36595119 PMCID: PMC9808703 DOI: 10.1007/s11033-022-08211-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023]
Abstract
The growing use of ionizing radiation (IR)-based diagnostic and treatment methods has been linked to increasing chronic diseases among patients and healthcare professionals. However, multiple factors such as IR dose, dose-rate, and duration of exposure influence the IR-induced chronic effects. The predicted links between low-dose ionizing radiation (LDIR) and health risks are controversial due to the non-availability of direct human studies. The studies pertaining to LDIR effects have importance in public health as exposure to background LDIR is routine. It has been anticipated that data from epidemiological and clinical reports and results of preclinical studies can resolve this controversy and help to clarify the notion of LDIR-associated health risks. Accumulating scientific literature shows reduced cancer risk, cancer-related deaths, curtailed neuro-impairments, improved neural functions, and reduced diabetes-related complications after LDIR exposure. In addition, it was found to alter evolutionarily conserved stress response pathways. However, the picture of molecular signaling pathways in LDIR responses is unclear. Besides, there is limited/no information on biomarkers of epidemiological LDIR exposure. Therefore, the present review discusses epidemiological, clinical, and preclinical studies on LDIR-induced positive effects in three chronic diseases (cancer, dementia, and diabetes) and their associated molecular mechanisms. The knowledge of LDIR response mechanisms may help to devise LDIR-based therapeutic modalities to stop disease progression. Modulation of these pathways may be helpful in developing radiation resistance among humans. However, more clinical evidence with additional biochemical, cellular, and molecular data and exploring the side effects of LDIR are the major areas of future research.
Collapse
Affiliation(s)
- Jagdish Gopal Paithankar
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Subash Chandra Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India. .,Department of Biochemistry, All India Institute of Medical Sciences, Guwahati, 781001, India.
| | - Anurag Sharma
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India.
| |
Collapse
|
4
|
Laurent PA, Morel D, Meziani L, Depil S, Deutsch E. Radiotherapy as a means to increase the efficacy of T-cell therapy in solid tumors. Oncoimmunology 2022; 12:2158013. [PMID: 36567802 PMCID: PMC9788698 DOI: 10.1080/2162402x.2022.2158013] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T cells have demonstrated significant improvements in the treatment of refractory B-cell malignancies that previously showed limited survival. In contrast, early-phase clinical studies targeting solid tumors have been disappointing. This may be due to both a lack of specific and homogeneously expressed targets at the surface of tumor cells, as well as intrinsic properties of the solid tumor microenvironment that limit homing and activation of adoptive T cells. Faced with these antagonistic conditions, radiotherapy (RT) has the potential to change the overall tumor landscape, from depleting tumor cells to reshaping the tumor microenvironment. In this article, we describe the current landscape and discuss how RT may play a pivotal role for enhancing the efficacy of adoptive T-cell therapies in solid tumors. Indeed, by improving homing, expansion and activation of infused T cells while reducing tumor volume and heterogeneity, the use of RT could help the implementation of engineered T cells in the treatment of solid tumors.
Collapse
Affiliation(s)
- Pierre-Antoine Laurent
- Department of Radiation Oncology, Gustave Roussy Cancer Campus; UNICANCER, Villejuif, France
- INSERM U1030, Molecular Radiation Therapy and Therapeutic Innovation, Gustave Roussy Cancer Campus, University of Paris-Saclay, SIRIC SOCRATE, Villejuif, France
| | - Daphne Morel
- Drug Development Department (D.I.T.E.P), Gustave Roussy Cancer Campus; UNICANCER, Villejuif, France
| | - Lydia Meziani
- INSERM U1030, Molecular Radiation Therapy and Therapeutic Innovation, Gustave Roussy Cancer Campus, University of Paris-Saclay, SIRIC SOCRATE, Villejuif, France
| | | | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy Cancer Campus; UNICANCER, Villejuif, France
- INSERM U1030, Molecular Radiation Therapy and Therapeutic Innovation, Gustave Roussy Cancer Campus, University of Paris-Saclay, SIRIC SOCRATE, Villejuif, France
| |
Collapse
|
5
|
Kohda A, Toyokawa T, Umino T, Ayabe Y, Tanaka IB, Komura JI. Frequencies of Chromosome Aberrations are Lower in Splenic Lymphocytes from Mice Continuously Exposed to Very Low-Dose-Rate Gamma Rays Compared with Non-Irradiated Control Mice. Radiat Res 2022; 198:639-645. [PMID: 36481804 DOI: 10.1667/rade-21-00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/06/2022] [Indexed: 12/02/2022]
Abstract
Chromosome aberrations have been one of the most sensitive and reliable biomarkers of exposure to ionizing radiation. Using the multiplex fluorescence in situ hybridization (M-FISH) technique, we compared the changes, over time, in the frequencies of translocations and of dicentric chromosomes in the splenic lymphocytes from specific pathogen-free (SPF) C3H/HeN female mice continuously exposed to 0.05 mGy/day (18.25 mGy/year) gamma rays for 125 to 700 days (total accumulated doses: 6.25-35 mGy) with age-matched non-irradiated controls. Results show that the frequencies of translocations and of dicentric chromosomes increased significantly over time in both irradiated and non-irradiated control mice, and that the frequencies were significantly lower, not higher, in the irradiated mice, which differs from our previous reports of increased chromosome aberration frequencies at higher radiation dose rates of 1 mGy/day and 20 mGy/day. These results will be useful when considering the radiation risk at very low-dose rates comparable to regulatory dose limits.
Collapse
Affiliation(s)
- Atsushi Kohda
- Department of Radiobiology, Institute for Environmental Sciences (IES), 2-121 Hacchazawa, Takahoko, Rokkasho, Kamikita, Aomori 039-3213, Japan
| | - Takuo Toyokawa
- Tohoku Nuclear Co., Ltd., 2-41-14 Higashi Okamisawa, Misawa, Aomori 033-0024, Japan
| | - Tomoyuki Umino
- Tohoku Nuclear Co., Ltd., 2-41-14 Higashi Okamisawa, Misawa, Aomori 033-0024, Japan
| | - Yoshiko Ayabe
- Tohoku Research Center, Forestry and Forest Product Research Institute, 92-25 Nabeyashiki, Shimo-Kuriyagawa, Morioka, Iwate 020-0123, Japan
| | - Ignacia Braga Tanaka
- Department of Radiobiology, Institute for Environmental Sciences (IES), 2-121 Hacchazawa, Takahoko, Rokkasho, Kamikita, Aomori 039-3213, Japan
| | - Jun-Ichiro Komura
- Department of Radiobiology, Institute for Environmental Sciences (IES), 2-121 Hacchazawa, Takahoko, Rokkasho, Kamikita, Aomori 039-3213, Japan
| |
Collapse
|
6
|
Kundrát P, Pachnerová Brabcová K, Jelínek Michaelidesová A, Zahradníček O, Danilová I, Štěpán V, Jamborová Z, Davídková M. BORON-ENHANCED BIOLOGICAL EFFECTIVENESS OF PROTON IRRADIATION: STRATEGY TO ASSESS THE UNDERPINNING MECHANISM. RADIATION PROTECTION DOSIMETRY 2022; 198:527-531. [PMID: 36005957 DOI: 10.1093/rpd/ncac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Proton radiotherapy for the treatment of cancer offers an excellent dose distribution. Cellular experiments have shown that in terms of biological effects, the sharp dose distribution is further amplified, by as much as 75%, in the presence of boron. It is a matter of debate whether the underlying physical processes involve the nuclear reaction of 11B with protons or 10B with secondary neutrons, both producing densely ionizing short-ranged particles. Likewise, potential roles of intercellular communication or boron acting as a radiosensitizer are not clear. We present an ongoing research project based on a multiscale approach to elucidate the mechanism by which boron enhances the effectiveness of proton irradiation in the Bragg peak. It combines experimental with simulation tools to study the physics of proton-boron interactions, and to analyze intra- and inter-cellular boron biology upon proton irradiation.
Collapse
Affiliation(s)
- Pavel Kundrát
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00 Praha 8, Czech Republic
| | - Kateřina Pachnerová Brabcová
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00 Praha 8, Czech Republic
| | - Anna Jelínek Michaelidesová
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00 Praha 8, Czech Republic
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 110 00 Praha 1, Czech Republic
| | - Oldřich Zahradníček
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00 Praha 8, Czech Republic
| | - Irina Danilová
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00 Praha 8, Czech Republic
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 110 00 Praha 1, Czech Republic
| | - Václav Štěpán
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00 Praha 8, Czech Republic
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 110 00 Praha 1, Czech Republic
| | - Zuzana Jamborová
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00 Praha 8, Czech Republic
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 110 00 Praha 1, Czech Republic
| | - Marie Davídková
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00 Praha 8, Czech Republic
| |
Collapse
|
7
|
Sadeghian I, Heidari R, Raee MJ, Negahdaripour M. Cell-penetrating peptide-mediated delivery of therapeutic peptides/proteins to manage the diseases involving oxidative stress, inflammatory response and apoptosis. J Pharm Pharmacol 2022; 74:1085-1116. [PMID: 35728949 DOI: 10.1093/jpp/rgac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/22/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Peptides and proteins represent great potential for modulating various cellular processes including oxidative stress, inflammatory response, apoptosis and consequently the treatment of related diseases. However, their therapeutic effects are limited by their inability to cross cellular barriers. Cell-penetrating peptides (CPPs), which can transport cargoes into the cell, could resolve this issue, as would be discussed in this review. KEY FINDINGS CPPs have been successfully exploited in vitro and in vivo for peptide/protein delivery to treat a wide range of diseases involving oxidative stress, inflammatory processes and apoptosis. Their in vivo applications are still limited due to some fundamental issues of CPPs, including nonspecificity, proteolytic instability, potential toxicity and immunogenicity. SUMMARY Totally, CPPs could potentially help to manage the diseases involving oxidative stress, inflammatory response and apoptosis by delivering peptides/proteins that could selectively reach proper intracellular targets. More studies to overcome related CPP limitations and confirm the efficacy and safety of this strategy are needed before their clinical usage.
Collapse
Affiliation(s)
- Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Biotechnology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Ghosh A. Biological and cellular responses of humans to high-level natural radiation: A clarion call for a fresh perspective on the linear no-threshold paradigm. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 878:503478. [PMID: 35649671 DOI: 10.1016/j.mrgentox.2022.503478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 06/15/2023]
Abstract
There remains considerable uncertainty in obtaining risk estimates of adverse health outcomes of chronic low-dose radiation. In the absence of reliable direct data, extrapolation through the linear no-threshold (LNT) hypothesis forms the cardinal tenet of all risk assessments for low doses (≤ 100 mGy) and for the radiation protection principle of As Low As Reasonably Achievable (ALARA). However, as recent evidences demonstrate, LNT assumptions do not appropriately reflect the biology of the cell at the low-dose end of the dose-response curve. In this regard, human populations living in high-level natural radiation areas (HLNRA) of the world can provide valuable insights into the biological and cellular effects of chronic radiation to facilitate improved precision of the dose-response relationship at low doses. Here, data obtained over decades of epidemiological and radiobiological studies on HLNRA populations is summarized. These studies do not show any evidence of unfavourable health effects or adverse cellular effects that can be correlated with high-level natural radiation. Contrary to the assumptions of LNT, no excess cancer risks or untoward pregnancy outcomes have been found to be associated with cumulative radiation dose or in-utero exposures. Molecular biology-driven studies demonstrate that chronic low-dose activates several cellular defence mechanisms that help cells to sense, recover, survive, and adapt to radiation stress. These mechanisms include stress-response signaling, DNA repair, immune alterations and most importantly, the radiation-induced adaptive response. The HLNRA data is consistent with the new evolving paradigms of low-dose radiobiology and can help develop the theoretical framework of an alternate dose-response model. A rational integration of radiobiology with epidemiology data is imperative to reduce uncertainties in predicting the potential health risks of chronic low doses of radiation.
Collapse
Affiliation(s)
- Anu Ghosh
- Animal House Facility & Radiation Signaling Section, Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India; Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai 400 094, India.
| |
Collapse
|
9
|
Abdelrazzak AB, O'Neill P, Hill MA. Influence of ionizing radiation and cell density on the kinetics of autocrine destruction and intercellular induction of apoptosis in precancerous cells. Sci Rep 2022; 12:7150. [PMID: 35505194 PMCID: PMC9065116 DOI: 10.1038/s41598-022-11253-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/19/2022] [Indexed: 11/09/2022] Open
Abstract
Intercellular induction of apoptosis (IIA) represents a well-defined signaling model by which precancerous cells are selectively eradicated through reactive oxygen/nitrogen species and cytokine signaling from neighbour normal cells. Previously, we demonstrated that the IIA process could be enhanced by exposure of normal cells to very low doses of ionizing radiation as a result of perturbing the intercellular signaling. In this study, we investigate the kinetic behaviour of both autocrine destruction (AD) and IIA as a function of cell density of both precancerous and normal cells using an insert co-culture system and how exposure of normal cells to ionizing radiation influence the kinetics of apoptosis induction in precancerous cells. Increasing the seeding density of transformed cells shifts the kinetics of AD towards earlier times with the response plateauing only at high seeding densities. Likewise, when co-culturing precancerous cells with normal cells, increasing the seeding density of either normal or precancerous cells also shifts the kinetics of IIA response towards earlier times and plateau only at higher seeding densities. Irradiation of normal cells prior to co-culture further enhances the kinetics of IIA response, with the degree of enhancement dependent on the relative cell densities. These results demonstrate the pivotal role of the cell seeding density of normal and precancerous cells in modulating both AD and IIA. These results further support the proposition that ionizing radiation could result in an enhancement in the rate of removal of precancerous cells through the IIA process.
Collapse
Affiliation(s)
- Abdelrazek B Abdelrazzak
- Spectroscopy Department, Physics Research Institute, National Research Centre, Cairo, 12622, Egypt.
| | - Peter O'Neill
- MRC Oxford Institute for Radiation Oncology, University of Oxford, Gray Laboratories, ORCRB, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Mark A Hill
- MRC Oxford Institute for Radiation Oncology, University of Oxford, Gray Laboratories, ORCRB, Roosevelt Drive, Oxford, OX3 7DQ, UK
| |
Collapse
|
10
|
Wardman P. Approaches to modeling chemical reaction pathways in radiobiology. Int J Radiat Biol 2022; 98:1399-1413. [DOI: 10.1080/09553002.2022.2033342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Peter Wardman
- 20 Highover Park, Amersham, Buckinghamshire HP7 0BN, United Kingdom
| |
Collapse
|
11
|
Janiak MK, Pocięgiel M, Welsh JS. Time to rejuvenate ultra-low dose whole-body radiotherapy of cancer. Crit Rev Oncol Hematol 2021; 160:103286. [PMID: 33667656 DOI: 10.1016/j.critrevonc.2021.103286] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/11/2020] [Accepted: 02/27/2021] [Indexed: 12/24/2022] Open
Abstract
The results of clinical trials performed from the 1930s until the end of the 20th century in which total-body ultra-low level ionizing radiation (TB-LLR) was used demonstrate that this form of treatment can be equal or superior to other systemic anti-neoplastic modalities in terms of the rates of remissions, toxicity, and side effects. In this review, we provide the rationale for TB-LLR and analyze the results of reliable clinical trials in patients with predominantly lymphoproliferative disorders but also advanced solid cancers. The doses used in these trials did not exceed 0.1-0.2 Gy per fraction and cumulative totals ranged from 1 to 4 Gy. Based on the reviewed results we conclude that it is appropriate to revive interest in and resume clinical investigations of TB-LLR in order to refine and improve the effectiveness of such treatment, whether employed alone or in combination with other anticancer strategies.
Collapse
Affiliation(s)
- Marek K Janiak
- Military Institute of Hygiene and Epidemiology, Warsaw, Poland.
| | | | - James S Welsh
- Loyola University Chicago, Edward Hines Jr., VA Hospital, Stritch School of Medicine, Department of Radiation Oncology, Maywood, IL 601fv53, USA
| |
Collapse
|
12
|
Calabrese EJ, Kozumbo WJ. The phytoprotective agent sulforaphane prevents inflammatory degenerative diseases and age-related pathologies via Nrf2-mediated hormesis. Pharmacol Res 2020; 163:105283. [PMID: 33160067 DOI: 10.1016/j.phrs.2020.105283] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022]
Abstract
In numerous experimental models, sulforaphane (SFN) is shown herein to induce hormetic dose responses that are not only common but display endpoints of biomedical and clinical relevance. These hormetic responses are mediated via the activation of nuclear factor erythroid- derived 2 (Nrf2) antioxidant response elements (AREs) and, as such, are characteristically biphasic, well integrated, concentration/dose dependent, and specific with regard to the targeted cell type and the temporal profile of response. In experimental disease models, the SFN-induced hormetic activation of Nrf2 was shown to effectively reduce the occurrence and severity of a wide range of human-related pathologies, including Parkinson's disease, Alzheimer's disease, stroke, age-related ocular damage, chemically induced brain damage, and renal nephropathy, amongst others, while also enhancing stem cell proliferation. Although SFN was broadly chemoprotective within an hormetic dose-response context, it also enhanced cell proliferation/cell viability at low concentrations in multiple tumor cell lines. Although the implications of the findings in tumor cells are largely uncertain at this time and warrant further consideration, the potential utility of SFN in cancer treatment has not been precluded. This assessment of SFN complements recent reports of similar hormesis-based chemoprotections by other widely used dietary supplements, such as curcumin, ginkgo biloba, ginseng, green tea, and resveratrol. Interestingly, the mechanistic profile of SFN is similar to that of numerous other hormetic agents, indicating that activation of the Nrf2/ARE pathway is probably a central, integrative, and underlying mechanism of hormesis itself. The Nrf2/ARE pathway provides an explanation for how large numbers of agents that both display hormetic dose responses and activate Nrf2 can function to limit age-related damage, the progression of numerous disease processes, and chemical- and radiation- induced toxicities. These findings extend the generality of the hormetic dose response to include SFN and many other chemical activators of Nrf2 that are cited in the biomedical literature and therefore have potentially important public health and clinical implications.
Collapse
Affiliation(s)
- Edward J Calabrese
- Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, United States.
| | | |
Collapse
|
13
|
Bauer G. Intercellular singlet oxygen-mediated bystander signaling triggered by long-lived species of cold atmospheric plasma and plasma-activated medium. Redox Biol 2019; 26:101301. [PMID: 31442912 PMCID: PMC6831840 DOI: 10.1016/j.redox.2019.101301] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/06/2019] [Accepted: 08/15/2019] [Indexed: 01/10/2023] Open
Abstract
Treatment of tumor cells with H2O2 and nitrite, two long-lived species derived from cold atmospheric plasma, induces a complex autoamplificatory, singlet oxygen-mediated process, which leads to catalase inactivation and reactivation of intercellular apoptosis-inducing signaling. Experimental dissection and quantification of this process is described in this study. When tumor cells were pretreated with H2O2 and nitrite, and then were added to untreated tumor cells, they propaged singlet oxygen mediated catalase inactivation and generation of singlet oxygen to the untreated cell population. This bystander effect allowed to analyze the biochemical requirements of a) induction of the bystander effect-inducing potential, b) transmission of the bystander effect to untreated neighbouring cells, and c) the biochemical consequences of these signaling events. The induction of bystander effect-inducing potential requires the generation of “primary singlet oxygen” through the reactions following the interaction between nitrite and H2O2, followed by local inactivation of a few catalase molecules. This primary effect seems to be very rare, but is efficiently enhanced by the generation of "secondary singlet oxygen" through the interaction between H2O2 and peroxynitrite at the site of inactivated catalase. Transmission of bystander signaling between pretreated and untreated tumor cells depends on the generation of secondary singlet oxygen by the pretreated cells and singlet oxygen-mediated catalase inactivation of the untreated recipient cells. This induces autoamplificatory propagation of secondary singlet oxygen generation in the population. This experimental approach allowed to quantify the efficiencies of primary and secondary singlet oxgen generation after CAP and PAM action, to dissect the system and to study the underlying chemical biology in detail. Our data confirm that CAP and PAM-derived components are merely the trigger for the activation of autoamplificatory mechanisms of tumor cells, whereas the tumor cells efficiently propagate their cell death through their own ROS/RNS signaling potential. Primary 1O2 generated by H2O2 and NO2─ induces in tumor cells the potential for bystander signaling. Bystander signaling depends on inactivation of membrane-associated catalase. It is propagated by secondary singlet oxgen generated by cell-derived H2O2 and peroxynitrite. The action of primary singlet oxygen is a rare effect. Secondary singlet oxygen is generated in a sustained mode and acts efficiently.
Collapse
Affiliation(s)
- Georg Bauer
- Institute of Virology, Medical Center - University of Freiburg, Hermann-Herder Str. 11, D-79104, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
14
|
Kundrát P, Friedland W. MECHANISTIC MODELING PREDICTS ANTI-CARCINOGENIC RADIATION EFFECTS ON INTERCELLULAR SIGNALING IN VITRO TURN PRO-CARCINOGENIC IN VIVO. RADIATION PROTECTION DOSIMETRY 2019; 183:223-227. [PMID: 30535337 DOI: 10.1093/rpd/ncy225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
Oncogenic transformed cells represent an in vitro system mimicking early-stage carcinogenesis. These precancerous cells are subject to a selective removal via apoptosis induced by neighbor cells. By modulating the underpinning intercellular signaling mediated by cytokines and reactive oxygen/nitrogen species, ionizing radiation enhances this removal of precancerous cells in vitro, at doses from a few mGy to a few Gy. However, epidemiological data demonstrate that radiation exposure induces cancer, at least above 100 mGy. Mechanistic modeling of the given anti-carcinogenic process explains this discrepancy: The model reproduces in vitro data on apoptosis and its enhancement by radiation. For in vivo-like conditions with signal lifetimes shorter and cell densities higher than in vitro, radiation is predicted to reduce this anti-carcinogenic mechanism. Early-stage lesions that would be turned dormant or completely removed may grow large and escape this control mechanism upon irradiation.
Collapse
Affiliation(s)
- Pavel Kundrát
- Institute of Radiation Protection, Department of Radiation Sciences, Helmholtz Zentrum München, Neuherberg, Germany
| | - Werner Friedland
- Institute of Radiation Protection, Department of Radiation Sciences, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
15
|
Dobrzyński L, Fornalski KW, Reszczyńska J, Janiak MK. Modeling Cell Reactions to Ionizing Radiation: From a Lesion to a Cancer. Dose Response 2019; 17:1559325819838434. [PMID: 31001068 PMCID: PMC6454661 DOI: 10.1177/1559325819838434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/15/2019] [Indexed: 01/19/2023] Open
Abstract
This article focuses on the analytic modeling of responses of cells in the body to ionizing radiation. The related mechanisms are consecutively taken into account and discussed. A model of the dose- and time-dependent adaptive response is considered for 2 exposure categories: acute and protracted. In case of the latter exposure, we demonstrate that the response plateaus are expected under the modelling assumptions made. The expected total number of cancer cells as a function of time turns out to be perfectly described by the Gompertz function. The transition from a collection of cancer cells into a tumor is discussed at length. Special emphasis is put on the fact that characterizing the growth of a tumor (ie, the increasing mass and volume), the use of differential equations cannot properly capture the key dynamics-formation of the tumor must exhibit properties of the phase transition, including self-organization and even self-organized criticality. As an example, a manageable percolation-type phase transition approach is used to address this problem. Nevertheless, general theory of tumor emergence is difficult to work out mathematically because experimental observations are limited to the relatively large tumors. Hence, determination of the conditions around the critical point is uncertain.
Collapse
Affiliation(s)
- L. Dobrzyński
- National Centre for Nuclear Research (NCBJ), Otwock-Świerk,
Poland
| | - K. W. Fornalski
- National Centre for Nuclear Research (NCBJ), Otwock-Świerk,
Poland
- Ex-Polon Laboratory, Łazy, Poland
| | - J. Reszczyńska
- National Centre for Nuclear Research (NCBJ), Otwock-Świerk,
Poland
| | - M. K. Janiak
- Department of Radiobiology and Radiation Protection, Military
Institute of Hygiene and Epidemiology (WIHE), Warszawa, Poland
| |
Collapse
|
16
|
Moawed FSM, El-Sonbaty SM, Mansour SZ. Gallium nanoparticles along with low-dose gamma radiation modulate TGF-β/MMP-9 expression in hepatocellular carcinogenesis in rats. Tumour Biol 2019; 41:1010428319834856. [DOI: 10.1177/1010428319834856] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Combining chemotherapy with radiotherapy potentiates the outcome of cancer treatment for the more comprehensive attack. In the current study, we continued to assess the therapeutic efficaciousness of the newly synthesized gallium nanoparticles (GaNPs) combined with low level of gamma radiation (IR), on the incidence of diethylnitrosamine (DEN)–induced hepatocellular carcinoma (HCC) in rats. Oral administration of GaNPs (1 mg/Kg b.wt.) 5 times per week for 6 weeks combined with IR to rats treated with DEN (20 mg/Kg b.wt. 5 times per week for 6 weeks) significantly reduced serum levels of alpha-fetoprotein (AFP), aspartate transferase (AST), alanine transferase (ALT), and gamma-glutamyltransferase (GGT). In addition, the immunoblotting results of matrix metalloproteinase-9 (MM-9) showed a marked downregulation of protein expression along with a significant decrease in the hepatic level of transforming growth factor β (TGF-β). Furthermore, GaNPs and/or low dose of radiation significantly elevated the level of caspase-3 gene transcript accompanied with evoked DNA fragmentation in rats treated with DEN. The ameliorative effect of GaNPs and IR well appreciated with the histopathological alteration finding in DEN groups. It can be concluded that the combination of GaNPs and/or IR can serve as a good therapeutic agent for the treatment of HCC, which ought to attract more studies.
Collapse
Affiliation(s)
- Fatma SM Moawed
- Health Radiation Research, The National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Cairo, Egypt
| | - Sawsan M El-Sonbaty
- Radiation Microbiology, The National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Cairo, Egypt
| | - Somaya Z Mansour
- Radiation Biology, The National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Cairo, Egypt
| |
Collapse
|
17
|
The LNT model for cancer induction is not supported by radiobiological data. Chem Biol Interact 2019; 301:34-53. [PMID: 30763552 DOI: 10.1016/j.cbi.2019.01.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 12/18/2022]
Abstract
The hallmarks of cancer have been the focus of much research and have influenced the development of risk models for radiation-induced cancer. However, natural defenses against cancer, which constitute the hallmarks of cancer prevention, have largely been neglected in developing cancer risk models. These natural defenses are enhanced by low doses and dose rates of ionizing radiation, which has aided in the continuation of human life over many generations. Our natural defenses operate at the molecular, cellular, tissue, and whole-body levels and include epigenetically regulated (epiregulated) DNA damage repair and antioxidant production, selective p53-independent apoptosis of aberrant cells (e.g. neoplastically transformed and tumor cells), suppression of cancer-promoting inflammation, and anticancer immunity (both innate and adaptive components). This publication reviews the scientific bases for the indicated cancer-preventing natural defenses and evaluates their implication for assessing cancer risk after exposure to low radiation doses and dose rates. Based on the extensive radiobiological evidence reviewed, it is concluded that the linear-no-threshold (LNT) model (which ignores natural defenses against cancer), as it relates to cancer risk from ionizing radiation, is highly implausible. Plausible models include dose-threshold and hormetic models. More research is needed to establish when a given model (threshold, hormetic, or other) applies to a given low-dose-radiation exposure scenario.
Collapse
|
18
|
Brooks AL. The impact of dose rate on the linear no threshold hypothesis. Chem Biol Interact 2019; 301:68-80. [PMID: 30763551 DOI: 10.1016/j.cbi.2018.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/17/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022]
Abstract
The goal of this manuscript is to define the role of dose rate and dose protraction on the induction of biological changes at all levels of biological organization. Both total dose and the time frame over which it is delivered are important as the body has great capacity to repair all types of biological damage. The importance of dose rate has been recognized almost from the time that radiation was discovered and has been included in radiation standards as a Dose, Dose Rate, Effectiveness Factor (DDREF) and a Dose Rate Effectiveness Factor (DREF). This manuscript will evaluate the role of dose rate at the molecular, cellular, tissue, experimental animals and humans to demonstrate that dose rate is an important variable in estimating radiation cancer risk and other biological effects. The impact of low-dose rates on the Linear-No-Threshold Hypothesis (LNTH) will be reviewed since if the LNTH is not valid it is not possible to calculate a single value for a DDREF or DREF. Finally, extensive human experience is briefly reviewed to show that the radiation risks are not underestimated and that radiation at environmental levels has limited impact on total human cancer risk.
Collapse
Affiliation(s)
- Antone L Brooks
- Environmental Science, Washington State University, Richland, WA, USA.
| |
Collapse
|
19
|
Tharmalingam S, Sreetharan S, Brooks AL, Boreham DR. Re-evaluation of the linear no-threshold (LNT) model using new paradigms and modern molecular studies. Chem Biol Interact 2019; 301:54-67. [PMID: 30763548 DOI: 10.1016/j.cbi.2018.11.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/13/2018] [Accepted: 11/22/2018] [Indexed: 02/06/2023]
Abstract
The linear no-threshold (LNT) model is currently used to estimate low dose radiation (LDR) induced health risks. This model lacks safety thresholds and postulates that health risks caused by ionizing radiation is directly proportional to dose. Therefore even the smallest radiation dose has the potential to cause an increase in cancer risk. Advances in LDR biology and cell molecular techniques demonstrate that the LNT model does not appropriately reflect the biology or the health effects at the low dose range. The main pitfall of the LNT model is due to the extrapolation of mutation and DNA damage studies that were conducted at high radiation doses delivered at a high dose-rate. These studies formed the basis of several outdated paradigms that are either incorrect or do not hold for LDR doses. Thus, the goal of this review is to summarize the modern cellular and molecular literature in LDR biology and provide new paradigms that better represent the biological effects in the low dose range. We demonstrate that LDR activates a variety of cellular defense mechanisms including DNA repair systems, programmed cell death (apoptosis), cell cycle arrest, senescence, adaptive memory, bystander effects, epigenetics, immune stimulation, and tumor suppression. The evidence presented in this review reveals that there are minimal health risks (cancer) with LDR exposure, and that a dose higher than some threshold value is necessary to achieve the harmful effects classically observed with high doses of radiation. Knowledge gained from this review can help the radiation protection community in making informed decisions regarding radiation policy and limits.
Collapse
Affiliation(s)
- Sujeenthar Tharmalingam
- Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada.
| | - Shayenthiran Sreetharan
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street W, Hamilton ON, L8S 4K1, Canada
| | - Antone L Brooks
- Environmental Science, Washington State University, Richland, WA, USA
| | - Douglas R Boreham
- Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada; Bruce Power, Tiverton, ON(3), UK.
| |
Collapse
|
20
|
Shinsuke K, Junya K, Tomonobu U, Yoshiko K, Izumo N, Takahiko S. Chronic irradiation with low-dose-rate 137Cs-γ rays inhibits NGF-induced neurite extension of PC12 cells via Ca2+/calmodulin-dependent kinase II activation. JOURNAL OF RADIATION RESEARCH 2017; 58:809-815. [PMID: 29106600 PMCID: PMC5710646 DOI: 10.1093/jrr/rrx032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/27/2017] [Indexed: 06/07/2023]
Abstract
Chronic irradiation with low-dose-rate 137Cs-γ rays inhibits the differentiation of human neural progenitor cells and influences the expression of proteins associated with several cellular functions. We aimed to determine whether such chronic irradiation influences the expression of proteins associated with PC12 cells. Chronic irradiation at 0.027 mGy/min resulted in inhibition of NGF-induced neurite extension. Furthermore, irradiation enhanced the nerve growth factor (NGF)-induced increase in the phosphorylation of extracellular signal-regulated kinase (ERK), but did not affect the phosphorylation of NGF receptors, suggesting that irradiation influences pathways unassociated with the activation of ERK. We then examined whether irradiation influenced the Akt-Rac1 pathway, which is unaffected by ERK activation. Chronic irradiation also enhanced the NGF-induced increase in Akt phosphorylation, but markedly inhibited the NGF-induced increase in Rac1 activity that is associated with neurite extension. These results suggest that the inhibitory effect of irradiation on neurite extension influences pathways unassociated with Akt activation. As Ca2+/calmodulin-dependent kinase II (CaMKII) is known to inhibit the NGF-induced neurite extension in PC12 cells, independent of ERK and Akt activation, we next examined the effects of irradiation on CaMKII activation. Chronic irradiation induced CaMKII activation, while application of KN-62 (a specific inhibitor of CaMKII), attenuated increases in CaMKII activation and recovered neurite extension and NGF-induced increases in Rac1 activity that was inhibited by irradiation. Our results suggest that chronic irradiation with low-dose-rate γ-rays inhibits Rac1 activity via CaMKII activation, thereby inhibiting NGF-induced neurite extension.
Collapse
Affiliation(s)
- Katoh Shinsuke
- Research Center for Radiation Science, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama 245-0066, Japan
| | - Kobayashi Junya
- Radiation Biology Center, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Umeda Tomonobu
- Research Center for Radiation Science, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama 245-0066, Japan
| | - Kobayashi Yoshiko
- Research Center for Radiation Science, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama 245-0066, Japan
| | - Nobuo Izumo
- General Health Medical Center, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama 245-0066, Japan
| | - Suzuki Takahiko
- Clinical Radiology, Faculty of Medical Technology, Teikyo University, 2-11-1 Kaga, Itabashi 173-8605, Japan
| |
Collapse
|
21
|
The Role of Radiation Induced Injury on Lung Cancer. Cancers (Basel) 2017; 9:cancers9070089. [PMID: 28704919 PMCID: PMC5532625 DOI: 10.3390/cancers9070089] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/07/2017] [Accepted: 07/08/2017] [Indexed: 02/01/2023] Open
Abstract
This manuscript evaluates the role of cell killing, tissue disorganization, and tissue damage on the induction of lung cancer following low dose rate radiation exposures from internally deposited radioactive materials. Beagle dogs were exposed by inhalation to 90Y, 91Y, 144Ce, or 90Sr in fused clay particles. Dogs lived out their life span with complete pathology conducted at the time of death. The radiation dose per cell turnover was characterized and related to the cause of death for each animal. Large doses per cell turnover resulted in acute death from lung damage with extensive cell killing, tissue disorganization, chronic inflammatory disease, fibrosis, and pneumonitis. Dogs with lower doses per cell turnover developed a very high frequency of lung cancer. As the dose per cell turnover was further decreased, no marked tissue damage and no significant change in either life span or lung cancer frequency was observed. Radiation induced tissue damage and chronic inflammatory disease results in high cancer frequencies in the lung. At doses where a high frequency of chromosome damage and mutations would be predicted to occur there was no decrease in life span or increase in lung cancer. Such research suggests that cell killing and tissue damage and the physiological responses to that damage are important mechanisms in radiation induced lung cancer.
Collapse
|
22
|
Janiak MK, Wincenciak M, Cheda A, Nowosielska EM, Calabrese EJ. Cancer immunotherapy: how low-level ionizing radiation can play a key role. Cancer Immunol Immunother 2017; 66:819-832. [PMID: 28361232 PMCID: PMC5489643 DOI: 10.1007/s00262-017-1993-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 03/22/2017] [Indexed: 12/17/2022]
Abstract
The cancer immunoediting hypothesis assumes that the immune system guards the host against the incipient cancer, but also "edits" the immunogenicity of surviving neoplastic cells and supports remodeling of tumor microenvironment towards an immunosuppressive and pro-neoplastic state. Local irradiation of tumors during standard radiotherapy, by killing neoplastic cells and generating inflammation, stimulates anti-cancer immunity and/or partially reverses cancer-promoting immunosuppression. These effects are induced by moderate (0.1-2.0 Gy) or high (>2 Gy) doses of ionizing radiation which can also harm normal tissues, impede immune functions, and increase the risk of secondary neoplasms. In contrast, such complications do not occur with exposures to low doses (≤0.1 Gy for acute irradiation or ≤0.1 mGy/min dose rate for chronic exposures) of low-LET ionizing radiation. Furthermore, considerable evidence indicates that such low-level radiation (LLR) exposures retard the development of neoplasms in humans and experimental animals. Here, we review immunosuppressive mechanisms induced by growing tumors as well as immunomodulatory effects of LLR evidently or likely associated with cancer-inhibiting outcomes of such exposures. We also offer suggestions how LLR may restore and/or stimulate effective anti-tumor immunity during the more advanced stages of carcinogenesis. We postulate that, based on epidemiological and experimental data amassed over the last few decades, whole- or half-body irradiations with LLR should be systematically examined for its potential to be a viable immunotherapeutic treatment option for patients with systemic cancer.
Collapse
Affiliation(s)
- Marek K Janiak
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163, Warsaw, Poland.
| | - Marta Wincenciak
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163, Warsaw, Poland
| | - Aneta Cheda
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163, Warsaw, Poland
| | - Ewa M Nowosielska
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163, Warsaw, Poland
| | - Edward J Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
23
|
Photon hormesis deactivates alpha-particle induced bystander effects between zebrafish embryos. Radiat Phys Chem Oxf Engl 1993 2017. [DOI: 10.1016/j.radphyschem.2016.12.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
24
|
Brooks AL. The legacy of William Morgan: The PNNL years. Mutat Res 2017; 806:81-87. [PMID: 28347483 DOI: 10.1016/j.mrfmmm.2017.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/06/2017] [Indexed: 10/19/2022]
Affiliation(s)
- Antone L Brooks
- Washington State University, 6802 West 13th Kennewick, WA 99338, United States.
| |
Collapse
|
25
|
Ng CYP, Cheng SH, Yu KN. Effect of Photon Hormesis on Dose Responses to Alpha Particles in Zebrafish Embryos. Int J Mol Sci 2017; 18:E385. [PMID: 28208665 PMCID: PMC5343920 DOI: 10.3390/ijms18020385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/03/2017] [Accepted: 02/08/2017] [Indexed: 01/23/2023] Open
Abstract
Photon hormesis refers to the phenomenon where the biological effect of ionizing radiation with a high linear energy transfer (LET) value is diminished by photons with a low LET value. The present paper studied the effect of photon hormesis from X-rays on dose responses to alpha particles using embryos of the zebrafish (Danio rerio) as the in vivo vertebrate model. The toxicity of these ionizing radiations in the zebrafish embryos was assessed using the apoptotic counts at 20, 24, or 30 h post fertilization (hpf) revealed through acridine orange (AO) staining. For alpha-particle doses ≥ 4.4 mGy, the additional X-ray dose of 10 mGy significantly reduced the number of apoptotic cells at 24 hpf, which proved the presence of photon hormesis. Smaller alpha-particle doses might not have inflicted sufficient aggregate damages to trigger photon hormesis. The time gap T between the X-ray (10 mGy) and alpha-particle (4.4 mGy) exposures was also studied. Photon hormesis was present when T ≤ 30 min, but was absent when T = 60 min, at which time repair of damage induced by alpha particles would have completed to prevent their interactions with those induced by X-rays. Finally, the drop in the apoptotic counts at 24 hpf due to photon hormesis was explained by bringing the apoptotic events earlier to 20 hpf, which strongly supported the removal of aberrant cells through apoptosis as an underlying mechanism for photon hormesis.
Collapse
Affiliation(s)
- Candy Yuen Ping Ng
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, China.
| | - Shuk Han Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong, China.
| | - Kwan Ngok Yu
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, China.
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
26
|
Kundrát P, Friedland W. Enhanced release of primary signals may render intercellular signalling ineffective due to spatial aspects. Sci Rep 2016; 6:33214. [PMID: 27645799 PMCID: PMC5028836 DOI: 10.1038/srep33214] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/03/2016] [Indexed: 11/30/2022] Open
Abstract
Detailed mechanistic modelling has been performed of the intercellular signalling cascade between precancerous cells and their normal neighbours that leads to a selective removal of the precancerous cells by apoptosis. Two interconnected signalling pathways that were identified experimentally have been modelled, explicitly accounting for temporal and spatial effects. The model predicts highly non-linear behaviour of the signalling. Importantly, under certain conditions, enhanced release of primary signals by precancerous cells renders the signalling ineffective. This counter-intuitive behaviour arises due to spatial aspects of the underlying signalling scheme: Increased primary signalling by precancerous cells does, upon reaction with factors derived from normal cells, produce higher yields of apoptosis-triggering molecules. However, the apoptosis-triggering signals are formed farther from the precancerous cells, so that these are attacked less efficiently. Spatial effects thus may represent a novel analogue of negative feedback mechanisms.
Collapse
Affiliation(s)
- Pavel Kundrát
- Institute of Radiation Protection, Department of Radiation Sciences, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Werner Friedland
- Institute of Radiation Protection, Department of Radiation Sciences, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
27
|
Brooks AL, Hoel DG, Preston RJ. The role of dose rate in radiation cancer risk: evaluating the effect of dose rate at the molecular, cellular and tissue levels using key events in critical pathways following exposure to low LET radiation. Int J Radiat Biol 2016; 92:405-26. [PMID: 27266588 PMCID: PMC4975094 DOI: 10.1080/09553002.2016.1186301] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/14/2016] [Accepted: 05/02/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE This review evaluates the role of dose rate on cell and molecular responses. It focuses on the influence of dose rate on key events in critical pathways in the development of cancer. This approach is similar to that used by the U.S. EPA and others to evaluate risk from chemicals. It provides a mechanistic method to account for the influence of the dose rate from low-LET radiation, especially in the low-dose region on cancer risk assessment. Molecular, cellular, and tissues changes are observed in many key events and change as a function of dose rate. The magnitude and direction of change can be used to help establish an appropriate dose rate effectiveness factor (DREF). CONCLUSIONS Extensive data on key events suggest that exposure to low dose-rates are less effective in producing changes than high dose rates. Most of these data at the molecular and cellular level support a large (2-30) DREF. In addition, some evidence suggests that doses delivered at a low dose rate decrease damage to levels below that observed in the controls. However, there are some data human and mechanistic data that support a dose-rate effectiveness factor of 1. In summary, a review of the available molecular, cellular and tissue data indicates that not only is dose rate an important variable in understanding radiation risk but it also supports the selection of a DREF greater than one as currently recommended by ICRP ( 2007 ) and BEIR VII (NRC/NAS 2006 ).
Collapse
Affiliation(s)
- Antone L. Brooks
- Retired Professor, Environmental Science, Washington State University,
Richland,
Washington,
USA
| | - David G. Hoel
- Medical University of South Carolina, Epidemiology,
Charleston South Carolina,
USA
| | - R. Julian Preston
- US Environmental Protection Agency, National Health and Environmental Effects Research Laboratory (NHEERL) (MD B105-01), RTP,
USA
| |
Collapse
|
28
|
Abdelrazzak AB, Pottgießer SJ, Hill MA, O'Neill P, Bauer G. Enhancement of Peroxidase Release from Non-Malignant and Malignant Cells through Low-Dose Irradiation with Different Radiation Quality. Radiat Res 2016; 185:199-213. [PMID: 26849404 DOI: 10.1667/rr14245.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The release of peroxidase by nontransformed or transformed fibroblasts or epithelial cells (effector cells) triggers apoptosis induction selectively in transformed fibroblasts or transformed epithelial cells (target cells) through intercellular apoptosis-inducing signaling. The release of peroxidase can be induced either by treatment with transforming growth factor beta 1 or by low doses of alpha particles, gamma rays or ultrasoft X rays. In addiation, data indicates that radiation quality does not determine the overall efficiency of peroxidase release and the effects among a wide range of radiation doses are indistinguishable. These findings suggested that peroxidase release might be being triggered through intercellular bystander signaling. We show here that maximal peroxidase release does indeed occur after coculture of a small number of irradiated cells with an excess of unirradiated cells and demonstrate an enhanced effector function of nontransformed cells after the addition of a small number of irradiated cells. These data strongly indicate that peroxidase release is indeed triggered through bystander signaling mechanisms in mammalian cells.
Collapse
Affiliation(s)
- Abdelrazek B Abdelrazzak
- a CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom; and
| | - Stefanie J Pottgießer
- b Institute of Virology, Department of Medical Microbiology and Hygiene, University Medical Center, Freiburg, Germany
| | - Mark A Hill
- a CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom; and
| | - Peter O'Neill
- a CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom; and
| | - Georg Bauer
- b Institute of Virology, Department of Medical Microbiology and Hygiene, University Medical Center, Freiburg, Germany
| |
Collapse
|
29
|
|
30
|
Mariotti LG, Abdelrazzak AB, Ottolenghi A, O'Neill P, Hill MA. Stimulation of intercellular induction of apoptosis in transformed cells at very low doses of ionising radiation: spatial and temporal features. RADIATION PROTECTION DOSIMETRY 2015; 166:161-164. [PMID: 25883313 DOI: 10.1093/rpd/ncv176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The ultimate response of a cell or tissue to radiation is dependent in part on intercellular signalling. This becomes increasingly important at low doses, or at low dose rates, associated with typical human exposures. In order to help characterise the underlying mechanism of intercellular signalling, and how they are perturbed following exposure to ionising radiation, a previously well-defined model system of intercellular induction of apoptosis (IIA) (Portess et al. 2007, Cancer Res. 67, 1246-1253) was adopted. The aim of the present work is to evaluate the signalling mechanisms underpinning this process through exploring the variables that can affect the IIA, i.e. dose, time and space.
Collapse
Affiliation(s)
- L G Mariotti
- Dipartimento di Fisica, Universit Degli Studi di Pavia, via Bassi 6, Pavia I-27100, Italy Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, via Bassi 6, Pavia I-27100, Italy CRUK/MRC Oxford Institute for Radiation Oncology, Gray Laboratories, University of Oxford, Oxford OX3 7DQ, UK
| | - A B Abdelrazzak
- CRUK/MRC Oxford Institute for Radiation Oncology, Gray Laboratories, University of Oxford, Oxford OX3 7DQ, UK Physics Research Division, National Research Centre, Giza, Egypt
| | - A Ottolenghi
- Dipartimento di Fisica, Universit Degli Studi di Pavia, via Bassi 6, Pavia I-27100, Italy Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, via Bassi 6, Pavia I-27100, Italy
| | - P O'Neill
- CRUK/MRC Oxford Institute for Radiation Oncology, Gray Laboratories, University of Oxford, Oxford OX3 7DQ, UK
| | - M A Hill
- CRUK/MRC Oxford Institute for Radiation Oncology, Gray Laboratories, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
31
|
Ng C, Kong E, Konishi T, Kobayashi A, Suya N, Cheng S, Yu K. Low-dose neutron dose response of zebrafish embryos obtained from the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility. Radiat Phys Chem Oxf Engl 1993 2015. [DOI: 10.1016/j.radphyschem.2015.05.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Kundrát P, Friedland W. Mechanistic modelling of radiation-induced bystander effects. RADIATION PROTECTION DOSIMETRY 2015; 166:148-151. [PMID: 25877530 DOI: 10.1093/rpd/ncv170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A model of radiation-induced bystander effects is presented that explicitly takes into account the transient nature of bystander signal emission post-irradiation, signal lifetime and the non-linear cellular response to the signals. Data are analysed on mutagenesis induced in human lymphoblasts in medium transfer experiments, in which the signal build-up time, medium dilution and the duration of reporter cells' exposure to the medium were varied. The model implies that the cellular release of bystander signals decreases rather slowly, with a characteristic time of about a day, whereas the signal itself decays with a lifetime of about an hour.
Collapse
Affiliation(s)
- P Kundrát
- Institute of Radiation Protection, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - W Friedland
- Institute of Radiation Protection, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
33
|
Kundrát P, Friedland W. Impact of intercellular induction of apoptosis on low-dose radiation carcinogenesis. RADIATION PROTECTION DOSIMETRY 2015; 166:170-173. [PMID: 25899608 DOI: 10.1093/rpd/ncv169] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In vitro data indicate that selective removal of oncogenic transformed cells by apoptosis induced via signalling by neighbouring cells may represent an important anti-carcinogenic process. Mechanistic modelling supports this concept and predicts that the phenomenon can stop the growth of a transformed cell population, forming a dormant pre-neoplastic lesion, or even remove the transformed clone completely. Radiation has been shown to enhance the underpinning signalling and increase the extent and rate of apoptosis induction in precancerous cells. Implications for low-dose radiation carcinogenesis are discussed based on in vitro data and mechanistic modelling. The possibility is outlined for radiation to act in a pro-carcinogenic manner, i.e. to reduce rather than enhance the removal of transformed cells by apoptosis. The effects of radiation exposure during early or late carcinogenesis are discussed.
Collapse
Affiliation(s)
- P Kundrát
- Institute of Radiation Protection, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - W Friedland
- Institute of Radiation Protection, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
34
|
Babini G, Bellinzona VE, Morini J, Baiocco G, Mariotti L, Unger K, Ottolenghi A. Mechanisms of the induction of apoptosis mediated by radiation-induced cytokine release. RADIATION PROTECTION DOSIMETRY 2015; 166:165-169. [PMID: 25848101 DOI: 10.1093/rpd/ncv133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The aim of the present work was to investigate the mechanisms of radiation-induced bystander signalling leading to apoptosis in non-irradiated co-cultured cells. Cultured non-transformed cells were irradiated, and the effect on the apoptosis rate on co-cultured non-irradiated malignant cells was determined. For this, two different levels of the investigation are presented, i.e. release of signalling proteins and transcriptomic profiling of the irradiated and non-irradiated co-cultured cells. Concerning the signalling proteins, in this study, the attention was focussed on the release of the active and latent forms of the transforming growth factor-β1 protein. Moreover, global gene expression profiles of non-transformed and transformed cells in untreated co-cultures were compared with those of 0.5-Gy-irradiated non-transformed cells co-cultured with the transformed cells. The results show an effect of radiation on the release of signalling proteins in the medium, although no significant differences in release rates were detectable when varying the doses in the range from 0.25 to 1 Gy. Moreover, gene expression results suggest an effect of radiation on both cell populations, pointing out specific signalling pathways that might be involved in the enhanced induction of apoptosis.
Collapse
Affiliation(s)
- G Babini
- Dipartimento di Fisica, Università degli Studi di Pavia, via Bassi 6, Pavia I-27100, Italy Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, via Bassi 6, Pavia I-27100, Italy
| | - V E Bellinzona
- Dipartimento di Fisica, Università degli Studi di Pavia, via Bassi 6, Pavia I-27100, Italy Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, via Bassi 6, Pavia I-27100, Italy
| | - J Morini
- Dipartimento di Fisica, Università degli Studi di Pavia, via Bassi 6, Pavia I-27100, Italy Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, via Bassi 6, Pavia I-27100, Italy Dipartimento di Medicina Molecolare, Università degli Studi di Pavia, via Forlanini 14, Pavia I-27100, Italy
| | - G Baiocco
- Dipartimento di Fisica, Università degli Studi di Pavia, via Bassi 6, Pavia I-27100, Italy Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, via Bassi 6, Pavia I-27100, Italy
| | - L Mariotti
- Dipartimento di Fisica, Università degli Studi di Pavia, via Bassi 6, Pavia I-27100, Italy Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, via Bassi 6, Pavia I-27100, Italy Gray Institute for Radiation Oncology and Biology, Old Road Campus Research Building, Off Roosevelt Drive, Oxford OX3 7DQ, UK
| | - K Unger
- Research Unit of Radiation Cytogenetics, Helmholtz-Zentrum München (GmbH), Ingolstädter Landstraße 1, Neuherberg 85764, Germany
| | - A Ottolenghi
- Dipartimento di Fisica, Università degli Studi di Pavia, via Bassi 6, Pavia I-27100, Italy Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, via Bassi 6, Pavia I-27100, Italy
| |
Collapse
|
35
|
Ye L, Yu G, Wang C, Du B, Sun D, Liu J, Qi T, Yu X, Wei W, Cheng J, Jiang Y. MicroRNA‑128a, BMI1 polycomb ring finger oncogene, and reactive oxygen species inhibit the growth of U‑87 MG glioblastoma cells following exposure to X‑ray radiation. Mol Med Rep 2015; 12:6247-54. [PMID: 26238021 DOI: 10.3892/mmr.2015.4175] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 07/17/2015] [Indexed: 11/05/2022] Open
Abstract
Radiotherapy is an important therapeutic strategy for the treatment of numerous types of malignant tumors, including glioma. However, radioresistance and anti‑apoptotic mechanisms decrease the efficacy of radiotherapy in many patients with glioma. BMI1 polycomb ring finger oncogene (Bmi‑1) is an oncogene associated with radioresistance in tumor cells. MicroRNA (miRNA)‑128a is a brain-specific miRNA, which suppresses Bmi‑1 expression. The present study investigated the effects of various radiation intensities on U‑87 MG glioma cells, as well as the role of reactive oxygen species (ROS), Bmi‑1, and miRNA‑128a in the cellular response to radiotherapy. The response of U‑87 MG cells following exposure to X‑ray radiation was assessed using a cell growth curve and inhibition ratio. Cell cycle distribution and the levels of intracellular ROS were evaluated by flow cytometry. The mRNA expression levels of Bmi‑1 and those of miRNA‑128a in U‑87 MG cells exposed to X‑ray radiation were evaluated by reverse transcription‑quantitative polymerase chain reaction. X‑ray radiation did not decrease the number of U‑87 MG cells; however, it did inhibit cellular growth in a dose‑dependent manner. Following exposure to X‑ray radiation for 24 h, cell cycle distribution was altered, with an increase in the number of cells in G0/G1 phase. The mRNA expression levels of Bmi‑1 were downregulated in the 1 and 2 Gy groups, and upregulated in the 6 and 8 Gy groups. The expression levels of miRNA‑128a were upregulated in the 1 and 2 Gy groups, and downregulated in the 8 Gy group. The levels of ROS were increased following exposure to ≥2 Gy, and treatment with N-acetyl cysteine was able to induce radioresistance. These results suggested that U‑87 MG cells exhibited radioresistance. High doses of X‑ray radiation increased the expression levels of Bmi‑1, which may be associated with the evasion of cellular senescence. miRNA‑128a and its downstream target gene Bmi‑1 may have an important role in the radioresistance of U‑87 MG glioma cells. In addition, ROS may be involved in the mechanisms underlying the inhibitory effects of X‑ray radiation in U‑87 MG cells, and the downregulation of ROS may induce radioresistance.
Collapse
Affiliation(s)
- Lan Ye
- Cancer Center, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Guanying Yu
- Department of Surgery, Jinan Central Hospital, Jinan, Shandong 250014, P.R. China
| | - Cuihong Wang
- Cancer Center, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Bin Du
- Department of Surgery, Jinan Central Hospital, Jinan, Shandong 250014, P.R. China
| | - Dianshui Sun
- Cancer Center, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Junli Liu
- Cancer Center, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Tonggang Qi
- Cancer Center, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xiaoming Yu
- Cancer Center, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Wei Wei
- Cancer Center, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Jian Cheng
- Cancer Center, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yuhua Jiang
- Cancer Center, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
36
|
Borghini A, Mercuri A, Turchi S, Chiesa MR, Piccaluga E, Andreassi MG. Increased circulating cell-free DNA levels and mtDNA fragments in interventional cardiologists occupationally exposed to low levels of ionizing radiation. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:293-300. [PMID: 25327629 DOI: 10.1002/em.21917] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 09/30/2014] [Indexed: 06/04/2023]
Abstract
Circulating cell-free DNA (ccf-DNA) and mtDNA (ccf-mtDNA) have often been used as indicators of cell death and tissue damage in acute and chronic disorders, but little is known about changes in ccf-DNA and ccf-mtDNA concentrations following radiation exposure. The aim of the study was to investigate the impact of chronic low-dose radiation exposure on serum ccf-DNA levels and ccf-mtDNA fragments (mtDNA-79 and mtDNA-230) of interventional cardiologists working in high-volume cardiac catheterization laboratory to assess their possible role as useful radiation biomarkers. We enrolled 50 interventional cardiologists (26 males; age = 48.4 ± 10 years) and 50 age- and gender-matched unexposed controls (27 males; age = 47.6 ± 8.3 years). Quant-iT™ dsDNA High-Sensitivity assay was used to measure circulating ccf-DNA isolated from serum samples. Quantitative analysis of mtDNA fragments was performed by real-time PCR. No significant relationships were found between ccf-DNA and ccf-mtDNA, and age, gender, smoking, or other clinical parameters. Ccf-DNA levels (44.2 ± 31.1 vs. 30.6 ± 19.2 ng/ml, P = 0.013), ccf-mtDNA-79 (2.6 ± 2.1 vs. 1.1 ± 0.8, P < 0.01), and ccf-mtDNA-230 copies (2.0 ± 1.8 vs. 1.04 ± 0.9, P = 0.02) were significantly higher in interventional cardiologists compared with the non-exposed group. In a subset (n = 15) of interventional cardiologists with a reliable reconstruction of cumulative professional exposure (59.7 ± 48.4 mSv; range: 1.4-182 mS), ccf-DNA (53.2 ± 41.3 vs. 36.4 ± 22.9 and 32.2 ± 20.5, P = 0.08), mtDNA-79 (2.4 ± 2.1 vs. 2.03 ± 1.7 and 1.09 ± 0.82, P = 0.05), and mtDNA-230 (2.0 ± 2.2 vs. 1.5 ± 1.4 and 1.04 ± 0.9, P = 0.09) tended to be significantly increased in high-exposure subjects compared with both low-exposure interventional cardiologists and controls. Our results provide evidence for a possible role of circulating DNA as a relevant biomarker of cellular damage induced by exposure to chronic low-dose radiation.
Collapse
Affiliation(s)
- Andrea Borghini
- Genetics Research Unit, CNR Institute of Clinical Physiology, Pisa, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Over the past 15 years and more, extensive research has been conducted on the responses of biological systems to radiation delivered at a low dose or low dose rate. This research has demonstrated that the molecular-, cellular-, and tissue-level responses are different following low doses than those observed after a single short-term high-dose radiation exposure. Following low-dose exposure, 3 unique responses were observed, these included bystander effects, adaptive protective responses, and genomic instability. Research on the mechanisms of action for each of these observations demonstrates that the molecular and cellular processes activated by low doses of radiation are often related to protective responses, whereas high-dose responses are often associated with extensive damage such as cell killing, tissue disruption, and inflammatory diseases. Thus, the mechanisms of action are unique for low-dose radiation exposure. When the dose is delivered at a low dose rate, the responses typically differ at all levels of biological organization. These data suggest that there must be a dose rate effectiveness factor that is greater than 1 and that the risk following low-dose rate exposure is likely less than that for single short-term exposures. All these observations indicate that using the linear no-threshold model for radiation protection purposes is conservative. Low-dose research therefore supports the current standards and practices. When a nuclear medical procedure is justified, it should be carried out with optimization (lowest radiation dose commensurate with diagnostic or therapeutic outcome).
Collapse
|
38
|
Radiation-hormesis phenotypes, the related mechanisms and implications for disease prevention and therapy. J Cell Commun Signal 2014; 8:341-52. [PMID: 25324149 DOI: 10.1007/s12079-014-0250-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 10/08/2014] [Indexed: 01/20/2023] Open
Abstract
Humans are continuously exposed to ionizing radiation throughout life from natural sources that include cosmic, solar, and terrestrial. Much harsher natural radiation and chemical environments existed during our planet's early years. Mammals survived the harsher environments via evolutionarily-conserved gifts ̶ a continuously evolving system of stress-induced natural protective measures (i.e., activated natural protection [ANP]). The current protective system is differentially activated by stochastic (i.e., variable) low-radiation-dose thresholds and when optimally activated in mammals includes antioxidants, DNA damage repair, p53-related apoptosis of severely-damaged cells, reactive-oxygen-species (ROS)/reactive-nitrogen-species (RNS)- and cytokine-regulated auxiliary apoptosis that selectively removes aberrant cells (e.g., precancerous cells), suppression of disease promoting inflammation, and immunity against cancer cells. The intercellular-signaling-based protective system is regulated at least in part via epigenetic reprogramming of adaptive-response genes. When the system is optimally activated, it protects against cancer and some other diseases, thereby leading to hormetic phenotypes (e.g., reduced disease incidence to below the baseline level; reduced pain from inflammation-related problems). Here, some expressed radiation hormesis phenotypes and related mechanisms are discussed along with their implications for disease prevention and therapy.
Collapse
|
39
|
Lee CYS, Koval TM, Suzuki JB. Low-Dose Radiation Risks of Computerized Tomography and Cone Beam Computerized Tomography: Reducing the Fear and Controversy. J ORAL IMPLANTOL 2014; 41:e223-30. [PMID: 24669832 DOI: 10.1563/aaid-joi-d-13-00221] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulations for protecting humans against stochastic biological effects from ionizing radiation are based on the linear no-threshold (LNT) risk assessment model, which states that any amount of radiation exposure may lead to cancer in a population. Based on the LNT model, risk from low-dose radiation increases linearly with increasing doses of radiation. Imaging procedures in medicine and dentistry are an important source of low-dose ionizing radiation. The increased use of computerized tomography (CT) and cone beam computerized tomography (CBCT) has raised health concerns regarding exposure to low-dose ionizing radiation. In oral and maxillofacial surgery and implant dentistry, CBCT is now at the forefront of this controversy. Although caution has been expressed, there have been no direct studies linking radiation exposure from CT and CBCT used in dental imaging with cancer induction. This article describes the concerns about radiation exposure in dental imaging regarding the use of CT.
Collapse
Affiliation(s)
- Cameron Y S Lee
- 1 Private practice in oral, maxillofacial and reconstructive surgery, Aiea, Hawaii; Department of Periodontology and Oral Implantology, Temple University Kornberg School of Dentistry, Philadelphia, Penn
| | - Thomas M Koval
- 2 Center for Biotechnology Education, Advanced Academic Programs, Krieger School of Arts and Sciences, Johns Hopkins University, Rockville, Md
| | - Jon B Suzuki
- 3 Temple University, Kornberg School of Dentistry, Department of Periodontology and Oral Implantology, School of Medicine, Department of Microbiology and Immunology, Philadelphia, Penn
| |
Collapse
|
40
|
Klammer H, Mladenov E, Li F, Iliakis G. Bystander effects as manifestation of intercellular communication of DNA damage and of the cellular oxidative status. Cancer Lett 2013; 356:58-71. [PMID: 24370566 DOI: 10.1016/j.canlet.2013.12.017] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/13/2013] [Accepted: 12/14/2013] [Indexed: 12/30/2022]
Abstract
It is becoming increasingly clear that cells exposed to ionizing radiation (IR) and other genotoxic agents (targeted cells) can communicate their DNA damage response (DDR) status to cells that have not been directly irradiated (bystander cells). The term radiation-induced bystander effects (RIBE) describes facets of this phenomenon, but its molecular underpinnings are incompletely characterized. Consequences of DDR in bystander cells have been extensively studied and include transformation and mutation induction; micronuclei, chromosome aberration and sister chromatid exchange formation; as well as modulations in gene expression, proliferation and differentiation patterns. A fundamental question arising from such observations is why targeted cells induce DNA damage in non-targeted, bystander cells threatening thus their genomic stability and risking the induction of cancer. Here, we review and synthesize available literature to gather support for a model according to which targeted cells modulate as part of DDR their redox status and use it as a source to generate signals for neighboring cells. Such signals can be either small molecules transported to adjacent non-targeted cells via gap-junction intercellular communication (GJIC), or secreted factors that can reach remote, non-targeted cells by diffusion or through the circulation. We review evidence that such signals can induce in the recipient cell modulations of redox status similar to those seen in the originating targeted cell - occasionally though self-amplifying feedback loops. The resulting increase of oxidative stress in bystander cells induces, often in conjunction with DNA replication, the observed DDR-like responses that are at times strong enough to cause apoptosis. We reason that RIBE reflect the function of intercellular communication mechanisms designed to spread within tissues, or the entire organism, information about DNA damage inflicted to individual, constituent cells. Such responses are thought to protect the organism by enhancing repair in a community of cells and by eliminating severely damaged cells.
Collapse
Affiliation(s)
- Holger Klammer
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Emil Mladenov
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Fanghua Li
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany.
| |
Collapse
|
41
|
Brooks AL. Thirty-sixth Lauriston S. Taylor Lecture on radiation protection and measurements--from the field to the laboratory and back: the what ifs, wows, and who cares of radiation biology. HEALTH PHYSICS 2013; 105:407-421. [PMID: 24077038 DOI: 10.1097/hp.0b013e31829dc2ac] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
My scientific journey started at the University of Utah chasing fallout. It was on everything, in everything, and was distributed throughout the ecosystem. This resulted in radiation doses to humans and caused me great concern. From this concern I asked the question, "Are there health effects from these radiation doses and levels of radioactive contamination?" I have invested my scientific career trying to address this basic question. While conducting research, I got acquainted with many of the What ifs of radiation biology. The major What if in my research was, "What if we have underestimated the radiation risk for internally-deposited radioactive material?" While conducting research to address this important question, many other What ifs came up related to dose, dose rate, and dose distribution. I also encountered a large number of Wows. One of the first was when I went from conducting environmental fallout studies to research in a controlled laboratory. The activity in fallout was expressed as pCi L⁻¹, whereas it was necessary to inject laboratory animals with μCi g⁻¹ body weight to induce measurable biological changes, chromosome aberrations, and cancer. Wow! That is seven to nine orders of magnitude above the activity levels found in the environment. Other Wows have made it necessary for the field of radiation biology to make important paradigm shifts. For example, one shift involved changing from "hit theory" to total tissue responses as the result of bystander effects. Finally, Who cares? While working at U.S. Department of Energy headquarters and serving on many scientific committees, I found that science does not drive regulatory and funding decisions. Public perception and politics seem to be major driving forces. If scientific data suggested that risk had been underestimated, everyone cared. When science suggested that risk had been overestimated, no one cared. This result-dependent Who cares? was demonstrated as we tried to generate interactions by holding meetings with individuals involved in basic low-dose research, regulators, and the news media. As the scientists presented their "exciting data" that suggested that risk was overestimated, many of the regulators simply said, "We cannot use such data." The newspaper people said, "It is not possible to get such information by my editors." In spite of these difficulties, research results from basic science must be made available and considered by members of the public as well as by those that make regulatory recommendations. Public outreach of the data is critical and must continue to be a future focus to address properly the question of, "Who cares?" My journey in science, like many of yours, has been a mixture of chasing money, beatings, and the joys of unique and interesting research results. Perhaps through our experiences, we can improve research environments, funding, and use of the valuable information that is generated. Scientists that study at all levels of biological organization, from the environment to the laboratory and human epidemiology, must share expertise and data to address the What Ifs, Wows, and Who Cares of radiation biology.
Collapse
|
42
|
Lawrence MD, Ormsby RJ, Blyth BJ, Bezak E, England G, Newman MR, Tilley WD, Sykes PJ. Lack of high-dose radiation mediated prostate cancer promotion and low-dose radiation adaptive response in the TRAMP mouse model. Radiat Res 2013; 180:376-88. [PMID: 23971516 DOI: 10.1667/rr3381.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cancer of the prostate is a highly prevalent disease with a heterogeneous aetiology and prognosis. Current understanding of the biological mechanisms underlying the responses of prostate tissue to ionizing radiation exposure, including cancer induction, is surprisingly limited for both high- and low-dose exposures. As population exposure to radiation increases, largely through medical imaging, a better understanding of the response of the prostate to radiation exposure is required. Low-dose radiation-induced adaptive responses for increased cancer latency and decreased cancer frequency have been demonstrated in mouse models, largely for hematological cancers. This study examines the effects of high- and low-dose whole-body radiation exposure on prostate cancer development using an autochthonous mouse model of prostate cancer: TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP). TRAMP mice were exposed to single acute high (2 Gy), low (50 mGy) and repeated low (5 × 50 mGy) doses of X rays to evaluate both the potential prostate cancer promoting effects of high-dose radiation and low-dose adaptive response phenomena in this prostate cancer model. Prostate weights and histopathology were examined to evaluate gross changes in cancer development and, in mice exposed to a single 2 Gy dose, time to palpable tumor was examined. Proliferation (Ki-67), apoptosis, DNA damage (γ-H2AX) and transgene expression (large T-antigen) were examined within TRAMP prostate sections. Neither high- nor low-dose radiation-induced effects on prostate cancer progression were observed for any of the endpoints studied. Lack of observable effects of high- or low-dose radiation exposure suggests that modulation of tumorigenesis in the TRAMP model is largely resistant to such exposures. However, further study is required to better assess the effects of radiation exposure using alternative prostate cancer models that incorporate normal prostate and in those that are not driven by SV40 large T antigen.
Collapse
Affiliation(s)
- M D Lawrence
- a Haematology & Genetic Pathology, Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Rithidech KN, Honikel LM, Reungpatthanaphong P, Tungjai M, Golightly M, Whorton EB. Effects of 100 MeV protons delivered at 0.5 or 1 cGy/min on the in vivo induction of early and delayed chromosomal damage. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 756:127-40. [DOI: 10.1016/j.mrgentox.2013.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/03/2013] [Indexed: 11/28/2022]
|
44
|
Chandra A, Lan S, Zhu J, Lin T, Zhang X, Siclari VA, Altman AR, Cengel KA, Liu XS, Qin L. PTH prevents the adverse effects of focal radiation on bone architecture in young rats. Bone 2013; 55:449-57. [PMID: 23466454 PMCID: PMC3679252 DOI: 10.1016/j.bone.2013.02.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 02/20/2013] [Accepted: 02/23/2013] [Indexed: 02/03/2023]
Abstract
Radiation therapy is a common treatment regimen for cancer patients. However, its adverse effects on the neighboring bone could lead to fractures with a great impact on quality of life. The underlying mechanism is still elusive and there is no preventive or curative solution for this bone loss. Parathyroid hormone (PTH) is a current therapy for osteoporosis that has potent anabolic effects on bone. In this study, we found that focal radiation from frequent scans of the right tibiae in 1-month-old rats by micro-computed tomography severely decreased trabecular bone mass and deteriorated bone structure. Interestingly, PTH daily injections remarkably improved trabecular bone in the radiated tibiae with increases in trabecular number, thickness, connectivity, structure model index and stiffness, and a decrease in trabecular separation. Histomorphometric analysis revealed that radiation mainly decreased the number of osteoblasts and impaired their mineralization activity but had little effects on osteoclasts. PTH reversed these adverse effects and greatly increased bone formation to a similar level in both radiated and non-radiated bones. Furthermore, PTH protects bone marrow mesenchymal stem cells from radiation-induced damage, including a decrease in number and an increase in adipogenic differentiation. While radiation generated the same amount of free radicals in the bone marrow of vehicle-treated and PTH-treated animals, the percentage of apoptotic bone marrow cells was significantly attenuated in the PTH group. Taken together, our data demonstrate a radioprotective effect of PTH on bone structure and bone marrow and shed new light on a possible clinical application of anabolic treatment in radiotherapy.
Collapse
Affiliation(s)
- Abhishek Chandra
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shenghui Lan
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ji Zhu
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tiao Lin
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xianrong Zhang
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Valerie A. Siclari
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Allison R. Altman
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Keith A. Cengel
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - X. Sherry Liu
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ling Qin
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
45
|
Choi VWY, Ng CYP, Kobayashi A, Konishi T, Suya N, Ishikawa T, Cheng SH, Yu KN. Bystander effect between zebrafish embryos in vivo induced by high-dose X-rays. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:6368-6376. [PMID: 23668636 DOI: 10.1021/es401171h] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We employed embryos of the zebrafish, Danio rerio, for our studies on the in vivo bystander effect between embryos irradiated with high-dose X-rays and naive unirradiated embryos. The effects on the naive whole embryos were studied through quantification of apoptotic signals at 25 h post fertilization (hpf) through the terminal dUTP transferase-mediated nick end-labeling (TUNEL) assay followed by counting the stained cells under a microscope. We report data showing that embryos at 5 hpf subjected to a 4-Gy X-ray irradiation could release a stress signal into the medium, which could induce a bystander effect in partnered naive embryos sharing the same medium. We further demonstrated that this bystander effect (induced through partnering) could be successfully suppressed through the addition of the nitric oxide (NO) scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) into the medium but not through the addition of the CO liberator tricarbonylchloro(glycinato)ruthenium(II) (CORM-3). This shows that NO was involved in the bystander response between zebrafish embryos induced through X-ray irradiation. We also report data showing that the bystander effect could be successfully induced in naive embryos by introducing them into the irradiated embryo conditioned medium (IECM) alone, i.e., without partnering with the irradiated embryos. The IECM was harvested from the medium that had conditioned the zebrafish embryos irradiated at 5 hpf with 4-Gy X-ray until the irradiated embryos developed into 29 hpf. NO released from the irradiated embryos was unlikely to be involved in the bystander effect induced through the IECM because of the short life of NO. We further revealed that this bystander effect (induced through IECM) was rapidly abolished through diluting the IECM by a factor of 2× or greater, which agreed with the proposal that the bystander effect was an on/off response with a threshold.
Collapse
Affiliation(s)
- V W Y Choi
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, Hong Kong
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Lack of genomic instability in bone marrow cells of SCID mice exposed whole-body to low-dose radiation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:1356-77. [PMID: 23549227 PMCID: PMC3709322 DOI: 10.3390/ijerph10041356] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 03/05/2013] [Accepted: 03/12/2013] [Indexed: 11/17/2022]
Abstract
It is clear that high-dose radiation is harmful. However, despite extensive research, assessment of potential health-risks associated with exposure to low-dose radiation (at doses below or equal to 0.1 Gy) is still challenging. Recently, we reported that 0.05 Gy of 137Cs gamma rays (the existing limit for radiation-exposure in the workplace) was incapable of inducing significant in vivo genomic instability (measured by the presence of late-occurring chromosomal damage at 6 months post-irradiation) in bone marrow (BM) cells of two mouse strains, one with constitutively high and one with intermediate levels of the repair enzyme DNA-dependent protein-kinase catalytic-subunit (DNA-PKcs). In this study, we present evidence for a lack of genomic instability in BM cells of the severely combined-immunodeficiency (SCID/J) mouse (which has an extremely low-level of DNA-PKcs activity) exposed whole-body to low-dose radiation (0.05 Gy). Together with our previous report, the data indicate that low-dose radiation (0.05 Gy) is incapable of inducing genomic instability in vivo (regardless of the levels of DNA-PKcs activity of the exposed mice), yet higher doses of radiation (0.1 and 1 Gy) do induce genomic instability in mice with intermediate and extremely low-levels of DNA-PKcs activity (indicating an important role of DNA-PKcs in DNA repair).
Collapse
|
47
|
Temme J, Bauer G. Low-dose gamma irradiation enhances superoxide anion production by nonirradiated cells through TGF-β1-dependent bystander signaling. Radiat Res 2013; 179:422-32. [PMID: 23465059 DOI: 10.1667/rr3161.2] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We show here that low-dose gamma irradiation substantially increase in extracellular superoxide anion production in oncogenically transformed cells and tumor cells but not by nontransformed cells. The transfer of only a few cells from an irradiated culture to nonirradiated control cells was sufficient for the transmission of a signal to induce superoxide anion production in the nonirradiated cells. The number of irradiated cells that was necessary for the successful induction of superoxide anion production in the nonirradiated cells depended on radiation dose. When irradiated cells were allowed to incubate for 1 h before transmission to the nonirradiated cultures, nearly all of the cells from the irradiated cell population were able to communicate the inducing signal to nonirradiated cells. siRNA-dependent knockdown and reconstitution experiments showed that TGF-β1 was sufficient to mediate the bystander effect triggered by low-dose radiation in this experimental system. A kinetic analysis demonstrated that the enhanced superoxide anion production was substantially reduced before the release of the bystander signal by activated TGF-β.
Collapse
Affiliation(s)
- Jennifer Temme
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, Germany
| | | |
Collapse
|
48
|
Yang T, Samin A, Cao L. A review of low-level ionizing radiation and risk models of leukemia. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s13566-012-0086-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
49
|
Sanders CL. Potential treatment of inflammatory and proliferative diseases by ultra-low doses of ionizing radiations. Dose Response 2012; 10:610-25. [PMID: 23304108 DOI: 10.2203/dose-response.12-017.sanders] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ultra-low doses and dose- rates of ionizing radiation are effective in preventing disease which suggests that they also may be effective in treating disease. Limited experimental and anecdotal evidence indicates that low radiation doses from radon in mines and spas, thorium-bearing monazite sands and enhanced radioactive uranium ore obtained from a natural geological reactor may be useful in treating many inflammatory conditions and proliferative disorders, including cancer. Optimal therapeutic applications were identified via a literature survey as dose-rates ranging from 7 to 11μGy/hr or 28 to 44 times world average background rates. Rocks from an abandoned uranium mine in Utah were considered for therapeutic application and were examined by γ-ray and laser-induced breakdown fluorescence spectroscopy. The rocks showed the presence of transuranics and fission products with a γ-ray energy profile similar to aged spent uranium nuclear fuel (93% dose due to β particles and 7% due to γ rays). Mud packs of pulverized uranium ore rock dust in sealed plastic bags delivering bag surface β,γ dose-rates of 10-450 μGy/h were used with apparent success to treat several inflammatory and proliferative conditions in humans.
Collapse
Affiliation(s)
- Charles L Sanders
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea and 2030 New Hampshire Street, Loveland, CO 80538
| |
Collapse
|
50
|
Scott BR, Bruce VR, Gott KM, Wilder J, March T. Small γ-Ray Doses Prevent Rather than Increase Lung Tumors in Mice. Dose Response 2012; 10:527-40. [PMID: 23304103 DOI: 10.2203/dose-response.12-035.scott] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We show evidence for low doses of γ rays preventing spontaneous hyperplastic foci and adenomas in the lungs of mice, presumably via activating natural anticancer defenses. The evidence partly relates to a new study we conducted whereby a small number of female A/J mice received 6 biweekly dose fractions (100 mGy per fraction) of γ rays to the total body which prevented the occurrence of spontaneous hyperplastic foci in the lung. We also analyzed data from a much earlier Oak Ridge National Laboratory study involving more than 10,000 female RFMf/Un mice whereby single γ-ray doses from 100 to 1,000 mGy prevented spontaneous lung adenomas. We point out the possibility that the decrease in lung cancer mortality observed in The National Lung Screening Trial Research Team study involving lung tumor screening using low-dose computed tomography (CT) may relate at least in part to low-dose X-rays activating the body's natural anticancer defenses (i.e., radiation hormesis). This possibility was apparently not recognized by the indicated research team.
Collapse
Affiliation(s)
- B R Scott
- Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive SE, Albuquerque, NM 87108
| | | | | | | | | |
Collapse
|