1
|
Zhou X, Li Z, Chen K, Wei Y, Cao Z, Yu D. The expansion of oligopeptide transporters in Melampsora larici-populina may reflect its adaptation to a phytoparasitic lifestyle. Gene 2024; 920:148506. [PMID: 38670390 DOI: 10.1016/j.gene.2024.148506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
The acquisition of nutrients from host plants by phytopathogenic fungi is critically important for their invasion success. Melampsora larici-populina, an obligate biotrophic pathogenic fungus, causes the poplar leaf rust disease and can severely damage host poplar plants. Previously, we found that oligopeptide transporters (OPTs) have undergone a convergent expansion, which might reflect adaptation to a phytoparasitic lifestyle. Here, we used various methods to evaluate this hypothesis, including conserved motif identification, positive selection signal mining, expression pattern clustering analysis, and neutral selection tests. The motif composition of the five clades in the OPT family differed, and positive selection was observed during clade differentiation. This suggests that OPTs in these five clades may be functionally differentiated, which would increase the range of transported substrates and promote the absorption of more types of nitrogen compounds from the hosts. According to clustering analysis of gene expression patterns, the expression of most genes from the two expanded clades (clade 2 and 4) was up-regulated during the infection of poplar trees, indicating that the expansion of OPTs likely occurred to promote the uptake of oligopeptides from host poplar plants. The MellpOPT4g gene was determined to be under significant balancing selection based on the neutral selection tests, suggesting that it plays a role in the pathogenic process. In conclusion, these three observations provide preliminary evidence supporting our hypothesis, as they indicate that the expansion of OPTs in M. larici-populina has aided the ability of this pathogen to acquire nutrients from host plants.
Collapse
Affiliation(s)
- Xianzhen Zhou
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China.
| | - Ziye Li
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China.
| | - Kaiyue Chen
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China.
| | - Yefan Wei
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China.
| | - Zhimin Cao
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China.
| | - Dan Yu
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Jacobus AP, Cavassana SD, de Oliveira II, Barreto JA, Rohwedder E, Frazzon J, Basso TP, Basso LC, Gross J. Optimal trade-off between boosted tolerance and growth fitness during adaptive evolution of yeast to ethanol shocks. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:63. [PMID: 38730312 PMCID: PMC11088041 DOI: 10.1186/s13068-024-02503-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/05/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND The selection of Saccharomyces cerevisiae strains with higher alcohol tolerance can potentially increase the industrial production of ethanol fuel. However, the design of selection protocols to obtain bioethanol yeasts with higher alcohol tolerance poses the challenge of improving industrial strains that are already robust to high ethanol levels. Furthermore, yeasts subjected to mutagenesis and selection, or laboratory evolution, often present adaptation trade-offs wherein higher stress tolerance is attained at the expense of growth and fermentation performance. Although these undesirable side effects are often associated with acute selection regimes, the utility of using harsh ethanol treatments to obtain robust ethanologenic yeasts still has not been fully investigated. RESULTS We conducted an adaptive laboratory evolution by challenging four populations (P1-P4) of the Brazilian bioethanol yeast, Saccharomyces cerevisiae PE-2_H4, through 68-82 cycles of 2-h ethanol shocks (19-30% v/v) and outgrowths. Colonies isolated from the final evolved populations (P1c-P4c) were subjected to whole-genome sequencing, revealing mutations in genes enriched for the cAMP/PKA and trehalose degradation pathways. Fitness analyses of the isolated clones P1c-P3c and reverse-engineered strains demonstrated that mutations were primarily selected for cell viability under ethanol stress, at the cost of decreased growth rates in cultures with or without ethanol. Under this selection regime for stress survival, the population P4 evolved a protective snowflake phenotype resulting from BUD3 disruption. Despite marked adaptation trade-offs, the combination of reverse-engineered mutations cyr1A1474T/usv1Δ conferred 5.46% higher fitness than the parental PE-2_H4 for propagation in 8% (v/v) ethanol, with only a 1.07% fitness cost in a culture medium without alcohol. The cyr1A1474T/usv1Δ strain and evolved P1c displayed robust fermentations of sugarcane molasses using cell recycling and sulfuric acid treatments, mimicking Brazilian bioethanol production. CONCLUSIONS Our study combined genomic, mutational, and fitness analyses to understand the genetic underpinnings of yeast evolution to ethanol shocks. Although fitness analyses revealed that most evolved mutations impose a cost for cell propagation, combination of key mutations cyr1A1474T/usv1Δ endowed yeasts with higher tolerance for growth in the presence of ethanol. Moreover, alleles selected for acute stress survival comprising the P1c genotype conferred stress tolerance and optimal performance under conditions simulating the Brazilian industrial ethanol production.
Collapse
Affiliation(s)
- Ana Paula Jacobus
- Bioenergy Research Institute, São Paulo State University, Rio Claro, Brazil
- SENAI Innovation Institute for Biotechnology, São Paulo, Brazil
| | | | | | | | - Ewerton Rohwedder
- Biological Science Department, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - Jeverson Frazzon
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Thalita Peixoto Basso
- Department of Agri-Food Industry, Food and Nutrition, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - Luiz Carlos Basso
- Biological Science Department, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - Jeferson Gross
- Bioenergy Research Institute, São Paulo State University, Rio Claro, Brazil.
| |
Collapse
|
3
|
Kertsch AL, Einicke J, Miedl J, Hellwig M, Henle T. Utilization of Free and Dipeptide-Bound Formyline and Pyrraline by Saccharomyces Yeasts. Chembiochem 2024:e202300854. [PMID: 38613434 DOI: 10.1002/cbic.202300854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
The utilization of the glycated amino acids formyline and pyrraline as well as their peptide-bound derivatives by 14 Saccharomyces yeasts, including 6 beer yeasts (bottom and top fermenting), one wine yeast, 6 strains isolated from natural habitats and one laboratory reference yeast strain (wild type) was investigated. All yeasts were able to metabolize glycated amino acids via the Ehrlich pathway to the corresponding Ehrlich metabolites. While formyline and small amounts of pyrraline entered the yeast cells via passive diffusion, the amounts of dipeptide-bound MRPs, especially the dipeptides glycated at the C-terminus, decreased much faster, indicating an uptake into the yeast cells. Furthermore, the glycation-mediated hydrophobization in general leads to an faster degradation rate compared to the native lysine dipeptides. While the utilization of free formyline is yeast-specific, the amounts of (glycated) dipeptides decreased faster in the presence of brewer's yeasts, which also showed a higher formation rate of Ehrlich metabolites compared to naturally isolated strains. Due to rapid uptake of alanyl dipeptides, it can be assumed that the Ehrlich enzyme system of naturally isolated yeasts is overloaded and the intracellularly released MRP is primarily excreted from the cell. This indicates adaptation of technologically used yeasts to (glycated) dipeptides as a nitrogen source.
Collapse
Affiliation(s)
- Anna-Lena Kertsch
- Chair of Food Chemistry, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Jana Einicke
- Chair of Food Chemistry, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Julia Miedl
- Chair of Food Chemistry, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Michael Hellwig
- Chair of Special Food Chemistry, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Thomas Henle
- Chair of Food Chemistry, Technische Universität Dresden, D-01062, Dresden, Germany
| |
Collapse
|
4
|
Zhang Z, Diao R, Sun J, Liu Y, Zhao M, Wang Q, Xu Z, Zhong B. Diversified molecular adaptations of inorganic nitrogen assimilation and signaling machineries in plants. THE NEW PHYTOLOGIST 2024; 241:2108-2123. [PMID: 38155438 DOI: 10.1111/nph.19508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023]
Abstract
Plants evolved sophisticated machineries to monitor levels of external nitrogen supply, respond to nitrogen demand from different tissues and integrate this information for coordinating its assimilation. Although roles of inorganic nitrogen in orchestrating developments have been studied in model plants and crops, systematic understanding of the origin and evolution of its assimilation and signaling machineries remains largely unknown. We expanded taxon samplings of algae and early-diverging land plants, covering all main lineages of Archaeplastida, and reconstructed the evolutionary history of core components involved in inorganic nitrogen assimilation and signaling. Most components associated with inorganic nitrogen assimilation were derived from the ancestral Archaeplastida. Improvements of assimilation machineries by gene duplications and horizontal gene transfers were evident during plant terrestrialization. Clusterization of genes encoding nitrate assimilation proteins might be an adaptive strategy for algae to cope with changeable nitrate availability in different habitats. Green plants evolved complex nitrate signaling machinery that was stepwise improved by domains shuffling and regulation co-option. Our study highlights innovations in inorganic nitrogen assimilation and signaling machineries, ranging from molecular modifications of proteins to genomic rearrangements, which shaped developmental and metabolic adaptations of plants to changeable nutrient availability in environments.
Collapse
Affiliation(s)
- Zhenhua Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Runjie Diao
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Jingyan Sun
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yannan Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Mengru Zhao
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Qiuping Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Zilong Xu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
5
|
Berg HY, Arju G, Becerra-Rodríguez C, Galeote V, Nisamedtinov I. Unlocking the secrets of peptide transport in wine yeast: insights into oligopeptide transporter functions and nitrogen source preferences. Appl Environ Microbiol 2023; 89:e0114123. [PMID: 37843270 PMCID: PMC10686055 DOI: 10.1128/aem.01141-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/27/2023] [Indexed: 10/17/2023] Open
Abstract
IMPORTANCE Limited nitrogen supply can prevent the completion of alcoholic fermentation. Supplementation through peptides as an alternative, natural source of nitrogen for yeast offers an interesting solution for this issue. In this work, the S. cerevisiae peptide transporters of the Opt and Fot families were studied. We demonstrated that Fot and Opt2 have a broader peptide length preference than previously reported, enabling yeasts to acquire sufficient nitrogen from peptides without requiring additional ammonia or amino acids to complete fermentation. On the contrary, Opt1 was unable to consume any peptide in the given conditions, whereas it has been described elsewhere as the main peptide transporter for peptides longer than three amino acid residues in experiments in laboratory conditions. This controversy signifies the need in applied sciences for approaching experimental conditions to those prevalent in the industry for its more accurate characterization. Altogether, this work provides further evidence of the importance of peptides as a nitrogen source for yeast and their consequent positive impact on fermentation kinetics.
Collapse
Affiliation(s)
- Hidde Yaël Berg
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
- Center of Food and Fermentation Technologies, Tallinn, Estonia
| | - Georg Arju
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | | | - Virginie Galeote
- SPO, Univ. Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Ildar Nisamedtinov
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
- Lallemand, Inc., Montreal, Canada
| |
Collapse
|
6
|
Becerra-Rodríguez C, Taghouti G, Portier P, Dequin S, Casal M, Paiva S, Galeote V. Yeast Plasma Membrane Fungal Oligopeptide Transporters Display Distinct Substrate Preferences despite Their High Sequence Identity. J Fungi (Basel) 2021; 7:jof7110963. [PMID: 34829250 PMCID: PMC8625066 DOI: 10.3390/jof7110963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 01/10/2023] Open
Abstract
Fungal Oligopeptide Transporters (Fot) Fot1, Fot2 and Fot3 have been found in Saccharomyces cerevisiae wine strains, but not in strains from other environments. In the S. cerevisiae wine strain EC1118, Fot1 and Fot2 are responsible for a broader range of oligopeptide utilization in comparison with strains not containing any Fot. This leads to better fermentation efficiency and an increased production of desirable organoleptic compounds in wine. Despite the benefits associated with Fot activity in S. cerevisiae within the wine environment, little is known about this family of transporters in yeast. The presence of Fot1, Fot2 and Fot3 in S. cerevisiae wine strains is due to horizontal gene transfer from the yeast Torulaspora microellipsoides, which harbors Fot2Tm, FotX and FotY proteins. Sequence analyses revealed that Fot family members have a high sequence identity in these yeast species. In this work, we aimed to further characterize the different Fot family members in terms of subcellular localization, gene expression in enological fermentation and substrate specificity. Using CRISPR/Cas9, we constructed S. cerevisiae wine strains containing each different Fot as the sole oligopeptide transporter to analyze their oligopeptide preferences by phenotype microarrays. The results of oligopeptide consumption show that Fot counterparts have different di-/tripeptide specificities, suggesting that punctual sequence divergence between FOT genes can be crucial for substrate recognition, binding and transport activity. FOT gene expression levels in different S. cerevisiae wine strains during enological fermentation, together with predicted binding motifs for transcriptional regulators in nitrogen metabolism, indicate that these transporters may be under the control of the Nitrogen Catabolite Repression (NCR) system. Finally, we demonstrated that Fot1 is located in the yeast plasma membrane. This work contributes to a better understanding of this family of oligopeptide transporters, which have demonstrated a key role in the utilization of oligopeptides by S. cerevisiae in enological fermentation.
Collapse
Affiliation(s)
- Carmen Becerra-Rodríguez
- SPO, Univ. Montpellier, INRAE, Institut Agro, F-34060 Montpellier, France; (C.B.-R.); (S.D.)
- Centre of Environmental and Molecular Biology, Department of Biology, Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; (M.C.); (S.P.)
| | - Géraldine Taghouti
- Univ. Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, CIRM-CFBP, F-49000 Angers, France; (G.T.); (P.P.)
| | - Perrine Portier
- Univ. Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, CIRM-CFBP, F-49000 Angers, France; (G.T.); (P.P.)
| | - Sylvie Dequin
- SPO, Univ. Montpellier, INRAE, Institut Agro, F-34060 Montpellier, France; (C.B.-R.); (S.D.)
| | - Margarida Casal
- Centre of Environmental and Molecular Biology, Department of Biology, Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; (M.C.); (S.P.)
| | - Sandra Paiva
- Centre of Environmental and Molecular Biology, Department of Biology, Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; (M.C.); (S.P.)
| | - Virginie Galeote
- SPO, Univ. Montpellier, INRAE, Institut Agro, F-34060 Montpellier, France; (C.B.-R.); (S.D.)
- Correspondence:
| |
Collapse
|
7
|
Lee DW, Hong CP, Thak EJ, Park SG, Lee CH, Lim JY, Seo JA, Kang HA. Integrated genomic and transcriptomic analysis reveals unique mechanisms for high osmotolerance and halotolerance in Hyphopichia yeast. Environ Microbiol 2021; 23:3499-3522. [PMID: 33830651 DOI: 10.1111/1462-2920.15464] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/12/2021] [Accepted: 03/13/2021] [Indexed: 11/28/2022]
Abstract
The yeast species Hyphopichia is common in nature and strongly competitive under harsh environmental conditions. Here, we characterized Hyphopichia burtonii KJJ43 and H. pseudoburtonii KJS14, which exhibit strong halotolerance, using genomic and transcriptomic analyses. The genomes of H. burtonii and H. pseudoburtonii comprised eight chromosomes with 85.17% nucleotide identity and significant divergence in synteny. Notably, both Hyphopichia genomes possessed extended gene families of amino acid permeases and ATP-binding cassette (ABC) transporters, whose dynamic expression patterns during osmotic stress were revealed using transcriptome profiling. Intriguingly, we found unique features of the HOG pathway activated by Hog1p even under non-osmotic stress conditions and the upregulation of cytosolic Gpd1 protein during osmotic stress. Associated with hyperfilamentation growth under high osmotic conditions, a set of genes in the FLO family with induced expression in response to NaCl, KCl, and sorbitol supplementation were identified. Moreover, comparative transcriptome analysis reveals the NaCl-specific induction of genes involved in amino acid biosynthesis and metabolism, particularly BAT2. This suggests the potential association between oxoacid reaction involving branched-chain amino acids and osmotolerance. The combined omics analysis of two Hyphopichia species provides insights into the novel mechanisms involved in salt and osmo-stress tolerance exploited by diverse eukaryotic organisms.
Collapse
Affiliation(s)
- Dong Wook Lee
- Molecular Systems Biology Laboratory of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | | | - Eun Jung Thak
- Molecular Systems Biology Laboratory of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | | | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, South Korea
| | - Jae Yun Lim
- School of Systems Biomedical Science, Soongsil University, Seoul, 06978, South Korea
| | - Jeong-Ah Seo
- School of Systems Biomedical Science, Soongsil University, Seoul, 06978, South Korea
| | - Hyun Ah Kang
- Molecular Systems Biology Laboratory of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| |
Collapse
|
8
|
Wang G, Møller-Hansen I, Babaei M, D'Ambrosio V, Christensen HB, Darbani B, Jensen MK, Borodina I. Transportome-wide engineering of Saccharomyces cerevisiae. Metab Eng 2021; 64:52-63. [PMID: 33465478 PMCID: PMC7970624 DOI: 10.1016/j.ymben.2021.01.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/16/2020] [Accepted: 01/10/2021] [Indexed: 12/17/2022]
Abstract
Synthetic biology enables the production of small molecules by recombinant microbes for pharma, food, and materials applications. The secretion of products reduces the cost of separation and purification, but it is challenging to engineer due to the limited understanding of the transporter proteins' functions. Here we describe a method for genome-wide transporter disruption that, in combination with a metabolite biosensor, enables the identification of transporters impacting the production of a given target metabolite in yeast Saccharomyces cerevisiae. We applied the method to study the transport of xenobiotic compounds, cis,cis-muconic acid (CCM), protocatechuic acid (PCA), and betaxanthins. We found 22 transporters that influenced the production of CCM or PCA. The transporter of the 12-spanner drug:H(+) antiporter (DHA1) family Tpo2p was further confirmed to import CCM and PCA in Xenopus expression assays. We also identified three transporter proteins (Qdr1p, Qdr2p, and Apl1p) involved in betaxanthins transport. In summary, the described method enables high-throughput transporter identification for small molecules in cell factories.
Collapse
Affiliation(s)
- Guokun Wang
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Iben Møller-Hansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Mahsa Babaei
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Vasil D'Ambrosio
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Hanne Bjerre Christensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Behrooz Darbani
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Michael Krogh Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
9
|
Wen J, Li PF, Ran F, Guo PC, Zhu JT, Yang J, Zhang LL, Chen P, Li JN, Du H. Genome-wide characterization, expression analyses, and functional prediction of the NPF family in Brassica napus. BMC Genomics 2020; 21:871. [PMID: 33287703 PMCID: PMC7720588 DOI: 10.1186/s12864-020-07274-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/24/2020] [Indexed: 01/14/2023] Open
Abstract
Background NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER (NRT1/PTR) family (NPF) members are essential transporters for many substrates in plants, including nitrate, hormones, peptides, and secondary metabolites. Here, we report the global characterization of NPF in the important oil crop Brassica napus, including that for phylogeny, gene/protein structures, duplications, and expression patterns. Results A total of 199 B. napus (BnaNPFs) NPF-coding genes were identified. Phylogenetic analyses categorized these genes into 11 subfamilies, including three new ones. Sequence feature analysis revealed that members of each subfamily contain conserved gene and protein structures. Many hormone−/abiotic stress-responsive cis-acting elements and transcription factor binding sites were identified in BnaNPF promoter regions. Chromosome distribution analysis indicated that BnaNPFs within a subfamily tend to cluster on one chromosome. Syntenic relationship analysis showed that allotetraploid creation by its ancestors (Brassica rapa and Brassica oleracea) (57.89%) and small-scale duplication events (39.85%) contributed to rapid BnaNPF expansion in B. napus. A genome-wide spatiotemporal expression survey showed that NPF genes of each Arabidopsis and B. napus subfamily have preferential expression patterns across developmental stages, most of them are expressed in a few organs. RNA-seq analysis showed that many BnaNPFs (32.66%) have wide exogenous hormone-inductive profiles, suggesting important hormone-mediated patterns in diverse bioprocesses. Homologs in a clade or branch within a given subfamily have conserved organ/spatiotemporal and hormone-inductive profiles, indicating functional conservation during evolution. qRT-PCR-based comparative expression analysis of the 12 BnaNPFs in the NPF2–1 subfamily between high- and low-glucosinolate (GLS) content B. napus varieties revealed that homologs of AtNPF2.9 (BnaNPF2.12, BnaNPF2.13, and BnaNPF2.14), AtNPF2.10 (BnaNPF2.19 and BnaNPF2.20), and AtNPF2.11 (BnaNPF2.26 and BnaNPF2.28) might be involved in GLS transport. qRT-PCR further confirmed the hormone-responsive expression profiles of these putative GLS transporter genes. Conclusion We identified 199 B. napus BnaNPFs; these were divided into 11 subfamilies. Allopolyploidy and small-scale duplication events contributed to the immense expansion of BnaNPFs in B. napus. The BnaNPFs had preferential expression patterns in different tissues/organs and wide hormone-induced expression profiles. Four BnaNPFs in the NPF2–1 subfamily may be involved in GLS transport. Our results provide an abundant gene resource for further functional analysis of BnaNPFs. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07274-7.
Collapse
Affiliation(s)
- Jing Wen
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Peng-Feng Li
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Feng Ran
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Peng-Cheng Guo
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Jia-Tian Zhu
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Jin Yang
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Lan-Lan Zhang
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Ping Chen
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Jia-Na Li
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Hai Du
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China. .,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
10
|
Naider F, Becker JM. A Paradigm for Peptide Hormone-GPCR Analyses. Molecules 2020; 25:E4272. [PMID: 32961885 PMCID: PMC7570734 DOI: 10.3390/molecules25184272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 01/14/2023] Open
Abstract
Work from our laboratories over the last 35 years that has focused on Ste2p, a G protein-coupled receptor (GPCR), and its tridecapeptide ligand α-factor is reviewed. Our work utilized the yeast Saccharomyces cerevisiae as a model system for understanding peptide-GPCR interactions. It explored the structure and function of synthetic α-factor analogs and biosynthetic receptor domains, as well as designed mutations of Ste2p. The results and conclusions are described using the nuclear magnetic resonance interrogation of synthetic Ste2p transmembrane domains (TMs), the fluorescence interrogation of agonist and antagonist binding, the biochemical crosslinking of peptide analogs to Ste2p, and the phenotypes of receptor mutants. We identified the ligand-binding domain in Ste2p, the functional assemblies of TMs, unexpected and interesting ligand analogs; gained insights into the bound α-factor structure; and unraveled the function and structures of various Ste2p domains, including the N-terminus, TMs, loops connecting the TMs, and the C-terminus. Our studies showed interactions between specific residues of Ste2p in an active state, but not resting state, and the effect of ligand activation on the dimerization of Ste2p. We show that, using a battery of different biochemical and genetic approaches, deep insight can be gained into the structure and conformational dynamics of GPCR-peptide interactions in the absence of a crystal structure.
Collapse
Affiliation(s)
- Fred Naider
- Department of Chemistry, College of Staten Island, CUNY, 2800 Victory Blvd, Staten Island, NY 10314, USA
| | - Jeffrey M. Becker
- Department of Microbiology, University of Tennessee, 610 Ken and Blaire Mossman Building, 1311 Cumberland Avenue, Knoxville, TN 37996, USA
| |
Collapse
|
11
|
Becerra-Rodríguez C, Marsit S, Galeote V. Diversity of Oligopeptide Transport in Yeast and Its Impact on Adaptation to Winemaking Conditions. Front Genet 2020; 11:602. [PMID: 32587604 PMCID: PMC7298112 DOI: 10.3389/fgene.2020.00602] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022] Open
Abstract
Nitrogen is an essential nutrient for yeasts and its relative abundance is an important modulator of fermentation kinetics. The main sources of nitrogen in food are ammonium and free amino acids, however, secondary sources such as oligopeptides are also important contributors to the nitrogen supply. In yeast, oligopeptide uptake is driven by different families of proton–coupled transporters whose specificity depends on peptide length. Proton-dependent Oligopeptide Transporters (POT) are specific to di- and tri-peptides, whereas the Oligopeptide Transport (OPT) family members import tetra- and pentapeptides. Recently, the novel family of Fungal Oligopeptide Transporters (FOT) has been identified in Saccharomyces cerevisiae wine strains as a result of a horizontal gene transfer from Torulaspora microellipsoides. In natural grape must fermentations with S. cerevisiae, Fots have a broader range of oligopeptide utilization in comparison with non-Fot strains, leading to higher biomass production and better fermentation efficiency. In this review we present the current knowledge on the diversity of oligopeptide transporters in yeast, also discussing how the consumption of oligopeptides provides an adaptive advantage to yeasts within the wine environment.
Collapse
Affiliation(s)
| | - Souhir Marsit
- Institut de Biologie Intégrative et des Systèmes, Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, (PROTEO), Département de Biologie, Université Laval, Québec City, QC, Canada
| | - Virginie Galeote
- SPO, INRAE, Université de Montpellier, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
12
|
Sofyanovich OA, Nishiuchi H, Yamagishi K, Matrosova EV, Serebrianyi VA. Multiple pathways for the formation of the γ-glutamyl peptides γ-glutamyl-valine and γ- glutamyl-valyl-glycine in Saccharomyces cerevisiae. PLoS One 2019; 14:e0216622. [PMID: 31071163 PMCID: PMC6508711 DOI: 10.1371/journal.pone.0216622] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/24/2019] [Indexed: 01/16/2023] Open
Abstract
The role of glutathione (GSH) in eukaryotic cells is well known. The biosynthesis of this γ-glutamine tripeptide is well studied. However, other γ-glutamyl peptides were found in various sources, and the pathways of their formation were not always clear. The aim of the present study was to determine whether Saccharomyces cerevisiae can produce γ-glutamyl tripeptides other than GSH and to identify the pathways associated with the formation of these peptides. The tripeptide γ-Glu-Val-Gly (γ-EVG) was used as a model. Wild-type yeast cells were shown to produce this peptide during cultivation in minimal synthetic medium. Two different biosynthetic pathways for this peptide were identified. The first pathway consisted of two steps. In the first step, γ-Glu-Val (γ-EV) was produced from glutamate and valine by the glutamate-cysteine ligase (GCL) Gsh1p or by the transfer of the γ-glutamyl group from GSH to valine by the γ-glutamyltransferase (GGT) Ecm38p or by the (Dug2p-Dug3p)2 complex. In the next step, γ-EV was combined with glycine by the glutathione synthetase (GS) Gsh2p. The second pathway consisted of transfer of the γ-glutamyl residue from GSH to the dipeptide Val-Gly (VG). This reaction was carried out mainly by the (Dug2p-Dug3p)2 complex, whereas the GGT Ecm38p did not participate in this reaction. The contribution of each of these two pathways to the intracellular pool of γ-EVG was dependent on cultivation conditions. In this work, we also found that Dug1p, previously identified as a Cys-Gly dipeptidase, played an essential role in the hydrolysis of the dipeptide VG in yeast cells. It was also demonstrated that γ-EV and γ-EVG could be effectively imported from the medium and that γ-EVG was imported by Opt1p, known to be a GSH importer. Our results demonstrated that γ-glutamyl peptides, particularly γ-EVG, are produced in yeast as products of several physiologically important reactions and are therefore natural components of yeast cells.
Collapse
Affiliation(s)
| | - Hiroaki Nishiuchi
- Process Development Laboratories, Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc, Kawasaki, Kanagawa, Japan
| | - Kazuo Yamagishi
- Process Development Laboratories, Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc, Kawasaki, Kanagawa, Japan
| | | | | |
Collapse
|
13
|
Nugent B, Ali SS, Mullins E, Doohan FM. A Major Facilitator Superfamily Peptide Transporter From Fusarium oxysporum Influences Bioethanol Production From Lignocellulosic Material. Front Microbiol 2019; 10:295. [PMID: 30863378 PMCID: PMC6399157 DOI: 10.3389/fmicb.2019.00295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 02/04/2019] [Indexed: 11/13/2022] Open
Abstract
Fusarium oxysporum is a leading microbial agent in the emerging consolidated bioprocessing (CBP) industry owing to its capability to infiltrate the plant's lignin barrier and degrade complex carbohydrates to value-added chemicals such as bioethanol in a single step. Membrane transport of nutrients is a key factor in successful microbial colonization of host tissue. This study assessed the impact of a peptide transporter on F. oxysporum's ability to convert lignocellulosic straw to ethanol. We characterized a novel F. oxysporum peptide transporter (FoPTR2) of the dipeptide/tripeptide transporter (PTR) class. FoPTR2 represents a novel transporter with high homology to the Trichoderma sp. peptide transporters ThPTR2 and TrEST-AO793. Its expression level was highly activated in nitrogen-poor environments, which is a characteristic of PTR class peptide transporters. Overexpression and post-translational gene silencing of the FoPTR2 in F. oxysporum affected the peptide transport capacity and ethanol yielded from a both a wheat straw/bran mix and glucose. Thus, we conclude that it FoPTR2 plays a role in the nutrient acquisition system of F. oxysporum which serves to not only enhance fungal fitness but also CBP efficacy.
Collapse
Affiliation(s)
- Brian Nugent
- Molecular Plant-Microbe Interactions Laboratory, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Shahin S. Ali
- Molecular Plant-Microbe Interactions Laboratory, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Ewen Mullins
- Department of Crop Science, Teagasc Research Centre, Carlow, Ireland
| | - Fiona M. Doohan
- Molecular Plant-Microbe Interactions Laboratory, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
14
|
Kitamura K, Kinsui EZB. The benefits and risks of expressing the POT and FOT family of oligopeptide transporters in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 2018; 82:540-546. [PMID: 29447073 DOI: 10.1080/09168451.2018.1433994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the yeast Saccharomyces cerevisiae, all strains possess a gene for the evolutionarily conserved POT family peptide transporter, Ptr2; however, the genes for a novel FOT family transporter were found only in some wine brewing strains. The substrate specificity of the POT and FOT family of transporters was compared. Among the naturally occurring oligopeptides that were tested, Lys-Leu and Arg-Phe were Ptr2-specific substrates. Artificial dipeptide aspartame was imported specifically through the FOT transporter, but the structurally similar Asp-Phe was a substrate of both FOT and Ptr2 transporters. Furthermore, only the FOT transporter was important for high sensitivity to an antibiotic puromycin. These results demonstrate that the POT and FOT family of transporters have distinct substrate preferences although both transporters import overlapping dipeptide substrates. Having POT and FOT transporters is advantageous for cells to acquire nutrients, but also detrimental when these cells are exposed to the toxic molecules of their substrates.
Collapse
Affiliation(s)
- Kenji Kitamura
- a Center for Gene Science , Hiroshima University , Higashi-Hiroshima , Japan
| | | |
Collapse
|
15
|
Lysøe E, Dees MW, Brurberg MB. A Three-Way Transcriptomic Interaction Study of a Biocontrol Agent (Clonostachys rosea), a Fungal Pathogen (Helminthosporium solani), and a Potato Host (Solanum tuberosum). MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:646-655. [PMID: 28585451 DOI: 10.1094/mpmi-03-17-0062-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Helminthosporium solani causes silver scurf, which affects the quality of potato. The biocontrol agent Clonostachys rosea greatly limited the severity of silver scurf symptoms and amount of H. solani genomic DNA in laboratory experiments. Transcriptomic analysis during interaction showed that H. solani gene expression was highly reduced when coinoculated with the biocontrol agent C. rosea, whereas gene expression of C. rosea was clearly boosted as a response to the pathogen. The most notable upregulated C. rosea genes were those encoding proteins involved in cellular response to oxidative stress, proteases, G-protein signaling, and the methyltransferase LaeA. The most notable potato response to both fungi was downregulation of defense-related genes and mitogen-activated protein kinase kinase kinases. At a later stage, this shifted, and most potato defense genes were turned on, especially those involved in terpenoid biosynthesis when H. solani was present. Some biocontrol-activated defense-related genes in potato were upregulated during early interaction with C. rosea alone that were not triggered by H. solani alone. Our results indicate that the reductions of silver scurf using C. rosea are probably due to a combination of mechanisms, including mycoparasitism, biocontrol-activated stimulation of plant defense mechanisms, microbial competition for nutrients, space, and antibiosis.
Collapse
Affiliation(s)
- Erik Lysøe
- 1 Norwegian Institute of Bioeconomy Research, Division of Biotechnology and Plant Health, Høgskoleveien 7, 1430 Ås, Norway; and
| | - Merete W Dees
- 1 Norwegian Institute of Bioeconomy Research, Division of Biotechnology and Plant Health, Høgskoleveien 7, 1430 Ås, Norway; and
| | - May Bente Brurberg
- 1 Norwegian Institute of Bioeconomy Research, Division of Biotechnology and Plant Health, Høgskoleveien 7, 1430 Ås, Norway; and
- 2 Norwegian University of Life Sciences, Department of Plant Sciences, 1432 Ås, Norway
| |
Collapse
|
16
|
Droce A, Sørensen JL, Sondergaard TE, Rasmussen JJ, Lysøe E, Giese H. PTR2 peptide transporters in Fusarium graminearum influence secondary metabolite production and sexual development. Fungal Biol 2017; 121:515-527. [PMID: 28390508 DOI: 10.1016/j.funbio.2017.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/14/2017] [Accepted: 02/14/2017] [Indexed: 10/20/2022]
|
17
|
Bisson MMA, Kessenbrock M, Müller L, Hofmann A, Schmitz F, Cristescu SM, Groth G. Peptides interfering with protein-protein interactions in the ethylene signaling pathway delay tomato fruit ripening. Sci Rep 2016; 6:30634. [PMID: 27477591 PMCID: PMC4967898 DOI: 10.1038/srep30634] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 07/07/2016] [Indexed: 01/18/2023] Open
Abstract
The plant hormone ethylene is involved in the regulation of several processes with high importance for agricultural applications, e.g. ripening, aging and senescence. Previous work in our group has identified a small peptide (NOP-1) derived from the nuclear localization signal of the Arabidopsis ethylene regulator ETHYLENE INSENSITIVE-2 (EIN2) C-terminal part as efficient inhibitor of ethylene responses. Here, we show that NOP-1 is also able to efficiently disrupt EIN2-ETR1 complex formation in tomato, indicating that the NOP-1 inhibition mode is conserved across plant species. Surface application of NOP-1 on green tomato fruits delays ripening similar to known inhibitors of ethylene perception (MCP) and ethylene biosynthesis (AVG). Fruits treated with NOP-1 showed similar ethylene production as untreated controls underlining that NOP-1 blocks ethylene signaling by targeting an essential interaction in this pathway, while having no effect on ethylene biosynthesis.
Collapse
Affiliation(s)
- Melanie M. A. Bisson
- Biochemical Plant Physiology, Heinrich-Heine-University Düsseldorf, D-40204 Düsseldorf, Germany
| | - Mareike Kessenbrock
- Biochemical Plant Physiology, Heinrich-Heine-University Düsseldorf, D-40204 Düsseldorf, Germany
| | - Lena Müller
- Biochemical Plant Physiology, Heinrich-Heine-University Düsseldorf, D-40204 Düsseldorf, Germany
| | - Alexander Hofmann
- Biochemical Plant Physiology, Heinrich-Heine-University Düsseldorf, D-40204 Düsseldorf, Germany
| | - Florian Schmitz
- Biochemical Plant Physiology, Heinrich-Heine-University Düsseldorf, D-40204 Düsseldorf, Germany
| | - Simona M. Cristescu
- Department of Molecular and Laser Physics, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Georg Groth
- Biochemical Plant Physiology, Heinrich-Heine-University Düsseldorf, D-40204 Düsseldorf, Germany
| |
Collapse
|
18
|
Kevvai K, Kütt ML, Nisamedtinov I, Paalme T. Simultaneous utilization of ammonia, free amino acids and peptides during fermentative growth ofSaccharomyces cerevisiae. JOURNAL OF THE INSTITUTE OF BREWING 2016. [DOI: 10.1002/jib.298] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Kaspar Kevvai
- Competence Centre of Food and Fermentation Technologies; Tallinn Estonia
- Tallinn University of Technology; Tallinn Estonia
| | - Mary-Liis Kütt
- Competence Centre of Food and Fermentation Technologies; Tallinn Estonia
- Tallinn University of Technology; Tallinn Estonia
| | - Ildar Nisamedtinov
- Competence Centre of Food and Fermentation Technologies; Tallinn Estonia
- Tallinn University of Technology; Tallinn Estonia
- Lallemand Inc.; Montréal QC Canada
| | | |
Collapse
|
19
|
Melnykov AV. New mechanisms that regulate Saccharomyces cerevisiae short peptide transporter achieve balanced intracellular amino acid concentrations. Yeast 2015; 33:21-31. [PMID: 26537311 DOI: 10.1002/yea.3137] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/20/2015] [Accepted: 09/30/2015] [Indexed: 12/25/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae is able to take up large quantities of amino acids in the form of di- and tripeptides via a short peptide transporter, Ptr2p. It is known that PTR2 can be induced by certain peptides and amino acids, and the mechanisms governing this upregulation are understood at the molecular level. We describe two new opposing mechanisms of regulation that emphasize potential toxicity of amino acids: the first is upregulation of PTR2 in a population of cells, caused by amino acid secretion that accompanies peptide uptake; the second is loss of Ptr2p activity, due to transporter internalization following peptide uptake. Our findings emphasize the importance of proper amino acid balance in the cell and extend understanding of peptide import regulation in yeast.
Collapse
Affiliation(s)
- Artem V Melnykov
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
20
|
Rinaldi A, Blaiotta G, Aponte M, Moio L. Effect of yeast strain and some nutritional factors on tannin composition and potential astringency of model wines. Food Microbiol 2015; 53:128-34. [PMID: 26678140 DOI: 10.1016/j.fm.2015.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 07/30/2015] [Accepted: 09/21/2015] [Indexed: 10/23/2022]
Abstract
Nine Saccharomyces cerevisiae cultures, isolated from different sources, were tested for their ability to reduce tannins reactive towards salivary proteins, and potentially responsible for wine astringency. Strains were preliminary genetically characterized and evaluated for physiological features of technological interest. Laboratory-scale fermentations were performed in three synthetic media: CT) containing enological grape tannin; CTP) CT supplemented with organic nitrogen sources; CTPV) CTP supplemented with vitamins. Adsorption of total tannins, tannins reactive towards salivary proteins, yellow pigments, phenolics having antioxidant activity, and total phenols, characterizing the enological tannin, was determined by spectrophotometric methods after fermentation. The presence of vitamins and peptones in musts greatly influenced the adsorption of tannins reactive towards salivary proteins (4.24 g/L gallic acid equivalent), thus promoting the reduction of the potential astringency of model wines. With reference to the different phenolic classes, yeast strains showed different adsorption abilities. From a technological point of view, the yeast choice proved to be crucial in determining changes in gustative and mouthfeel profile of red wines and may assist winemakers to modulate colour and astringency of wine.
Collapse
Affiliation(s)
- Alessandra Rinaldi
- Università degli Studi di Napoli Federico II, Dipartimento di Agraria, Sezione di Scienze della Vigna e del Vino, Viale Italia, angolo Via Perrottelli, 83100, Avellino, Italy; Biolaffort, 126 Quai de la Souys, 33100, Bordeaux, France.
| | - Giuseppe Blaiotta
- Università degli Studi di Napoli Federico II, Dipartimento di Agraria, Sezione di Scienze della Vigna e del Vino, Viale Italia, angolo Via Perrottelli, 83100, Avellino, Italy
| | - Maria Aponte
- Università degli Studi di Napoli Federico II, Dipartimento di Agraria, Sezione di Microbiologia, Via Università 100, 80055, Portici, NA, Italy
| | - Luigi Moio
- Università degli Studi di Napoli Federico II, Dipartimento di Agraria, Sezione di Scienze della Vigna e del Vino, Viale Italia, angolo Via Perrottelli, 83100, Avellino, Italy
| |
Collapse
|
21
|
Cordente AG, Capone DL, Curtin CD. Unravelling glutathione conjugate catabolism in Saccharomyces cerevisiae: the role of glutathione/dipeptide transporters and vacuolar function in the release of volatile sulfur compounds 3-mercaptohexan-1-ol and 4-mercapto-4-methylpentan-2-one. Appl Microbiol Biotechnol 2015; 99:9709-22. [PMID: 26227410 DOI: 10.1007/s00253-015-6833-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 07/07/2015] [Accepted: 07/11/2015] [Indexed: 11/29/2022]
Abstract
Sulfur-containing aroma compounds are key contributors to the flavour of a diverse range of foods and beverages, such as wine. The tropical fruit characters of Sauvignon Blanc wines are attributed to the presence of the aromatic thiols 3-mercaptohexan-1-ol (3-MH), its acetate ester 3-mercaptohexyl acetate (3-MHA), and 4-mercapto-4-methylpentan-2-one (4-MMP). These aromatic thiols are not detectable in grape juice to any significant extent but are released by yeast during alcoholic fermentation. While the processes involved in the release of 3-MH and 4-MMP from their cysteinylated precursors have been studied extensively, degradation pathways for glutathione S-conjugates (GSH-3-MH and GSH-4-MMP) have not. In this study, a candidate gene approach was taken, focusing on genes known to play a role in glutathione and glutathione-S-conjugate turnover in Saccharomyces cerevisiae. Our results confirm the role of Opt1p as the major transporter responsible for uptake of GSH-3-MH and GSH-4-MMP, and identify vacuolar Ecm38p as a key determinant of 3-MH release from GSH-3-MH. ECM38 was unimportant, on the other hand, for release of 4-MMP, and abolition of vacuolar biogenesis caused an increase in the amount of 4-MMP released. The alternative cytosolic glutathione degradation pathway was not involved in release of either thiol from their glutathionylated precursors. Finally, cycling of GSH-3-MH and/or its breakdown intermediates between the cytosol and the vacuole or extracellular space was implicated in modulation of 3-MH formation. Together, these results provide new targets for development of yeast strains that optimize release of these potent volatile sulfur compounds, and further our understanding of the processes involved in glutathione-S-conjugate turnover.
Collapse
Affiliation(s)
- Antonio G Cordente
- The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, Adelaide, SA, 5064, Australia
| | - Dimitra L Capone
- The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, Adelaide, SA, 5064, Australia
| | - Chris D Curtin
- The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, Adelaide, SA, 5064, Australia.
| |
Collapse
|
22
|
Droce A, Holm KB, Olsson S, Frandsen RJN, Sondergaard TE, Sørensen JL, Giese H. Expression profiling and functional analyses of BghPTR2, a peptide transporter from Blumeria graminis f. sp. hordei. Fungal Biol 2015; 119:551-9. [PMID: 26058531 DOI: 10.1016/j.funbio.2015.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 02/04/2023]
Affiliation(s)
- Aida Droce
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark.
| | | | - Stefan Olsson
- Section for Genetics and Microbiology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark
| | - Rasmus J N Frandsen
- Section for Eukaryotic Biotechnology, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Build 223, 2800 Kgs. Lyngby, Denmark
| | - Teis Esben Sondergaard
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark
| | - Jens Laurids Sørensen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark
| | - Henriette Giese
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark
| |
Collapse
|
23
|
Belmondo S, Fiorilli V, Pérez-Tienda J, Ferrol N, Marmeisse R, Lanfranco L. A dipeptide transporter from the arbuscular mycorrhizal fungus Rhizophagus irregularis is upregulated in the intraradical phase. FRONTIERS IN PLANT SCIENCE 2014; 5:436. [PMID: 25232358 PMCID: PMC4153046 DOI: 10.3389/fpls.2014.00436] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/15/2014] [Indexed: 05/09/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF), which form an ancient and widespread mutualistic symbiosis with plants, are a crucial but still enigmatic component of the plant micro biome. Nutrient exchange has probably been at the heart of the success of this plant-fungus interaction since the earliest days of plants on land. To characterize genes from the fungal partner involved in nutrient exchange, and presumably important for the functioning of the AM symbiosis, genome-wide transcriptomic data obtained from the AMF Rhizophagus irregularis were exploited. A gene sequence, showing amino acid sequence and transmembrane domains profile similar to members of the PTR2 family of fungal oligopeptide transporters, was identified and called RiPTR2. The functional properties of RiPTR2 were investigated by means of heterologous expression in Saccharomyces cerevisiae mutants defective in either one or both of its di/tripeptide transporter genes PTR2 and DAL5. These assays showed that RiPTR2 can transport dipeptides such as Ala-Leu, Ala-Tyr or Tyr-Ala. From the gene expression analyses it seems that RiPTR2 responds to different environmental clues when the fungus grows inside the root and in the extraradical phase.
Collapse
Affiliation(s)
- Simone Belmondo
- Department of Life Sciences and Systems Biology, University of TorinoTorino, Italy
| | - Valentina Fiorilli
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle RicercheTorino, Italy
| | - Jacob Pérez-Tienda
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Consejo Superior de Investigaciones CientificasGranada, Spain
| | - Nuria Ferrol
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Consejo Superior de Investigaciones CientificasGranada, Spain
| | - Roland Marmeisse
- Department of Life Sciences and Systems Biology, University of TorinoTorino, Italy
- Ecologie Microbienne, UMR CNRS 5557 - USC INRA 1364, Université Lyon 1, Université de LyonVilleurbanne, France
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of TorinoTorino, Italy
| |
Collapse
|
24
|
Van Zeebroeck G, Rubio-Texeira M, Schothorst J, Thevelein JM. Specific analogues uncouple transport, signalling, oligo-ubiquitination and endocytosis in the yeast Gap1 amino acid transceptor. Mol Microbiol 2014; 93:213-33. [PMID: 24852066 PMCID: PMC4285233 DOI: 10.1111/mmi.12654] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2014] [Indexed: 12/14/2022]
Abstract
The Saccharomyces cerevisiae amino acid transceptor Gap1 functions as receptor for signalling to the PKA pathway and concomitantly undergoes substrate-induced oligo-ubiquitination and endocytosis. We have identified specific amino acids and analogues that uncouple to certain extent signalling, transport, oligo-ubiquitination and endocytosis. l-lysine, l-histidine and l-tryptophan are transported by Gap1 but do not trigger signalling. Unlike l-histidine, l-lysine triggers Gap1 oligo-ubiquitination without substantial induction of endocytosis. Two transported, non-metabolizable signalling agonists, β-alanine and d-histidine, are strong and weak inducers of Gap1 endocytosis, respectively, but both causing Gap1 oligo-ubiquitination. The non-signalling agonist, non-transported competitive inhibitor of Gap1 transport, l-Asp-γ-l-Phe, induces oligo-ubiquitination but no discernible endocytosis. The Km of l-citrulline transport is much lower than the threshold concentration for signalling and endocytosis. These results show that molecules can be transported without triggering signalling or substantial endocytosis, and that oligo-ubiquitination and endocytosis do not require signalling nor metabolism. Oligo-ubiquitination is required, but apparently not sufficient to trigger endocytosis. In addition, we demonstrate intracellular cross-induction of endocytosis of transport-defective Gap1Y395C by ubiquitination- and endocytosis-deficient Gap1K9R,K16R. Our results support the concept that different substrates bind to partially overlapping binding sites in the same general substrate-binding pocket of Gap1, triggering divergent conformations, resulting in different conformation-induced downstream processes.
Collapse
Affiliation(s)
- Griet Van Zeebroeck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Belgium; Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, Leuven-Heverlee, Flanders, B-3001, Belgium
| | | | | | | |
Collapse
|
25
|
Analysing the substrate multispecificity of a proton-coupled oligopeptide transporter using a dipeptide library. Nat Commun 2014; 4:2502. [PMID: 24060756 PMCID: PMC3791473 DOI: 10.1038/ncomms3502] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 08/23/2013] [Indexed: 01/26/2023] Open
Abstract
Peptide uptake systems that involve members of the proton-coupled oligopeptide transporter (POT) family are conserved across all organisms. POT proteins have characteristic substrate multispecificity, with which one transporter can recognize as many as 8,400 types of di/tripeptides and certain peptide-like drugs. Here we characterize the substrate multispecificity of Ptr2p, a major peptide transporter of Saccharomyces cerevisiae, using a dipeptide library. The affinities (Ki) of di/tripeptides toward Ptr2p show a wide distribution range from 48 mM to 0.020 mM. This substrate multispecificity indicates that POT family members have an important role in the preferential uptake of vital amino acids. In addition, we successfully establish high performance ligand affinity prediction models (97% accuracy) using our comprehensive dipeptide screening data in conjunction with simple property indices for describing ligand molecules. Our results provide an important clue to the development of highly absorbable peptides and their derivatives including peptide-like drugs. Proton-coupled oligopeptide transporters (POTs) can recognize and mediate the uptake of up to 8,400 di/tripeptides or peptide-like drugs. Ito et al. comprehensively map the substrate specificity of the yeast POT Ptr2p, and use this information to construct models for the prediction of ligand affinity.
Collapse
|
26
|
Léran S, Varala K, Boyer JC, Chiurazzi M, Crawford N, Daniel-Vedele F, David L, Dickstein R, Fernandez E, Forde B, Gassmann W, Geiger D, Gojon A, Gong JM, Halkier BA, Harris JM, Hedrich R, Limami AM, Rentsch D, Seo M, Tsay YF, Zhang M, Coruzzi G, Lacombe B. A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. TRENDS IN PLANT SCIENCE 2014; 19:5-9. [PMID: 24055139 DOI: 10.1016/j.tplants.2013.08.008] [Citation(s) in RCA: 384] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/16/2013] [Accepted: 08/22/2013] [Indexed: 05/18/2023]
Abstract
Members of the plant NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER (NRT1/PTR) family display protein sequence homology with the SLC15/PepT/PTR/POT family of peptide transporters in animals. In comparison to their animal and bacterial counterparts, these plant proteins transport a wide variety of substrates: nitrate, peptides, amino acids, dicarboxylates, glucosinolates, IAA, and ABA. The phylogenetic relationship of the members of the NRT1/PTR family in 31 fully sequenced plant genomes allowed the identification of unambiguous clades, defining eight subfamilies. The phylogenetic tree was used to determine a unified nomenclature of this family named NPF, for NRT1/PTR FAMILY. We propose that the members should be named accordingly: NPFX.Y, where X denotes the subfamily and Y the individual member within the species.
Collapse
Affiliation(s)
- Sophie Léran
- Biochimie et Physiologie Moléculaire des Plantes, UMR CNRS/INRA/UM2/SupAgro, Institut de Biologie Intégrative des Plantes 'Claude Grignon', Place Viala, 34060 Montpellier, France
| | - Kranthi Varala
- Department of Biology, Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
| | - Jean-Christophe Boyer
- Biochimie et Physiologie Moléculaire des Plantes, UMR CNRS/INRA/UM2/SupAgro, Institut de Biologie Intégrative des Plantes 'Claude Grignon', Place Viala, 34060 Montpellier, France
| | - Maurizio Chiurazzi
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso', CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Nigel Crawford
- Section of Cell and Developmental Biology, UC San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Françoise Daniel-Vedele
- INRA AgroParisTech, UMR1318 Institut Jean-Pierre Bourgin, RD10, 78026 Versailles Cedex, France
| | - Laure David
- INRA AgroParisTech, UMR1318 Institut Jean-Pierre Bourgin, RD10, 78026 Versailles Cedex, France
| | - Rebecca Dickstein
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA
| | - Emilio Fernandez
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa Baja E, Campus de Rabanales, E-14071, Córdoba, Spain
| | - Brian Forde
- Centre for Sustainable Agriculture, Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Walter Gassmann
- Division of Plant Sciences, CS Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Dietmar Geiger
- Universität Würzburg, Julius-von-Sachs-Institut für Biowissenschaften, Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | - Alain Gojon
- Biochimie et Physiologie Moléculaire des Plantes, UMR CNRS/INRA/UM2/SupAgro, Institut de Biologie Intégrative des Plantes 'Claude Grignon', Place Viala, 34060 Montpellier, France
| | - Ji-Ming Gong
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Barbara A Halkier
- DynaMo Centre of Excellence, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Jeanne M Harris
- Department of Plant Biology, 315 Jeffords Hall, 63 Carrigan Drive, University of Vermont, Burlington, VT 05405, USA
| | - Rainer Hedrich
- Universität Würzburg, Julius-von-Sachs-Institut für Biowissenschaften, Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | - Anis M Limami
- UMR 1345 Research Institute of Horticulture and Seeds (INRA, Agrocampus-Ouest, University of Angers), SFR 4207 Quasav, 2 Bd Lavoisier, 49045 Angers Cedex, France
| | - Doris Rentsch
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Yi-Fang Tsay
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Mingyong Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Gloria Coruzzi
- Department of Biology, Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
| | - Benoît Lacombe
- Biochimie et Physiologie Moléculaire des Plantes, UMR CNRS/INRA/UM2/SupAgro, Institut de Biologie Intégrative des Plantes 'Claude Grignon', Place Viala, 34060 Montpellier, France.
| |
Collapse
|
27
|
Casieri L, Ait Lahmidi N, Doidy J, Veneault-Fourrey C, Migeon A, Bonneau L, Courty PE, Garcia K, Charbonnier M, Delteil A, Brun A, Zimmermann S, Plassard C, Wipf D. Biotrophic transportome in mutualistic plant-fungal interactions. MYCORRHIZA 2013; 23:597-625. [PMID: 23572325 DOI: 10.1007/s00572-013-0496-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 03/13/2013] [Indexed: 05/08/2023]
Abstract
Understanding the mechanisms that underlie nutrient use efficiency and carbon allocation along with mycorrhizal interactions is critical for managing croplands and forests soundly. Indeed, nutrient availability, uptake and exchange in biotrophic interactions drive plant growth and modulate biomass allocation. These parameters are crucial for plant yield, a major issue in the context of high biomass production. Transport processes across the polarized membrane interfaces are of major importance in the functioning of the established mycorrhizal association as the symbiotic relationship is based on a 'fair trade' between the fungus and the host plant. Nutrient and/or metabolite uptake and exchanges, at biotrophic interfaces, are controlled by membrane transporters whose regulation patterns are essential for determining the outcome of plant-fungus interactions and adapting to changes in soil nutrient quantity and/or quality. In the present review, we summarize the current state of the art regarding transport systems in the two major forms of mycorrhiza, namely ecto- and arbuscular mycorrhiza.
Collapse
Affiliation(s)
- Leonardo Casieri
- UMR Agroécologie INRA 1347/Agrosup/Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, BP 86510, 21065, Dijon Cedex, France,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Xiang Q, Wang Z, Zhang Y, Wang H. An oligopeptide transporter gene family in Phanerochaete chrysosporium. Gene 2013; 522:133-41. [DOI: 10.1016/j.gene.2013.03.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/21/2013] [Accepted: 03/16/2013] [Indexed: 10/27/2022]
|
29
|
Roles of different peptide transporters in nutrient acquisition in Candida albicans. EUKARYOTIC CELL 2013; 12:520-8. [PMID: 23376942 DOI: 10.1128/ec.00008-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fungi possess two distinct proton-coupled peptide transport systems, the dipeptide/tripeptide transporters (PTR) and the oligopeptide transporters (OPT), which enable them to utilize peptides as nutrients. In the pathogenic yeast Candida albicans, peptide transporters are encoded by gene families consisting of two PTR genes and eight OPT genes. To gain insight into the functions and importance of specific peptide transporters, we generated mutants lacking the two dipeptide/tripeptide transporters Ptr2 and Ptr22, as well as the five major oligopeptide transporters Opt1 to Opt5. These mutants were unable to grow in media containing peptides as the sole nitrogen source. Forced expression of individual peptide transporters in the septuple mutants showed that Ptr2 and Ptr22 could utilize all tested dipeptides as substrates but differed in their abilities to transport specific tripeptides. Interestingly, several oligopeptide transporters, which are thought to transport peptides consisting of more than three amino acids, also mediated the uptake of tripeptides. Opt1 especially turned out to be a highly flexible transporter that enabled growth on all tripeptides tested and could even utilize a dipeptide, a function that has never been ascribed to this family of peptide transporters. Despite their inability to grow on proteins or peptides, the opt1Δ opt2Δ opt3Δ opt4Δ opt5Δ ptr2Δ ptr22Δ septuple mutants had no in vivo fitness defect in a mouse model of gastrointestinal colonization. Therefore, the nutritional versatility of C. albicans enables it to utilize alternative nitrogen sources in this host niche, which probably contributes to its success as a commensal and pathogen in mammalian hosts.
Collapse
|
30
|
Bricchi I, Bertea CM, Occhipinti A, Paponov IA, Maffei ME. Dynamics of membrane potential variation and gene expression induced by Spodoptera littoralis, Myzus persicae, and Pseudomonas syringae in Arabidopsis. PLoS One 2012; 7:e46673. [PMID: 23118859 PMCID: PMC3484130 DOI: 10.1371/journal.pone.0046673] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/06/2012] [Indexed: 12/25/2022] Open
Abstract
Background Biotic stress induced by various herbivores and pathogens invokes plant responses involving different defense mechanisms. However, we do not know whether different biotic stresses share a common response or which signaling pathways are involved in responses to different biotic stresses. We investigated the common and specific responses of Arabidopsis thaliana to three biotic stress agents: Spodoptera littoralis, Myzus persicae, and the pathogen Pseudomonas syringae. Methodology/Principal Findings We used electrophysiology to determine the plasma membrane potential (Vm) and we performed a gene microarray transcriptome analysis on Arabidopsis upon either herbivory or bacterial infection. Vm depolarization was induced by insect attack; however, the response was much more rapid to S. littoralis (30 min −2 h) than to M. persicae (4–6 h). M. persicae differentially regulated almost 10-fold more genes than by S. littoralis with an opposite regulation. M. persicae modulated genes involved in flavonoid, fatty acid, hormone, drug transport and chitin metabolism. S. littoralis regulated responses to heat, transcription and ion transport. The latest Vm depolarization (16 h) was found for P. syringae. The pathogen regulated responses to salicylate, jasmonate and to microorganisms. Despite this late response, the number of genes differentially regulated by P. syringae was closer to those regulated by S. littoralis than by M. persicae. Conclusions/Significance Arabidopsis plasma membranes respond with a Vm depolarization at times depending on the nature of biotic attack which allow setting a time point for comparative genome-wide analysis. A clear relationship between Vm depolarization and gene expression was found. At Vm depolarization timing, M. persicae regulates a wider array of Arabidopsis genes with a clear and distinct regulation than S. littoralis. An almost completely opposite regulation was observed between the aphid and the pathogen, with the former suppressing and the latter activating Arabidopsis defense responses.
Collapse
Affiliation(s)
- Irene Bricchi
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, Innovation Centre, University of Turin, Turin, Italy
| | - Cinzia M. Bertea
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, Innovation Centre, University of Turin, Turin, Italy
| | - Andrea Occhipinti
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, Innovation Centre, University of Turin, Turin, Italy
| | - Ivan A. Paponov
- Institut für Biologie II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Massimo E. Maffei
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, Innovation Centre, University of Turin, Turin, Italy
- * E-mail:
| |
Collapse
|
31
|
Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics 2012; 190:885-929. [PMID: 22419079 DOI: 10.1534/genetics.111.133306] [Citation(s) in RCA: 377] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ever since the beginning of biochemical analysis, yeast has been a pioneering model for studying the regulation of eukaryotic metabolism. During the last three decades, the combination of powerful yeast genetics and genome-wide approaches has led to a more integrated view of metabolic regulation. Multiple layers of regulation, from suprapathway control to individual gene responses, have been discovered. Constitutive and dedicated systems that are critical in sensing of the intra- and extracellular environment have been identified, and there is a growing awareness of their involvement in the highly regulated intracellular compartmentalization of proteins and metabolites. This review focuses on recent developments in the field of amino acid, nucleotide, and phosphate metabolism and provides illustrative examples of how yeast cells combine a variety of mechanisms to achieve coordinated regulation of multiple metabolic pathways. Importantly, common schemes have emerged, which reveal mechanisms conserved among various pathways, such as those involved in metabolite sensing and transcriptional regulation by noncoding RNAs or by metabolic intermediates. Thanks to the remarkable sophistication offered by the yeast experimental system, a picture of the intimate connections between the metabolomic and the transcriptome is becoming clear.
Collapse
|
32
|
Soy peptides enhance heterologous membrane protein productivity during the exponential growth phase of Saccharomyces cerevisiae. Biosci Biotechnol Biochem 2012; 76:628-31. [PMID: 22451416 DOI: 10.1271/bbb.110965] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In this study, the production of eight G protein-coupled receptors by Saccharomyces cerevisiae was compared using two types of media, one of which contained soy peptides and the other free amino acids. Yeast cell growth improved in the medium with soy peptides, and the expression levels of six of the receptors increased during the exponential phase by an average of 2.3-fold as against the free amino acid-based medium. The enhancement of protein expression by soy peptides can be explained by alleviation of metabolite stress due to amino acid source depletion caused by heterologous protein expression.
Collapse
|
33
|
Muñoz A, Marcos JF, Read ND. Concentration-dependent mechanisms of cell penetration and killing by the de novo designed antifungal hexapeptide PAF26. Mol Microbiol 2012; 85:89-106. [DOI: 10.1111/j.1365-2958.2012.08091.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
34
|
Suzuki T, Sugiyama M, Wakazono K, Kaneko Y, Harashima S. Lactic-acid stress causes vacuolar fragmentation and impairs intracellular amino-acid homeostasis in Saccharomyces cerevisiae. J Biosci Bioeng 2012; 113:421-30. [DOI: 10.1016/j.jbiosc.2011.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 10/20/2011] [Accepted: 11/09/2011] [Indexed: 11/24/2022]
|
35
|
Peptides induce persistent signaling from endosomes by a nutrient transceptor. Nat Chem Biol 2012; 8:400-8. [PMID: 22388927 DOI: 10.1038/nchembio.910] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 12/23/2011] [Indexed: 11/09/2022]
Abstract
The yeast Gap1 transceptor mediates amino acid activation of the protein kinase A pathway and undergoes endocytic internalization following amino acid transport. We identified three specific γ-glutamyl dipeptides that cause persistent cyclic AMP-independent activation of protein kinase A, prevent Gap1 vacuolar sorting and cause Gap1 accumulation in endosomes. To our knowledge, these are the first examples of persistent agonists of a transceptor. In yeast mutants blocked in multivesicular body sorting, L-citrulline mimicked persistent signaling, further supporting that the internalized Gap1 transceptor keeps signaling. Unexpectedly, these dipeptides were transported by Gap1 and not by the regular dipeptide transporters. Their uptake was unusually sensitive to external pH and caused transient intracellular acidification. High external pH, NHA1 deletion or V-ATPase inhibition overcame the vacuolar sorting defect. Hence, this work has identified specific dipeptides that cause enhanced proton influx through the Gap1 symporter, resulting in its defective vacuolar sorting, and independently transform it into a persistently signaling transceptor.
Collapse
|
36
|
The Ubiquitin ligase Ubr11 is essential for oligopeptide utilization in the fission yeast Schizosaccharomyces pombe. EUKARYOTIC CELL 2012; 11:302-10. [PMID: 22226946 DOI: 10.1128/ec.05253-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Uptake of extracellular oligopeptides in yeast is mediated mainly by specific transporters of the peptide transporter (PTR) and oligopeptide transporter (OPT) families. Here, we investigated the role of potential peptide transporters in the yeast Schizosaccharomyces pombe. Utilization of naturally occurring dipeptides required only Ptr2/SPBC13A2.04c and none of the other 3 OPT proteins (Isp4, Pgt1, and Opt3), whereas only Isp4 was indispensable for tetrapeptide utilization. Both Ptr2 and Isp4 localized to the cell surface, but under rich nutrient conditions Isp4 localized in the Golgi apparatus through the function of the ubiquitin ligase Pub1. Furthermore, the ubiquitin ligase Ubr11 played a significant role in oligopeptide utilization. The mRNA levels of both the ptr2 and isp4 genes were significantly reduced in ubr11Δ cells, and the dipeptide utilization defect in the ubr11Δ mutant was rescued by the forced expression of Ptr2. Consistent with its role in transcriptional regulation of peptide transporter genes, the Ubr11 protein was accumulated in the nucleus. Unlike the situation in Saccharomyces cerevisiae, the oligopeptide utilization defect in the S. pombe ubr11Δ mutant was not rescued by inactivation of the Tup11/12 transcriptional corepressors, suggesting that the requirement for the Ubr ubiquitin ligase in the upregulation of peptide transporter mRNA levels is conserved in both yeasts; however, the actual mechanism underlying the control appears to be different. We also found that the peptidomimetic proteasome inhibitor MG132 was still operative in a strain lacking all known PTR and OPT peptide transporters. Therefore, irrespective of its peptide-like structure, MG132 is carried into cells independently of the representative peptide transporters.
Collapse
|
37
|
Cao J, Huang J, Yang Y, Hu X. Analyses of the oligopeptide transporter gene family in poplar and grape. BMC Genomics 2011; 12:465. [PMID: 21943393 PMCID: PMC3188535 DOI: 10.1186/1471-2164-12-465] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Accepted: 09/26/2011] [Indexed: 11/12/2022] Open
Abstract
Background Oligopeptide transporters (OPTs) are a group of membrane-localized proteins that have a broad range of substrate transport capabilities and that are thought to contribute to many biological processes. The OPT proteins belong to a small gene family in plants, which includes about 25 members in Arabidopsis and rice. However, no comprehensive study incorporating phylogeny, chromosomal location, gene structure, expression profiling, functional divergence and selective pressure analysis has been reported thus far for Populus and Vitis. Results In the present study, a comprehensive analysis of the OPT gene family in Populus (P. trichocarpa) and Vitis (V. vinifera) was performed. A total of 20 and 18 full-length OPT genes have been identified in Populus and Vitis, respectively. Phylogenetic analyses indicate that these OPT genes consist of two classes that can be further subdivided into 11 groups. Gene structures are considerably conserved among the groups. The distribution of OPT genes was found to be non-random across chromosomes. A high proportion of the genes are preferentially clustered, indicating that tandem duplications may have contributed significantly to the expansion of the OPT gene family. Expression patterns based on our analyses of microarray data suggest that many OPT genes may be important in stress response and functional development of plants. Further analyses of functional divergence and adaptive evolution show that, while purifying selection may have been the main force driving the evolution of the OPTs, some of critical sites responsible for the functional divergence may have been under positive selection. Conclusions Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus and Vitis OPT gene family and of the function and evolution of the OPT gene family in higher plants.
Collapse
Affiliation(s)
- Jun Cao
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Institute of Tibet Plateau Research at Kunming, Chinese Academy of Sciences, Kunming, 650204, China
| | | | | | | |
Collapse
|
38
|
Gomolplitinant KM, Saier MH. Evolution of the oligopeptide transporter family. J Membr Biol 2011; 240:89-110. [PMID: 21347612 PMCID: PMC3061005 DOI: 10.1007/s00232-011-9347-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 01/21/2011] [Indexed: 12/31/2022]
Abstract
The oligopeptide transporter (OPT) family of peptide and iron-siderophore transporters includes members from both prokaryotes and eukaryotes but with restricted distribution in the latter domain. Eukaryotic members were found only in fungi and plants with a single slime mold homologue clustering with the fungal proteins. All functionally characterized eukaryotic peptide transporters segregate from the known iron-siderophore transporters on a phylogenetic tree. Prokaryotic members are widespread, deriving from many different phyla. Although they belong only to the iron-siderophore subdivision, genome context analyses suggest that many of them are peptide transporters. OPT family proteins have 16 or occasionally 17 transmembrane-spanning α-helical segments (TMSs). We provide statistical evidence that the 16-TMS topology arose via three sequential duplication events followed by a gene-fusion event for proteins with a seventeenth TMS. The proposed pathway is as follows: 2 TMSs → 4 TMSs → 8 TMSs → 16 TMSs → 17 TMSs. The seventeenth C-terminal TMS, which probably arose just once, is found in just one phylogenetic group of these homologues. Analyses for orthology revealed that a few phylogenetic clusters consist exclusively of orthologues but most have undergone intermixing, suggestive of horizontal transfer. It appears that in this family horizontal gene transfer was frequent among prokaryotes, rare among eukaryotes and largely absent between prokaryotes and eukaryotes as well as between plants and fungi. These observations provide guides for future structural and functional analyses of OPT family members.
Collapse
Affiliation(s)
- Kenny M Gomolplitinant
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | |
Collapse
|
39
|
Chothe P, Singh N, Ganapathy V. Evidence for two different broad-specificity oligopeptide transporters in intestinal cell line Caco-2 and colonic cell line CCD841. Am J Physiol Cell Physiol 2011; 300:C1260-9. [PMID: 21307350 DOI: 10.1152/ajpcell.00299.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Recently the existence of two different Na(+)-coupled oligopeptide transport systems has been described in mammalian cells. These transport systems are distinct from the previously known H(+)/peptide cotransporters PEPT1 and PEPT2, which transport only dipeptides and tripeptides. To date, the only peptide transport system known to exist in the intestine is PEPT1. Here we investigated the expression of the Na(+)-coupled oligopeptide transporters in intestinal cell lines, using the hydrolysis-resistant synthetic oligopeptides deltorphin II and [d-Ala(2),d-Leu(5)]enkephalin (DADLE) as model substrates. Caco-2 cells and CCD841 cells, both representing epithelial cells from human intestinal tract, were able to take up these oligopeptides. Uptake of deltorphin II was mostly Na(+) dependent, with more than 2 Na(+) involved in the uptake process. In contrast, DADLE uptake was only partially Na(+) dependent. The uptake of both peptides was also influenced by H(+) and Cl(-), although to a varying degree. The processes responsible for the uptake of deltorphin II and DADLE could be differentiated not only by their Na(+) dependence but also by their modulation by small peptides. Several dipeptides and tripeptides stimulated deltorphin II uptake but inhibited DADLE uptake. These modulating small peptides were, however, not transportable substrates for the transport systems that mediate deltorphin II or DADLE uptake. These two oligopeptide transport systems were also able to take up several nonopioid oligopeptides, consisting of 9-17 amino acids. This represents the first report on the existence of transport systems in intestinal cells that are distinct from PEPT1 and capable of transporting oligopeptides consisting of five or more amino acids.
Collapse
Affiliation(s)
- Paresh Chothe
- Dept. of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912-2100, USA
| | | | | |
Collapse
|
40
|
Harris JM, Dickstein R. Control of root architecture and nodulation by the LATD/NIP transporter. PLANT SIGNALING & BEHAVIOR 2010; 5:1365-9. [PMID: 21045559 PMCID: PMC3115235 DOI: 10.4161/psb.5.11.13165] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 07/28/2010] [Indexed: 05/18/2023]
Abstract
The Medicago truncatula LATD/NIP gene is essential for the development of lateral and primary root and nitrogen-fixing nodule meristems as well as for rhizobial invasion of nodules. LATD/NIP encodes a member of the NRT1(PTR1) nitrate and di-and tri-peptide transporter family, suggesting that its function is to transport one of these or another compound(s). Because latd/nip mutants can have their lateral and primary root defects rescued by ABA, ABA is a potential substrate for transport. LATD/NIP expression in the root meristem was demonstrated to be regulated by auxin, cytokinin and abscisic acid, but not by nitrate. LATD/NIP's potential function and its role in coordinating root architecture and nodule formation are discussed.
Collapse
Affiliation(s)
- Jeanne M Harris
- Department of Plant Biology, University of Vermont, Burlington, VT, USA.
| | | |
Collapse
|
41
|
Sriranganadane D, Waridel P, Salamin K, Reichard U, Grouzmann E, Neuhaus JM, Quadroni M, Monod M. Aspergillus protein degradation pathways with different secreted protease sets at neutral and acidic pH. J Proteome Res 2010; 9:3511-9. [PMID: 20486678 DOI: 10.1021/pr901202z] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aspergillus fumigatus grows well at neutral and acidic pH in a medium containing protein as the sole nitrogen source by secreting two different sets of proteases. Neutral pH favors the secretion of neutral and alkaline endoproteases, leucine aminopeptidases (Laps) which are nonspecific monoaminopeptidases, and an X-prolyl dipeptidase (DppIV). Acidic pH environment promotes the secretion of an aspartic endoprotease of pepsin family (Pep1) and tripeptidyl-peptidases of the sedolisin family (SedB and SedD). A novel prolyl peptidase, AfuS28, was found to be secreted in both alkaline and acidic conditions. In previous studies, Laps were shown to degrade peptides from their N-terminus until an X-Pro sequence acts as a stop signal. X-Pro sequences can be then removed by DppIV, which allows Laps access to the following residues. We have shown that at acidic pH Seds degrade large peptides from their N-terminus into tripeptides until Pro in P1 or P'1 position acts as a stop for these exopeptidases. However, X-X-Pro and X-X-X-Pro sequences can be removed by AfuS28 thus allowing Seds further sequential proteolysis. In conclusion, both alkaline and acidic sets of proteases contain exoprotease activity capable of cleaving after proline residues that cannot be removed during sequential digestion by nonspecific exopeptidases.
Collapse
Affiliation(s)
- Dev Sriranganadane
- Department of Dermatology, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Aouida M, Khodami-Pour A, Ramotar D. Novel role for the Saccharomyces cerevisiae oligopeptide transporter Opt2 in drug detoxification. Biochem Cell Biol 2009; 87:653-61. [PMID: 19767828 DOI: 10.1139/o09-045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Saccharomyces cerevisiae Opt2 is a member of the oligopeptide transporter family that was initially identified to transport tetra- and pentapeptides. Mutants deleted for the OPT2 gene exhibit no growth defects under normal culture conditions. We identified OPT2 from a high-throughput screen that when deleted results in mutants that displayed sensitivity to the anticancer agent bleomycin. The opt2Delta mutant was also reisolated in two additional genome-wide screens designed to identify mutants that are sensitive to the immunosuppressant rapamycin and the divalent metal ion zinc. However, the role of Opt2 in protecting cells against these agents was not investigated. Herein, we show that opt2Delta mutants are also sensitive to a wide variety of toxic agents that are typically detoxified by the vacuoles. Mutants lacking two other related oligopeptide transporters, Opt1 and Ygl114w, showed no significant sensitivities to these drugs, indicating a specific role for Opt2 in drug detoxification. The sensitivities of the opt2Delta mutants were not related to an increased drug uptake but rather to the presence of several small vesicles instead of a functional large vacuole. We propose that Opt2 has a novel function involving the fusion of vesicles to form a mature vacuole.
Collapse
Affiliation(s)
- Mustapha Aouida
- Maisonneuve-Rosemont Hospital, Research Center, 5415 Boul. de l'Assomption, Montreal, QC H1T 2M4, Canada
| | | | | |
Collapse
|
43
|
Chagué V, Maor R, Sharon A. CgOpt1, a putative oligopeptide transporter from Colletotrichum gloeosporioides that is involved in responses to auxin and pathogenicity. BMC Microbiol 2009; 9:173. [PMID: 19698103 PMCID: PMC2769210 DOI: 10.1186/1471-2180-9-173] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 08/21/2009] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The fungus Colletotrichum gloeosporioides f. sp. aeschynomene produces high levels of indole-3-acetic acid (IAA) in axenic cultures and during plant infection. We generated a suppression subtractive hybridization library enriched for IAA-induced genes and identified a clone, which was highly expressed in IAA-containing medium. RESULTS The corresponding gene showed similarity to oligopeptide transporters of the OPT family and was therefore named CgOPT1. Expression of CgOPT1 in mycelia was low, and was enhanced by external application of IAA. cgopt1-silenced mutants produced less spores, had reduced pigmentation, and were less pathogenic to plants than the wild-type strain. IAA enhanced spore formation and caused changes in colony morphology in the wild-type strain, but had no effect on spore formation or colony morphology of the cgopt1-silenced mutants. CONCLUSION Our results show that IAA induces developmental changes in C. gloeosporioides. These changes are blocked in cgopt1-silenced mutants, suggesting that this protein is involved in regulation of fungal response to IAA. CgOPT1 is also necessary for full virulence, but it is unclear whether this phenotype is related to auxin.
Collapse
Affiliation(s)
- Véronique Chagué
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Rudy Maor
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Current address: Rosetta Genomics, 10 Plaut Street, Rehovot, 76706, Israel
| | - Amir Sharon
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
44
|
Subileau M, Schneider R, Salmon JM, Degryse E. New insights on 3-mercaptohexanol (3MH) biogenesis in Sauvignon Blanc wines: Cys-3MH and (E)-hexen-2-al are not the major precursors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:9230-9235. [PMID: 18788709 DOI: 10.1021/jf801626f] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The molar conversion yield of Cys-3MH into 3MH, during alcoholic fermentation, was traced using a deuterated isotope of the precursor added to different Sauvignon Blanc musts. This yield is close to that found in synthetic media supplemented with synthetic Cys-3MH, that is, below 1%. Yet, this represents only 3-7% of the total 3MH production in wine. This clearly shows that Cys-3MH is a precursor of 3MH, but not the main one in the different musts tested. The contribution of ( E)-hex-2-enal, which has been suggested as another potential precursor of 3MH, was discarded as well, as shown using also a deuterated analogue. The third suggested precursor of 3MH is a glutathionyl-3MH (G-3MH), which upon proteolytic degradation could release Cys-3MH. The knockout of the OPT1 gene, which encodes the major glutathione transporter, reduces 3MH accumulation by a 2-fold factor in grape must as compared to the wild type strain. Consequently, it is deduced that major 3MH precursor(s) are transported into yeast via Opt1p, which is in favor of G-3MH being a 3MH precursor. This work opens the search for the major natural precursor(s) of 3MH in Sauvignon Blanc must.
Collapse
Affiliation(s)
- Maeva Subileau
- UMR Sciences Pour l'Oenologie, INRA, bât 28, 2 Place Viala, 34060 Montpellier Cedex 1, France.
| | | | | | | |
Collapse
|
45
|
Gaulin E, Madoui MA, Bottin A, Jacquet C, Mathé C, Couloux A, Wincker P, Dumas B. Transcriptome of Aphanomyces euteiches: new oomycete putative pathogenicity factors and metabolic pathways. PLoS One 2008; 3:e1723. [PMID: 18320043 PMCID: PMC2248709 DOI: 10.1371/journal.pone.0001723] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Accepted: 02/05/2008] [Indexed: 11/18/2022] Open
Abstract
Aphanomyces euteiches is an oomycete pathogen that causes seedling blight and root rot of legumes, such as alfalfa and pea. The genus Aphanomyces is phylogenically distinct from well-studied oomycetes such as Phytophthora sp., and contains species pathogenic on plants and aquatic animals. To provide the first foray into gene diversity of A. euteiches, two cDNA libraries were constructed using mRNA extracted from mycelium grown in an artificial liquid medium or in contact to plant roots. A unigene set of 7,977 sequences was obtained from 18,864 high-quality expressed sequenced tags (ESTs) and characterized for potential functions. Comparisons with oomycete proteomes revealed major differences between the gene content of A. euteiches and those of Phytophthora species, leading to the identification of biosynthetic pathways absent in Phytophthora, of new putative pathogenicity genes and of expansion of gene families encoding extracellular proteins, notably different classes of proteases. Among the genes specific of A. euteiches are members of a new family of extracellular proteins putatively involved in adhesion, containing up to four protein domains similar to fungal cellulose binding domains. Comparison of A. euteiches sequences with proteomes of fully sequenced eukaryotic pathogens, including fungi, apicomplexa and trypanosomatids, allowed the identification of A. euteiches genes with close orthologs in these microorganisms but absent in other oomycetes sequenced so far, notably transporters and non-ribosomal peptide synthetases, and suggests the presence of a defense mechanism against oxidative stress which was initially characterized in the pathogenic trypanosomatids.
Collapse
Affiliation(s)
- Elodie Gaulin
- UMR 5546 Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier Toulouse III, Université de Toulouse, Pôle de Biotechnologie Végétale, Castanet-Tolosan, France
- * To whom correspondence should be addressed. E-mail: (EG); (BD)
| | - Mohammed-Amine Madoui
- UMR 5546 Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier Toulouse III, Université de Toulouse, Pôle de Biotechnologie Végétale, Castanet-Tolosan, France
| | - Arnaud Bottin
- UMR 5546 Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier Toulouse III, Université de Toulouse, Pôle de Biotechnologie Végétale, Castanet-Tolosan, France
| | - Christophe Jacquet
- UMR 5546 Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier Toulouse III, Université de Toulouse, Pôle de Biotechnologie Végétale, Castanet-Tolosan, France
| | - Catherine Mathé
- UMR 5546 Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier Toulouse III, Université de Toulouse, Pôle de Biotechnologie Végétale, Castanet-Tolosan, France
| | - Arnaud Couloux
- Genoscope (CEA), Evry, France
- UMR 8030 Centre National de la Recherche Scientifique (CNRS), Evry, France
- Université d'Evry, Evry, France
| | - Patrick Wincker
- Genoscope (CEA), Evry, France
- UMR 8030 Centre National de la Recherche Scientifique (CNRS), Evry, France
- Université d'Evry, Evry, France
| | - Bernard Dumas
- UMR 5546 Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier Toulouse III, Université de Toulouse, Pôle de Biotechnologie Végétale, Castanet-Tolosan, France
- * To whom correspondence should be addressed. E-mail: (EG); (BD)
| |
Collapse
|
46
|
Cai H, Hauser M, Naider F, Becker JM. Differential regulation and substrate preferences in two peptide transporters of Saccharomyces cerevisiae. EUKARYOTIC CELL 2007; 6:1805-13. [PMID: 17693598 PMCID: PMC2043388 DOI: 10.1128/ec.00257-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dal5p has been shown previously to act as an allantoate/ureidosuccinate permease and to play a role in the utilization of certain dipeptides as a nitrogen source in Saccharomyces cerevisiae. Here, we provide direct evidence that dipeptides are transported by Dal5p, although the affinity of Dal5p for allantoate and ureidosuccinate is higher than that for dipeptides. Allantoate, ureidosuccinate, and to a lesser extent allantoin competed with dipeptide transport by reducing the toxicity of the peptide Ala-Eth and decreasing the accumulation of [(14)C]Gly-Leu. In contrast to the well-studied di/tripeptide transporter Ptr2p, whose substrate specificity is very broad, Dal5p preferred to transport non-N-end rule dipeptides. S. cerevisiae W303 was sensitive to the toxic peptide Ala-Eth (non-N-end rule peptide) but not Leu-Eth (N-end rule peptide). Non-N-end rule dipeptides showed better competition with the uptake of [(14)C]Gly-Leu than N-end rule dipeptides. Similar to the regulation of PTR2, DAL5 expression was influenced by the addition of Leu and by the CUP9 gene. However, DAL5 expression was downregulated in the presence of leucine and the absence of CUP9, whereas PTR2 was upregulated. Toxic dipeptide and uptake assays indicated that either Ptr2p or Dal5p was predominantly used for dipeptide transport in the common laboratory strains S288c and W303, respectively. These studies highlight the complementary activities of two dipeptide transport systems under different regulatory controls in common laboratory yeast strains, suggesting that dipeptide transport pathways evolved to respond to different environmental conditions.
Collapse
Affiliation(s)
- Houjian Cai
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996-0845, USA
| | | | | | | |
Collapse
|
47
|
Wiles AM, Cai H, Naider F, Becker JM. Nutrient regulation of oligopeptide transport in Saccharomyces cerevisiae. MICROBIOLOGY-SGM 2007; 152:3133-3145. [PMID: 17005992 DOI: 10.1099/mic.0.29055-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Small peptides (2-5 amino acid residues) are transported into Saccharomyces cerevisiae via two transport systems: PTR (Peptide TRansport) for di-/tripeptides and OPT (OligoPeptide Transport) for oligopeptides of 4-5 amino acids in length. Although regulation of the PTR system has been studied in some detail, neither the regulation of the OPT family nor the environmental conditions under which family members are normally expressed have been well studied in S. cerevisiae. Using a lacZ reporter gene construct fused to 1 kb DNA from upstream of the genes OPT1 and OPT2, which encode the two S. cerevisiae oligopeptide transporters, the relative expression levels of these genes were measured in a variety of environmental conditions. Uptake assays were also conducted to measure functional protein levels at the plasma membrane. It was found that OPT1 was up-regulated in sulfur-free medium, and that Ptr3p and Ssy1p, proteins involved in regulating the di-/tripeptide transporter encoding gene PTR2 via amino acid sensing, were required for OPT1 expression in a sulfur-free environment. In contrast, as measured by response to toxic tetrapeptide and by real-time PCR, OPT1 was not regulated through Cup9p, which is a repressor for PTR2 expression, although Cup9p did repress OPT2 expression. In addition, all of the 20 naturally occurring amino acids, except the sulfur-containing amino acids methionine and cysteine, up-regulated OPT1, with the greatest change in expression observed when cells were grown in sulfur-free medium. These data demonstrate that regulation of the OPT system has both similarities and differences to regulation of the PTR system, allowing the yeast cell to adapt its utilization of small peptides to various environmental conditions.
Collapse
Affiliation(s)
- Amy M Wiles
- Department of Biochemistry, Cell and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Houjian Cai
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Fred Naider
- Department of Chemistry, College of Staten Island, CUNY, Staten Island, NY 10301, USA
| | - Jeffrey M Becker
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
48
|
Daniel H, Spanier B, Kottra G, Weitz D. From bacteria to man: archaic proton-dependent peptide transporters at work. Physiology (Bethesda) 2006; 21:93-102. [PMID: 16565475 DOI: 10.1152/physiol.00054.2005] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Uptake of nutrients into cells is essential to life and occurs in all organisms at the expense of energy. Whereas in most prokaryotic and simple eukaryotic cells electrochemical transmembrane proton gradients provide the central driving force for nutrient uptake, in higher eukaryotes it is more frequently coupled to sodium movement along the transmembrane sodium gradient, occurs via uniport mechanisms driven by the substrate gradient only, or is linked to the countertransport of a similar organic solute. With the cloning of a large number of mammalian nutrient transport proteins, it became obvious that a few "archaic'' transporters that utilize a transmembrane proton gradient for nutrient transport into cells can still be found in mammals. The present review focuses on the electrogenic peptide transporters as the best studied examples of proton-dependent nutrient transporters in mammals and summarizes the most recent findings on their physiological importance. Taking peptide transport as a general phenomenon found in nature, we also include peptide transport mechanisms in bacteria, yeast, invertebrates, and lower vertebrates, which are not that often addressed in physiology journals.
Collapse
Affiliation(s)
- Hannelore Daniel
- Department of Food and Nutrition, Molecular Nutrition Unit, Technical University of Munich, Freising-Weihenstephan, Germany.
| | | | | | | |
Collapse
|
49
|
Reuss O, Morschhäuser J. A family of oligopeptide transporters is required for growth of Candida albicans on proteins. Mol Microbiol 2006; 60:795-812. [PMID: 16629678 DOI: 10.1111/j.1365-2958.2006.05136.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The human fungal pathogen Candida albicans can use proteins as the sole source of nitrogen for growth. The secretion of aspartic proteinases, which have been shown to contribute to virulence of C. albicans, allows the fungus to digest host proteins to produce peptides that must be taken up into the cell by specific transporters. To understand in more detail how C. albicans utilizes proteins as a nitrogen source, we undertook a comprehensive analysis of oligopeptide transporters encoded in the C. albicans genome. We identified eight OPT genes encoding putative oligopeptide transporters, almost all of which are represented by polymorphic alleles in strain SC5314. Expression of these genes was differentially induced when C. albicans was grown in YCB-BSA medium, which contains bovine serum albumin as the sole nitrogen source. Whereas deletion of single OPT genes in strain SC5314 did not affect its ability to utilize proteins as a nitrogen source, opt123delta triple mutants had a severe growth defect in YCB-BSA which was rescued by reintroduction of a single copy of OPT1, OPT2 or OPT3. In addition, forced expression of OPT4 or OPT5 under control of the ADH1 promoter also restored growth of an opt123delta mutant, demonstrating that at least OPT1-OPT5 encode functional peptide transporters. The various oligopeptide transporters differ in their substrate preferences, as shown by the ability of strains expressing specific OPT genes to grow on peptides of defined length and sequence. We present evidence that in addition to the known role of oligopeptide transporters in the uptake of tetra- and pentapeptides these proteins can also transport longer peptides up to at least eight amino acids in length, ensuring an efficient utilization of the various peptides produced via endoproteolytic digestion of proteins by the secreted aspartic proteinases. As even transporters encoded by polymorphic alleles of a single gene exhibited differences in their efficiency to take up specific peptides, the oligopeptide transporters represent an example for how the evolution of gene families containing differentially expressed and functionally optimized members increases the nutritional versatility and, presumably, the adaptation of C. albicans to different host niches.
Collapse
Affiliation(s)
- Oliver Reuss
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Röntgenring 11, D-97070 Würzburg, Germany
| | | |
Collapse
|
50
|
Reichard U, Léchenne B, Asif AR, Streit F, Grouzmann E, Jousson O, Monod M. Sedolisins, a new class of secreted proteases from Aspergillus fumigatus with endoprotease or tripeptidyl-peptidase activity at acidic pHs. Appl Environ Microbiol 2006; 72:1739-48. [PMID: 16517617 PMCID: PMC1393174 DOI: 10.1128/aem.72.3.1739-1748.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The secreted proteolytic activity of Aspergillus fumigatus is of potential importance as a virulence factor and in the industrial hydrolysis of protein sources. The A. fumigatus genome contains sequences that could encode a five-member gene family that produces proteases in the sedolisin family (MEROPS S53). Four putative secreted sedolisins with a predicted 17- to 20-amino-acid signal sequence were identified and termed SedA to SedD. SedA produced heterologously in Pichia pastoris was an acidic endoprotease. Heterologously produced SedB, SedC, and SedD were tripeptidyl-peptidases (TPP) with a common specificity for tripeptide-p-nitroanilide substrates at acidic pHs. Purified SedB hydrolyzed the peptide Ala-Pro-Gly-Asp-Arg-Ile-Tyr-Val-His-Pro-Phe to Arg-Pro-Gly, Asp-Arg-Ile, and Tyr-Val-His-Pro-Phe, thereby confirming TPP activity of the enzyme. SedB, SedC, and SedD were detected by Western blotting in culture supernatants of A. fumigatus grown in a medium containing hemoglobin as the sole nitrogen source. A degradation product of SedA also was observed. A search for genes encoding sedolisin homologues in other fungal genomes indicates that sedolisin gene families are widespread among filamentous ascomycetes.
Collapse
Affiliation(s)
- Utz Reichard
- Department of Medical Microbiology, University Hospital of Göttingen, Kreuzbergring 57, D-37075 Göttingen, Germany.
| | | | | | | | | | | | | |
Collapse
|