1
|
Tian C, Yamashita S, Kimura A, Obata Y, Yu H, Taguchi M. Hydroxyl radical scavenging and chemical repair capabilities of positively charged peptides (PCPs): a pulse radiolysis study. Free Radic Res 2024; 58:388-395. [PMID: 39113587 DOI: 10.1080/10715762.2024.2385342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/20/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024]
Abstract
Pulse radiolysis was employed to investigate fundamental radiation chemical reactions, which are essential in the radiation protection of DNA. Two positively charged peptides (PCPs), histidine-tyrosine-histidine (His-Tyr-His) and lysine-tyrosine-lysine (Lys-Tyr-Lys), as well as the amino acids that constitute them, were involved. The reaction rate constants for tyrosine (Tyr), histidine (His), lysine (Lys), His-Tyr-His, and Lys-Tyr-Lys with OH radicals (•OH) were (1.6 ± 0.3) × 1010, (9.0 ± 0.9) × 109, (1.4 ± 0.3) × 109, (1.8 ± 0.1) × 1010, and (1.0 ± 0.1) × 1010 M-1s-1, respectively, indicating that formation of peptide bond can affect the reaction of amino acids with •OH. Observed transient absorption spectra indicated a shielding effect of the His or Lys residues at both ends of the PCPs on the centrally located Tyr. The measurement of chemical repair capabilities using deoxyguanosine monophosphate (dGMP) as a model for DNA demonstrated that the reaction rate constants of Tyr, His-Tyr-His, and Lys-Tyr-Lys with dGMP radicals were (2.2 ± 0.5) × 108, (2.3 ± 0.1) × 108, and (3.3 ± 0.4) × 108 M-1s-1, respectively, implying that the presence of a positive charge may enhance the chemical repair process.
Collapse
Affiliation(s)
- Chaozhong Tian
- Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Shinichi Yamashita
- Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, Tokyo, Japan
- Nuclear Professional School, School of Engineering, The University of Tokyo, Naka-gun, Japan
| | - Atsushi Kimura
- National Institutes for Quantum Science and Technology (QST), Takasaki Institute for Advanced Quantum Science, Takasaki, Japan
| | - Yui Obata
- Nuclear Professional School, School of Engineering, The University of Tokyo, Naka-gun, Japan
| | - Hao Yu
- National Institutes for Quantum Science and Technology (QST), Takasaki Institute for Advanced Quantum Science, Takasaki, Japan
| | - Mitsumasa Taguchi
- National Institutes for Quantum Science and Technology (QST), Takasaki Institute for Advanced Quantum Science, Takasaki, Japan
| |
Collapse
|
2
|
Oikeh E, Ziebarth J, Dinar MAM, Kirchhoff D, Aronova A, Dziubla TD, Wang Y, DeRouchey JE. DNA Packaging and Polycation Length Determine DNA Susceptibility to Free Radical Damage in Condensed DNA. J Phys Chem B 2024; 128:3329-3339. [PMID: 38557033 DOI: 10.1021/acs.jpcb.3c06116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In nature, DNA exists primarily in a highly compacted form. The compaction of DNA in vivo is mediated by cationic proteins: histones in somatic nuclei and protamines in sperm chromatin. The extreme, nearly crystalline packaging of DNA by protamines in spermatozoa is thought to be essential for both efficient genetic delivery as well as DNA protection against damage by mutagens and oxidative species. The protective role of protamines is required in sperm, as they are sensitive to ROS damage due to the progressive loss of DNA repair mechanisms during maturation. The degree to which DNA packaging directly relates to DNA protection in the condensed state, however, is poorly understood. Here, we utilized different polycation condensing agents to achieve varying DNA packaging densities and quantify DNA damage by free radical oxidation within the condensates. Although we see that tighter DNA packaging generally leads to better protection, the length of the polycation also plays a significant role. Molecular dynamics simulations suggest that longer polyarginine chains offer increased protection by occupying more space on the DNA surface and forming more stable interactions. Taken together, our results suggest a complex interplay among polycation properties, DNA packaging density, and DNA protection against free radical damage within condensed states.
Collapse
Affiliation(s)
- Ehigbai Oikeh
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Jesse Ziebarth
- Department of Chemistry, University of Memphis, Memphis, Tennessee 38152, United States
| | - Md Abu Monsur Dinar
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Daniel Kirchhoff
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Anastasiia Aronova
- Chemical and Materials Engineering Department, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Thomas D Dziubla
- Chemical and Materials Engineering Department, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Yongmei Wang
- Department of Chemistry, University of Memphis, Memphis, Tennessee 38152, United States
| | - Jason E DeRouchey
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
3
|
Abstract
Genomic DNA is organized three-dimensionally in the nucleus as chromatin. Recent accumulating evidence has demonstrated that chromatin organizes into numerous dynamic domains in higher eukaryotic cells, which act as functional units of the genome. These compacted domains facilitate DNA replication and gene regulation. Undamaged chromatin is critical for healthy cells to function and divide. However, the cellular genome is constantly threatened by many sources of DNA damage (e.g., radiation). How do cells maintain their genome integrity when subjected to DNA damage? This chapter describes how the compact state of chromatin safeguards the genome from radiation damage and chemical attacks. Together with recent genomics data, our finding suggests that DNA compaction, such as chromatin domain formation, plays a critical role in maintaining genome integrity. But does the formation of such domains limit DNA accessibility inside the domain and hinder the recruitment of repair machinery to the damaged site(s) during DNA repair? To approach this issue, we first describe a sensitive imaging method to detect changes in chromatin states in living cells (single-nucleosome imaging/tracking). We then use this method to explain how cells can overcome potential recruiting difficulties; cells can decompact chromatin domains following DNA damage and temporarily increase chromatin motion (∼DNA accessibility) to perform efficient DNA repair. We also speculate on how chromatin compaction affects DNA damage-resistance in the clinical setting.
Collapse
Affiliation(s)
- Katsuhiko Minami
- Genome Dynamics Laboratory, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan; Department of Genetics, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Shizuoka, Japan
| | - Shiori Iida
- Genome Dynamics Laboratory, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan; Department of Genetics, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Shizuoka, Japan
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan; Department of Genetics, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Shizuoka, Japan.
| |
Collapse
|
4
|
Baek AR, Hong J, Song KS, Jang AS, Kim DJ, Chin SS, Park SW. Spermidine attenuates bleomycin-induced lung fibrosis by inducing autophagy and inhibiting endoplasmic reticulum stress (ERS)-induced cell death in mice. Exp Mol Med 2020; 52:2034-2045. [PMID: 33318630 PMCID: PMC8080799 DOI: 10.1038/s12276-020-00545-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Spermidine is an endogenous biological polyamine that plays various longevity-extending roles and exerts antioxidative, antiaging, and cell growth-promoting effects. We previously reported that spermidine levels were significantly reduced in idiopathic pulmonary fibrosis (IPF) of the lung. The present study assessed the potential beneficial effects of spermidine on lung fibrosis and investigated the possible mechanism. Lung fibrosis was established in mice using bleomycin (BLM), and exogenous spermidine was administered daily by intraperitoneal injection (50 mg/kg in phosphate-buffered saline). BLM-induced alveolar epithelial cells showed significant increases in apoptosis and endoplasmic reticulum stress (ERS)-related mediators, and spermidine attenuated BLM-induced apoptosis and activation of the ERS-related pathway. Senescence-associated β-gal staining and decreased expression of p16 and p21 showed that spermidine ameliorated BLM-induced premature cellular senescence. In addition, spermidine enhanced beclin-1-dependent autophagy and autophagy modulators in IPF fibroblasts and BLM-induced mouse lungs, in which inflammation and collagen deposition were significantly decreased. This beneficial effect was related to the antiapoptotic downregulation of the ERS pathway, antisenescence effects, and autophagy activation. Our findings suggest that spermidine could be a therapeutic agent for IPF treatment.
Collapse
Affiliation(s)
- Ae Rin Baek
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 14584, Gyeonggi-Do, South Korea
| | - Jisu Hong
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 14584, Gyeonggi-Do, South Korea
| | - Ki Sung Song
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 14584, Gyeonggi-Do, South Korea
| | - An Soo Jang
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 14584, Gyeonggi-Do, South Korea
| | - Do Jin Kim
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 14584, Gyeonggi-Do, South Korea
| | - Su Sie Chin
- Department of Pathology, Soonchunhyang University Bucheon Hospital, 14584, Gyeonggi-Do, South Korea
| | - Sung Woo Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 14584, Gyeonggi-Do, South Korea.
| |
Collapse
|
5
|
ROS Generation and Antioxidant Defense Systems in Normal and Malignant Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6175804. [PMID: 31467634 PMCID: PMC6701375 DOI: 10.1155/2019/6175804] [Citation(s) in RCA: 496] [Impact Index Per Article: 82.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/24/2019] [Indexed: 02/08/2023]
Abstract
Reactive oxygen species (ROS) are by-products of normal cell activity. They are produced in many cellular compartments and play a major role in signaling pathways. Overproduction of ROS is associated with the development of various human diseases (including cancer, cardiovascular, neurodegenerative, and metabolic disorders), inflammation, and aging. Tumors continuously generate ROS at increased levels that have a dual role in their development. Oxidative stress can promote tumor initiation, progression, and resistance to therapy through DNA damage, leading to the accumulation of mutations and genome instability, as well as reprogramming cell metabolism and signaling. On the contrary, elevated ROS levels can induce tumor cell death. This review covers the current data on the mechanisms of ROS generation and existing antioxidant systems balancing the redox state in mammalian cells that can also be related to tumors.
Collapse
|
6
|
Razskazovskiy Y, Tegomoh M, Roginskaya M. Association with Polyamines and Polypeptides Increases the Relative Yield of 2-Deoxyribonolactone Lesions in Radiation-Damaged DNA. Radiat Res 2019; 192:324-330. [DOI: 10.1667/rr15396.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Modeste Tegomoh
- Departments of Chemistry, East Tennessee State University, Johnson City, Tennessee 37614
| | - Marina Roginskaya
- Departments of Chemistry, East Tennessee State University, Johnson City, Tennessee 37614
| |
Collapse
|
7
|
The protective role of spermine against male reproductive aberrations induced by exposure to electromagnetic field – An experimental investigation in the rat. Toxicol Appl Pharmacol 2019; 370:117-130. [DOI: 10.1016/j.taap.2019.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/25/2019] [Accepted: 03/12/2019] [Indexed: 12/15/2022]
|
8
|
Soda K. Polyamine Metabolism and Gene Methylation in Conjunction with One-Carbon Metabolism. Int J Mol Sci 2018; 19:E3106. [PMID: 30309036 PMCID: PMC6213949 DOI: 10.3390/ijms19103106] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023] Open
Abstract
Recent investigations have revealed that changes in DNA methylation status play an important role in aging-associated pathologies and lifespan. The methylation of DNA is regulated by DNA methyltransferases (DNMT1, DNMT3a, and DNMT3b) in the presence of S-adenosylmethionine (SAM), which serves as a methyl group donor. Increased availability of SAM enhances DNMT activity, while its metabolites, S-adenosyl-l-homocysteine (SAH) and decarboxylated S-adenosylmethionine (dcSAM), act to inhibit DNMT activity. SAH, which is converted from SAM by adding a methyl group to cytosine residues in DNA, is an intermediate precursor of homocysteine. dcSAM, converted from SAM by the enzymatic activity of adenosylmethionine decarboxylase, provides an aminopropyl group to synthesize the polyamines spermine and spermidine. Increased homocysteine levels are a significant risk factor for the development of a wide range of conditions, including cardiovascular diseases. However, successful homocysteine-lowering treatment by vitamins (B6, B12, and folate) failed to improve these conditions. Long-term increased polyamine intake elevated blood spermine levels and inhibited aging-associated pathologies in mice and humans. Spermine reversed changes (increased dcSAM, decreased DNMT activity, aberrant DNA methylation, and proinflammatory status) induced by the inhibition of ornithine decarboxylase. The relation between polyamine metabolism, one-carbon metabolism, DNA methylation, and the biological mechanism of spermine-induced lifespan extension is discussed.
Collapse
Affiliation(s)
- Kuniyasu Soda
- Cardiovascular Research Institute, Saitama Medical Center, Jichi Medical University, 1-847 Amanuma, Omiya, Saitama-city, Saitama Prefecture 330-8503, Japan.
| |
Collapse
|
9
|
Singh A, Gotherwal V, Junni P, Vijayan V, Tiwari M, Ganju P, Kumar A, Sharma P, Fatima T, Gupta A, Holla A, Kar HK, Khanna S, Thukral L, Malik G, Natarajan K, Gadgil CJ, Lahesmaa R, Natarajan VT, Rani R, Gokhale RS. Mapping architectural and transcriptional alterations in non-lesional and lesional epidermis in vitiligo. Sci Rep 2017; 7:9860. [PMID: 28852211 PMCID: PMC5575244 DOI: 10.1038/s41598-017-10253-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/08/2017] [Indexed: 01/31/2023] Open
Abstract
In vitiligo, chronic loss of melanocytes and consequent absence of melanin from the epidermis presents a challenge for long-term tissue maintenance. The stable vitiligo patches are known to attain an irreversible depigmented state. However, the molecular and cellular processes resulting in this remodeled tissue homeostasis is unclear. To investigate the complex interplay of inductive signals and cell intrinsic factors that support the new acquired state, we compared the matched lesional and non-lesional epidermis obtained from stable non-segmental vitiligo subjects. Hierarchical clustering of genome-wide expression of transcripts surprisingly segregated lesional and non-lesional samples in two distinct clades, despite the apparent heterogeneity in the lesions of different vitiligo subjects. Pathway enrichment showed the expected downregulation of melanogenic pathway and a significant downregulation of cornification and keratinocyte differentiation processes. These perturbations could indeed be recapitulated in the lesional epidermal tissue, including blunting of rete-ridges, thickening of stratum corneum and increase in the size of corneocytes. In addition, we identify marked increase in the putrescine levels due to the elevated expression of spermine/spermidine acetyl transferase. Our study provides insights into the intrinsic self-renewing ability of damaged lesional tissue to restore epidermal functionality in vitiligo.
Collapse
Affiliation(s)
- Archana Singh
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Vishvabandhu Gotherwal
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Päivi Junni
- Turku Centre for Biotechnology, University of Turku and ÅboAkademi University, Turku, Finland
| | - Vinaya Vijayan
- CSIR-National Chemical Laboratory, Chemical Engineering Division, Pune, India
| | - Manisha Tiwari
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Parul Ganju
- National Institute of Immunology, ArunaAsaf Ali Marg, New Delhi, India
| | - Avinash Kumar
- National Institute of Immunology, ArunaAsaf Ali Marg, New Delhi, India
| | - Pankaj Sharma
- Department of Dermatology, Post Graduate Institute for Medical Education and Research (PGIMER), Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Tanveer Fatima
- Department of Dermatology, Post Graduate Institute for Medical Education and Research (PGIMER), Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Aayush Gupta
- Department of Dermatology, Dr. D. Y. Patil Medical College, Pimpri, Pune, India
| | - Ananthaprasad Holla
- MelanoSite, Center for Advanced Vitiligo Treatment and Collaborative Pigment Cell Research, New Delhi, India
| | - Hemanta K Kar
- Department of Dermatology, Post Graduate Institute for Medical Education and Research (PGIMER), Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Sangeeta Khanna
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Lipi Thukral
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Garima Malik
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | | | - Chetan J Gadgil
- CSIR-National Chemical Laboratory, Chemical Engineering Division, Pune, India
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and ÅboAkademi University, Turku, Finland
| | - Vivek T Natarajan
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India. .,Academy of Scientific and Innovative Research, New Delhi, India.
| | - Rajni Rani
- National Institute of Immunology, ArunaAsaf Ali Marg, New Delhi, India.
| | - Rajesh S Gokhale
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India. .,National Institute of Immunology, ArunaAsaf Ali Marg, New Delhi, India. .,CSIR-National Chemical Laboratory, Chemical Engineering Division, Pune, India. .,Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India.
| |
Collapse
|
10
|
Cannan WJ, Pederson DS. Mechanisms and Consequences of Double-Strand DNA Break Formation in Chromatin. J Cell Physiol 2016; 231:3-14. [PMID: 26040249 DOI: 10.1002/jcp.25048] [Citation(s) in RCA: 293] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 05/14/2015] [Indexed: 12/14/2022]
Abstract
All organisms suffer double-strand breaks (DSBs) in their DNA as a result of exposure to ionizing radiation. DSBs can also form when replication forks encounter DNA lesions or repair intermediates. The processing and repair of DSBs can lead to mutations, loss of heterozygosity, and chromosome rearrangements that result in cell death or cancer. The most common pathway used to repair DSBs in metazoans (non-homologous DNA end joining) is more commonly mutagenic than the alternative pathway (homologous recombination mediated repair). Thus, factors that influence the choice of pathways used DSB repair can affect an individual's mutation burden and risk of cancer. This review describes radiological, chemical, and biological mechanisms that generate DSBs, and discusses the impact of such variables as DSB etiology, cell type, cell cycle, and chromatin structure on the yield, distribution, and processing of DSBs. The final section focuses on nucleosome-specific mechanisms that influence DSB production, and the possible relationship between higher order chromosome coiling and chromosome shattering (chromothripsis).
Collapse
Affiliation(s)
- Wendy J Cannan
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont
| | - David S Pederson
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont
| |
Collapse
|
11
|
Yu ZC, Huang YF, Shieh SY. Requirement for human Mps1/TTK in oxidative DNA damage repair and cell survival through MDM2 phosphorylation. Nucleic Acids Res 2015; 44:1133-50. [PMID: 26531827 PMCID: PMC4756815 DOI: 10.1093/nar/gkv1173] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/21/2015] [Indexed: 01/25/2023] Open
Abstract
Human Mps1 (hMps1) is a protein kinase essential for mitotic checkpoints and the DNA damage response. Here, we present new evidence that hMps1 also participates in the repair of oxidative DNA lesions and cell survival through the MDM2-H2B axis. In response to oxidative stress, hMps1 phosphorylates MDM2, which in turn promotes histone H2B ubiquitination and chromatin decompaction. These events facilitate oxidative DNA damage repair and ATR-CHK1, but not ATM-CHK2 signaling. Depletion of hMps1 or MDM2 compromised H2B ubiquitination, DNA repair and cell survival. The impairment could be rescued by re-expression of WT but not the phospho-deficient MDM2 mutant, supporting the involvement of hMps1-dependent MDM2 phosphorylation in the oxidative stress response. In line with these findings, localization of RPA and base excision repair proteins to damage foci also requires MDM2 and hMps1. Significantly, like MDM2, hMps1 is upregulated in human sarcoma, suggesting high hMps1 and MDM2 expression may be beneficial for tumors constantly challenged by an oxidative micro-environment. Our study therefore identified an hMps1-MDM2-H2B signaling axis that likely plays a relevant role in tumor progression.
Collapse
Affiliation(s)
- Zheng-Cheng Yu
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, No 1, Sec. 1, Jen-Ai Road, Taipei 100, Taiwan Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Road, Taipei 115, Taiwan
| | - Yi-Fu Huang
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Road, Taipei 115, Taiwan
| | - Sheau-Yann Shieh
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, No 1, Sec. 1, Jen-Ai Road, Taipei 100, Taiwan Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Road, Taipei 115, Taiwan
| |
Collapse
|
12
|
Depletion of the polyamines spermidine and spermine by overexpression of spermidine/spermine N¹-acetyltransferase 1 (SAT1) leads to mitochondria-mediated apoptosis in mammalian cells. Biochem J 2015; 468:435-47. [PMID: 25849284 DOI: 10.1042/bj20150168] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/07/2015] [Indexed: 12/16/2022]
Abstract
The polyamines putrescine, spermidine and spermine are intimately involved in the regulation of cellular growth and viability. Transduction of human embryonic kidney (HEK) 293T cells with an adenovirus encoding a key polyamine catabolic enzyme, spermidine N¹-acetyltransferase 1 (SSAT1)/SAT1 (AdSAT1), leads to a rapid depletion of spermidine and spermine, arrest in cell growth and a decline in cell viability. Annexin V/propidium iodide FACS analyses, terminal uridine nucleotide end-labelling (TUNEL) and caspase 3 assays showed a clear indication of apoptosis in AdSAT1-transduced cells (at 24-72 h), but not in cells transduced with GFP-encoding adenovirus (AdGFP). Apoptosis in the polyamine-depleted cells occurs by the mitochondrial intrinsic pathway, as evidenced by loss of mitochondrial membrane potential, increase in pro-apoptotic Bax, decrease in anti-apoptotic Bcl-xl, Bcl2 and Mcl-1 and release of cytochrome c from mitochondria, upon transduction with AdSAT1. Moreover, TEM images of AdSAT1-transduced cells revealed morphological changes commonly associated with apoptosis, including cell shrinkage, nuclear fragmentation, mitochondrial alteration, vacuolization and membrane blebbing. The apoptosis appears to result largely from depletion of the polyamines spermidine and spermine, as the polyamine analogues α-methylspermidine (α-MeSpd) and N¹,N¹²-dimethylspermine (Me₂Spm) that are not substrates for SAT1 could partially restore growth and prevent apoptosis of AdSAT1-transduced cells. Inhibition of polyamine oxidases did not restore the growth of AdSAT1-transduced cells or block apoptosis, suggesting that the growth arrest and apoptosis were not induced by oxidative stress resulting from accelerated polyamine catabolism. Taken together, these data provide strong evidence that the depletion of the polyamines spermidine and spermine leads to mitochondria-mediated apoptosis.
Collapse
|
13
|
Soda K. Biological Effects of Polyamines on the Prevention of Aging-associated Diseases and on Lifespan Extension. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2015. [DOI: 10.3136/fstr.21.145] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kuniyasu Soda
- Cardiovascular Research Institute, Saitama Medical Center, Jichi Medical University
| |
Collapse
|
14
|
Shah NA, Khan MR, Sattar S, Ahmad B, Mirza B. HPLC-DAD analysis, antioxidant potential and anti-urease activity of Asparagus gracilis collected from District Islamabad. Altern Ther Health Med 2014; 14:347. [PMID: 25245231 PMCID: PMC4179820 DOI: 10.1186/1472-6882-14-347] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 09/19/2014] [Indexed: 01/21/2023]
Abstract
Background Asparagus gracilis subspecie of Asparagus capitatus Baker, is described as food and medicine for various ailments. In this study we investigated, its phenolic constituents, in vitro antioxidant potential against various free radicals and anti-urease potential. Methods Asparagus gracilis aerial parts collected from District Islamabad, Pakistan were extracted with crude methanol which was further fractionated into n-hexane, ethyl acetate, n-butanol and aqueous fraction. Total phenolic and flavonoid contents were estimated for extract and all the derived fractions. Diverse in vitro antioxidants assays such as DPPH, H2O2, •OH, ABTS, β-carotene bleaching assay, superoxide radical, lipid peroxidation, reducing power, and total antioxidant capacity were studied to assess scavenging potential. Antiurease activity of methanol extract and its derived fractions was also investigated. HPLC-DAD analysis of crude methanol extract was performed by using different phenolic standards. Results Ethyl acetate fraction expressed maximum content of flavonoids (240.6 ± 6.1 mg RE/g dry sample), phenolics (615 ± 13 mg GAE/g dry sample) and best antioxidant potential among different fractions of crude methanol extract. Hydrogen peroxide assay and hydroxyl, supeoxide, nitric oxide free radicals antioxidant assays as well as beta carotene assay showed significant correlation with flavonoid content while hydrogen peroxide, ABTS and lipid peroxidation assay displayed significant correlation with phenolic content. HPLC analysis showed the presence of important phenolics i.e. catechin (4.04 ± 0.02 μg/mg sample), caffeic acid (0.89 ± 0.003 μg/mg sample), rutin (24.58 ± 0.1 μg/mg sample), myricetin (1.13 ± 0.07 μg/mg sample) and quercetin (14.91 ± 0.09 μg/mg sample). Ethyl acetate fraction expressed lowest IC50 in antiurease activity. Correlation analysis of antiurease activity expressed significant correlation with flavonoids (P < 0.004) and phenolics (P < 0.02) proposing multipotent activity of fractions. Conclusion These results revealed the presence of some bioactive compound in the ethyl acetate fraction having both antioxidant as well as antiurease potential.
Collapse
|
15
|
Bracha D, Bar-Ziv RH. Dendritic and Nanowire Assemblies of Condensed DNA Polymer Brushes. J Am Chem Soc 2014; 136:4945-53. [DOI: 10.1021/ja410960w] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Dan Bracha
- Department
of Materials and
Interfaces, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Roy H. Bar-Ziv
- Department
of Materials and
Interfaces, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
16
|
Lavelle C, Foray N. Chromatin structure and radiation-induced DNA damage: from structural biology to radiobiology. Int J Biochem Cell Biol 2014; 49:84-97. [PMID: 24486235 DOI: 10.1016/j.biocel.2014.01.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 01/13/2014] [Accepted: 01/18/2014] [Indexed: 10/25/2022]
Abstract
Genomic DNA in eukaryotic cells is basically divided into chromosomes, each consisting of a single huge nucleosomal fiber. It is now clear that chromatin structure and dynamics play a critical role in all processes involved in DNA metabolism, e.g. replication, transcription, repair and recombination. Radiation is a useful tool to study the biological effects of chromatin alterations. Conversely, radiotherapy and radiodiagnosis raise questions about the influence of chromatin integrity on clinical features and secondary effects. This review focuses on the link between DNA damage and chromatin structure at different scales, showing how a comprehensive multiscale vision is required to understand better the effect of radiations on DNA. Clinical aspects related to high- and low-dose of radiation and chromosomal instability will be discussed. At the same time, we will show that the analysis of the radiation-induced DNA damage distribution provides good insight on chromatin structure. Hence, we argue that chromatin "structuralists" and radiobiological "clinicians" would each benefit from more collaboration with the other. We hope that this focused review will help in this regard.
Collapse
Affiliation(s)
- Christophe Lavelle
- Genome Structure and Instability, National Museum of Natural History, Paris, France; CNRS UMR7196, Paris, France; INSERM U1154, Paris, France; Nuclear Architecture and Dynamics, CNRS GDR 3536, Paris, France.
| | - Nicolas Foray
- Nuclear Architecture and Dynamics, CNRS GDR 3536, Paris, France; INSERM, UMR1052, Radiobiology Group, Cancer Research Centre of Lyon, Lyon, France
| |
Collapse
|
17
|
Soda K. Polyamines. J JPN SOC FOOD SCI 2014. [DOI: 10.3136/nskkk.61.607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kuniyasu Soda
- Cardiovascular Research Institute, Saitama Medical Center, Jichi Medical University
| |
Collapse
|
18
|
Iacomino G, Picariello G, Stillitano I, D'Agostino L. Nuclear aggregates of polyamines in a radiation-induced DNA damage model. Int J Biochem Cell Biol 2013; 47:11-9. [PMID: 24291171 DOI: 10.1016/j.biocel.2013.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/24/2013] [Accepted: 11/12/2013] [Indexed: 01/04/2023]
Abstract
Polyamines (PA) are believed to protect DNA minimizing the effect of radiation damage either by inducing DNA compaction and aggregation or acting as scavengers of free radicals. Using an in vitro pDNA double strand breakage assay based on gel electrophoretic mobility, we compared the protective capability of PA against γ-radiation with that of compounds generated by the supramolecular self-assembly of nuclear polyamines and phosphates, named Nuclear Aggregates of Polyamines (NAPs). Both unassembled PA and in vitro produced NAPs (ivNAPs) were ineffective in conferring pDNA protection at the sub-mM concentration. Single PA showed an appreciable protective effect only at high (mM) concentrations. However, concentrations of spermine (4+) within a critical range (0.481 mM) induced pDNA precipitation, an event that was not observed with NAPs-pDNA interaction. We conclude that the interaction of individual PA is ineffective to assure DNA protection, simultaneously preserving the flexibility and charge density of the double strand. Furthermore, data obtained by testing polyamine and ivNAPS with the current radiation-induced DNA damage model support the concept that PA-phosphate aggregates are the only forms through which PA interact with DNA.
Collapse
|
19
|
Takata H, Hanafusa T, Mori T, Shimura M, Iida Y, Ishikawa K, Yoshikawa K, Yoshikawa Y, Maeshima K. Chromatin compaction protects genomic DNA from radiation damage. PLoS One 2013; 8:e75622. [PMID: 24130727 PMCID: PMC3794047 DOI: 10.1371/journal.pone.0075622] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 08/20/2013] [Indexed: 12/02/2022] Open
Abstract
Genomic DNA is organized three-dimensionally in the nucleus, and is thought to form compact chromatin domains. Although chromatin compaction is known to be essential for mitosis, whether it confers other advantages, particularly in interphase cells, remains unknown. Here, we report that chromatin compaction protects genomic DNA from radiation damage. Using a newly developed solid-phase system, we found that the frequency of double-strand breaks (DSBs) in compact chromatin after ionizing irradiation was 5–50-fold lower than in decondensed chromatin. Since radical scavengers inhibited DSB induction in decondensed chromatin, condensed chromatin had a lower level of reactive radical generation after ionizing irradiation. We also found that chromatin compaction protects DNA from attack by chemical agents. Our findings suggest that genomic DNA compaction plays an important role in maintaining genomic integrity.
Collapse
Affiliation(s)
- Hideaki Takata
- Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka, Japan
- Frontier Research Base for Global Young Researchers, Graduate School of Engineering Osaka University, Suita, Osaka, Japan
- * E-mail: (HT); (KM)
| | - Tomo Hanafusa
- Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Toshiaki Mori
- Radiation Research Center, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Mari Shimura
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Yutaka Iida
- Inorganic Analysis Laboratories, Toray Research Center, Inc., Otsu, Shiga, Japan
| | - Kenichi Ishikawa
- Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Inage, Chiba, Japan
| | - Kenichi Yoshikawa
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Yuko Yoshikawa
- Research Organization of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Kazuhiro Maeshima
- Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies (Sokendai), Mishima, Shizuoka, Japan
- * E-mail: (HT); (KM)
| |
Collapse
|
20
|
Sengupta M, Chakraborty A, Raychaudhuri SS. Ionizing radiation induced changes in phenotype, photosynthetic pigments and free polyamine levels in Vigna radiata (L.) Wilczek. Appl Radiat Isot 2013; 75:44-9. [PMID: 23454839 DOI: 10.1016/j.apradiso.2013.01.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 01/30/2013] [Accepted: 01/30/2013] [Indexed: 01/06/2023]
Abstract
Effects of gamma rays on the free polyamine (PA) levels were studied in Vigna radiata (L.) Wilczek. Seeds exposed to different doses of gamma rays were checked for damage on phenotype, germination frequency and alteration in photosynthetic pigments. Free polyamine levels were estimated from seeds irradiated in dry and water imbibed conditions. Polyamine levels of seedlings grown from irradiated seeds, and irradiated seedlings from unexposed seeds were also measured. Damage caused by gamma irradiation resulted in decrease in final germination percentage and seedling height. Photosynthetic pigments decreased in a dose dependent manner as marker of stress. Polyamines decreased in irradiated dry seeds and in seedlings grown from irradiated seeds. Radiation stress induced increase in free polyamines was seen in irradiated imbibed seeds and irradiated seedlings. Response of polyamines towards gamma rays is dependent on the stage of the life cycle of the plant.
Collapse
Affiliation(s)
- Mandar Sengupta
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, APC Road, Kolkata-700009, India
| | | | | |
Collapse
|
21
|
Copp RR, Peebles DD, Soref CM, Fahl WE. Radioprotective efficacy and toxicity of a new family of aminothiol analogs. Int J Radiat Biol 2013; 89:485-92. [PMID: 23369131 DOI: 10.3109/09553002.2013.770579] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE A family of 17 new nucleophilic-polyamine and aminothiol structures was designed and synthesized to identify new topical or systemic radioprotectors with acceptable mammalian toxicity profiles. design elements included: (i) Length and charge of the DNA-interacting, alkylamine backbone, (ii) nucleophilicity of the reactive oxygen species (ROS)-scavenging group, and (iii) non-toxic drug concentration achievable in animal tissues. MATERIALS AND METHODS Mouse maximum tolerated doses (MTD) were determined by increasing intraperitoneal (IP) doses. To assess radioprotective efficacy, mice received IP 0.5 MTD doses prior to an LD95 radiation dose (8.63 Gy), and survival was monitored. Topically applied aminothiol was also scored for prevention of radiation-induced dermatitis (17.3 Gy to skin). RESULTS The most radioprotective aminothiols had 4-6 carbons and 1-2 amines, and unlike amifostine and its analogs, displayed a terminal thiol from an alkyl side chain that projected the thiol away from the DNA major groove into the environment surrounding the DNA. The five carbon, single thiol, alkylamine, PrC-210, conferred 100% survival to an otherwise 100% lethal dose of whole-body radiation and achieved 100% prevention of Grade 2-3 radiation dermatitis. By mass spectrometry analysis, the one aminothiol that was tested formed mixed disulfides with cysteine and glutathione. CONCLUSIONS Multiple, highly radioprotective, aminothiol structures, with acceptable systemic toxicities, were identified.
Collapse
|
22
|
Do TT, Tang VJ, Konigsfeld K, Aguilera JA, Perry CC, Milligan JR. Damage clusters after gamma irradiation of a nanoparticulate plasmid DNA peptide condensate. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2012; 51:43-52. [PMID: 21964719 PMCID: PMC3288216 DOI: 10.1007/s00411-011-0388-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 09/18/2011] [Indexed: 05/31/2023]
Abstract
We have gamma-irradiated plasmid DNA in aqueous solution in the presence of submillimolar concentrations of the ligand tetra-arginine. Depending upon the ionic strength, under these conditions, the plasmid can adopt a highly compacted and aggregated form which attenuates by some two orders of magnitude the yield of damage produced by the indirect effect. The yields of DNA single- and double-strand breaks (SSB and DSB) which result are closely comparable with those produced in living cells. The radical lifetimes, diffusion distances, and track structure are expected to be similarly well reproduced. After irradiation, the aggregation was reversed by adjusting the ionic conditions. The approximate spatial distribution of the resulting DNA damage was then assayed by comparing the increases in the SSB and DSB yields produced by a subsequent incubation with limiting concentrations of the eukaryotic base excision repair enzymes formamidopyrimidine-DNA N-glycosylase (the FPG protein) and endonuclease III. Smaller increases in DSB yields were observed in the plasmid target that was irradiated in the condensed form. By modeling the spatial distribution of DNA damage, this result can be interpreted in terms of a greater extent of damage clustering.
Collapse
Affiliation(s)
- Trinh T. Do
- Department of Radiology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0610
| | - Vicky J. Tang
- Department of Radiology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0610
| | - Katie Konigsfeld
- Department of Radiology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0610
| | - Joe A. Aguilera
- Department of Radiology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0610
| | - Chris C. Perry
- Department of Biochemistry, Mortensen Hall, Loma Linda University 11085 Campus Street, Loma Linda, CA 92350
| | - Jamie R. Milligan
- Department of Radiology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0610
| |
Collapse
|
23
|
Christophersen OA. Radiation protection following nuclear power accidents: a survey of putative mechanisms involved in the radioprotective actions of taurine during and after radiation exposure. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2012; 23:14787. [PMID: 23990836 PMCID: PMC3747764 DOI: 10.3402/mehd.v23i0.14787] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 11/18/2011] [Indexed: 12/28/2022]
Abstract
There are several animal experiments showing that high doses of ionizing radiation lead to strongly enhanced leakage of taurine from damaged cells into the extracellular fluid, followed by enhanced urinary excretion. This radiation-induced taurine depletion can itself have various harmful effects (as will also be the case when taurine depletion is due to other causes, such as alcohol abuse or cancer therapy with cytotoxic drugs), but taurine supplementation has been shown to have radioprotective effects apparently going beyond what might be expected just as a consequence of correcting the harmful consequences of taurine deficiency per se. The mechanisms accounting for the radioprotective effects of taurine are, however, very incompletely understood. In this article an attempt is made to survey various mechanisms that potentially might be involved as parts of the explanation for the overall beneficial effect of high levels of taurine that has been found in experiments with animals or isolated cells exposed to high doses of ionizing radiation. It is proposed that taurine may have radioprotective effects by a combination of several mechanisms: (1) during the exposure to ionizing radiation by functioning as an antioxidant, but perhaps more because it counteracts the prooxidant catalytic effect of iron rather than functioning as an important scavenger of harmful molecules itself, (2) after the ionizing radiation exposure by helping to reduce the intensity of the post-traumatic inflammatory response, and thus reducing the extent of tissue damage that develops because of severe inflammation rather than as a direct effect of the ionizing radiation per se, (3) by functioning as a growth factor helping to enhance the growth rate of leukocytes and leukocyte progenitor cells and perhaps also of other rapidly proliferating cell types, such as enterocyte progenitor cells, which may be important for immunological recovery and perhaps also for rapid repair of various damaged tissues, especially in the intestines, and (4) by functioning as an antifibrogenic agent. A detailed discussion is given of possible mechanisms involved both in the antioxidant effects of taurine, in its anti-inflammatory effects and in its role as a growth factor for leukocytes and nerve cells, which might be closely related to its role as an osmolyte important for cellular volume regulation because of the close connection between cell volume regulation and the regulation of protein synthesis as well as cellular protein degradation. While taurine supplementation alone would be expected to exert a therapeutic effect far better than negligible in patients that have been exposed to high doses of ionizing radiation, it may on theoretical grounds be expected that much better results may be obtained by using taurine as part of a multifactorial treatment strategy, where it may interact synergistically with several other nutrients, hormones or other drugs for optimizing antioxidant protection and minimizing harmful posttraumatic inflammatory reactions, while using other nutrients to optimize DNA and tissue repair processes, and using a combination of good diet, immunostimulatory hormones and perhaps other nontoxic immunostimulants (such as beta-glucans) for optimizing the recovery of antiviral and antibacterial immune functions. Similar multifactorial treatment strategies may presumably be helpful in several other disease situations (including severe infectious diseases and severe asthma) as well as for treatment of acute intoxications or acute injuries (both mechanical ones and severe burns) where severely enhanced oxidative and/or nitrative stress and/or too much secretion of vasodilatory neuropeptides from C-fibres are important parts of the pathogenetic mechanisms that may lead to the death of the patient. Some case histories (with discussion of some of those mechanisms that may have been responsible for the observed therapeutic outcome) are given for illustration of the likely validity of these concepts and their relevance both for treatment of severe infections and non-infectious inflammatory diseases such as asthma and rheumatoid arthritis.
Collapse
|
24
|
Kryston TB, Georgiev AB, Pissis P, Georgakilas AG. Role of oxidative stress and DNA damage in human carcinogenesis. Mutat Res 2011; 711:193-201. [DOI: 10.1016/j.mrfmmm.2010.12.016] [Citation(s) in RCA: 644] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/22/2010] [Accepted: 12/31/2010] [Indexed: 04/08/2023]
|
25
|
Do TT, Tang VJ, Aguilera JA, Perry CC, Milligan JR. Characterization of a Lipophilic Plasmid DNA Condensate Formed with a Cationic Peptide Fatty Acid Conjugate. Biomacromolecules 2011; 12:1731-7. [DOI: 10.1021/bm200127u] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Trinh T. Do
- Department of Radiology, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0610, United States
| | - Vicky J. Tang
- Department of Radiology, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0610, United States
| | - Joe A. Aguilera
- Department of Radiology, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0610, United States
| | - Christopher C. Perry
- Department of Biochemistry, Loma Linda University, 11085 Campus Street, Loma Linda, California 92350, United States
| | - Jamie R. Milligan
- Department of Radiology, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0610, United States
| |
Collapse
|
26
|
Spotheim-Maurizot M, Davídková M. Radiation damage to DNA in DNA-protein complexes. Mutat Res 2011; 711:41-8. [PMID: 21329707 DOI: 10.1016/j.mrfmmm.2011.02.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 01/30/2011] [Accepted: 02/06/2011] [Indexed: 11/19/2022]
Abstract
The most aggressive product of water radiolysis, the hydroxyl (OH) radical, is responsible for the indirect effect of ionizing radiations on DNA in solution and aerobic conditions. According to radiolytic footprinting experiments, the resulting strand breaks and base modifications are inhomogeneously distributed along the DNA molecule irradiated free or bound to ligands (polyamines, thiols, proteins). A Monte-Carlo based model of simulation of the reaction of OH radicals with the macromolecules, called RADACK, allows calculating the relative probability of damage of each nucleotide of DNA irradiated alone or in complexes with proteins. RADACK calculations require the knowledge of the three dimensional structure of DNA and its complexes (determined by X-ray crystallography, NMR spectroscopy or molecular modeling). The confrontation of the calculated values with the results of the radiolytic footprinting experiments together with molecular modeling calculations show that: (1) the extent and location of the lesions are strongly dependent on the structure of DNA, which in turns is modulated by the base sequence and by the binding of proteins and (2) the regions in contact with the protein can be protected against the attack by the hydroxyl radicals via masking of the binding site and by scavenging of the radicals.
Collapse
Affiliation(s)
- M Spotheim-Maurizot
- Centre de Biophysiqe Moléculaire, CNRS, rue C. Sadron, 45071 Orléans, France
| | | |
Collapse
|
27
|
Kikuchi A, Sawamura T, Kawase N, Kitajima Y, Yoshida T, Daimaru O, Nakakita T, Itoh S. Utility of spermidine in PCR amplification of stool samples. Biochem Genet 2010; 48:428-32. [PMID: 20099022 DOI: 10.1007/s10528-009-9326-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Accepted: 11/16/2009] [Indexed: 10/19/2022]
Affiliation(s)
- Arizumi Kikuchi
- Daiyukai Second Medical and Science Research Laboratories, Ichinomiya City, Aichi, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Tsoi M, Do TT, Tang V, Aguilera JA, Perry CC, Milligan JR. Characterization of condensed plasmid DNA models for studying the direct effect of ionizing radiation. Biophys Chem 2010; 147:104-10. [PMID: 20096988 DOI: 10.1016/j.bpc.2009.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 12/19/2009] [Accepted: 12/19/2009] [Indexed: 10/20/2022]
Abstract
We have examined the changes in physical properties of aqueous solutions of the plasmid pUC18 that take place on the addition of the cationic oligopeptide penta-arginine. An increase in sedimentation rate and static light scattering, and changes in the nucleic acid CD spectrum all suggest that this ligand acts to condense the plasmid. Dynamic light scattering suggests the hydrodynamic radii of the condensate particles are a few micrometers, ca. 50-fold larger than that of the monomeric plasmid. Condensation of the plasmid also produces a ca. 100-fold decrease in the strand break yield produced by gamma irradiation. This extensive protection against reactive intermediates in the bulk of the solution implies that condensed plasmid DNA may offer a model system with which to study the direct effect of ionizing radiation (ionization of the DNA itself). The use of peptide ligands as condensing agents in this application is attractive because the derivatives of several amino acids (particularly tryptophan and tyrosine) have been shown to modify the radiation chemistry of DNA extensively.
Collapse
Affiliation(s)
- Mandi Tsoi
- Department of Radiology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0610, USA
| | | | | | | | | | | |
Collapse
|
29
|
Nayvelt I, Hyvönen MT, Alhonen L, Pandya I, Thomas T, Khomutov AR, Vepsäläinen J, Patel R, Keinänen TA, Thomas TJ. DNA Condensation by Chiral α-Methylated Polyamine Analogues and Protection of Cellular DNA from Oxidative Damage. Biomacromolecules 2009; 11:97-105. [DOI: 10.1021/bm900958c] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Irina Nayvelt
- Departments of Medicine, Environmental & Community Medicine and Pathology & Laboratory Medicine and the Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, New Jersey 08903, Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Kuopio, Finland, Laboratory of Chemistry, Department of Biosciences, Biocenter Kuopio, University of Kuopio, Finland,
| | - Mervi T. Hyvönen
- Departments of Medicine, Environmental & Community Medicine and Pathology & Laboratory Medicine and the Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, New Jersey 08903, Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Kuopio, Finland, Laboratory of Chemistry, Department of Biosciences, Biocenter Kuopio, University of Kuopio, Finland,
| | - Leena Alhonen
- Departments of Medicine, Environmental & Community Medicine and Pathology & Laboratory Medicine and the Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, New Jersey 08903, Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Kuopio, Finland, Laboratory of Chemistry, Department of Biosciences, Biocenter Kuopio, University of Kuopio, Finland,
| | - Ipsit Pandya
- Departments of Medicine, Environmental & Community Medicine and Pathology & Laboratory Medicine and the Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, New Jersey 08903, Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Kuopio, Finland, Laboratory of Chemistry, Department of Biosciences, Biocenter Kuopio, University of Kuopio, Finland,
| | - Thresia Thomas
- Departments of Medicine, Environmental & Community Medicine and Pathology & Laboratory Medicine and the Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, New Jersey 08903, Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Kuopio, Finland, Laboratory of Chemistry, Department of Biosciences, Biocenter Kuopio, University of Kuopio, Finland,
| | - Alex R. Khomutov
- Departments of Medicine, Environmental & Community Medicine and Pathology & Laboratory Medicine and the Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, New Jersey 08903, Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Kuopio, Finland, Laboratory of Chemistry, Department of Biosciences, Biocenter Kuopio, University of Kuopio, Finland,
| | - Jouko Vepsäläinen
- Departments of Medicine, Environmental & Community Medicine and Pathology & Laboratory Medicine and the Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, New Jersey 08903, Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Kuopio, Finland, Laboratory of Chemistry, Department of Biosciences, Biocenter Kuopio, University of Kuopio, Finland,
| | - Rajesh Patel
- Departments of Medicine, Environmental & Community Medicine and Pathology & Laboratory Medicine and the Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, New Jersey 08903, Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Kuopio, Finland, Laboratory of Chemistry, Department of Biosciences, Biocenter Kuopio, University of Kuopio, Finland,
| | - Tuomo A. Keinänen
- Departments of Medicine, Environmental & Community Medicine and Pathology & Laboratory Medicine and the Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, New Jersey 08903, Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Kuopio, Finland, Laboratory of Chemistry, Department of Biosciences, Biocenter Kuopio, University of Kuopio, Finland,
| | - T. J. Thomas
- Departments of Medicine, Environmental & Community Medicine and Pathology & Laboratory Medicine and the Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, New Jersey 08903, Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Kuopio, Finland, Laboratory of Chemistry, Department of Biosciences, Biocenter Kuopio, University of Kuopio, Finland,
| |
Collapse
|
30
|
Suzuki M, Crozatier C, Yoshikawa K, Mori T, Yoshikawa Y. Protamine-induced DNA compaction but not aggregation shows effective radioprotection against double-strand breaks. Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.08.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Ly A, Bullick S, Won JH, Milligan JR. Cationic peptides containing tyrosine protect against radiation-induced oxidative DNA damage. Int J Radiat Biol 2009; 82:421-33. [PMID: 16846977 DOI: 10.1080/09553000600771531] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE To examine the effect of the amino acid tyrosine on oxidatively or direct-type damaged DNA damage when it is present in a DNA binding ligand. MATERIALS AND METHODS We made use of tetralysine ligands to ensure binding to DNA and to condense the DNA, and simulated direct-type damage by using gamma irradiation in the presence of thiocyanate ions. These ligands contained an additional C terminal amino acid. Phenylalanine was used as a control for tyrosine. These ligands were used in conjuction with a plasmid substrate to quantify strand break yields. Base damage yields were estimated by measuring the strand break yield after incubation of the plasmid with the bacterial base excision repair enzyme formamidopyrimidine-DNA N-glycosylase (FPG). RESULTS When the condensing ligand contains an additional tyrosine or tryptophan residue, the plasmid is protected against the effects of a single electron oxidation, as assayed by sensitivity to a base excision repair enzyme. This protection is significantly greater in condensed plasmid where the amino acid residues are in close proximity to the DNA, and can be observed even when only a small fraction of the ligand contains tyrosine. CONCLUSIONS Bound tyrosine residues located in close proximity to DNA are capable of reversing oxidative DNA damage far more efficiently than when present unbound in the bulk solution. This suggests that tyrosine residues in DNA binding proteins may participate in the repair of DNA that has been oxidatively damaged by ionizing radiation.
Collapse
Affiliation(s)
- Anne Ly
- Department of Radiology, University of California at San Diego, La Jolla, California 92093-0610, USA.
| | | | | | | |
Collapse
|
32
|
Falletti O, Douki T. Low Glutathione Level Favors Formation of DNA Adducts to 4-Hydroxy-2(E)-nonenal, a Major Lipid Peroxidation Product. Chem Res Toxicol 2008; 21:2097-105. [DOI: 10.1021/tx800169a] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Olivier Falletti
- DSM/INAC/SCIB UMR-E3 CEA/UJF/Laboratoire “Lésions des Acides Nucléiques”, CEA-Grenoble, 17 Avenue des Martyrs, F-38054 Grenoble Cedex 9, France
| | - Thierry Douki
- DSM/INAC/SCIB UMR-E3 CEA/UJF/Laboratoire “Lésions des Acides Nucléiques”, CEA-Grenoble, 17 Avenue des Martyrs, F-38054 Grenoble Cedex 9, France
| |
Collapse
|
33
|
Yoshikawa Y, Mori T, Magome N, Hibino K, Yoshikawa K. DNA compaction plays a key role in radioprotection against double-strand breaks as revealed by single-molecule observation. Chem Phys Lett 2008. [DOI: 10.1016/j.cplett.2008.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
|
35
|
Purkayastha S, Milligan JR, Bernhard WA. Correlation of free radical yields with strand break yields produced in plasmid DNA by the direct effect of ionizing radiation. J Phys Chem B 2007; 109:16967-73. [PMID: 16853159 PMCID: PMC1847790 DOI: 10.1021/jp0518409] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The purpose of this study was to determine how free radical formation (fr) correlates with single strand break (ssb) and double strand break (dsb) formation in DNA exposed to the direct effects of ionizing radiation. Chemical yields have been determined of (i) total radicals trapped on DNA at 4 K, G(Sigmafr), (ii) radicals trapped on the DNA sugar, Gsugar(fr), (iii) prompt single strand breaks, Gprompt(ssb), (iv) total single strand breaks, Gtotal(ssb), and (v) double strand breaks, G(dsb). These measurements make it possible, for the first time, to quantitatively test the premise that free radicals are the primary precursors to strand breaks. G(fr) were measured by EPR applied to films of pEC (10,810 bp) and pUC18 (2686 bp) plasmids hydrated to Gamma = 22 mol of water/nucleotide and X-irradiated at 4 K. Using these same samples warmed to room temperature, strand breaks were measured by gel electrophoresis. The respective values for pEC and pUC18 were G(fr) = 0.71 +/- 0.02 and 0.61 +/- 0.01 micromol/J, Gtotal(ssb) = 0.09 +/- 0.01 and 0.14 +/- 0.01 micromol/J, G(dsb) = 0.010 +/- 0.001 and 0.006 +/- 0.001 micromol/J, and Gtota)(ssb)/G(dsb) approximately 9 and approximately 20. Surprisingly, Gsugar(fr) approximately 0.06 mumol/J for pUC18 films, less than half of Gtotal(ssb). This indicates that a significant fraction of strand breaks are derived from precursors other than trapped DNA radicals. To explain this disparity, various mechanisms were considered, including one that entails two one-electron oxidations of a single deoxyribose carbon.
Collapse
Affiliation(s)
| | | | - William A. Bernhard
- *To whom correspondence should be addressed: 575 Elmwood Ave, Rochester, NY 14642. Fax: (585) 275-6007. Phone: (585) 275-3730. E-mail:
| |
Collapse
|
36
|
Naaman R, Sanche L. Low-Energy Electron Transmission through Thin-Film Molecular and Biomolecular Solids. Chem Rev 2007; 107:1553-79. [PMID: 17439288 DOI: 10.1021/cr040200j] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- R Naaman
- Department of Chemical Physics, Weizmann Institute, Rehovot, Israel 76100
| | | |
Collapse
|
37
|
Rider JE, Hacker A, Mackintosh CA, Pegg AE, Woster PM, Casero RA. Spermine and spermidine mediate protection against oxidative damage caused by hydrogen peroxide. Amino Acids 2007; 33:231-40. [PMID: 17396215 DOI: 10.1007/s00726-007-0513-4] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 02/01/2007] [Indexed: 01/01/2023]
Abstract
The polyamines spermidine and spermine have been hypothesized to possess different functions in the protection of DNA from reactive oxygen species. The growth and survival of mouse fibroblasts unable to synthesize spermine were compared to their normal counterparts in their native and polyamine-depleted states in response to oxidative stress. The results of these studies suggest that when present at normal or supraphysiological concentrations, either spermidine or spermine can protect cells from reactive oxygen species. However, when polyamine pools are pharmacologically manipulated to produce cells with low levels of predominately spermine or spermidine, spermine appears to be more effective. Importantly, when cells are depleted of both glutathione and endogenous polyamines, they exhibit increased sensitivity to hydrogen peroxide as compared to glutathione depletion alone, suggesting that polyamines not only play a role in protecting cells from oxidative stress but this role is distinct from that played by glutathione.
Collapse
Affiliation(s)
- J E Rider
- Department of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
38
|
Hildmann C, Riester D, Schwienhorst A. Histone deacetylases—an important class of cellular regulators with a variety of functions. Appl Microbiol Biotechnol 2007; 75:487-97. [PMID: 17377789 DOI: 10.1007/s00253-007-0911-2] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 02/26/2007] [Accepted: 02/26/2007] [Indexed: 12/25/2022]
Abstract
The elucidation of mechanisms of chromatin remodeling, particular transcriptional activation, and repression by histone acetylation and deacetylation has shed light on the role of histone deacetylases (HDAC) as a new kind of therapeutic target for human cancer treatment. HDACs, in general, act as components of large corepressor complexes that prevent the transcription of several tumor suppression genes. In addition, they appear to be also involved in the deacetylation of nonhistone proteins. This paper reviews the most recent insights into the diverse biological roles of HDACs as well as the evolution of this important protein family.
Collapse
Affiliation(s)
- Christian Hildmann
- Department of Molecular Genetics and Preparative Molecular Biology, Institute for Microbiology and Genetics, Grisebachstr. 8, 37077, Göttingen, Germany
| | | | | |
Collapse
|
39
|
Kim JS, Lee J, Chung HW, Choi H, Paik SG, Kim IG. Methylglyoxal-bis(guanylhydrazone), a polyamine analogue, sensitized γ-radiation-induced cell death in HL-60 leukemia cells Sensitizing effect of MGBG on γ-radiation-induced cell death. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2006; 22:160-166. [PMID: 21783704 DOI: 10.1016/j.etap.2006.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 02/14/2006] [Indexed: 05/31/2023]
Abstract
Methylglyoxal-bis(guanylhydrazone) (MGBG), a polyamine analogue, has been known to inhibit the biosynthesis of polyamines, which are important in cell proliferation. We showed that MGBG treatment significantly affected γ-radiation-induced cell cycle transition (G(1)/G(0)→S→G(2)/M) and thus γ-radiation-induced cell death. As determined by micronuclei and comet assay, we showed that it sensitized the cytotoxic effect induced by γ-radiation. One of the reasons is that polyamine depletion by MGBG treatment did not effectively protect against the chemical (OH) or physical damage to DNA caused by γ-radiation. Through in vitro experiment, we confirmed that DNA strand breaks induced by γ-radiation was prevented more effectively in the presence of polyamines (spermine and spermidine) than in the absence of polyamines. MGBG also blocks the cell cycle transition caused by γ-radiation (G(2) arrest), which helps protect cells by allowing time for DNA repair before entry into mitosis or apoptosis, via the down regulation of cyclin D1, which mediates the transition from G(1) to S phase of cell cycle, and ataxia telangiectasia mutated, which is involved in the DNA sensing, repair and cell cycle check point. Therefore, the abrogation of G(2) arrest sensitizes cells to the effect of γ-radiation. As a result, γ-radiation-induced cell death increased by about 2.5-3.0-fold in cells treated with MGBG. However, exogenous spermidine supplement partially relieved this γ-radiation-induced cytotoxicity and cell death. These findings suggest a potentially therapeutic strategy for increasing the cytotoxic efficacy of γ-radiation.
Collapse
Affiliation(s)
- Jin Sik Kim
- Department of Radiation Biology, Environment Radiation Research Group, Korea Atomic Energy Research Institute, P.O. Box 105, Yusong, Daejon 305-600, Republic of Korea
| | | | | | | | | | | |
Collapse
|
40
|
Roginskaya M, Bernhard WA, Razskazovskiy Y. Protection of DNA against direct radiation damage by complex formation with positively charged polypeptides. Radiat Res 2006; 166:9-18. [PMID: 16808625 PMCID: PMC1847791 DOI: 10.1667/rr3571.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radioprotection of DNA from direct-type radiation damage by histones has been studied in model systems using complexes of positively charged polypeptides (PCPs) with DNA. PCPs bind to DNA via ionic interactions mimicking the mode of DNA-histone binding. Direct radiation damage to DNA in films of DNA-PCP complexes was quantified as unaltered base release, which correlates closely with DNA strand breaks. All types of PCPs tested protected DNA from radiation, with the maximum radioprotection being approximately 2.5-fold compared with non-complexed DNA. Conformational changes of the DNA induced by PCPs or repair of free radical damage on the DNA sugar moiety by PCPs are considered the most feasible mechanisms of radioprotection of DNA. The degree of radioprotection of DNA by polylysine (PL) increased dramatically on going from pure DNA to a molar ratio of PL monomer:DNA nucleotide approximately 1:2, while a further increase in the PL:DNA ratio did not offer more radioprotection. This concentration dependence is in agreement with the model of PCP binding to DNA that assumes preferential binding of positively charged side groups to DNA phosphates in the minor groove, so that the maximum occupancy of all minor-groove PCP binding sites is at a molar ratio of PCP:DNA = 1:2.
Collapse
Affiliation(s)
- Marina Roginskaya
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642
| | - William A. Bernhard
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642
- Address for correspondence: Department of Biochemistry and Biophysics, University of Rochester Medical Center Box 712, 575 Elmwood Ave. Rochester, NY 14642; e-mail:
| | - Yuriy Razskazovskiy
- Department of Physics, East Tennessee State University, Johnson City, Tennessee 37614
| |
Collapse
|
41
|
Douki T, Ravanat JL, Pouget JP, Testard I, Cadet J. Minor contribution of direct ionization to DNA base damage inducedby heavy ions. Int J Radiat Biol 2006; 82:119-27. [PMID: 16546910 DOI: 10.1080/09553000600573788] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE The deleterious processes triggered by heavy ions on DNA were studied through the determination of the yield of a series of oxidized bases. Emphasis was placed on the estimation of the respective contribution of direct ionization and indirect effects, mostly by comparison with low linear energy transfer (LET) gamma-rays. MATERIAL AND METHODS DNA samples and human monocytes were exposed either to gamma-rays emitted by a (60)Co source or to (12)C(6+) or (36)Ar(18+) ions. The levels of thymidine and 2'-deoxyguanosine oxidation products were determined by liquid chromatography coupled to tandem mass spectrometry subsequently to DNA digestion into nucleosides. RESULTS The yields of thymidine lesions were similar to those of 8-oxo-7,8-dihydro-2'-deoxyguanosine within isolated DNA exposed either to gamma-rays or argon ions. Addition of spermine and Tris aimed at minimizing the indirect effect modified this ratio to the same extent with both types of radiation. In cells, the level of radiation-induced base damage was found to be correlated with the radiolytic yield of degrees OH that depends on the LET of the particle. In addition, radiation-induced thymidine and 2'-deoxyguanosine lesions were produced in similar amounts. In contrast, oxidation of 2'-deoxyguanosine was the main process when ionization was triggered in cellular DNA by ultraviolet laser-induced biphotonic processes. CONCLUSIONS Predominant oxidation of 2'-deoxyguanosine is expected to be the hallmark of direct DNA ionization. The observation that thymidine and 2'-deoxyguanosine are equally damaged rules out a major contribution of the direct ionization in radiation-induced base damage to both isolated and cellular DNA by heavy ions. Dependence of the yield of lesions on the LET provides further support for this conclusion.
Collapse
Affiliation(s)
- Thierry Douki
- Laboratoire 'Lésions des Acides Nucléiques', Service de Chimie Inorganique et Biologique UMR-E 3 CEA-UJF, CEA/DSM/Département de Recherche Fondamentale sur la Matière Condensée, CEA-Grenoble, Grenoble, France.
| | | | | | | | | |
Collapse
|
42
|
Evans SE, Mon S, Singh R, Ryzhkov LR, Szalai VA. DNA Oxidation in Anionic Reverse Micelles: Ruthenium-Mediated Damage at Guanine in Single- and Double-Stranded DNA. Inorg Chem 2006; 45:3124-32. [PMID: 16562969 DOI: 10.1021/ic0521022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One-electron guanine oxidation in DNA has been investigated in anionic reverse micelles (RMs). A photochemical method for generating Ru3+ from the ruthenium polypyridyl complex tris(2-2'-bipyridine)ruthenium(II) chloride ([Ru(bpy)3]Cl2) is combined with high-resolution polyacrylamide gel electrophoresis (PAGE) to quantify piperidine-labile guanine oxidation products. As characterized by emission spectroscopy of Ru(bpy)3(2+), the addition of DNA to RMs containing Ru(bpy)3(2+) does not perturb the environment of Ru(bpy)3(2+). The steady-state quenching efficiency of Ru(bpy)3(2+) with K3[Fe(CN)6] in buffer solution is approximately 2-fold higher than that observed in RMs. Consistent with the difference in quenching efficiency in the two media, a 1.5-fold higher yield of piperidine-labile damage products as monitored by PAGE is observed for duplex oligonucleotide in buffer vs RMs. In contrast, a 13-fold difference in the yield of PAGE-detected G oxidation products is observed when single-stranded DNA is the substrate. Circular dichroism spectra showed that single-stranded DNA undergoes a structural change in anionic RMs. This structural change is potentially due to cation-mediated adsorption of the DNA phosphates on the anionic headgroups of the RMs, leading to protection of the guanine from oxidatively generated damage.
Collapse
Affiliation(s)
- Sarah E Evans
- Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| | | | | | | | | |
Collapse
|
43
|
Abstract
Nuclear aggregates of polyamines (NAPs) are cyclic supramolecular compounds made of polyamines and phosphate groups. Three different aggregates, s-NAP, m-NAP and l-NAP, with a molecular weight of 1035, 5175 and 9552 Da, respectively, are described. These molecules interact with genomic DNA. In consequence of this interaction, NAPs not only protect DNA from nucleases with extraordinarily greater efficiency than single polyamines (spermine, spermidine and putrescine), but also induce noticeable changes in DNA condensation status, as shown by temperature-dependent modifications of DNA electrophoretic properties. The biochemical characterization of these compounds has allowed the definition of a structural model for each NAP. According to this model, five s-NAPs assemble together to form a m-NAP unit. We hypothesize that the complexation of s-NAP into m-NAP favours the transition to Z-DNA through the progressive widening of DNA strands and the exposure of bases. We propose that NAPs, by wrapping the DNA helixes, form supramolecular tunnel-like structures that confer efficient protection without affecting DNA elasticity.
Collapse
Affiliation(s)
- Luciano D'Agostino
- Department of Clinical and Experimental Medicine, "Federico II" University of Naples, Italy.
| | | | | |
Collapse
|
44
|
Abstract
The natural polyamines putrescine, spermidine and spermine are in multiple ways involved in cell growth and the maintenance of cell viability. In the course of the last 15 years more and more evidence hinted also at roles in gene regulation. It is therefore not surprising that the polyamines are involved in events inherent to genetically programmed cell death. Following inhibition of ornithine decarboxylase, a key step in polyamine biosynthesis, numerous links have been identified between the polyamines and apoptotic pathways. Examples of activation and prevention of apoptosis due to polyamine depletion are known for several cell lines. Elevation of polyamine concentrations may lead to apoptosis or to malignant transformation. These observations are discussed in the present review, together with possible mechanisms of action of the polyamines. Contradictory results and incomplete information blur the picture and complicate interpretation. Since, however, much interest is focussed at present on all aspects of programmed cell death, a considerable progress in the elucidation of polyamine functions in apoptotic signalling pathways is expected, even though enormous difficulties oppose pinpointing specific interactions of the polyamines with pro- and anti-apoptotic factors. Such situation is quite common in polyamine research.
Collapse
Affiliation(s)
- Nikolaus Seiler
- Laboratory of Nutritional Cancer Prevention, Institut de Recherche Contre les Cancers de l'Appareil Digestif (IRCAD), Strasbourg Cedex, 67091, France.
| | | |
Collapse
|
45
|
D'Agostino L, di Pietro M, Di Luccia A. Nuclear aggregates of polyamines are supramolecular structures that play a crucial role in genomic DNA protection and conformation. FEBS J 2005; 272:3777-87. [PMID: 16045750 DOI: 10.1111/j.1742-4658.2005.04782.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In a previous study we showed that natural polyamines interact in the nuclear environment with phosphate groups to form molecular aggregates [nuclear aggregates of polyamines (NAPs)] with estimated molecular mass values of 8000, 4800 and 1000 Da. NAPs were found to interact with genomic DNA, influence its conformation and interfere with the action of nucleases. In the present work, we demonstrated that NAPs protect naked genomic DNA from DNase I, whereas natural polyamines (spermine, spermidine and putrescine) fail to do so. In the context of DNA protection, NAPs induced noticeable changes in DNA conformation, which were revealed by temperature-dependent modifications of DNA electrophoretic properties. In addition, we presented, for NAPs, a structural model of polyamine aggregation into macropolycyclic compounds. We believe that NAPs are the sole biological forms by which polyamines efficiently protect genomic DNA against DNase I, while maintaining its dynamic structure.
Collapse
Affiliation(s)
- Luciano D'Agostino
- Department of Clinical and Experimental Medicine, Federico II University of Naples, Italy.
| | | | | |
Collapse
|
46
|
Abstract
PURPOSE To define ionic conditions under which oligolysines condense DNA as assayed by radioprotection of a plasmid substrate. And to compare these conditions with those required by the well-characterized ligands spermidine and hexammine cobalt (III). This will enable a reversible compaction model for plasmid DNA to be devised that models more closely mammalian chromatin than those based on polyamines. MATERIALS AND METHODS Aqueous solutions containing plasmid DNA, sodium perchlorate and one of the five ligands trilysine, tetralysine, pentalysine, spermidine, or hexammine cobalt (III) were subjected to gamma-irradiation. The yields of the resulting single-strand breaks were quantified by gel electrophoresis. The effects of tetralysine and pentalysine were also examined by light scattering. RESULTS The combination of low concentrations of the ligand and high concentrations of sodium perchlorate produced a relatively high yield of single-strand breaks. In contrast, the combination of high concentrations of the ligand and low concentrations of sodium perchlorate resulted in an approximately 25-fold lower single-strand break yield. The transition between these two break yields took place over very narrow concentration ranges of the ligand. A large change in light scattering occurred at the same concentration. The radioprotective ability of the ligands decreased in the order pentalysine > tetralysine > hexammine cobalt (III) > spermidine > trilysine. CONCLUSIONS The effect of the oligolysines is qualitatively very similar to the previously reported radioprotection produced under similar conditions by the polyamines spermidine and spermine. It is caused by condensation of the DNA into a highly compacted form. As peptides, oligolysines are structurally more closely related than other ligands to naturally occurring DNA condensing agents such as histone proteins. Therefore, they may form the basis of a model system suitable for studying DNA damage produced by the direct effect of ionizing radiation (ionization of the DNA itself).
Collapse
Affiliation(s)
- G L Newton
- Department of Chemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0610, USA
| | | | | | | | | |
Collapse
|
47
|
Abstract
Many of the mutagenic or lethal effects of ionization radiation can be attributed to damage caused to the DNA by low-energy electrons. To gain insight on the parameters affecting this process, we measured the low-energy electron (<2 eV) transmission yield through self-assembled monolayers of short DNA oligomers. The electrons that are not transmitted are captured by the layer. Hence, the transmission reflects the capturing efficiency of the electrons by the layer. The dependence of the capturing probability on the base sequence was studied, as was the state of the captured electrons. It is found that the capturing probability scales with the number of G bases in the single-stranded oligomers and depends on their clustering level. Using two-photon photoelectron spectroscopy, we find that, once captured, the electrons do not reside on the bases. Rather, the state of the captured electrons is insensitive to the sequence of the oligomer. Double-stranded DNA does not capture electrons as efficiently as single-stranded oligomers; however, once captured, the electrons are bound more strongly than to the single strands.
Collapse
Affiliation(s)
- S G Ray
- Department of Chemical Physics and Chemical Research Support, Weizmann Institute, Rehovot 76100, Israel
| | | | | |
Collapse
|
48
|
Reiter RJ, Tan DX, Herman TS, Thomas CR. Melatonin as a radioprotective agent: a review. Int J Radiat Oncol Biol Phys 2004; 59:639-53. [PMID: 15183467 DOI: 10.1016/j.ijrobp.2004.02.006] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Revised: 01/14/2004] [Accepted: 02/06/2004] [Indexed: 11/23/2022]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine), the chief secretory product of the pineal gland in the brain, is well known for its functional versatility. In hundreds of investigations, melatonin has been documented as a direct free radical scavenger and an indirect antioxidant, as well as an important immunomodulatory agent. The radical scavenging ability of melatonin is believed to work via electron donation to detoxify a variety of reactive oxygen and nitrogen species, including the highly toxic hydroxyl radical. It has long been recognized that the damaging effects of ionizing radiation are brought about by both direct and indirect mechanisms. The direct action produces disruption of sensitive molecules in the cells, whereas the indirect effects ( approximately 70%) result from its interaction with water molecules, which results in the production of highly reactive free radicals such as *OH, *H, and e(aq)- and their subsequent action on subcellular structures. The hydroxyl radical scavenging ability of melatonin was used as a rationale to determine its radioprotective efficiency. Indeed, the results from many in vitro and in vivo investigations have confirmed that melatonin protects mammalian cells from the toxic effects of ionizing radiation. Furthermore, several clinical reports indicate that melatonin administration, either alone or in combination with traditional radiotherapy, results in a favorable efficacy:toxicity ratio during the treatment of human cancers. This article reviews the literature from laboratory investigations that document the ability of melatonin to scavenge a variety of free radicals (including the hydroxyl radical induced by ionizing radiation) and summarizes the evidence that should be used to design larger translational research-based clinical trials using melatonin as a radioprotector and also in cancer radiotherapy. The potential use of melatonin for protecting individuals from radiation terrorism is also considered.
Collapse
|
49
|
Rajagopalan R, Wani K, Huilgol NG, Kagiya TV, Nair CKK. Inhibition of gamma-radiation induced DNA damage in plasmid pBR322 by TMG, a water-soluble derivative of vitamin E. JOURNAL OF RADIATION RESEARCH 2002; 43:153-159. [PMID: 12238329 DOI: 10.1269/jrr.43.153] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Alpha-tocopherol monoglucoside (TMG), a water-soluble derivative of alpha-tocopherol, has been examined for its ability to protect DNA against radiation-induced strand breaks. Gamma radiation, up to a dose of 6 Gy (dose rate, 0.7 Gy/minute), induced a dose-dependent increase in single strand breaks (SSBs) in plasmid pBR322 DNA. TMG inhibited the formation of gamma-radiation induced DNA single strand breaks (SSBs) in a concentration-dependent manner; 500 microM of TMG protected the single strand breaks completely. It also protected thymine glycol formation induced by gamma-radiation in a dose-dependent manner, based on an estimation of thymine glycol by HPLC.
Collapse
Affiliation(s)
- Rema Rajagopalan
- Radiation Biology Division, Bhabha Atomic Research Centre, Mumbai 400 085
| | | | | | | | | |
Collapse
|
50
|
Douki T, Angelov D, Cadet J. UV laser photolysis of DNA: effect of duplex stability on charge-transfer efficiency. J Am Chem Soc 2001; 123:11360-6. [PMID: 11707110 DOI: 10.1021/ja016426a] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The distribution of the final base damage was determined within isolated DNA exposed to pulses of 266 nm laser light. Studied lesions included oxidation products arising from biphotonic ionization of DNA bases and pyrimidine dimeric photoproducts arising from monophotonic processes. The distribution of the latter class of damage was found to be correlated with the stability of the DNA duplex. The quantum yield for formation of 8-oxo-7,8-dihydroguanine was much higher than that of other oxidized nucleosides arising from the degradation of thymine and adenine. This observation, together with the shape of the intensity dependence curves, provided evidence for the occurrence of charge-transfer processes within DNA. In addition, increase in the ionic strength of the irradiated DNA and stabilization of the DNA duplex were found to induce a drastic decrease in the yield of thymine and adenine oxidation products. Concurrently, an increase in the yield of 8-oxo-7,8-dihydroguanine was observed. This was rationalized in terms of an increase in the overall charge-transfer efficiency. Therefore, it may be concluded that stabilization of the double-helix favors charge-transfer process toward guanine bases.
Collapse
Affiliation(s)
- T Douki
- DRFMC/Service de Chimie Inorganique et Biologique UMR 5046; Laboratoire des Lésions des Acides Nucléiques; CEA/Grenoble, 17, rue des Martyrs, F-38054 Grenoble Cedex 9, France
| | | | | |
Collapse
|