1
|
Gao X, Wang X, Zheng X, Zhao Y, Wang N, Chang S, Yang L. Chemical Pollutant Exposure in Neurodevelopmental Disorders: Integrating Toxicogenomic and Transcriptomic Evidence to Elucidate Shared Biological Mechanisms and Developmental Signatures. TOXICS 2025; 13:282. [PMID: 40278598 PMCID: PMC12031255 DOI: 10.3390/toxics13040282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/19/2025] [Accepted: 03/27/2025] [Indexed: 04/26/2025]
Abstract
Rapid industrialization has introduced a range of chemicals into the environment, posing significant risks to fetal and child brain development. Using the Comparative Toxicogenomics Database (CTD), we constructed chemical exposome frameworks for seven neurodevelopmental disorders (NDDs) and identified chemical pollutants of epidemiological concern, including air pollutants (n = 8), toxic elements (n = 14), pesticides and related compounds (n = 18), synthetic organic chemicals (n = 16), and solvents (n = 5). Gene set enrichment analysis validated and revealed significant toxicogenomic associations between these chemical pollutants and NDDs, including autism spectrum disorder (ASD) (12 pollutants, proportional reporting ratio (PRR) 3.56-7.21) and intellectual disability (ID) (9 pollutants, PRR 3.13-5.59). Functional annotation of pollutant-specific gene sets highlighted shared biological processes, such as metabolic processes (e.g., xenobiotic metabolic process, xenobiotic catabolic process, and cytochrome P450 pathway) for ASD and cognitive processes (e.g., cognition, social behavior, and synapse assembly) for ID (Bonferroni-corrected p-values < 0.05). Time trajectory analysis of developmental transcriptomic data from the BrainSpan database for ASD (275 genes) and ID (93 genes) revealed three distinct expression patterns of chemical-pollutant-associated genes-higher prenatal, postnatal, and perinatal expression-indicating common and divergent underlying mechanisms across critical windows of chemical pollutant exposure.
Collapse
Affiliation(s)
- Xuping Gao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), No. 51 HuayuanBei Road, Beijing 100191, China; (X.G.)
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Road West, Guangzhou 510632, China
| | - Xinyue Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), No. 51 HuayuanBei Road, Beijing 100191, China; (X.G.)
| | - Xiangyu Zheng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), No. 51 HuayuanBei Road, Beijing 100191, China; (X.G.)
| | - Yilu Zhao
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, No. 305 Tianmushan Street, Hangzhou 310007, China
| | - Ning Wang
- Department of Clinical Psychology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Beijing 100029, China
| | - Suhua Chang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), No. 51 HuayuanBei Road, Beijing 100191, China; (X.G.)
| | - Li Yang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), No. 51 HuayuanBei Road, Beijing 100191, China; (X.G.)
| |
Collapse
|
2
|
Luque-García L, García-Baquero G, Lertxundi A, Al-Delaimy WK, Yang TC, Delgado-Saborit JM, Guxens M, McEachan RRC, Vrijheid M, Estarlich M, Nieuwenhuijsen M, Ibarluzea J. Exposure to different types of residential greenness during pregnancy and early childhood and attention-deficit/hyperactivity disorder diagnosis: A nested case-control study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178907. [PMID: 39999706 DOI: 10.1016/j.scitotenv.2025.178907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND Epidemiological studies suggest that exposure to greenness may protect children attention-deficit/hyperactivity disorder (ADHD) diagnosis. However, evidence to date is limited while no previous research has independently investigated exposure to prenatal greenness. OBJECTIVE We conducted a nested case-control study with data from Born in Bradford (BiB) and INfancia y Medio Ambiente (INMA) birth cohorts to investigate the association between exposure to various types of residential greenness and ADHD diagnosis, considering both pregnancy and early childhood exposure periods independently. PM2.5 was tested as a potential mediator of the association. METHODS Children with ADHD were identified based on a confirmed medical diagnosis. Pregnancy and early childhood exposure to residential greenness were estimated through Normalized Difference Vegetation Index (NDVI) within 300-m, urban green space and natural green space percentages within 300-m, and the linear distance to the closest green space in meters. We performed a conditional logistic regression to analyze the association between the included greenness metrics and ADHD. RESULTS We found no statistically significant associations between any of the pregnancy and early childhood greenness metrics and ADHD diagnosis in the BiB cohort. Further analysis on the INMA cohort found that higher urban green space percentage slightly increased the risk of ADHD diagnosis during both pregnancy (total effects: OR 1.04, 95 % CI 1.01 to 1.07, p = 0.012; direct effects: OR 1.06, 95 % CI 1.03 to 1.10, p < 0.001) and early childhood (total effects: OR 1.03, 95 % CI 1.00 to 1.07, p = 0.042; direct effects: OR 1.04, 95 % CI 1.00 to 1.07, p = 0.033). However, these associations were not supported by the sensitivity analyses. CONCLUSIONS This study found both null and inconsistent associations between the included greenness metrics and ADHD. Further research is warranted to elucidate the potential role of exposure to different types of greenness in ADHD diagnosis.
Collapse
Affiliation(s)
- Leire Luque-García
- Department of Preventive Medicine and Public Health, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; Biogipuzkoa Health Research Institute, Environmental Epidemiology and Child Development Group, Paseo Doctor Begiristain s/n, 20014 Donostia- San Sebastian, Spain; Osakidetza Basque Health Service, Goierri Alto-Urola Integrated Health Organisation, Zumarraga Hospital, 20700 Zumarraga, Spain.
| | - Gonzalo García-Baquero
- Biogipuzkoa Health Research Institute, Environmental Epidemiology and Child Development Group, Paseo Doctor Begiristain s/n, 20014 Donostia- San Sebastian, Spain; CEADIR. Faculty of Biology, University of Salamanca, Avda Licenciado Méndez Nieto s/n, 37007 Salamanca, Spain.
| | - Aitana Lertxundi
- Department of Preventive Medicine and Public Health, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; Biogipuzkoa Health Research Institute, Environmental Epidemiology and Child Development Group, Paseo Doctor Begiristain s/n, 20014 Donostia- San Sebastian, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | - Wael K Al-Delaimy
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, California, United States.
| | - Tiffany C Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom.
| | - Juana Maria Delgado-Saborit
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, 46020 Valencia, Spain; Department of Medicine, School of Health Sciences, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain.
| | - Mònica Guxens
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, 28029 Madrid, Spain; ISGlobal, 08003 Barcelona, Spain; Universitat Pompeu Fabra, Plaça de la Mercè 12, 08002 Barcelona, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands.
| | - Rosemary R C McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom.
| | - Martine Vrijheid
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, 28029 Madrid, Spain; ISGlobal, 08003 Barcelona, Spain; Universitat Pompeu Fabra, Plaça de la Mercè 12, 08002 Barcelona, Spain.
| | - Marisa Estarlich
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, 28029 Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, 46020 Valencia, Spain; Nursing and Chiropody Faculty of Valencia University, Avenida Menéndez Pelayo, 19, 46010 Valencia, Spain.
| | - Mark Nieuwenhuijsen
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, 28029 Madrid, Spain; ISGlobal, 08003 Barcelona, Spain; Universitat Pompeu Fabra, Plaça de la Mercè 12, 08002 Barcelona, Spain.
| | - Jesús Ibarluzea
- Biogipuzkoa Health Research Institute, Environmental Epidemiology and Child Development Group, Paseo Doctor Begiristain s/n, 20014 Donostia- San Sebastian, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, 28029 Madrid, Spain; Faculty of Psychology, University of the Basque Country UPV/EHU, Avenida Tolosa 70, 20018 Donostia-San Sebastián, Spain.
| |
Collapse
|
3
|
Mazahir FA, Shukla A, Albastaki NA. The association of particulate matter PM 2.5 and nitrogen oxides from ambient air pollution and mental health of children and young adults- a systematic review. REVIEWS ON ENVIRONMENTAL HEALTH 2025:reveh-2024-0120. [PMID: 40074563 DOI: 10.1515/reveh-2024-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/06/2025] [Indexed: 03/14/2025]
Abstract
INTRODUCTION The developing brain, especially vulnerable during neuroplastic phases, is influenced by environmental and genetic factors. Understanding the impacts of air pollution on children's and young adults' mental health is an emerging research field. CONTENT This review systematically examines the adverse associations of ambient air pollutants on mental health. A database search using Scopus, EMBASE, Global Health, and PsycINFO included articles from 2013 onwards, following PRISMA guidelines. Of the 787 identified articles, 62 met the inclusion criteria. Quality was assessed using the EPHPP tool, and Best Evidence Synthesis (BES) evaluated the findings. SUMMARY The review found 36 associations between ambient air pollutants and adverse mental health outcomes across seven life-course exposure periods. Strong evidence linked early-life PM2.5 and NO2 exposures to Autism Spectrum Disorder (ASD) and childhood exposures to Attention Deficit Hyperactivity Disorder (ADHD). Significant, though inconsistent, associations were found between air pollutants and cognitive impairments, anxiety, depression, self-harm, and other behavioral problems. The heterogeneity of exposure limits and lack of experimental studies hinder causal assessment. OUTLOOK Compelling evidence links early-life and childhood exposure to PM2.5 and NO2 with ASD and ADHD. These findings highlight the need for public health policy changes and further research to explore these associations comprehensively.
Collapse
Affiliation(s)
- Fatima A Mazahir
- Pediatric Department, Al Jalila Children's Specialty Hospital, Dubai Academic Health Corporation (Dubai Health), Dubai, United Arab Emirates
| | - Ankita Shukla
- University of Sharjah, Sharjah, United Arab Emirates
| | - Najwa A Albastaki
- Public Health Department- Dubai Health Authority, Dubai, United Arab Emirates
| |
Collapse
|
4
|
Lane M, Oyster E, Luo Y, Wang H. The Effects of Air Pollution on Neurological Diseases: A Narrative Review on Causes and Mechanisms. TOXICS 2025; 13:207. [PMID: 40137534 PMCID: PMC11946816 DOI: 10.3390/toxics13030207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025]
Abstract
Air pollution has well-documented adverse effects on human health; however, its impact on neurological diseases remains underrecognized. The mechanisms by which various components of air pollutants contribute to neurological disorders are not yet fully understood. This review focuses on key air pollutants, including particulate matter (PM2.5 and PM10), nitrogen dioxide (NO2), ozone (O3), carbon monoxide (CO), and diesel exhaust particles (DEPs). This paper summarizes key findings on the effects of air pollution on neurological disorders, including autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), Alzheimer's disease (AD), and Parkinson's disease (PD). Although the precise biological mechanisms remain to be fully elucidated, evidence suggests that multiple pathways are involved, including blood-brain barrier disruption, oxidative stress, inflammation, and the activation of microglia and astrocytes. This review underscores the role of environmental pollutants as significant risk factors for various neurological diseases and explores their mechanisms of action. By advancing our understanding of these interactions, this work aims to inform new insights for mitigating the adverse effects of air pollution on neurological diseases, ultimately contributing to the establishment of a cleaner and healthier environment for future generations.
Collapse
Affiliation(s)
| | | | - Yali Luo
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (M.L.); (E.O.)
| | - Hao Wang
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (M.L.); (E.O.)
| |
Collapse
|
5
|
Luque-García L, García-Baquero G, Lertxundi A, Al-Delaimy WK, Julvez J, Estarlich M, De Castro M, Guxens M, Lozano M, Subiza-Pérez M, Ibarluzea J. Exploring the pathways linking prenatal and early childhood greenness exposure to attention-deficit/hyperactivity disorder symptoms during childhood: An approach based on robust causal inference. Int J Hyg Environ Health 2025; 263:114475. [PMID: 39366079 DOI: 10.1016/j.ijheh.2024.114475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Epidemiological studies suggest that exposure to greenness during childhood may protect children from developing attention-deficit hyperactivity disorder (ADHD). OBJECTIVE We analyzed the effect of both prenatal (pregnancy) and early childhood (4-5-year follow-up) residential greenness exposure and green space availability on ADHD symptoms during childhood (up to the age of 12 years) and further explored the potential mediating role of PM2.5 and physical activity in the association. METHODS The study population included participants from the INfancia y Medio Ambiente (INMA) prospective birth cohort (Gipuzkoa, Sabadell, and Valencia). Average Normalized Difference Vegetation Index (NDVI) in buffers of 100-, 300- and 500-m around the residential addresses was used as an indicator of greenness, while green space availability was determined based on the presence of a major green space within 150-m from the residence. Childhood ADHD symptoms were assessed at the 6-8- and 10-12-year follow-ups using Conners Parents Rating Scale-Revised: Short Form. RESULTS Although no association was found for the prenatal exposure period, increased early childhood NDVI inversely associated with the OR of clinically significant ADHD symptoms during the 6-8-year follow-up at the 100-m (OR 0.03, 95% CI: 0.003 to 0.44), 300-m (OR 0.04, 95% CI: 0.003 to 0.42) and 500-m (OR 0.08, 95% CI: 0.01 to 0.76) buffers, but exclusively in the context of direct effects. Additionally, the 10-12-year follow-up analysis found moderate to weak evidence of potential total and direct effects of NDVI at both 100- and 300-m buffers on inattention scores, as well as for NDVI at the 300-m buffer on ADHD index scores. The analysis did not reveal evidence of mediation through PM2.5 or physical activity. CONCLUSIONS The evidence suggests that early childhood greenness exposure may reduce the risk of developing ADHD symptoms later in childhood, and that this association is not mediated through PM2.5 and physical activity.
Collapse
Affiliation(s)
- Leire Luque-García
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain; Biogipuzkoa Health Research Institute, Environmental Epidemiology and Child Development Group, Paseo Doctor Begiristain s/n, 20014, San Sebastián, Spain; Osakidetza Basque Health Service, Goierri Alto-Urola Integrated Health Organisation, Zumarraga Hospital, 20700, Zumarraga, Spain.
| | - Gonzalo García-Baquero
- Biogipuzkoa Health Research Institute, Environmental Epidemiology and Child Development Group, Paseo Doctor Begiristain s/n, 20014, San Sebastián, Spain; CEADIR. Faculty of Biology, University of Salamanca, Avda Licenciado Méndez Nieto s/n, 37007, Salamanca, Spain.
| | - Aitana Lertxundi
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain; Biogipuzkoa Health Research Institute, Environmental Epidemiology and Child Development Group, Paseo Doctor Begiristain s/n, 20014, San Sebastián, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029, Madrid, Spain.
| | - Wael K Al-Delaimy
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, United States.
| | - Jordi Julvez
- ISGlobal, 08003, Barcelona, Spain; Clinical and Epidemiological Neuroscience Group (NeuroÈpia), Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204, Reus, Spain.
| | - Marisa Estarlich
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029, Madrid, Spain; Nursing and Chiropody Faculty of Valencia University, Avenida Menéndez Pelayo, 19, 46010, Valencia, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, 46020, Valencia, Spain.
| | - Montserrat De Castro
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029, Madrid, Spain; ISGlobal, 08003, Barcelona, Spain; Universitat Pompeu Fabra, Plaça de la Mercè, 12, 08002, Barcelona, Spain.
| | - Mònica Guxens
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029, Madrid, Spain; ISGlobal, 08003, Barcelona, Spain; Universitat Pompeu Fabra, Plaça de la Mercè, 12, 08002, Barcelona, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands.
| | - Manuel Lozano
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, 46020, Valencia, Spain; Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Universitat de València, Avenida Vicent Andrés Estellés, s/n 46100, Burjassot, Valencia, Spain.
| | - Mikel Subiza-Pérez
- Biogipuzkoa Health Research Institute, Environmental Epidemiology and Child Development Group, Paseo Doctor Begiristain s/n, 20014, San Sebastián, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029, Madrid, Spain; Bradford Institute for Health Research, Temple Bank House, Bradford Royal Infirmary, Duckworth Lane, BD9 6RJ, Bradford, United Kingdom; Department of Clinical and Health Psychology and Research Methods, University of the Basque Country (UPV/EHU), Avenida Tolosa 70, 20018, Sebastián, Spain.
| | - Jesús Ibarluzea
- Biogipuzkoa Health Research Institute, Environmental Epidemiology and Child Development Group, Paseo Doctor Begiristain s/n, 20014, San Sebastián, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029, Madrid, Spain; Faculty of Psychology, University of the Basque Country (UPV/EHU), Avenida Tolosa 70, 20018, San Sebastián, Spain; Ministry of Health of the Basque Government, Sub Directorate for Public Health and Addictions of Gipuzkoa, 20013, San Sebastián, Spain.
| |
Collapse
|
6
|
Morrel J, Overholtzer LN, Sukumaran K, Cotter DL, Cardenas-Iniguez C, Tyszka JM, Schwartz J, Hackman DA, Chen JC, Herting MM. Outdoor Air Pollution Relates to Amygdala Subregion Volume and Apportionment in Early Adolescents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.617429. [PMID: 39463957 PMCID: PMC11507665 DOI: 10.1101/2024.10.14.617429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Background Outdoor air pollution is associated with an increased risk for psychopathology. Although the neural mechanisms remain unclear, air pollutants may impact mental health by altering limbic brain regions, such as the amygdala. Here, we examine the association between ambient air pollution exposure and amygdala subregion volumes in 9-10-year-olds. Methods Cross-sectional Adolescent Brain Cognitive DevelopmentSM (ABCD) Study® data from 4,473 participants (55.4% male) were leveraged. Air pollution was estimated for each participant's primary residential address. Using the probabilistic CIT168 atlas, we quantified total amygdala and 9 distinct subregion volumes from T1- and T2-weighted images. First, we examined how criteria pollutants (i.e., fine particulate matter [PM2.5], nitrogen dioxide, ground-level ozone) and 15 PM2.5 components related with total amygdala volumes using linear mixed-effect (LME) regression. Next, partial least squares correlation (PLSC) analyses were implemented to identify relationships between co-exposure to criteria pollutants as well as PM2.5 components and amygdala subregion volumes. We also conducted complementary analyses to assess subregion apportionment using amygdala relative volume fractions (RVFs). Results No significant associations were detected between pollutants and total amygdala volumes. Using PLSC, one latent dimension (LD) (52% variance explained) captured a positive association between calcium and several basolateral subregions. LDs were also identified for amygdala RVFs (ranging from 30% to 82% variance explained), with PM2.5 and component co-exposure associated with increases in lateral, but decreases in medial and central, RVFs. Conclusions Fine particulate and its components are linked with distinct amygdala differences, potentially playing a role in risk for adolescent mental health problems.
Collapse
Affiliation(s)
- Jessica Morrel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - L. Nate Overholtzer
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- USC-Caltech MD-PhD Program, Los Angeles, CA, USA
| | - Kirthana Sukumaran
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Devyn L. Cotter
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - J. Michael Tyszka
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Daniel A. Hackman
- USC Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA, USA
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Megan M. Herting
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
7
|
Radua J, De Prisco M, Oliva V, Fico G, Vieta E, Fusar-Poli P. Impact of air pollution and climate change on mental health outcomes: an umbrella review of global evidence. World Psychiatry 2024; 23:244-256. [PMID: 38727076 PMCID: PMC11083864 DOI: 10.1002/wps.21219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2024] Open
Abstract
The impact of air pollution and climate change on mental health has recently raised strong concerns. However, a comprehensive overview analyzing the existing evidence while addressing relevant biases is lacking. This umbrella review systematically searched the PubMed/Medline, Scopus and PsycINFO databases (up to June 26, 2023) for any systematic review with meta-analysis investigating the association of air pollution or climate change with mental health outcomes. We used the R metaumbrella package to calculate and stratify the credibility of the evidence according to criteria (i.e., convincing, highly suggestive, suggestive, or weak) that address several biases, complemented by sensitivity analyses. We included 32 systematic reviews with meta-analysis that examined 284 individual studies and 237 associations of exposures to air pollution or climate change hazards and mental health outcomes. Most associations (n=195, 82.3%) involved air pollution, while the rest (n=42, 17.7%) regarded climate change hazards (mostly focusing on temperature: n=35, 14.8%). Mental health outcomes in most associations (n=185, 78.1%) involved mental disorders, followed by suicidal behavior (n=29, 12.4%), access to mental health care services (n=9, 3.7%), mental disorders-related symptomatology (n=8, 3.3%), and multiple categories together (n=6, 2.5%). Twelve associations (5.0%) achieved convincing (class I) or highly suggestive (class II) evidence. Regarding exposures to air pollution, there was convincing (class I) evidence for the association between long-term exposure to solvents and a higher incidence of dementia or cognitive impairment (odds ratio, OR=1.139), and highly suggestive (class II) evidence for the association between long-term exposure to some pollutants and higher risk for cognitive disorders (higher incidence of dementia with high vs. low levels of carbon monoxide, CO: OR=1.587; higher incidence of vascular dementia per 1 μg/m3 increase of nitrogen oxides, NOx: hazard ratio, HR=1.004). There was also highly suggestive (class II) evidence for the association between exposure to airborne particulate matter with diameter ≤10 μm (PM10) during the second trimester of pregnancy and the incidence of post-partum depression (OR=1.023 per 1 μg/m3 increase); and for the association between short-term exposure to sulfur dioxide (SO2) and schizophrenia relapse (risk ratio, RR=1.005 and 1.004 per 1 μg/m3 increase, respectively 5 and 7 days after exposure). Regarding climate change hazards, there was highly suggestive (class II) evidence for the association between short-term exposure to increased temperature and suicide- or mental disorders-related mortality (RR=1.024), suicidal behavior (RR=1.012), and hospital access (i.e., hospitalization or emergency department visits) due to suicidal behavior or mental disorders (RR=1.011) or mental disorders only (RR=1.009) (RR values per 1°C increase). There was also highly suggestive (class II) evidence for the association between short-term exposure to increased apparent temperature (i.e., the temperature equivalent perceived by humans) and suicidal behavior (RR=1.01 per 1°C increase). Finally, there was highly suggestive (class II) evidence for the association between the temporal proximity of cyclone exposure and severity of symptoms of post-traumatic stress disorder (r=0.275). Although most of the above associations were small in magnitude, they extend to the entire world population, and are therefore likely to have a substantial impact. This umbrella review classifies and quantifies for the first time the global negative impacts that air pollution and climate change can exert on mental health, identifying evidence-based targets that can inform future research and population health actions.
Collapse
Affiliation(s)
- Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Michele De Prisco
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Bipolar and Depressive Disorders Unit, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Vincenzo Oliva
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Giovanna Fico
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Eduard Vieta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Bipolar and Depressive Disorders Unit, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, King's College London, London, UK
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Outreach and Support in South-London (OASIS) service, South London and Maudlsey NHS Foundation Trust, London, UK
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany
| |
Collapse
|
8
|
Chen WJ, Rector-Houze AM, Guxens M, Iñiguez C, Swartz MD, Symanski E, Ibarluzea J, Valentin A, Lertxundi A, González-Safont L, Sunyer J, Whitworth KW. Susceptible windows of prenatal and postnatal fine particulate matter exposures and attention-deficit hyperactivity disorder symptoms in early childhood. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168806. [PMID: 38016567 PMCID: PMC12040439 DOI: 10.1016/j.scitotenv.2023.168806] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
Few prior studies have explored windows of susceptibility to fine particulate matter (PM2.5) in both the prenatal and postnatal periods and children's attention-deficit/hyperactivity disorder (ADHD) symptoms. We analyzed data from 1416 mother-child pairs from the Spanish INMA (INfancia y Medio Ambiente) Study (2003-2008). Around 5 years of age, teachers reported the number of ADHD symptoms (i.e., inattention, hyperactivity/impulsivity) using the ADHD Diagnostic and Statistical Manual of Mental Disorders. Around 7 years of age, parents completed the Conners' Parent Rating Scales, from which we evaluated the ADHD index, cognitive problems/inattention, hyperactivity, and oppositional subscales, reported as age- and sex-standardized T-scores. Daily residential PM2.5 exposures were estimated using a two-stage random forest model with temporal back-extrapolation and averaged over 1-week periods in the prenatal period and 4-week periods in the postnatal period. We applied distributed lag non-linear models within the Bayesian hierarchical model framework to identify susceptible windows of prenatal or postnatal exposure to PM2.5 (per 5-μg/m3) for ADHD symptoms. Models were adjusted for relevant covariates, and cumulative effects were reported by aggregating risk ratios (RRcum) or effect estimates (βcum) across adjacent susceptible windows. A similar susceptible period of exposure to PM2.5 (1.2-2.9 and 0.9-2.7 years of age, respectively) was identified for hyperactivity/impulsivity symptoms assessed ~5 years (RRcum = 2.72, 95% credible interval [CrI] = 1.98, 3.74) and increased hyperactivity subscale ~7 years (βcum = 3.70, 95% CrI = 2.36, 5.03). We observed a susceptibility period to PM2.5 on risk of hyperactivity/impulsivity symptoms ~5 years in gestational weeks 16-22 (RRcum = 1.36, 95% CrI = 1.22, 1.52). No associations between PM2.5 exposure and other ADHD symptoms were observed. We report consistent evidence of toddlerhood as a susceptible window of PM2.5 exposure for hyperactivity in young children. Although mid-pregnancy was identified as a susceptible period of exposure on hyperactivity symptoms in preschool-aged children, this association was not observed at the time children were school-aged.
Collapse
Affiliation(s)
- Wei-Jen Chen
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Alison M Rector-Houze
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA; Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston (UTHealth) School of Public Health, Houston, TX, USA
| | - Mònica Guxens
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ISGlobal, Barcelona, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre (Erasmus MC), Rotterdam, the Netherlands
| | - Carmen Iñiguez
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Department of Statistics and Operational Research, Universitat de València, València, Spain; Epidemiology and Environmental Health Joint Research Unit, The Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO), Universitat Jaume I-Universitat de València, València, Spain
| | - Michael D Swartz
- Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston (UTHealth) School of Public Health, Houston, TX, USA
| | - Elaine Symanski
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA; Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Jesús Ibarluzea
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Group of Environmental Epidemiology and Child Development, Biodonostia Health Research Institute, San Sebastian, Spain; Ministry of Health of the Basque Government, Sub-Directorate for Public Health and Addictions of Gipuzkoa, 20013 San Sebastian, Spain; Faculty of Psychology, Universidad del País Vasco (UPV/EHU), San Sebastian, Spain
| | - Antonia Valentin
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ISGlobal, Barcelona, Spain
| | - Aitana Lertxundi
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Group of Environmental Epidemiology and Child Development, Biodonostia Health Research Institute, San Sebastian, Spain; Department of Preventive Medicine and Public Health, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Llúcia González-Safont
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, The Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO), Universitat Jaume I-Universitat de València, València, Spain; Nursing and Chiropody Faculty of Valencia University, Valencia, Spain
| | - Jordi Sunyer
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; ISGlobal, Barcelona, Spain
| | - Kristina W Whitworth
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA; Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
9
|
Chaulagain A, Lyhmann I, Halmøy A, Widding-Havneraas T, Nyttingnes O, Bjelland I, Mykletun A. A systematic meta-review of systematic reviews on attention deficit hyperactivity disorder. Eur Psychiatry 2023; 66:e90. [PMID: 37974470 PMCID: PMC10755583 DOI: 10.1192/j.eurpsy.2023.2451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/29/2023] [Accepted: 08/31/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND There are now hundreds of systematic reviews on attention deficit hyperactivity disorder (ADHD) of variable quality. To help navigate this literature, we have reviewed systematic reviews on any topic on ADHD. METHODS We searched MEDLINE, PubMed, PsycINFO, Cochrane Library, and Web of Science and performed quality assessment according to the Joanna Briggs Institute Manual for Evidence Synthesis. A total of 231 systematic reviews and meta-analyses met the eligibility criteria. RESULTS The prevalence of ADHD was 7.2% for children and adolescents and 2.5% for adults, though with major uncertainty due to methodological variation in the existing literature. There is evidence for both biological and social risk factors for ADHD, but this evidence is mostly correlational rather than causal due to confounding and reverse causality. There is strong evidence for the efficacy of pharmacological treatment on symptom reduction in the short-term, particularly for stimulants. However, there is limited evidence for the efficacy of pharmacotherapy in mitigating adverse life trajectories such as educational attainment, employment, substance abuse, injuries, suicides, crime, and comorbid mental and somatic conditions. Pharmacotherapy is linked with side effects like disturbed sleep, reduced appetite, and increased blood pressure, but less is known about potential adverse effects after long-term use. Evidence of the efficacy of nonpharmacological treatments is mixed. CONCLUSIONS Despite hundreds of systematic reviews on ADHD, key questions are still unanswered. Evidence gaps remain as to a more accurate prevalence of ADHD, whether documented risk factors are causal, the efficacy of nonpharmacological treatments on any outcomes, and pharmacotherapy in mitigating the adverse outcomes associated with ADHD.
Collapse
Affiliation(s)
- Ashmita Chaulagain
- Centre for Research and Education in Forensic Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ingvild Lyhmann
- Centre for Research and Education in Forensic Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Anne Halmøy
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Tarjei Widding-Havneraas
- Centre for Research and Education in Forensic Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Olav Nyttingnes
- Centre for Research and Education in Forensic Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Ingvar Bjelland
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Arnstein Mykletun
- Centre for Research and Education in Forensic Psychiatry, Haukeland University Hospital, Bergen, Norway
- Division for Health Services, Norwegian Institute of Public Health, Oslo, Norway
- Department of Community Medicine, UiT – The Arctic University of Norway, Tromsø, Norway
- Centre for Work and Mental Health, Nordland Hospital, Bodø, Norway
| |
Collapse
|
10
|
Trombley J. Fine particulate matter exposure and pediatric mental health outcomes: An integrative review. J Nurs Scholarsh 2023; 55:977-1007. [PMID: 36941765 DOI: 10.1111/jnu.12888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Climate change is expected to worsen air pollution globally, which contributes to a multitude of negative health outcomes in humans. AIM The purpose of this integrative review is to examine the relationship between exposure to fine particulate matter (PM2.5 ) and mental health outcomes in children and adolescents. METHODS This review utilized Whittemore and Knafl's methodology for conducting an integrative review. After a thorough search of the literature, 17 articles were selected for this review and evaluated utilizing the Johns Hopkins Evidence Based Practice Appraisal Tool. RESULTS Of the 17 articles, all were quantitative observational study designs. The studies were then synthesized into four outcome themes. These themes included emergent and general psychiatric outcomes, neurodevelopmental disorders, stress and anxiety, and depression. DISCUSSION The strongest evidence supports a possible correlation between PM2.5 exposure and adolescent mental health outcomes, although there were some studies that contradicted these associations. While research on this topic is in its early stages, more needs to be conducted to determine causality with any of the associations presented to improve generalizability of the findings. IMPLICATIONS FOR PRACTICE Nurses must be aware of and part of the solution to address climate change and resulting air pollution, as it is a potentially significant threat to children's mental health in the 21st century.
Collapse
Affiliation(s)
- Janna Trombley
- University of Massachusetts Lowell, Lowell, Massachusetts, USA
| |
Collapse
|
11
|
Chalupka SM, Latter A, Trombley J. Climate and Environmental Change: A Generation at Risk. MCN Am J Matern Child Nurs 2023; 48:181-187. [PMID: 36943828 DOI: 10.1097/nmc.0000000000000924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
ABSTRACT Climate and environmental changes have been described as the biggest global health threat of the 21st century, with the potential to cause immediate harm in early life with important lifelong effects, and important consequences for future generations. Pregnant women and children are increasingly being recognized as vulnerable populations in the context of climate change. The effects can be direct or indirect through heat stress, extreme weather events, and air pollution, potentially affecting both the immediate and long-term health of pregnant women and newborns through a broad range of mechanisms. Climate and environmental changes have wide-ranging effects on a woman's reproductive life including sexual maturation and fertility, pregnancy outcomes, lactation, breastfeeding, and menopause. A comprehensive overview of these impacts is presented as well as opportunities for interventions for nurses practicing in perinatal, neonatal, midwifery, and pediatric specialties.
Collapse
|
12
|
Mooney MA, Ryabinin P, Morton H, Selah K, Gonoud R, Kozlowski M, Nousen E, Tipsord J, Antovich D, Schwartz J, Herting MM, Faraone SV, Nigg JT. Joint polygenic and environmental risks for childhood attention-deficit/hyperactivity disorder (ADHD) and ADHD symptom dimensions. JCPP ADVANCES 2023; 3:e12152. [PMID: 37753156 PMCID: PMC10519744 DOI: 10.1002/jcv2.12152] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/10/2023] [Indexed: 03/18/2023] Open
Abstract
Background attention-deficit/hyperactivity disorder (ADHD) is associated with both polygenic liability and environmental exposures, both intrinsic to the family, such as family conflict, and extrinsic, such as air pollution. However, much less is known about the interplay between environmental and genetic risks relevant to ADHD-a better understanding of which could inform both mechanistic models and clinical prediction algorithms. Methods Two independent data sets, the population-based Adolescent Brain Cognitive Development Study (ABCD) (N = 11,876) and the case-control Oregon-ADHD-1000 (N = 1449), were used to examine additive (G + E) and interactive (GxE) effects of selected polygenic risk scores (PRS) and environmental factors in a cross-sectional design. Genetic risk was measured using PRS for nine mental health disorders/traits. Exposures included family income, family conflict/negative sentiment, and geocoded measures of area deprivation, lead exposure risk, and air pollution exposure (nitrogen dioxide and fine particulate matter). Results ADHD PRS and family conflict jointly predicted concurrent ADHD symptoms in both cohorts. Additive-effects models, including both genetic and environmental factors, explained significantly more variation in symptoms than any individual factor alone (joint R 2 = .091 for total symptoms in ABCD; joint R 2 = .173 in Oregon-ADHD-1000; all delta-R 2 p-values <2e-7). Significant effect size heterogeneity across ancestry groups was observed for genetic and environmental factors (e.g., Q = 9.01, p = .011 for major depressive disorder PRS; Q = 13.34, p = .001 for area deprivation). GxE interactions observed in the full ABCD cohort suggested stronger environmental effects when genetic risk is low, though they did not replicate. Conclusions Reproducible additive effects of PRS and family environment on ADHD symptoms were found, but GxE interaction effects were not replicated and appeared confounded by ancestry. Results highlight the potential value of combining exposures and PRS in clinical prediction algorithms. The observed differences in risks across ancestry groups warrant further study to avoid health care disparities.
Collapse
Affiliation(s)
- Michael A. Mooney
- Division of Bioinformatics and Computational BiologyDepartment of Medical Informatics and Clinical EpidemiologyOregon Health & Science UniversityPortlandOregonUSA
- Knight Cancer InstituteOregon Health & Science UniversityPortlandOregonUSA
| | - Peter Ryabinin
- Knight Cancer InstituteOregon Health & Science UniversityPortlandOregonUSA
| | - Hannah Morton
- Department of PsychiatryCenter for ADHD ResearchOregon Health & Science UniversityPortlandOregonUSA
| | - Katharine Selah
- Department of PsychiatryCenter for ADHD ResearchOregon Health & Science UniversityPortlandOregonUSA
| | - Rose Gonoud
- Department of PsychiatryCenter for ADHD ResearchOregon Health & Science UniversityPortlandOregonUSA
| | - Michael Kozlowski
- Department of PsychiatryCenter for ADHD ResearchOregon Health & Science UniversityPortlandOregonUSA
| | - Elizabeth Nousen
- Department of PsychiatryCenter for ADHD ResearchOregon Health & Science UniversityPortlandOregonUSA
| | - Jessica Tipsord
- Department of PsychiatryCenter for ADHD ResearchOregon Health & Science UniversityPortlandOregonUSA
| | - Dylan Antovich
- Department of PsychiatryCenter for ADHD ResearchOregon Health & Science UniversityPortlandOregonUSA
| | - Joel Schwartz
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Megan M. Herting
- Department of Population and Public Health SciencesKeck School of Medicine of the University of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of PediatricsChildren's Hospital Los AngelesLos AngelesCaliforniaUSA
| | - Stephen V. Faraone
- Department of PsychiatrySUNY Upstate Medical UniversitySyracuseNew YorkUSA
| | - Joel T. Nigg
- Department of PsychiatryCenter for ADHD ResearchOregon Health & Science UniversityPortlandOregonUSA
- Department of Behavioral NeuroscienceOregon Health & Science UniversityPortlandOregonUSA
| |
Collapse
|
13
|
Kaur S, Morales-Hidalgo P, Arija V, Canals J. Prenatal Exposure to Air Pollutants and Attentional Deficit Hyperactivity Disorder Development in Children: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20085443. [PMID: 37107725 PMCID: PMC10138804 DOI: 10.3390/ijerph20085443] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 05/11/2023]
Abstract
Up to 9.5% of the world's population is diagnosed with attention deficit/hyperactivity disorder (ADHD), making it one of the most common childhood disorders. Air pollutants could be considered an environmental risk condition for ADHD, but few studies have specifically investigated the effect of prenatal exposure. The current paper reviews the studies conducted on the association between prenatal air pollutants (PM, NOx, SO2, O3, CO and PAH) and ADHD development in children. From the 890 studies searched through PubMed, Google Scholar, Scopus, and Web of Science, 15 cohort studies met the inclusion criteria. NOS and WHO guidelines were used for quality and risk of bias assessment. The accumulative sample was 589,400 of children aged 3-15 years. Most studies reported an association between ADHD symptoms and prenatal PAH and PM exposure. Data available on NO2 and SO2 were inconsistent, whereas the effect of CO/O3 is barely investigated. We observed heterogeneity through an odd ratio forest plot, and discrepancies in methodologies across the studies. Eight of the fifteen studies were judged to be of moderate risk of bias in the outcome measurement. In a nutshell, future studies should aim to minimize heterogeneity and reduce bias by ensuring a more representative sample, standardizing exposure and outcome assessments.
Collapse
Affiliation(s)
- Sharanpreet Kaur
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili, 43201 Reus, Spain; (S.K.); (P.M.-H.); (V.A.)
- Research Center for Behavior Assessment (CRAMC), Department of Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Paula Morales-Hidalgo
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili, 43201 Reus, Spain; (S.K.); (P.M.-H.); (V.A.)
- Research Center for Behavior Assessment (CRAMC), Department of Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Department of Psychology and Education Studies, Universitat Oberta de Catalunya (UOC), 08018 Barcelona, Spain
- University Research Institute on Sustainablility, Climate Change and Energy Transition (IU-RESCAT) Universitat Rovira i Virgili, 43003 Tarragona, Spain
| | - Victoria Arija
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili, 43201 Reus, Spain; (S.K.); (P.M.-H.); (V.A.)
- University Research Institute on Sustainablility, Climate Change and Energy Transition (IU-RESCAT) Universitat Rovira i Virgili, 43003 Tarragona, Spain
- Department of Basic Medical Sciences, Universitat Rovira i Virgili, 43002 Reus, Spain
| | - Josefa Canals
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili, 43201 Reus, Spain; (S.K.); (P.M.-H.); (V.A.)
- Research Center for Behavior Assessment (CRAMC), Department of Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- University Research Institute on Sustainablility, Climate Change and Energy Transition (IU-RESCAT) Universitat Rovira i Virgili, 43003 Tarragona, Spain
- Correspondence:
| |
Collapse
|
14
|
Sukumaran K, Cardenas-Iniguez C, Burnor E, Bottenhorn KL, Hackman DA, McConnell R, Berhane K, Schwartz J, Chen JC, Herting MM. Ambient fine particulate exposure and subcortical gray matter microarchitecture in 9- and 10-year-old children across the United States. iScience 2023; 26:106087. [PMID: 36915692 PMCID: PMC10006642 DOI: 10.1016/j.isci.2023.106087] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/16/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Neuroimaging studies showing the adverse effects of air pollution on neurodevelopment have largely focused on smaller samples from limited geographical locations and have implemented univariant approaches to assess exposure and brain macrostructure. Herein, we implement restriction spectrum imaging and a multivariate approach to examine how one year of annual exposure to daily fine particulate matter (PM2.5), daily nitrogen dioxide (NO2), and 8-h maximum ozone (O3) at ages 9-10 years relates to subcortical gray matter microarchitecture in a geographically diverse subsample of children from the Adolescent Brain Cognitive Development (ABCD) Study℠. Adjusting for confounders, we identified a latent variable representing 66% of the variance between one year of air pollution and subcortical gray matter microarchitecture. PM2.5 was related to greater isotropic intracellular diffusion in the thalamus, brainstem, and accumbens, which related to cognition and internalizing symptoms. These findings may be indicative of previously identified air pollution-related risk for neuroinflammation and early neurodegenerative pathologies.
Collapse
Affiliation(s)
- Kirthana Sukumaran
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Elisabeth Burnor
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Katherine L. Bottenhorn
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
- Department of Psychology, Florida International University, Miami, FL 33199, USA
| | - Daniel A. Hackman
- Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA 90089, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Kiros Berhane
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
- Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Megan M. Herting
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
- Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| |
Collapse
|
15
|
Gladieux M, Gimness N, Rodriguez B, Liu J. Adverse Childhood Experiences (ACEs) and Environmental Exposures on Neurocognitive Outcomes in Children: Empirical Evidence, Potential Mechanisms, and Implications. TOXICS 2023; 11:259. [PMID: 36977024 PMCID: PMC10055754 DOI: 10.3390/toxics11030259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
The purpose of this article is to examine the current literature regarding the relationship between adverse childhood experiences (ACEs) and environmental exposures. Specifically, the paper will focus on how this relationship between ACEs and physical environmental factors impacts the neurocognitive development of children. With a comprehensive literary search focusing on ACEs, inclusive of socioeconomic status (SES), and environmental toxins common in urban environments, the paper explores how these factors contribute to cognitive outcomes that are associated with the environment and childhood nurturing. The relationship between ACEs and environmental exposures reveals adverse outcomes in children's neurocognitive development. These cognitive outcomes include learning disabilities, lowered IQ, memory and attention problems, and overall poor educational outcomes. Additionally, potential mechanisms of environmental exposures and children's neurocognitive outcomes are explored, referencing data from animal studies and evidence from brain imaging studies. This study further analyzes the current gaps in the literature, such as the lack of data focusing on exposure to environmental toxicants resulting from experiencing ACEs and discusses the research and social policy implications of ACEs and environmental exposure in the neurocognitive development of children.
Collapse
Affiliation(s)
| | | | | | - Jianghong Liu
- Department of Family and Community Health, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
16
|
Bernardina Dalla MD, Ayala CO, Cristina de Abreu Quintela Castro F, Neto FK, Zanirati G, Cañon-Montañez W, Mattiello R. Environmental pollution and attention deficit hyperactivity disorder: A meta-analysis of cohort studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120351. [PMID: 36216185 DOI: 10.1016/j.envpol.2022.120351] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/12/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
There is already knowledge of the extensive risk factors for attention deficit hyperactivity disorder (ADHD) and recent studies suggest that environmental pollution may contribute to an increase in the incidence of the disorder. The aim of our study was to perform a systematic review and meta-analysis of the risk of ADHD in people younger than 18 years old after exposure to environmental pollution. We searched the MEDLINE, Embase, SciELO, CINAHL, LILACS, Cochrane Central, and Web of Science databases and investigated the grey literature from inception until May 31, 2021. All cohort studies that provided data on exposure to environmental pollutants and ADHD in children and adolescents aged from zero to 18 years old were included. Two reviewers independently selected the studies and applied the quality criteria. If there was a divergence, a third reviewer contributed to the final decision. For the meta-analysis, risk ratios and their confidence intervals were calculated with the MetaXL 5.3 program, using the random effects model. In total, 21 articles were included in this systematic review, and 18 studies met the criteria for the meta-analysis, involving 134,619 participants. The meta-analysis suggested that children exposed to higher levels of heavy metal (RR: 2.41, 95% CI: 1.49-3.90), with low heterogeneity (I2 = 39%), and lead (RR: 2.37, 95% CI: 1.28-4.40), with moderate heterogeneity (I2 = 54%), are at greater risk of developing ADHD than those exposed to lower levels. This meta-analysis suggests that children exposed to higher levels of lead and heavy metal pollution are at greater risk of developing ADHD than those exposed to lower levels.
Collapse
Affiliation(s)
- Marcello Dalla Bernardina Dalla
- Cassiano Antônio de Moraes University Hospital, Universidade Federal do Espírito Santo (HUCAM/UFES), Vitória, Brazil; Capixaba Institute for Teaching Research and Innovation of the State Health Department of Espirito Santo (ICEPI-SESA), Vitória, Brazil
| | - Camila Ospina Ayala
- Medical School, Pontifícia Universidade Católica de Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | | | - Felipe Kalil Neto
- Medical School, Pontifícia Universidade Católica de Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Gabriele Zanirati
- Medical School, Pontifícia Universidade Católica de Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Brain Institute of Rio Grande do Sul (InsCer), Pontifícia Universidade Católica de Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | | | - Rita Mattiello
- Medical School, Pontifícia Universidade Católica de Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Social Medicine, Universidade Federal de Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
17
|
Fan HC, Chen CM, Tsai JD, Chiang KL, Tsai SCS, Huang CY, Lin CL, Hsu CY, Chang KH. Association between Exposure to Particulate Matter Air Pollution during Early Childhood and Risk of Attention-Deficit/Hyperactivity Disorder in Taiwan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192316138. [PMID: 36498210 PMCID: PMC9740780 DOI: 10.3390/ijerph192316138] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 05/23/2023]
Abstract
(1) Background: Recently, a growing number of studies have provided evidence to suggest a strong correlation between air pollution exposure and attention-deficit/hyperactivity disorder (ADHD). In this study, we assessed the relationship between early-life exposure to particulate matter (PM)10, PM2.5, and ADHD; (2) Methods: The National Health Insurance Research Database (NHIRD) contains the medical records, drug information, inspection data, etc., of the people of Taiwan, and, thus, could serve as an important research resource. Air pollution data were based on daily data from the Environmental Protection Administration Executive Yuan, R.O.C. (Taiwan). These included particulate matter (PM2.5 and PM10). The two databases were merged according to the living area of the insured and the location of the air quality monitoring station; (3) Results: The highest levels of air pollutants, including PM2.5 (adjusted hazard ratio (aHR) = 1.79; 95% confidence interval (CI) = 1.58-2.02) and PM10 (aHR = 1.53; 95% CI = 1.37-1.70), had a significantly higher risk of ADHD; (4) Conclusions: As such, measures for air quality control that meet the WHO air quality guidelines should be strictly and uniformly implemented by Taiwanese government authorities.
Collapse
Affiliation(s)
- Hueng-Chuen Fan
- Department of Pediatrics, Tungs’ Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan
- Department of Rehabilitation, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Chuan-Mu Chen
- The iEGG and Animal Biotechnology Center, and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Ph.D. Program in Translational Medicine, Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
- Rong Hsing Research Center for Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Jeng-Dau Tsai
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Kuo-Liang Chiang
- Department of Pediatric Neurology, Kuang-Tien General Hospital, Taichung 433, Taiwan
- Department of Nutrition, Hungkuang University, Taichung 433, Taiwan
| | - Stella Chin-Shaw Tsai
- Ph.D. Program in Translational Medicine, Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
- Rong Hsing Research Center for Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
- Department of Otolaryngology, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan
| | - Ching-Ying Huang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung 404, Taiwan
| | - Chung Y. Hsu
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan
| | - Kuang-Hsi Chang
- Ph.D. Program in Translational Medicine, Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
- Department of Medical Research, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan
- Center for General Education, China Medical University, Taichung 404, Taiwan
- General Education Center, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan
| |
Collapse
|
18
|
Faraone SV, Banaschewski T, Coghill D, Zheng Y, Biederman J, Bellgrove MA, Newcorn JH, Gignac M, Al Saud NM, Manor I, Rohde LA, Yang L, Cortese S, Almagor D, Stein MA, Albatti TH, Aljoudi HF, Alqahtani MMJ, Asherson P, Atwoli L, Bölte S, Buitelaar JK, Crunelle CL, Daley D, Dalsgaard S, Döpfner M, Espinet S, Fitzgerald M, Franke B, Gerlach M, Haavik J, Hartman CA, Hartung CM, Hinshaw SP, Hoekstra PJ, Hollis C, Kollins SH, Sandra Kooij JJ, Kuntsi J, Larsson H, Li T, Liu J, Merzon E, Mattingly G, Mattos P, McCarthy S, Mikami AY, Molina BSG, Nigg JT, Purper-Ouakil D, Omigbodun OO, Polanczyk GV, Pollak Y, Poulton AS, Rajkumar RP, Reding A, Reif A, Rubia K, Rucklidge J, Romanos M, Ramos-Quiroga JA, Schellekens A, Scheres A, Schoeman R, Schweitzer JB, Shah H, Solanto MV, Sonuga-Barke E, Soutullo C, Steinhausen HC, Swanson JM, Thapar A, Tripp G, van de Glind G, van den Brink W, Van der Oord S, Venter A, Vitiello B, Walitza S, Wang Y. The World Federation of ADHD International Consensus Statement: 208 Evidence-based conclusions about the disorder. Neurosci Biobehav Rev 2021; 128:789-818. [PMID: 33549739 PMCID: PMC8328933 DOI: 10.1016/j.neubiorev.2021.01.022] [Citation(s) in RCA: 612] [Impact Index Per Article: 153.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Misconceptions about ADHD stigmatize affected people, reduce credibility of providers, and prevent/delay treatment. To challenge misconceptions, we curated findings with strong evidence base. METHODS We reviewed studies with more than 2000 participants or meta-analyses from five or more studies or 2000 or more participants. We excluded meta-analyses that did not assess publication bias, except for meta-analyses of prevalence. For network meta-analyses we required comparison adjusted funnel plots. We excluded treatment studies with waiting-list or treatment as usual controls. From this literature, we extracted evidence-based assertions about the disorder. RESULTS We generated 208 empirically supported statements about ADHD. The status of the included statements as empirically supported is approved by 80 authors from 27 countries and 6 continents. The contents of the manuscript are endorsed by 366 people who have read this document and agree with its contents. CONCLUSIONS Many findings in ADHD are supported by meta-analysis. These allow for firm statements about the nature, course, outcome causes, and treatments for disorders that are useful for reducing misconceptions and stigma.
Collapse
Affiliation(s)
- Stephen V Faraone
- Departments of Psychiatry and Neuroscience and Physiology, Psychiatry Research Division, SUNY Upstate Medical University, Syracuse, NY, USA; World Federation of ADHD, Switzerland; American Professional Society of ADHD and Related Disorders (APSARD), USA.
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Child and Adolescent Psychiatrist's Representative, Zentrales-ADHS-Netz, Germany; The German Association of Child and Adolescent Psychiatry and Psychotherapy, Germany
| | - David Coghill
- Departments of Paediatrics and Psychiatry, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Yi Zheng
- Beijing Anding Hospital, Capital Medical University, Beijing, China; The National Clinical Research Center for Mental Disorders, Beijing, China; Beijing Key Laboratory of Mental Disorders, Beijing, China; Beijing Institute for Brain Disorders, Beijing, China; Asian Federation of ADHD, China; Chinese Society of Child and Adolescent Psychiatry, China
| | - Joseph Biederman
- Clinical & Research Programs in Pediatric Psychopharmacology & Adult ADHD, Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Mark A Bellgrove
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Clayton, VIC, Australia; Australian ADHD Professionals Association (AADPA), Australia
| | - Jeffrey H Newcorn
- American Professional Society of ADHD and Related Disorders (APSARD), USA; Departments of Psychiatry and Pediatrics, Division of ADHD and Learning Disorders, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martin Gignac
- Department of Child and Adolescent Psychiatry, Montreal Children's Hospital, MUHC, Montreal, Canada; Child and Adolescent Psychiatry Division, McGill University, Montreal, Canada; Canadian ADHD Research Alliance (CADDRA), Canada
| | | | - Iris Manor
- Chair, Israeli Society of ADHD (ISA), Israel; Co-chair of the neurodevelopmental section in EPA (the European Psychiatric Association), France
| | - Luis Augusto Rohde
- Department of Psychiatry, Federal University of Rio Grande do Sul, Brazil
| | - Li Yang
- Asian Federation of ADHD, China; Peking University Sixth Hospital/Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China; NHC Key Laboratory of Mental Health (Peking University), Beijing, China
| | - Samuele Cortese
- Center for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton,UK; Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK; Solent NHS Trust, Southampton, UK; Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York City, New York, USA; Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, UK; University of Nottingham, Nottingham, UK
| | - Doron Almagor
- University of Toronto, SickKids Centre for Community Mental Health, Toronto, Canada; Canadian ADHD Research Alliance (CADDRA), Canada
| | - Mark A Stein
- University of Washington, Seattle, WA, USA; Seattle Children's Hospital, Seattle, WA, USA
| | - Turki H Albatti
- Saudi ADHD Society Medical and Psychological Committee, Saudi Arabia
| | - Haya F Aljoudi
- King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia; Saudi ADHD Society Medical and Psychological Committee, Saudi Arabia
| | - Mohammed M J Alqahtani
- Clinical Psychology, King Khalid University, Abha, Saudi Arabia; Saudi ADHD Society, Saudi Arabia
| | - Philip Asherson
- Social Genetic & Developmental Psychiatry, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, UK
| | - Lukoye Atwoli
- Department of Mental Health and Behavioural Science, Moi University School of Medicine, Eldoret, Kenya; Brain and Mind Institute, and Department of Internal Medicine, Medical College East Africa, the Aga Khan University, Kenya; African College of Psychopharmacology, Kenya; African Association of Psychiatrists, Kenya
| | - Sven Bölte
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Sweden; Child and Adolescent Psychiatry, Stockholm Healthcare Services, Region Stockholm, Sweden; Curtin Autism Research Group, School of Occupational Therapy, Social Work and Speech Pathology, Curtin University, Perth, Western Australia, Australia
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Cleo L Crunelle
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Dept. of Psychiatry, Brussel, Belgium; International Collaboration on ADHD and Substance Abuse (ICASA), Nijmegen, the Netherlands
| | - David Daley
- Division of Psychiatry and Applied Psychology, School of Medicine University of Nottingham, Nottingham, UK; NIHR MindTech Mental Health MedTech Cooperative & Centre for ADHD and Neurodevelopmental Disorders Across the Lifespan (CANDAL), Institute of Mental Health, University of Nottingham, Nottingham, UK
| | - Søren Dalsgaard
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
| | - Manfred Döpfner
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, School of Child and Adolescent Cognitive Behavior Therapy (AKiP), Faculty of Medicine and University Hospital Cologne, University Cologne, Cologne, Germany; Zentrales-ADHS-Netz, Germany
| | | | | | - Barbara Franke
- Departments of Human Genetics and Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Professional Board, ADHD Europe, Belgium
| | - Manfred Gerlach
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Wuerzburg, Wuerzburg, Germany.
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Catharina A Hartman
- University of Groningen, Groningen, the Netherlands; University Medical Center Groningen, Groningen, the Netherlands; Interdisciplinary Center Psychopathology and Emotion Regulation (ICPE), Groningen, the Netherlands; ADHD Across the Lifespan Network from European College of Neuropsychopharmacology(ECNP), the Netherlands
| | | | - Stephen P Hinshaw
- University of California, Berkeley, CA, USA; University of California, San Francisco, CA, USA
| | - Pieter J Hoekstra
- University of Groningen, University Medical Center Groningen, Department of Child and Adolescent Psychiatry, Groningen, the Netherlands
| | - Chris Hollis
- Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York City, New York, USA; Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, UK; Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, UK; NIHR MindTech MedTech Co-operative, Nottingham, UK; NIHR Nottingham Biomedical Research Centre, Nottingham, UK
| | - Scott H Kollins
- Duke University School of Medicine, Durham, NC, USA; Duke Clinical Research Institute, Durham, NC, USA
| | - J J Sandra Kooij
- Amsterdam University Medical Center (VUMc), Amsterdam, the Netherlands; PsyQ, The Hague, the Netherlands; European Network Adult ADHD, the Netherlands; DIVA Foundation, the Netherlands; Neurodevelopmental Disorders Across Lifespan Section of European Psychiatric Association, France
| | - Jonna Kuntsi
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Henrik Larsson
- School of Medical Sciences, Örebro University, Örebro, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden
| | - Tingyu Li
- Growth, Development and Mental Health Center for Children and Adolescents, Children's Hospital of Chongqing Medical University, Chongqing, China; National Research Center for Clinical Medicine of Child Health and Disease, Chongqing, China; The Subspecialty Group of Developmental and Behavioral Pediatrics, the Society of Pediatrics, Chinese Medical Association, China
| | - Jing Liu
- Asian Federation of ADHD, China; Peking University Sixth Hospital/Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China; NHC Key Laboratory of Mental Health (Peking University), Beijing, China; The Chinese Society of Child and Adolescent Psychiatry, China; The Asian Society for Child and Adolescent Psychiatry and Allied Professions, China
| | - Eugene Merzon
- Department of Family Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Leumit Health Services, Tel Aviv, Israel; Israeli Society of ADHD, Israel; Israeli National Diabetes Council, Israel
| | - Gregory Mattingly
- Washington University, St. Louis, MO, USA; Midwest Research Group, St Charles, MO, USA
| | - Paulo Mattos
- Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; D'Or Institute for Research and Education, Rio de Janeiro, Brazil; Brazilian Attention Deficit Association (ABDA), Brazil
| | | | | | - Brooke S G Molina
- Departments of Psychiatry, Psychology, Pediatrics, Clinical & Translational Science, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joel T Nigg
- Center for ADHD Research, Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Diane Purper-Ouakil
- University of Montpellier, CHU Montpellier Saint Eloi, MPEA, Medical and Psychological Unit for Children and Adolescents (MPEA), Montpellier, France; INSERM U 1018 CESP-Developmental Psychiatry, France
| | - Olayinka O Omigbodun
- Centre for Child & Adolescent Mental Health, College of Medicine, University of Ibadan, Ibadan, Nigeria; Department of Child & Adolescent Psychiatry, University College Hospital, Ibadan, Nigeria
| | | | - Yehuda Pollak
- Seymour Fox School of Education, The Hebrew University of Jerusalem, Israel; The Israeli Society of ADHD (ISA), Israel
| | - Alison S Poulton
- Brain Mind Centre Nepean, University of Sydney, Sydney, Australia; Australian ADHD Professionals Association (AADPA), Australia
| | - Ravi Philip Rajkumar
- Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| | | | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany; German Psychiatric Association, Germany
| | - Katya Rubia
- World Federation of ADHD, Switzerland; Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neurosciences, King's College London, London, UK; European Network for Hyperkinetic Disorders (EUNETHYDIS), Germany
| | - Julia Rucklidge
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Marcel Romanos
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany; The German Association of Child and Adolescent Psychiatry and Psychotherapy, Germany; Zentrales-ADHS-Netz, Germany
| | - J Antoni Ramos-Quiroga
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain; Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain; Neurodevelopmental Disorders Across Lifespan Section of European Psychiatric Association, France; International Collaboration on ADHD and Substance Abuse (ICASA), the Netherlands; DIVA Foundation, the Netherlands
| | - Arnt Schellekens
- Radboud University Medical Centre, Donders Institute for Brain, Cognition, and Behavior, Department of Psychiatry, Nijmegen, the Netherlands; International Collaboration on ADHD and Substance Abuse (ICASA), Nijmegen, the Netherlands
| | - Anouk Scheres
- Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands
| | - Renata Schoeman
- University of Stellenbosch Business School, Cape Town, South Africa; South African Special Interest Group for Adult ADHD, South Africa; The South African Society of Psychiatrists/Psychiatry Management Group Management Guidelines for ADHD, South Africa; World Federation of Biological Psychiatry, Germany; American Psychiatric Association, USA; Association for NeuroPsychoEconomics, USA
| | - Julie B Schweitzer
- Department of Psychiatry and Behavioral Sciences and the MIND Institute, University of California, Davis, Sacramento, CA, USA
| | - Henal Shah
- Topiwala National Medical College & BYL Nair Ch. Hospital, Mumbai, India
| | - Mary V Solanto
- The Zucker School of Medicine at Hofstra-Northwell, Northwell Health, Hemstead, NY, USA; Children and Adults with Attention-Deficit/Hyperactivity Disorder (CHADD), USA; American Professional Society of ADHD and Related Disorders (APSARD), USA; National Center for Children with Learning Disabilities (NCLD), USA
| | - Edmund Sonuga-Barke
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Child & Adolescent Psychiatry, Aarhus University, Aarhus, Denmark
| | - César Soutullo
- American Professional Society of ADHD and Related Disorders (APSARD), USA; European Network for Hyperkinetic Disorders (EUNETHYDIS), Germany; Louis A. Faillace MD, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hans-Christoph Steinhausen
- University of Zurich, CH, Switzerland; University of Basel, CH, Switzerland; University of Southern Denmark, Odense, Denmark; Centre of Child and Adolescent Mental Health, Copenhagen, Denmark
| | - James M Swanson
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Anita Thapar
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University School of Medicine, Wales, UK
| | - Gail Tripp
- Human Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Geurt van de Glind
- Hogeschool van Utrecht/University of Applied Sciences, Utrecht, the Netherlands
| | - Wim van den Brink
- Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, the Netherlands
| | - Saskia Van der Oord
- Psychology and Educational Sciences, KU Leuven, Leuven, Belgium; European ADHD Guidelines Group, Germany
| | - Andre Venter
- University of the Free State, Bloemfontein, South Africa
| | - Benedetto Vitiello
- University of Torino, Torino, Italy; Johns Hopkins University School of Public Health, Baltimore, MD, USA
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| | - Yufeng Wang
- Asian Federation of ADHD, China; Peking University Sixth Hospital/Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China; NHC Key Laboratory of Mental Health (Peking University), Beijing, China
| |
Collapse
|