1
|
Cirves E, Vargas A, Wheeler EE, Leach JK, Simon SI, Gonzalez‐Fernandez T. Neutrophil Granulopoiesis Optimized Through Ex Vivo Expansion of Hematopoietic Progenitors in Engineered 3D Gelatin Methacrylate Hydrogels. Adv Healthc Mater 2024; 13:e2301966. [PMID: 38345178 PMCID: PMC11144100 DOI: 10.1002/adhm.202301966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 02/07/2024] [Indexed: 02/27/2024]
Abstract
Neutrophils are the first line of defense of the innate immune system. In response to methicillin-resistant Staphylococcus aureus infection in the skin, hematopoietic stem, and progenitor cells (HSPCs) traffic to wounds and undergo extramedullary granulopoiesis, producing neutrophils necessary to resolve the infection. This prompted the engineering of a gelatin methacrylate (GelMA) hydrogel that encapsulates HSPCs within a matrix amenable to subcutaneous delivery. The authors study the influence of hydrogel mechanical properties to produce an artificial niche for granulocyte-monocyte progenitors (GMPs) to efficiently expand into functional neutrophils that can populate infected tissue. Lin-cKIT+ HSPCs, harvested from fluorescent neutrophil reporter mice, are encapsulated in GelMA hydrogels of varying polymer concentration and UV-crosslinked to produce HSPC-laden gels of specific stiffness and mesh sizes. Softer 5% GelMA gels yield the most viable progenitors and effective cell-matrix interactions. Compared to suspension culture, 5% GelMA results in a twofold expansion of mature neutrophils that retain antimicrobial functions including degranulation, phagocytosis, and ROS production. When implanted dermally in C57BL/6J mice, luciferase-expressing neutrophils expanded in GelMA hydrogels are visualized at the site of implantation for over 5 days. They demonstrate the potential of GelMA hydrogels for delivering HSPCs directly to the site of skin infection to promote local granulopoiesis.
Collapse
Affiliation(s)
- Evan Cirves
- Department of Biomedical EngineeringUniversity of California at Davis451 East Health Sciences Drive, 2303 GBSFDavisCA95616USA
| | - Alex Vargas
- Department of Biomedical EngineeringUniversity of California at Davis451 East Health Sciences Drive, 2303 GBSFDavisCA95616USA
| | - Erika E. Wheeler
- Department of Biomedical EngineeringUniversity of California at Davis451 East Health Sciences Drive, 2303 GBSFDavisCA95616USA
- Department of Orthopaedic SurgeryUC Davis Health4860 Y Street, Suite 3800SacramentoCA95817USA
| | - Jonathan Kent Leach
- Department of Orthopaedic SurgeryUC Davis Health4860 Y Street, Suite 3800SacramentoCA95817USA
| | - Scott I. Simon
- Department of Biomedical Engineering and DermatologyUniversity of California at DavisDavisCA95616USA
| | - Tomas Gonzalez‐Fernandez
- Department of BioengineeringLehigh University124 E Morton Street, Health Science and Technology BuildingBethlehemPA18015USA
| |
Collapse
|
2
|
Gilchrist AE, Harley BA. Engineered Tissue Models to Replicate Dynamic Interactions within the Hematopoietic Stem Cell Niche. Adv Healthc Mater 2022; 11:e2102130. [PMID: 34936239 PMCID: PMC8986554 DOI: 10.1002/adhm.202102130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/19/2021] [Indexed: 12/19/2022]
Abstract
Hematopoietic stem cells are the progenitors of the blood and immune system and represent the most widely used regenerative therapy. However, their rarity and limited donor base necessitate the design of ex vivo systems that support HSC expansion without the loss of long-term stem cell activity. This review describes recent advances in biomaterials systems to replicate features of the hematopoietic niche. Inspired by the native bone marrow, these instructive biomaterials provide stimuli and cues from cocultured niche-associated cells to support HSC encapsulation and expansion. Engineered systems increasingly enable study of the dynamic nature of the matrix and biomolecular environment as well as the role of cell-cell signaling (e.g., autocrine feedback vs paracrine signaling between dissimilar cells). The inherent coupling of material properties, biotransport of cell-secreted factors, and cell-mediated remodeling motivate dynamic biomaterial systems as well as characterization and modeling tools capable of evaluating a temporally evolving tissue microenvironment. Recent advances in HSC identification and tracking, model-based experimental design, and single-cell culture platforms facilitate the study of the effect of constellations of matrix, cell, and soluble factor signals on HSC fate. While inspired by the HSC niche, these tools are amenable to the broader stem cell engineering community.
Collapse
Affiliation(s)
- Aidan E. Gilchrist
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Brendan A.C. Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
3
|
Gilchrist AE, Harley BA. Connecting secretome to hematopoietic stem cell phenotype shifts in an engineered bone marrow niche. Integr Biol (Camb) 2020; 12:175-187. [PMID: 32556172 PMCID: PMC7384206 DOI: 10.1093/intbio/zyaa013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/21/2020] [Accepted: 05/08/2020] [Indexed: 01/06/2023]
Abstract
Hematopoietic stem cells (HSCs) primarily reside in the bone marrow, where they receive external cues from their local microenvironment. The complex milieu of biophysical cues, cellular components and cell-secreted factors regulates the process by which HSC produce the blood and immune system. We previously showed direct coculture of primary murine hematopoietic stem and progenitor cells with a population of marrow-derived mesenchymal stromal and progenitor cells (MSPCs) in a methacrylamide-functionalized gelatin (GelMA) hydrogel improves hematopoietic progenitor maintenance. However, the mechanism by which MSPCs influenced HSC fate decisions remained unknown. Herein, we report the use of proteomic analysis to correlate HSC phenotype to a broad candidate pool of 200 soluble factors produced by combined mesenchymal and hematopoietic progeny. Partial least squares regression (PLSR), along with an iterative filter method, identified TGFβ-1, MMP-3, c-RP and TROY as positively correlated with HSC maintenance. Experimentally, we then observe exogenous stimulation of HSC monocultures in GelMA hydrogels with these combined cytokines increases the ratio of hematopoietic progenitors to committed progeny after a 7-day culture 7.52 ± 3.65-fold compared to non-stimulated monocultures. Findings suggest a cocktail of the downselected cytokines amplifies hematopoietic maintenance potential of HSCs beyond that of MSPC-secreted factors alone. This work integrates empirical and computation methods to identify cytokine combinations to improve HSC maintenance within an engineered HSC niche, suggesting a route toward identifying feeder-free culture platforms for HSC expansion. Insight Hematopoietic stem cells within an artificial niche receive maintenance cues in the form of soluble factors from hematopoietic and mesenchymal progeny. Applying a proteomic regression analysis, we identify a reduced set of soluble factors correlated to maintenance of a hematopoietic phenotype during culture in a biomaterial model of the bone marrow niche. We identify a minimum factor cocktail that promotes hematopoietic maintenance potential in a gelatin-based culture, regardless of the presence of mesenchymal feeder cells. By combining empirical and computational methods, we report an experimentally feasible number of factors from a large dataset, enabling exogenous integration of soluble factors into an engineered hematopoietic stem cell for enhanced maintenance potential of a quiescent stem cell population.
Collapse
Affiliation(s)
- Aidan E. Gilchrist
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Brendan A.C. Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
4
|
Gilchrist AE, Lee S, Hu Y, Harley BA. Soluble Signals and Remodeling in a Synthetic Gelatin-Based Hematopoietic Stem Cell Niche. Adv Healthc Mater 2019; 8:e1900751. [PMID: 31532901 PMCID: PMC6813872 DOI: 10.1002/adhm.201900751] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/21/2019] [Indexed: 12/31/2022]
Abstract
Hematopoietic stem cells (HSCs) reside in the bone marrow within niches that provide microenvironmental signals in the form of biophysical cues, bound and diffusible biomolecules, and heterotypic cell-cell interactions that influence HSC fate decisions. This study seeks to inform the development of a synthetic culture platform that promotes ex vivo HSC expansion without exhaustion. A library of methacrylamide-functionalized gelatin (GelMA) hydrogels is used to explore remodeling and crosstalk from mesenchymal stromal cells (MSCs) on the expansion and quiescence of murine HSCs. The use of a degradable GelMA hydrogel enables MSC-mediated remodeling, yielding dynamic shifts in the matrix environment over time. An initially low-diffusivity hydrogel for co-culture of hematopoietic stem and progenitor cells to MSCs facilitates maintenance of an early progenitor cell population over 7 days. Excitingly, this platform promotes retention of a quiescent HSC population compared to HSC monocultures. These studies reveal MSC-density-dependent upregulation of MMP-9 and changes in hydrogel mechanical properties (ΔE = 2.61 ± 0.72) suggesting MSC-mediated matrix remodeling may contribute to a dynamic culture environment. Herein, a 3D hydrogel is reported for ex vivo HSC culture, in which HSC expansion and quiescence is sensitive to hydrogel properties, MSC co-culture, and MSC-mediated hydrogel remodeling.
Collapse
Affiliation(s)
- Aidan E. Gilchrist
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign Urbana, IL 61801
| | - Sunho Lee
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign Urbana, IL 61801
| | - Yuhang Hu
- Department of Woodruff School of Mechanical Engineering, Georgia Institute of Technology Atlanta, GA 30332
| | - Brendan A.C. Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign Urbana, IL 61801
| |
Collapse
|
5
|
Khoshgoftar M, Wilson W, Ito K, van Donkelaar CC. Influence of the Temporal Deposition of Extracellular Matrix on the Mechanical Properties of Tissue-Engineered Cartilage. Tissue Eng Part A 2014; 20:1476-85. [DOI: 10.1089/ten.tea.2013.0345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mehdi Khoshgoftar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Wouter Wilson
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Corrinus C. van Donkelaar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
6
|
Khoshgoftar M, Wilson W, Ito K, van Donkelaar CC. The Effects of Matrix Inhomogeneities on the Cellular Mechanical Environment in Tissue-Engineered Cartilage: An In Silico Investigation. Tissue Eng Part C Methods 2014; 20:104-15. [DOI: 10.1089/ten.tec.2012.0698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Mehdi Khoshgoftar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Wouter Wilson
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Corrinus C. van Donkelaar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
7
|
Nims RJ, Cigan AD, Albro MB, Hung CT, Ateshian GA. Synthesis rates and binding kinetics of matrix products in engineered cartilage constructs using chondrocyte-seeded agarose gels. J Biomech 2013; 47:2165-72. [PMID: 24284199 DOI: 10.1016/j.jbiomech.2013.10.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/23/2013] [Accepted: 10/26/2013] [Indexed: 11/29/2022]
Abstract
Large-sized cartilage constructs suffer from inhomogeneous extracellular matrix deposition due to insufficient nutrient availability. Computational models of nutrient consumption and tissue growth can be utilized as an efficient alternative to experimental trials to optimize the culture of large constructs; models require system-specific growth and consumption parameters. To inform models of the [bovine chondrocyte]-[agarose gel] system, total synthesis rate (matrix accumulation rate+matrix release rate) and matrix retention fractions of glycosaminoglycans (GAG), collagen, and cartilage oligomeric matrix protein (COMP) were measured either in the presence (continuous or transient) or absence of TGF-β3 supplementation. TGF-β3's influences on pyridinoline content and mechanical properties were also measured. Reversible binding kinetic parameters were characterized using computational models. Based on our recent nutrient supplementation work, we measured glucose consumption and critical glucose concentration for tissue growth to computationally simulate the culture of a human patella-sized tissue construct, reproducing the experiment of Hung et al. (2003). Transient TGF-β3 produced the highest GAG synthesis rate, highest GAG retention ratio, and the highest binding affinity; collagen synthesis was elevated in TGF-β3 supplementation groups over control, with the highest binding affinity observed in the transient supplementation group; both COMP synthesis and retention were lower than those for GAG and collagen. These results informed the modeling of GAG deposition within a large patella construct; this computational example was similar to the previous experimental results without further adjustments to modeling parameters. These results suggest that these nutrient consumption and matrix synthesis models are an attractive alternative for optimizing the culture of large-sized constructs.
Collapse
Affiliation(s)
- Robert J Nims
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, MC 8904, 351 Engineering Terrace, New York, NY 10027, USA
| | - Alexander D Cigan
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, MC 8904, 351 Engineering Terrace, New York, NY 10027, USA
| | - Michael B Albro
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, MC 4703, 220 Mudd, New York, NY 10027, USA
| | - Clark T Hung
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, MC 8904, 351 Engineering Terrace, New York, NY 10027, USA
| | - Gerard A Ateshian
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, MC 8904, 351 Engineering Terrace, New York, NY 10027, USA; Department of Mechanical Engineering, Columbia University, 500 West 120th Street, MC 4703, 220 Mudd, New York, NY 10027, USA.
| |
Collapse
|
8
|
Griebel AJ, Khoshgoftar M, Novak T, van Donkelaar CC, Neu CP. Direct noninvasive measurement and numerical modeling of depth-dependent strains in layered agarose constructs. J Biomech 2013; 47:2149-56. [PMID: 24182772 DOI: 10.1016/j.jbiomech.2013.09.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 09/26/2013] [Accepted: 09/26/2013] [Indexed: 11/19/2022]
Abstract
Biomechanical factors play an important role in the growth, regulation, and maintenance of engineered biomaterials and tissues. While physical factors (e.g. applied mechanical strain) can accelerate regeneration, and knowledge of tissue properties often guide the design of custom materials with tailored functionality, the distribution of mechanical quantities (e.g. strain) throughout native and repair tissues is largely unknown. Here, we directly quantify distributions of strain using noninvasive magnetic resonance imaging (MRI) throughout layered agarose constructs, a model system for articular cartilage regeneration. Bulk mechanical testing, giving both instantaneous and equilibrium moduli, was incapable of differentiating between the layered constructs with defined amounts of 2% and 4% agarose. In contrast, MRI revealed complex distributions of strain, with strain transfer to softer (2%) agarose regions, resulting in amplified magnitudes. Comparative studies using finite element simulations and mixture (biphasic) theory confirmed strain distributions in the layered agarose. The results indicate that strain transfer to soft regions is possible in vivo as the biomaterial and tissue changes during regeneration and maturity. It is also possible to modulate locally the strain field that is applied to construct-embedded cells (e.g. chondrocytes) using stratified agarose constructs.
Collapse
Affiliation(s)
- A J Griebel
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, US
| | - M Khoshgoftar
- Orthopaedic Research Laboratory, Radboud University Medical Centre, Nijmegen, The Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands
| | - T Novak
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, US
| | - C C van Donkelaar
- Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands
| | - C P Neu
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, US.
| |
Collapse
|
9
|
Kock LM, Ito K, van Donkelaar CC. Sliding Indentation Enhances Collagen Content and Depth-Dependent Matrix Distribution in Tissue-Engineered Cartilage Constructs. Tissue Eng Part A 2013; 19:1949-59. [DOI: 10.1089/ten.tea.2012.0688] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Linda M. Kock
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Corrinus C. van Donkelaar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
10
|
Kock LM, Geraedts J, Ito K, van Donkelaar CC. Low agarose concentration and TGF-β3 distribute extracellular matrix in tissue-engineered cartilage. Tissue Eng Part A 2013; 19:1621-31. [PMID: 23469833 DOI: 10.1089/ten.tea.2012.0541] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The mechanical properties of articular cartilage are dominated by the interterritorial matrix, as the matrix in this region is stiffer, greater in volume, and more interconnected compared to that in the pericellular and territorial region. Hence, tissue-engineered constructs in which a newly synthesized matrix accumulates in the pericellular and territorial regions may be of a lower mechanical quality compared to constructs in which the interterritorial region contains abundant matrix. OBJECTIVE In this study, we explored the extent to which matrix distribution may be modulated by altering the agarose concentration and the presence of the transforming growth factor-β (TGF-β) and how this affects the mechanical properties of cultured cartilage constructs. METHODS Cartilage development in constructs with agarose concentrations varying from 1%, 2%, and 3% (study 1) and in constructs with no or very low agarose concentrations of 0.25%, 0.5%, and 1% (study 2) were compared. In both studies, the effect of TGF-β3 was compared to fetal bovine serum. After 21 and 42 days of culture, the matrix content and distribution were analyzed and mechanical properties were assessed at day 42. RESULTS Culture in lower agarose concentrations did not significantly influence the matrix content per wet weight, but did result in a more homogeneous distribution. Constructs cultured with less agarose also showed a higher equilibrium modulus. The presence of TGF-β3 resulted in an increased extracellular matrix (ECM) deposition, a more homogeneous matrix distribution, and an equilibrium modulus. CONCLUSIONS Culturing with no or low agarose concentrations and TGF-β3 is favorable for cartilage tissue-engineering studies, because both stimulate the formation of a more homogeneous ECM and consequently result in improved mechanical properties.
Collapse
Affiliation(s)
- Linda M Kock
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | | | | |
Collapse
|
11
|
Khoshgoftar M, Wilson W, Ito K, van Donkelaar CC. Influence of tissue- and cell-scale extracellular matrix distribution on the mechanical properties of tissue-engineered cartilage. Biomech Model Mechanobiol 2012; 12:901-13. [PMID: 23160844 DOI: 10.1007/s10237-012-0452-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 10/30/2012] [Indexed: 12/23/2022]
Abstract
The insufficient load-bearing capacity of today's tissue- engineered (TE) cartilage limits its clinical application. Generally, cartilage TE studies aim to increase the extracellular matrix (ECM) content, as this is thought to determine the load-bearing properties of the cartilage. However, there are apparent inconsistencies in the literature regarding the correlation between ECM content and mechanical properties of TE constructs. In addition to the amount of ECM, the spatial inhomogeneities in ECM distribution at the tissue scale as well as at the cell scale may affect the mechanical properties of TE cartilage. The relative importance of such structural inhomogeneities on mechanical behavior of TE cartilage is unknown. The aim of the present study was, therefore, to theoretically elucidate the influence of these inhomogeneities on the mechanical behavior of chondrocyte-agarose TE constructs. A validated non-linear fiber-reinforced poro-elastic swelling cartilage model that can accommodate for effects of collagen reinforcement and swelling by proteoglycans was used. At the tissue scale, ECM was gradually varied from predominantly localized in the periphery of the TE construct toward an ECM-rich inner core. The effect of these inhomogeneities in relation to the total amount of ECM was also evaluated. At the cell scale, ECM was gradually varied from localized in the pericellular area, toward equally distributed throughout the interterritorial area. Results from the tissue-scale model indicated that localization of ECM in either the construct periphery or in the inner core may reduce construct stiffness compared with that of constructs with homogeneous ECM. Such effects are more significant at high ECM amounts. At the cell scale, localization of ECM around the cells significantly reduced the overall stiffness, even at low ECM amounts. The compressive stiffness gradually increased when ECM distribution became more homogeneous and the osmotic swelling pressure in the interterritorial area increased. We conclude that for the same amount of ECM content in TE cartilage constructs, superior mechanical properties can be achieved with more homogeneous ECM distribution at both tissue and cell scale. Inhomogeneities at the cell scale are more important than those at the tissue scale.
Collapse
Affiliation(s)
- Mehdi Khoshgoftar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB , Eindhoven, The Netherlands,
| | | | | | | |
Collapse
|
12
|
Doi K, Toyokita Y, Akamatsu S, Kawano S. Reaction-diffusion wave model for self-assembled network formation of poly(dA)·poly(dT) DNA on mica and HOPG surfaces. Comput Methods Biomech Biomed Engin 2012; 17:661-77. [PMID: 23013145 DOI: 10.1080/10255842.2012.723701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Deoxyribonucleic acid (DNA) is a vital molecule for life since it contains genetic information. However, DNA has recently been reported to have unique properties that make it suitable for bionanoelectronic applications, such as the possibility of electrical conductivity and self-organisation. Self-assembled DNA network structures have been observed on several substrates, but the detailed self-assembly mechanism has yet to be determined. The present study investigates self-assembled structures of DNA both theoretically and experimentally. We developed a reaction-diffusion model and used it to investigate pattern formations observed by atomic force microscopy. The computational results qualitatively replicate the network patterns of DNA molecules based on a quantitative agreement with the surface size and timescale. The model can account for the effect of the DNA concentration on pattern formation. Furthermore, peculiar geometric patterns are simulated for mica and highly oriented pyrolytic graphite surfaces.
Collapse
Affiliation(s)
- Kentaro Doi
- a Department of Mechanical Science and Bioengineering , Graduate School of Engineering Science, Osaka University , Toyonaka , Osaka 560-8531 , Japan
| | | | | | | |
Collapse
|
13
|
Halloran JP, Sibole S, van Donkelaar CC, van Turnhout MC, Oomens CWJ, Weiss JA, Guilak F, Erdemir A. Multiscale mechanics of articular cartilage: potentials and challenges of coupling musculoskeletal, joint, and microscale computational models. Ann Biomed Eng 2012; 40:2456-74. [PMID: 22648577 DOI: 10.1007/s10439-012-0598-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 05/16/2012] [Indexed: 11/27/2022]
Abstract
Articular cartilage experiences significant mechanical loads during daily activities. Healthy cartilage provides the capacity for load bearing and regulates the mechanobiological processes for tissue development, maintenance, and repair. Experimental studies at multiple scales have provided a fundamental understanding of macroscopic mechanical function, evaluation of the micromechanical environment of chondrocytes, and the foundations for mechanobiological response. In addition, computational models of cartilage have offered a concise description of experimental data at many spatial levels under healthy and diseased conditions, and have served to generate hypotheses for the mechanical and biological function. Further, modeling and simulation provides a platform for predictive risk assessment, management of dysfunction, as well as a means to relate multiple spatial scales. Simulation-based investigation of cartilage comes with many challenges including both the computational burden and often insufficient availability of data for model development and validation. This review outlines recent modeling and simulation approaches to understand cartilage function from a mechanical systems perspective, and illustrates pathways to associate mechanics with biological function. Computational representations at single scales are provided from the body down to the microstructure, along with attempts to explore multiscale mechanisms of load sharing that dictate the mechanical environment of the cartilage and chondrocytes.
Collapse
Affiliation(s)
- J P Halloran
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Tissue engineering of functional articular cartilage: the current status. Cell Tissue Res 2011; 347:613-27. [PMID: 22030892 PMCID: PMC3306561 DOI: 10.1007/s00441-011-1243-1] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 09/09/2011] [Indexed: 01/02/2023]
Abstract
Osteoarthritis is a degenerative joint disease characterized by pain and disability. It involves all ages and 70% of people aged >65 have some degree of osteoarthritis. Natural cartilage repair is limited because chondrocyte density and metabolism are low and cartilage has no blood supply. The results of joint-preserving treatment protocols such as debridement, mosaicplasty, perichondrium transplantation and autologous chondrocyte implantation vary largely and the average long-term result is unsatisfactory. One reason for limited clinical success is that most treatments require new cartilage to be formed at the site of a defect. However, the mechanical conditions at such sites are unfavorable for repair of the original damaged cartilage. Therefore, it is unlikely that healthy cartilage would form at these locations. The most promising method to circumvent this problem is to engineer mechanically stable cartilage ex vivo and to implant that into the damaged tissue area. This review outlines the issues related to the composition and functionality of tissue-engineered cartilage. In particular, the focus will be on the parameters cell source, signaling molecules, scaffolds and mechanical stimulation. In addition, the current status of tissue engineering of cartilage will be discussed, with the focus on extracellular matrix content, structure and its functionality.
Collapse
|