1
|
Vepštaitė‐Monstavičė I, Lukša J, Strazdaitė‐Žielienė Ž, Serva S, Servienė E. Distinct microbial communities associated with health-relevant wild berries. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70048. [PMID: 39540551 PMCID: PMC11561701 DOI: 10.1111/1758-2229.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Lingonberries (Vaccinium vitis-idaea L.), rowanberries (Sorbus aucuparia L.) and rosehips (Rosa canina L.) positively affect human health due to their healing properties, determined by a high content of bioactive compounds. The consumption of unprocessed wild berries is relevant and encouraged, making their in-depth microbiological characterization essential for food safety. This study presents the first high-throughput sequencing analysis of bacterial and fungal communities distributed on the surface of lingonberries, rowanberries and rosehips. Significant plant-defined differences in the taxonomic composition of prokaryotic and eukaryotic microbiota were observed. The bacterial community on rosehips was shown to be prevalent by Enterobacteriaceae, lingonberries by Methylobacteriaceae and rowanberries by Sphingomonadaceae representatives. Among the fungal microbiota, Dothioraceae dominated on rosehips and Exobasidiaceae on lingonberries; meanwhile, rowanberries were inhabited by a similar level of a broad spectrum of fungal families. Cultivable yeast profiling revealed that lingonberries were distinguished by the lowest amount and most distinct yeast populations. Potentially pathogenic to humans or plants, as well as beneficial and relevant biocontrol microorganisms, were identified on tested berries. The combination of metagenomics and a cultivation-based approach highlighted the wild berries-associated microbial communities and contributed to uncovering their potential in plant health, food and human safety.
Collapse
Affiliation(s)
- Iglė Vepštaitė‐Monstavičė
- Laboratory of Nucleic Acid Biochemistry, Institute of Biosciences, Life Sciences CenterVilnius UniversityVilniusLithuania
- Laboratory of GeneticsNature Research CentreVilniusLithuania
| | - Juliana Lukša
- Laboratory of GeneticsNature Research CentreVilniusLithuania
| | | | - Saulius Serva
- Laboratory of Nucleic Acid Biochemistry, Institute of Biosciences, Life Sciences CenterVilnius UniversityVilniusLithuania
| | - Elena Servienė
- Laboratory of GeneticsNature Research CentreVilniusLithuania
- Department of Chemistry and Bioengineering, Faculty of Fundamental SciencesVilnius Gediminas Technical University (VILNIUSTECH)VilniusLithuania
| |
Collapse
|
2
|
Gondo TF, Huang F, Marungruang N, Heyman-Lindén L, Turner C. Investigating the quality of extraction and quantification of bioactive compounds in berries through liquid chromatography and multivariate curve resolution. Anal Bioanal Chem 2024; 416:5387-5400. [PMID: 39145860 PMCID: PMC11416369 DOI: 10.1007/s00216-024-05474-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
Berries are a rich source of natural antioxidant compounds, which are essential to profile, as they add to their nutritional value. However, the complexity of the matrix and the structural diversity of these compounds pose challenges in extraction and chromatographic separation. By relying on multivariate curve resolution alternating least squares (MCR-ALS) ability to extract components from complex spectral mixtures, our study evaluates the contributions of various extraction techniques to interference, extractability, and quantifying different groups of overlapping compounds using liquid chromatography diode array detection (LC-DAD) data. Additionally, the combination of these methods extends its applicability to evaluate polyphenol degradation in stored berry smoothies, where evolving factor analysis (EFA) is also used to elucidate degradation products. Results indicate that among the extraction techniques, ultrasonication-assisted extraction employing 1% formic acid in methanol demonstrated superior extractability and selectivity for the different phenolic compound groups, compared with both pressurized liquid extraction and centrifugation of the fresh berry smoothie. Employing MCR-ALS on the LC-DAD data enabled reliable estimation of total amounts of compound classes with high spectral overlaps. Degradation studies revealed significant temperature-dependent effects on anthocyanins, with at least 50% degradation after 7 months of storage at room temperature, while refrigeration and freezing maintained fair stability for at least 12 months. The EFA model estimated phenolic derivatives as the main possible degradation products. These findings enhance the reliability of quantifying polyphenolic compounds and understanding their stability during the storage of berry products.
Collapse
Affiliation(s)
- Thamani Freedom Gondo
- Department of Chemistry, Centre for Analysis and Synthesis, Lund University, P.O. Box 124, 22100, Lund, Sweden
| | - Fang Huang
- Department of Chemistry, Division of Biotechnology, Lund University, Lund, Sweden
- Aventure AB, Lund, Sweden
| | | | - Lovisa Heyman-Lindén
- Berry Lab AB, Lund, Sweden
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Charlotta Turner
- Department of Chemistry, Centre for Analysis and Synthesis, Lund University, P.O. Box 124, 22100, Lund, Sweden.
| |
Collapse
|
3
|
Pärnänen P, Räisänen IT, Sorsa T. Oral Anti-Inflammatory and Symbiotic Effects of Fermented Lingonberry Juice-Potential Benefits in IBD. Nutrients 2024; 16:2896. [PMID: 39275212 PMCID: PMC11397234 DOI: 10.3390/nu16172896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
Microbial dysbiosis may manifest as inflammation both orally and in the gastrointestinal tract. Altered oral and gut microbiota composition and decreased diversity have been shown in inflammatory bowel disease (IBD) and periodontal disease (PD). Recent studies have verified transmission of oral opportunistic microbes to the gut. Prebiotics, probiotics, or dietary interventions are suggested to alleviate IBD symptoms in addition to medicinal treatment. Lingonberries contain multiple bioactive molecules, phenolics, which have a broad spectrum of effects, including antimicrobial, anti-inflammatory, antioxidant, anti-proteolytic, and anti-cancer properties. An all-natural product, fermented lingonberry juice (FLJ), is discussed as a potential natural anti-inflammatory substance. FLJ has been shown in clinical human trials to promote the growth of oral lactobacilli, and inhibit growth of the opportunistic oral pathogens Candida, Streptococcus mutans, and periodontopathogens, and decrease inflammation, oral destructive proteolysis (aMMP-8), and dental microbial plaque load. Lactobacilli are probiotic and considered also beneficial for gut health. Considering the positive outcome of these oral studies and the fact that FLJ may be swallowed safely, it might be beneficial also for the gut mucosa by balancing the microbiota and reducing proteolytic inflammation.
Collapse
Affiliation(s)
- Pirjo Pärnänen
- Department of Oral and Maxillofacial Diseases, Head and Neck Center, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Ismo T Räisänen
- Department of Oral and Maxillofacial Diseases, Head and Neck Center, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, Head and Neck Center, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
4
|
Ryyti R, Hämäläinen M, Tolonen T, Mäki M, Jaakkola M, Peltola R, Moilanen E. Lingonberry ( Vaccinium vitis- idaea L.) Skin Extract Prevents Weight Gain and Hyperglycemia in High-Fat Diet-Induced Model of Obesity in Mice. Nutrients 2024; 16:2107. [PMID: 38999854 PMCID: PMC11243352 DOI: 10.3390/nu16132107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
The percentage of obese people is increasing worldwide, causing versatile health problems. Obesity is connected to diseases such as diabetes and cardiovascular diseases, which are preceded by a state called metabolic syndrome. Diets rich in fruits and vegetables have been reported to decrease the risk of metabolic syndrome and type 2 diabetes. Berries with a high polyphenol content, including lingonberry (Vaccinium vitis-idaea L.), have also been of interest to possibly prevent obesity-induced metabolic disturbances. In the present study, we prepared an extract from the by-product of a lingonberry juice production process (press cake/pomace) and investigated its metabolic effects in the high-fat diet-induced model of obesity in mice. The lingonberry skin extract partly prevented weight and epididymal fat gain as well as a rise in fasting glucose level in high-fat diet-fed mice. The extract also attenuated high-fat diet-induced glucose intolerance as measured by an intraperitoneal glucose tolerance test (IPGTT). The extract had no effect on the levels of cholesterol, triglyceride or the adipokines adiponectin, leptin, or resistin. The results extend previous data on the beneficial metabolic effects of lingonberry. Further research is needed to explore the mechanisms behind these effects and to develop further health-promoting lingonberry applications.
Collapse
Affiliation(s)
- Riitta Ryyti
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland
| | - Tiina Tolonen
- Unit of Measurement Technology, Kajaani University Consortium, University of Oulu, 87400 Kajaani, Finland
| | - Marianne Mäki
- Unit of Measurement Technology, Kajaani University Consortium, University of Oulu, 87400 Kajaani, Finland
| | - Mari Jaakkola
- Unit of Measurement Technology, Kajaani University Consortium, University of Oulu, 87400 Kajaani, Finland
| | - Rainer Peltola
- Bioeconomy and Environment, Natural Resources Institute Finland, 96200 Rovaniemi, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland
| |
Collapse
|
5
|
Amakye WK, Ren Z, Wang M, Yao M, Ren J. Pentapeptide WN5 targets the gut microbiota in alleviating Alzheimer’s disease pathologies. NUTRITION AND HEALTHY AGING 2023; 8:19-30. [DOI: 10.3233/nha-220168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
BACKGROUND: Antioxidant peptides have gained attention as potential therapeutic agents for Alzheimer’s disease (AD). The gut microbiota is also increasingly being recognized as central to AD progression and a potential therapeutic target for the disease. OBJECTIVE: Using a recently-identified antioxidant pentapeptide (Trp-Pro-Pro-Lys-Asn, WN5), we sort to test the hypothesis that dietary components could target the microbiota to inhibit Aβ aggregation and relieve AD-related cognitive impairments. METHOD: An Aβ42 aggregation cell model was employed to predict the ability of WN5 to inhibit Aβ aggregation. APP/PS1 mice were then used to explore the learning and memory-improving capacity of WN5 by targeting the gut microbiota. RESULTS: WN5 dose-dependently attenuated cellular Aβ-aggregation. Oral administration of WN5 (WN5_G) was associated with decreased microbial diversity and tended to impact the abundance of several major bacterial species associated with AD. The observed microbiota changes were significantly associated with reduced hippocampal Aβ aggregation (17.6±0.71 for WN5_G and 25.4±1.7 for the control group; p < 0.009) and improved cognitive performance. However, these observations were absent when WN5 was administered intraperitoneally (WN5_Ip). CONCLUSION: The results from this preliminary study suggested that WN5 could be useful in ameliorating AD-related symptoms via the gut-brain-axis and further emphasize the significance of the gut microbiota in AD.
Collapse
Affiliation(s)
- William Kwame Amakye
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, P. R. China
| | - Zhengyu Ren
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease, Guangzhou, P. R. China
| | - Min Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, P. R. China
| | - Maojin Yao
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease, Guangzhou, P. R. China
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
6
|
Huang F, Marungruang N, Martinsson I, Camprubí Ferrer L, Nguyen TD, Gondo TF, Karlsson EN, Deierborg T, Öste R, Heyman-Lindén L. A mixture of Nordic berries improves cognitive function, metabolic function and alters the gut microbiota in C57Bl/6J male mice. Front Nutr 2023; 10:1257472. [PMID: 37854349 PMCID: PMC10580983 DOI: 10.3389/fnut.2023.1257472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Our diets greatly influence our health. Multiple lines of research highlight the beneficial properties of eating berries and fruits. In this study, a berry mixture of Nordic berries previously identified as having the potential to improve memory was supplemented to young C57Bl/6J male mice to investigate effects on cognition function, metabolic health, markers of neuroinflammation, and gut microbiota composition. C57Bl/6J male mice at the age of 8 weeks were given standard chow, a high-fat diet (HF, 60%E fat), or a high-fat diet supplemented with freeze-dried powder (20% dwb) of a mixture of Nordic berries and red grape juice (HF + Berry) for 18 weeks (n = 12 animals/diet group). The results show that supplementation with the berry mixture may have beneficial effects on spatial memory, as seen by enhanced performance in the T-maze and Barnes maze compared to the mice receiving the high-fat diet without berries. Additionally, berry intake may aid in counteracting high-fat diet induced weight gain and could influence neuroinflammatory status as suggested by the increased levels of the inflammation modifying IL-10 cytokine in hippocampal extracts from berry supplemented mice. Furthermore, the 4.5-month feeding with diet containing berries resulted in significant changes in cecal microbiota composition. Analysis of cecal bacterial 16S rRNA revealed that the chow group had significantly higher microbial diversity, as measured by the Shannon diversity index and total operational taxonomic unit richness, than the HF group. The HF diet supplemented with berries resulted in a strong trend of higher total OTU richness and significantly increased the relative abundance of Akkermansia muciniphila, which has been linked to protective effects on cognitive decline. In conclusion, the results of this study suggest that intake of a Nordic berry mixture is a valuable strategy for maintaining and improving cognitive function, to be further evaluated in clinical trials.
Collapse
Affiliation(s)
- Fang Huang
- Division of Biotechnology, Department of Chemistry, Lund University, Lund, Sweden
- Aventure AB, Lund, Sweden
| | | | - Isak Martinsson
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Lluís Camprubí Ferrer
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Thao Duy Nguyen
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Thamani Freedom Gondo
- Department of Chemistry, Centre for Analysis and Synthesis, Lund University, Lund, Sweden
| | | | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Lovisa Heyman-Lindén
- Berry Lab AB, Lund, Sweden
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Li J, Li D, Chen Y, Chen W, Xu J, Gao L. Gut Microbiota and Aging: Traditional Chinese Medicine and Modern Medicine. Clin Interv Aging 2023; 18:963-986. [PMID: 37351381 PMCID: PMC10284159 DOI: 10.2147/cia.s414714] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/08/2023] [Indexed: 06/24/2023] Open
Abstract
The changing composition of gut microbiota, much like aging, accompanies people throughout their lives, and the inextricable relationship between both has recently attracted extensive attention as well. Modern medical research has revealed that a series of changes in gut microbiota are involved in the aging process of organisms, which may be because gut microbiota modulates aging-related changes related to innate immunity and cognitive function. At present, there is no definite and effective method to delay aging. However, Nobel laureate Tu Youyou's research on artemisinin has inspired researchers to study the importance of Traditional Chinese Medicine (TCM). TCM, as an ancient alternative medicine, has unique advantages in preventive health care and in treating diseases as it already has formed an independent understanding of the aging system. TCM practitioners believe that the mechanism of aging is mainly deficiency, and pathological states such as blood stasis, qi stagnation and phlegm coagulation can exacerbate the process of aging, which involves a series of organs, including the brain, kidney, heart, liver and spleen. Our current understanding of aging has led us to realise that TCM can indeed make some beneficial changes, such as the improvement of cognitive impairment. However, due to the multi-component and multi-target nature of TCM, the exploration of its mechanism of action has become extremely complex. While analysing the relationship between gut microbiota and aging, this review explores the similarities and differences in treatment methods and mechanisms between TCM and Modern Medicine, in order to explore a new approach that combines TCM and Modern Medicine to regulate gut microbiota, improve immunity and delay aging.
Collapse
Affiliation(s)
- Jinfan Li
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, People’s Republic of China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Dong Li
- Department of Diabetes, Licheng District Hospital of Traditional Chinese Medicine, Jinan, Shandong, 250100, People’s Republic of China
| | - Yajie Chen
- Department of Rehabilitation and Health Care, Jinan Vocational College of Nursing, Jinan, Shandong, 250100, People’s Republic of China
| | - Wenbin Chen
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, People’s Republic of China
| | - Jin Xu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, People’s Republic of China
| | - Ling Gao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, People’s Republic of China
| |
Collapse
|
8
|
Shepilov D, Osadchenko I, Kovalenko T, Yamada C, Chereshynska A, Smozhanyk K, Ostrovska G, Groppa S, Movila A, Skibo G. Maternal antibiotic administration during gestation can affect the memory and brain structure in mouse offspring. Front Cell Neurosci 2023; 17:1176676. [PMID: 37234915 PMCID: PMC10206017 DOI: 10.3389/fncel.2023.1176676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Maternal antibiotics administration (MAA) is among the widely used therapeutic approaches in pregnancy. Although published evidence demonstrates that infants exposed to antibiotics immediately after birth have altered recognition memory responses at one month of age, very little is known about in utero effects of antibiotics on the neuronal function and behavior of children after birth. Therefore, this study aimed to evaluate the impact of MAA at different periods of pregnancy on memory decline and brain structural alterations in young mouse offspring after their first month of life. To study the effects of MAA on 4-week-old offspring, pregnant C57BL/6J mouse dams (2-3-month-old; n = 4/group) were exposed to a cocktail of amoxicillin (205 mg/kg/day) and azithromycin (51 mg/kg/day) in sterile drinking water (daily/1 week) during either the 2nd or 3rd week of pregnancy and stopped after delivery. A control group of pregnant dams was exposed to sterile drinking water alone during all three weeks of pregnancy. Then, the 4-week-old offspring mice were first evaluated for behavioral changes. Using the Morris water maze assay, we revealed that exposure of pregnant mice to antibiotics at the 2nd and 3rd weeks of pregnancy significantly altered spatial reference memory and learning skills in their offspring compared to those delivered from the control group of dams. In contrast, no significant difference in long-term associative memory was detected between offspring groups using the novel object recognition test. Then, we histologically evaluated brain samples from the same offspring individuals using conventional immunofluorescence and electron microscopy assays. To our knowledge, we observed a reduction in the density of the hippocampal CA1 pyramidal neurons and hypomyelination in the corpus callosum in groups of mice in utero exposed to antibiotics at the 2nd and 3rd weeks of gestation. In addition, offspring exposed to antibiotics at the 2nd or 3rd week of gestation demonstrated a decreased astrocyte cell surface area and astrocyte territories or depletion of neurogenesis in the dentate gyrus and hippocampal synaptic loss, respectively. Altogether, this study shows that MAA at different times of pregnancy can pathologically alter cognitive behavior and brain development in offspring at an early age after weaning.
Collapse
Affiliation(s)
- Dmytro Shepilov
- Department of Cytology, Bogomoletz Institute of Physiology, NAS of Ukraine, Kyiv, Ukraine
| | - Iryna Osadchenko
- Department of Cytology, Bogomoletz Institute of Physiology, NAS of Ukraine, Kyiv, Ukraine
| | - Tetiana Kovalenko
- Department of Cytology, Bogomoletz Institute of Physiology, NAS of Ukraine, Kyiv, Ukraine
| | - Chiaki Yamada
- Department of Biomedical Sciences and Comprehensive Care, School of Dentistry, Indiana University, Indianapolis, IN, United States
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Anastasiia Chereshynska
- Department of Biomedical Sciences and Comprehensive Care, School of Dentistry, Indiana University, Indianapolis, IN, United States
| | - Kateryna Smozhanyk
- Department of Cytology, Bogomoletz Institute of Physiology, NAS of Ukraine, Kyiv, Ukraine
| | - Galyna Ostrovska
- Department of Cytology, Histology, and Reproductive Medicine, Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Stanislav Groppa
- Department of Neurology, Institute of Emergency Medicine, Chisinau, Moldova
- Department of Neurology, State University of Medicine and Pharmacy “Nicolae Testemiţanu”, Chisinau, Moldova
| | - Alexandru Movila
- Department of Biomedical Sciences and Comprehensive Care, School of Dentistry, Indiana University, Indianapolis, IN, United States
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Galyna Skibo
- Department of Cytology, Bogomoletz Institute of Physiology, NAS of Ukraine, Kyiv, Ukraine
| |
Collapse
|
9
|
Oriá RB, Freitas RS, Roque CR, Nascimento JCR, Silva AP, Malva JO, Guerrant RL, Vitek MP. ApoE Mimetic Peptides to Improve the Vicious Cycle of Malnutrition and Enteric Infections by Targeting the Intestinal and Blood-Brain Barriers. Pharmaceutics 2023; 15:pharmaceutics15041086. [PMID: 37111572 PMCID: PMC10141726 DOI: 10.3390/pharmaceutics15041086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Apolipoprotein E (apoE) mimetic peptides are engineered fragments of the native apoE protein’s LDL-receptor binding site that improve the outcomes following a brain injury and intestinal inflammation in a variety of models. The vicious cycle of enteric infections and malnutrition is closely related to environmental-driven enteric dysfunction early in life, and such chronic inflammatory conditions may blunt the developmental trajectories of children with worrisome and often irreversible physical and cognitive faltering. This window of time for microbiota maturation and brain plasticity is key to protecting cognitive domains, brain health, and achieving optimal/full developmental potential. This review summarizes the potential role of promising apoE mimetic peptides to improve the function of the gut-brain axis, including targeting the blood-brain barrier in children afflicted with malnutrition and enteric infections.
Collapse
Affiliation(s)
- Reinaldo B. Oriá
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza 60430-270, Brazil
- Correspondence: ; Tel.: +55-85-3366-8239
| | - Raul S. Freitas
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza 60430-270, Brazil
| | - Cássia R. Roque
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza 60430-270, Brazil
| | - José Carlos R. Nascimento
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza 60430-270, Brazil
- Institute of Health Sciences, Medicine, University of International Integration of Afro-Brazilian Lusofonia, Redenção 62790-970, Brazil
| | - Ana Paula Silva
- Institute of Pharmacology and Experimental Therapeutics and Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - João O. Malva
- Institute of Pharmacology and Experimental Therapeutics and Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Richard L. Guerrant
- Division of Infectious Diseases and International Health, Department of Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Michael P. Vitek
- Division of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
10
|
Lou H, Han X, Fan B, Guo C, Fu R, Long T, Zhang J, Zhang G. The effect of incorporating lingonberry (Vaccinium vitis-idaea L.) on the physicochemical, nutrient, and sensorial properties of Chinese sweet rice wine. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01834-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
11
|
Liu J, Hefni ME, Witthöft CM, Bergström M, Burleigh S, Nyman M, Hållenius F. On the effect of flavonoids and dietary fibre in lingonberries on atherosclerotic plaques, lipid profiles and gut microbiota composition in Apoe-/- mice. Int J Food Sci Nutr 2022; 73:1080-1090. [PMID: 35930435 DOI: 10.1080/09637486.2022.2106358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
It has not been clarified whether the anti-atherosclerotic effect of lingonberry can be ascribed to its content of flavonoids or dietary fibre or both. The aim of this study was to evaluate the metabolic effects of whole lingonberries compared with isolated flavonoid and fibre fractions on atherosclerotic plaques, plasma lipid profiles, gut microbiota and microbiota-dependent metabolites in an Apoe-/- mouse model. Mice fed whole lingonberries showed the lowest amount of atherosclerotic plaques, while mice fed the fibre fraction had the highest formation of caecal butyric acid. Flavonoids, rather than dietary fibre, were suggested to be the components that favour proliferation of Akkermansia, as judged by the lowest abundance of this bacterium in mice fed the fibre fraction. All groups fed lingonberry diets had both, lower Firmicutes/Bacteroidetes ratios and creatinine concentrations, compared with the control. To conclude, different components in lingonberries are associated with different physiological effects in Apoe-/- mice.
Collapse
Affiliation(s)
- Jiyun Liu
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, Kalmar, Sweden
| | - Mohammed E Hefni
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, Kalmar, Sweden.,Food Industries Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Cornelia M Witthöft
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, Kalmar, Sweden
| | - Maria Bergström
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, Kalmar, Sweden
| | - Stephen Burleigh
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Margareta Nyman
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Frida Hållenius
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| |
Collapse
|
12
|
Song X, Zhang X, Ma C, Hu X, Chen F. Rediscovering the nutrition of whole foods: The emerging role of gut microbiota. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Kotowska D, Neuhaus M, Heyman-Lindén L, Morén B, Li S, Kryvokhyzha D, Berger K, Stenkula KG. Short-term lingonberry feeding is associated with decreased insulin levels and altered adipose tissue function in high-fat diet fed C57BL/6J mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
14
|
Huang F, Marungruang N, Kostiuchenko O, Kravchenko N, Burleigh S, Prykhodko O, Hållenius FF, Heyman-Lindén L. Identification of Nordic Berries with Beneficial Effects on Cognitive Outcomes and Gut Microbiota in High-Fat-Fed Middle-Aged C57BL/6J Mice. Nutrients 2022; 14:2734. [PMID: 35807915 PMCID: PMC9269296 DOI: 10.3390/nu14132734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023] Open
Abstract
High-fat diets are associated with neuronal and memory dysfunction. Berries may be useful in improving age-related memory deficits in humans, as well as in mice receiving high-fat diets. Emerging research has also demonstrated that brain health and cognitive function may be related to the dynamic changes in the gut microbiota. In this study, the impact of Nordic berries on the brain and the gut microbiota was investigated in middle-aged C57BL/6J mice. The mice were fed high-fat diets (60%E fat) supplemented with freeze-dried powder (6% dwb) of bilberry, lingonberry, cloudberry, blueberry, blackcurrant, and sea buckthorn for 4 months. The results suggest that supplementation with bilberry, blackcurrant, blueberry, lingonberry, and (to some extent) cloudberry has beneficial effects on spatial cognition, as seen by the enhanced performance following the T-maze alternation test, as well as a greater proportion of DCX-expressing cells with prolongation in hippocampus. Furthermore, the proportion of the mucosa-associated symbiotic bacteria Akkermansia muciniphila increased by 4-14 times in the cecal microbiota of mice fed diets supplemented with lingonberry, bilberry, sea buckthorn, and blueberry. These findings demonstrate the potential of Nordic berries to preserve memory and cognitive function, and to induce alterations of the gut microbiota composition.
Collapse
Affiliation(s)
- Fang Huang
- Division of Biotechnology, Department of Chemistry, Lund University, 221 00 Lund, Sweden
- Aventure AB, Scheelevägen 22, 223 63 Lund, Sweden
| | | | - Olha Kostiuchenko
- Department of Food Technology, Engineering and Nutrition, Lund University, 221 00 Lund, Sweden; (O.K.); (N.K.); (S.B.); (O.P.); (F.F.H.)
- Department of Cytology, Bogomoletz Institute of Physiology, 010 24 Kyiv, Ukraine
| | - Nadiia Kravchenko
- Department of Food Technology, Engineering and Nutrition, Lund University, 221 00 Lund, Sweden; (O.K.); (N.K.); (S.B.); (O.P.); (F.F.H.)
- Department of Cytology, Bogomoletz Institute of Physiology, 010 24 Kyiv, Ukraine
| | - Stephen Burleigh
- Department of Food Technology, Engineering and Nutrition, Lund University, 221 00 Lund, Sweden; (O.K.); (N.K.); (S.B.); (O.P.); (F.F.H.)
| | - Olena Prykhodko
- Department of Food Technology, Engineering and Nutrition, Lund University, 221 00 Lund, Sweden; (O.K.); (N.K.); (S.B.); (O.P.); (F.F.H.)
| | - Frida Fåk Hållenius
- Department of Food Technology, Engineering and Nutrition, Lund University, 221 00 Lund, Sweden; (O.K.); (N.K.); (S.B.); (O.P.); (F.F.H.)
| | - Lovisa Heyman-Lindén
- Berry Lab AB, Scheelevägen 22, 223 63 Lund, Sweden; (N.M.); (L.H.-L.)
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
15
|
Lou H, Guo C, Fan B, Fu R, Su H, Zhang J, Sun L. Lingonberry ( Vaccinium vitis-idaea L.) Interact With Lachnum pygmaeum to Mitigate Drought and Promote Growth. FRONTIERS IN PLANT SCIENCE 2022; 13:920338. [PMID: 35755649 PMCID: PMC9218470 DOI: 10.3389/fpls.2022.920338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/10/2022] [Indexed: 05/31/2023]
Abstract
The application of Ericoid mycorrhizal (ErM) fungi is considered to be an important strategy for increasing plant yield and drought resistance. In this study, we isolated and identified two ErM fungi that can promote the growth of lingonberry. We tried to understand the potential of these two ErM fungi to promote the growth of lingonberry and the strategies to help plants cope with water shortage. The use value of ErM fungi was evaluated by inoculating Oidiodendron maius FC (OmFC) or Lachnum pygmaeum ZL6 (LpZL6), well-watered (WW) and severe drought stress (SDS). The results showed that the mycelium of LpZL6 was denser than that of OmFC, and both ErM fungi significantly increased the biomass of lingonberry stems and roots. They also significantly increased the chlorophyll content by 65.6 and 97.8%, respectively. In addition, inoculation with LpZL6 fungi can improve drought resistance, promote root growth and increase root wet weight by 1157.6%. Drought reduced the chlorophyll content and soluble sugar content of lingonberry but increased significantly after inoculation with LpZL6. Inoculation with LpZL6 decreased lingonberry's malondialdehyde (MDA) content but increased the superoxide dismutase (SOD) activity. Overall, these results indicated that the successful coexistence of ErM fungi and lingonberry alleviated the adverse effects of drought stress through higher secondary metabolites and photosynthetic pigment synthesis.
Collapse
Affiliation(s)
- Hu Lou
- College of Life Science, Northeast Forestry University, Harbin, China
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Chao Guo
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Baozhen Fan
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Rao Fu
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Heng Su
- School of Resources and Environmental Science, Northeast Agricultural University, Harbin, China
| | - Jie Zhang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Long Sun
- School of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
16
|
Pärnänen P, Lomu S, Räisänen IT, Tervahartiala T, Sorsa T. Effects of Fermented Lingonberry Juice Mouthwash on Salivary Parameters—A One-Year Prospective Human Intervention Study. Dent J (Basel) 2022; 10:dj10040069. [PMID: 35448063 PMCID: PMC9025424 DOI: 10.3390/dj10040069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 01/25/2023] Open
Abstract
A one-year prospective human intervention study was performed to examine the effects of fermented lingonberry juice (FLJ), used as a mouthwash for six months, on salivary parameters. A total of 25 adult participants used 10 mL of FLJ as mouthwash 30 s daily for 6 months in addition to their normal oral homecare routines. Standard oral examinations and gathering of samples were performed at the beginning of the study and after six months and one year. Resting and stimulated saliva secretion rates, resting saliva pH, and stimulated saliva buffering capacity were determined. A questionnaire of participants’ subjective sensations of mouth dryness was also recorded at each timepoint. Fermented lingonberry juice mouthwash had positive effect to all five salivary parameters and were, according to the omnibus test, statistically significant during the study period. Analysis of the subjective dry mouth sensation questionnaires revealed that symptoms of xerostomia decreased due to the use of FLJ. This study revealed that the once-a-day use of FLJ mouthwash had a beneficial, increasing effect on salivary flow rates, buffering capacity, and salivary pH. FLJ thus can be safely used as an adjunctive and beneficial therapy in oral homecare, protecting teeth and oral mucosa, including periodontium, and also relieving dry mouth symptoms.
Collapse
Affiliation(s)
- Pirjo Pärnänen
- Department of Oral and Maxillofacial Diseases, Head and Neck Center, University of Helsinki and Helsinki University Hospital, P.O. Box 63 (Haartmaninkatu 8), FI-00014 Helsinki, Finland; (S.L.); (I.T.R.); (T.T.); (T.S.)
- Correspondence: ; Tel.: +35-84-0543-2566
| | - Sari Lomu
- Department of Oral and Maxillofacial Diseases, Head and Neck Center, University of Helsinki and Helsinki University Hospital, P.O. Box 63 (Haartmaninkatu 8), FI-00014 Helsinki, Finland; (S.L.); (I.T.R.); (T.T.); (T.S.)
| | - Ismo T. Räisänen
- Department of Oral and Maxillofacial Diseases, Head and Neck Center, University of Helsinki and Helsinki University Hospital, P.O. Box 63 (Haartmaninkatu 8), FI-00014 Helsinki, Finland; (S.L.); (I.T.R.); (T.T.); (T.S.)
| | - Taina Tervahartiala
- Department of Oral and Maxillofacial Diseases, Head and Neck Center, University of Helsinki and Helsinki University Hospital, P.O. Box 63 (Haartmaninkatu 8), FI-00014 Helsinki, Finland; (S.L.); (I.T.R.); (T.T.); (T.S.)
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, Head and Neck Center, University of Helsinki and Helsinki University Hospital, P.O. Box 63 (Haartmaninkatu 8), FI-00014 Helsinki, Finland; (S.L.); (I.T.R.); (T.T.); (T.S.)
- Division of Periodontology, Department of Dental Medicine, Karolinska Institute, 17177 Huddinge, Sweden
| |
Collapse
|
17
|
Shepilov D, Kovalenko T, Osadchenko I, Smozhanyk K, Marungruang N, Ushakova G, Muraviova D, Hållenius F, Prykhodko O, Skibo G. Varying Dietary Component Ratios and Lingonberry Supplementation May Affect the Hippocampal Structure of ApoE–/– Mice. Front Nutr 2022; 9:565051. [PMID: 35252286 PMCID: PMC8890029 DOI: 10.3389/fnut.2022.565051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 01/11/2022] [Indexed: 11/28/2022] Open
Abstract
Objective This study aimed to investigate and compare the morphological and biochemical characteristics of the hippocampus and the spatial memory of young adult ApoE–/– mice on a standard chow diet, a low-fat diet (LFD), a high-fat diet (HFD), and an HFD supplemented with lingonberries. Methods Eight-week-old ApoE–/– males were divided into five groups fed standard chow (Control), an LFD (LF), an HFD (HF), and an HFD supplemented with whole lingonberries (HF+WhLB) or the insoluble fraction of lingonberries (HF+InsLB) for 8 weeks. The hippocampal cellular structure was evaluated using light microscopy and immunohistochemistry; biochemical analysis and T-maze test were also performed. Structural synaptic plasticity was assessed using electron microscopy. Results ApoE–/– mice fed an LFD expressed a reduction in the number of intact CA1 pyramidal neurons compared with HF+InsLB animals and the 1.6–3.8-fold higher density of hyperchromic (damaged) hippocampal neurons relative to other groups. The LF group had also morphological and biochemical indications of astrogliosis. Meanwhile, both LFD- and HFD-fed mice demonstrated moderate microglial activation and a decline in synaptic density. The consumption of lingonberry supplements significantly reduced the microglia cell area, elevated the total number of synapses and multiple synapses, and increased postsynaptic density length in the hippocampus of ApoE–/– mice, as compared to an LFD and an HFD without lingonberries. Conclusion Our results suggest that, in contrast to the inclusion of fats in a diet, increased starch amount (an LFD) and reduction of dietary fiber (an LFD/HFD) might be unfavorable for the hippocampal structure of young adult (16-week-old) male ApoE–/– mice. Lingonberries and their insoluble fraction seem to provide a neuroprotective effect on altered synaptic plasticity in ApoE–/– animals. Observed morphological changes in the hippocampus did not result in notable spatial memory decline.
Collapse
Affiliation(s)
- Dmytro Shepilov
- Department of Cytology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
- *Correspondence: Dmytro Shepilov
| | - Tatiana Kovalenko
- Department of Cytology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Iryna Osadchenko
- Department of Cytology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Kateryna Smozhanyk
- Department of Cytology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Nittaya Marungruang
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Galyna Ushakova
- Department of Biochemistry and Physiology, Oles Honchar Dnipro National University, Dnipro, Ukraine
| | - Diana Muraviova
- Department of Biochemistry and Physiology, Oles Honchar Dnipro National University, Dnipro, Ukraine
| | - Frida Hållenius
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Olena Prykhodko
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Galyna Skibo
- Department of Cytology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| |
Collapse
|
18
|
Lingonberries-General and Oral Effects on the Microbiome and Inflammation. Nutrients 2021; 13:nu13113738. [PMID: 34835994 PMCID: PMC8623866 DOI: 10.3390/nu13113738] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/16/2022] Open
Abstract
Lingonberry (Vaccinium vitis ideae L.) is a low-bush wild plant found in the northern hemisphere. The berries are used in traditional medicine in Finland to treat oral yeast infections. General and oral effects of lingonberries on the microbiome and inflammation are reviewed. A brief introduction to oral microbiome symbiosis and dysbiosis, innate and adaptive immunity and inflammation are included, and special features in microbe/host interactions in the oral environment are considered. In vitro anticancer, antimicrobial, antioxidant, anti-inflammatory, and in vivo mouse and human studies are included, focusing on the symbiotic effect of lingonberries on oral and general health.
Collapse
|
19
|
Freitas RS, Roque CR, Matos GA, Belayev L, de Azevedo OGR, Alvarez-Leite JI, Guerrant RL, Oriá RB. Immunoinflammatory role of apolipoprotein E4 in malnutrition and enteric infections and the increased risk for chronic diseases under adverse environments. Nutr Rev 2021; 80:1001-1012. [PMID: 34406390 DOI: 10.1093/nutrit/nuab063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Apolipoprotein E plays a crucial role in cholesterol metabolism. The immunomodulatory functions of the human polymorphic APOE gene have gained particular interest because APOE4, a well-recognized risk factor for late-onset Alzheimer's disease, has also been recently linked to increased risk of COVID-19 infection severity in a large UK biobank study. Although much is known about apoE functions in the nervous system, much less is known about APOE polymorphism effects on malnutrition and enteric infections and the consequences for later development in underprivileged environments. In this review, recent findings are summarized of apoE's effects on intestinal function in health and disease and the role of APOE4 in protecting against infection and malnutrition in children living in unfavorable settings, where poor sanitation and hygiene prevail, is highlighted. The potential impact of APOE4 on later development also is discussed and gaps in knowledge are identified that need to be addressed to protect children's development under adverse environments.
Collapse
Affiliation(s)
- Raul S Freitas
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Ceará, Brazil
| | - Cássia R Roque
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Ceará, Brazil
| | - Gabriella A Matos
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Ceará, Brazil
| | - Ludmila Belayev
- Neuroscience Center of Excellence, School of Medicine, Health Sciences Center, Louisiana State University, Baton Rouge, Louisiana, United States
| | - Orleâncio G R de Azevedo
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Ceará, Brazil
| | | | - Richard L Guerrant
- Center for Global Health, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, United States
| | - Reinaldo B Oriá
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Ceará, Brazil
| |
Collapse
|
20
|
Kowalska K. Lingonberry ( Vaccinium vitis-idaea L.) Fruit as a Source of Bioactive Compounds with Health-Promoting Effects-A Review. Int J Mol Sci 2021; 22:ijms22105126. [PMID: 34066191 PMCID: PMC8150318 DOI: 10.3390/ijms22105126] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/27/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
Abstract
Berries, especially members of the Ericaceae family, are among the best dietary sources of bioactive compounds with beneficial health effects. The most popular berries are in the genus Vaccinium, such as bilberry (Vaccinium myrtillus), cranberry (Vaccinium macrocarpon, V. oxycoccos), and blueberry (Vaccinium corymbosum). Lingonberry (Vaccinium vitis-idaea) is less prevalent in the daily human diet because they are collected from the wild, and plant breeding of lingonberry is still on a small scale. Lingonberries are classed as “superfruits” with the highest content of antioxidants among berries and a broad range of health-promoting effects. Many studies showed various beneficial effects of lingonberries, such as anti-inflammatory, antioxidant, and anticancer activities. Lingonberries have been shown to prevent low-grade inflammation and diet-induced obesity in diabetic animals. Moreover, lingonberry intake has been associated with a beneficial effect on preventing and treating brain aging and neurodegenerative disorders. The consumption of berries and their health-promoting activity is a subject receiving a great deal of attention. Many studies investigated the natural compounds found in berries to combat diseases and promote healthy aging. This article’s scope is to indicate the potential beneficial effect of lingonberry consumption on health, to promote well-being and longevity.
Collapse
Affiliation(s)
- Katarzyna Kowalska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego St., 60-627 Poznan, Poland
| |
Collapse
|
21
|
Luo J, Lin X, Bordiga M, Brennan C, Xu B. Manipulating effects of fruits and vegetables on gut microbiota – a critical review. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14927] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jing Luo
- Food Science and Technology Program BNU–HKBU United International College Zhuhai China
| | - Xian Lin
- Food Science and Technology Program BNU–HKBU United International College Zhuhai China
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing Sericultural & Agri‐Food Research Institute Guangdong China
| | - Matteo Bordiga
- Dipartimento di Scienze del Farmaco Università degli Studi del Piemonte Orientale ‘A. Avogadro’ Novara Italy
| | - Charles Brennan
- Faculty of Agriculture and Life Sciences Lincoln University Christchurch New Zealand
| | - Baojun Xu
- Food Science and Technology Program BNU–HKBU United International College Zhuhai China
| |
Collapse
|
22
|
Delzenne NM, Rodriguez J, Olivares M, Neyrinck AM. Microbiome response to diet: focus on obesity and related diseases. Rev Endocr Metab Disord 2020; 21:369-380. [PMID: 32691288 DOI: 10.1007/s11154-020-09572-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Numerous studies in humans and animal models describe disturbances of the gut microbial ecosystem associated with adiposity and hallmarks of the metabolic syndrome, including hepatic and cardiovascular diseases. The manipulation of the microbiome, which is largely influenced by the diet, appears as an innovative therapeutic tool to prevent or control obesity and related diseases. This review describes the impact of nutrients on the gut microbiota composition and/or function and when available, the consequences on host physiology. A special emphasis is made on the contribution of bacterial-derived metabolites in the regulation of key gut functions that may explain their systemic effect.
Collapse
Affiliation(s)
- Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium.
| | - Julie Rodriguez
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Marta Olivares
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
23
|
Hameed A, Galli M, Adamska-Patruno E, Krętowski A, Ciborowski M. Select Polyphenol-Rich Berry Consumption to Defer or Deter Diabetes and Diabetes-Related Complications. Nutrients 2020; 12:E2538. [PMID: 32825710 PMCID: PMC7551116 DOI: 10.3390/nu12092538] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022] Open
Abstract
Berries are considered "promising functional fruits" due to their distinct and ubiquitous therapeutic contents of anthocyanins, proanthocyanidins, phenolic acids, flavonoids, flavanols, alkaloids, polysaccharides, hydroxycinnamic, ellagic acid derivatives, and organic acids. These polyphenols are part of berries and the human diet, and evidence suggests that their intake is associated with a reduced risk or the reversal of metabolic pathophysiologies related to diabetes, obesity, oxidative stress, inflammation, and hypertension. This work reviewed and summarized both clinical and non-clinical findings that the consumption of berries, berry extracts, purified compounds, juices, jams, jellies, and other berry byproducts aided in the prevention and or otherwise management of type 2 diabetes mellitus (T2DM) and related complications. The integration of berries and berries-derived byproducts into high-carbohydrate (HCD) and high-fat (HFD) diets, also reversed/reduced the HCD/HFD-induced alterations in glucose metabolism-related pathways, and markers of oxidative stress, inflammation, and lipid oxidation in healthy/obese/diabetic subjects. The berry polyphenols also modulate the intestinal microflora ecology by opposing the diabetic and obesity rendered symbolic reduction of Bacteroidetes/Firmicutes ratio, intestinal mucosal barrier dysfunction-restoring bacteria, short-chain fatty acids, and organic acid producing microflora. All studies proposed a number of potential mechanisms of action of respective berry bioactive compounds, although further mechanistic and molecular studies are warranted. The metabolic profiling of each berry is also included to provide up-to-date information regarding the potential anti-oxidative/antidiabetic constituents of each berry.
Collapse
Affiliation(s)
- Ahsan Hameed
- Clinical Research Center, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.H.); (E.A.-P.); (A.K.)
| | - Mauro Galli
- Department of Medical Biology, Medical University of Bialystok, 15-222 Bialystok, Poland;
| | - Edyta Adamska-Patruno
- Clinical Research Center, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.H.); (E.A.-P.); (A.K.)
| | - Adam Krętowski
- Clinical Research Center, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.H.); (E.A.-P.); (A.K.)
- Department of Endocrinology, Diabetology, and Internal Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Michal Ciborowski
- Clinical Research Center, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.H.); (E.A.-P.); (A.K.)
| |
Collapse
|
24
|
Beneficial effects of lingonberry (Vaccinium vitis-idaea L.) supplementation on metabolic and inflammatory adverse effects induced by high-fat diet in a mouse model of obesity. PLoS One 2020; 15:e0232605. [PMID: 32379797 PMCID: PMC7205235 DOI: 10.1371/journal.pone.0232605] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/18/2020] [Indexed: 12/22/2022] Open
Abstract
Obesity is a constantly increasing health problem worldwide. It is associated with a systemic low-grade inflammation, which contributes to the development of metabolic disorders and comorbidities such as type 2 diabetes. Diet has an important role in the prevention of obesity and its adverse health effects; as a part of healthy diet, polyphenol-rich berries, such as lingonberry (Vaccinium vitis-idaea L.) have been proposed to have health-promoting effects. In the present study, we investigated the effects of lingonberry supplementation on high-fat diet induced metabolic and inflammatory changes in a mouse model of obesity. Thirty male C57BL/6N mice were divided into three groups (n = 10/group) to receive low-fat (LF), high-fat (HF) and lingonberry-supplemented high-fat (HF+LGB) diet for six weeks. Low-fat and high-fat diet contained 10% and 46% of energy from fat, respectively. Lingonberry supplementation prevented the high-fat diet induced adverse changes in blood cholesterol and glucose levels and had a moderate effect on the weight and visceral fat gain, which were 26% and 25% lower, respectively, in the lingonberry group than in the high-fat diet control group. Interestingly, lingonberry supplementation also restrained the high-fat diet induced increases in the circulating levels of the proinflammatory adipocytokine leptin (by 36%) and the inflammatory acute phase reactant serum amyloid A (SAA; by 85%). Similar beneficial effects were discovered in the hepatic expression of the inflammatory factors CXCL-14, S100A10 and SAA by lingonberry supplementation. In conclusion, the present results indicate that lingonberry supplementation significantly prevents high-fat diet induced metabolic and inflammatory changes in a murine model of obesity. The results encourage evaluation of lingonberries as a part of healthy diet against obesity and its comorbidities.
Collapse
|
25
|
Han Y, Xiao H. Whole Food–Based Approaches to Modulating Gut Microbiota and Associated Diseases. Annu Rev Food Sci Technol 2020; 11:119-143. [DOI: 10.1146/annurev-food-111519-014337] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intake of whole foods, such as fruits and vegetables, may confer health benefits to the host. The beneficial effects of fruits and vegetables were mainly attributed to their richness in polyphenols and microbiota-accessible carbohydrates (MACs). Components in fruits and vegetables modulate composition and associated functions of the gut microbiota, whereas gut microbiota can transform components in fruits and vegetables to produce metabolites that are bioactive and important for health. The progression of multiple diseases, such as obesity and inflammatory bowel disease, is associated with diet and gut microbiota. Although the exact causality between these diseases and specific members of gut microbiota has not been well characterized, accumulating evidence supported the role of fruits and vegetables in modulating gut microbiota and decreasing the risks of microbiota-associated diseases. This review summarizes the latest findings on the effects of whole fruits and vegetables on gut microbiota and associated diseases.
Collapse
Affiliation(s)
- Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
26
|
Arnoriaga-Rodríguez M, Fernández-Real JM. Microbiota impacts on chronic inflammation and metabolic syndrome - related cognitive dysfunction. Rev Endocr Metab Disord 2019; 20:473-480. [PMID: 31884557 DOI: 10.1007/s11154-019-09537-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cognitive dysfunction, one of the major concerns of increased life expectancy, is prevalent in patients with metabolic disorders. Added to the inflammation in the context of aging (inflammaging), low-grade chronic inflammation (metaflammation) accompanies metabolic diseases. Peripheral and central inflammation underlie metabolic syndrome - related cognitive dysfunction. The gut microbiota is increasingly recognized to be linked to both inflammaging and metaflammation in parallel to the pathophysiology of obesity, type 2 diabetes and the metabolic syndrome. Microbiota composition, diversity and diverse metabolites have been related to different metabolic features and cognitive traits. The study of different mouse models has contributed to identify characteristic microbiota profiles and shifts in the microbial gene richness in association with cognitive function. Diet, exercise and prebiotics, probiotics or symbiotics significantly influence cognition and changes in the microbiota. Few studies have analyzed the gut microbiota composition in association with cognitive function in humans. Impaired attention, mental flexibility and executive function have been observed in association with a microbiota ecosystem in cross-sectional and longitudinal studies. Nevertheless, the evidence in humans is still scarce and not causal relationships may be inferred, so larger and long-term studies are required to gain insight into the possible role of microbiota in human cognition.
Collapse
Affiliation(s)
- María Arnoriaga-Rodríguez
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona Biomedical Research Institute [IdibGi], Carretera de França s/n, 17007, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- CIBEROBN Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain
- Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona Biomedical Research Institute [IdibGi], Carretera de França s/n, 17007, Girona, Spain.
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain.
- CIBEROBN Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain.
- Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain.
| |
Collapse
|
27
|
Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, Guzzetta KE, Jaggar M, Long-Smith CM, Lyte JM, Martin JA, Molinero-Perez A, Moloney G, Morelli E, Morillas E, O'Connor R, Cruz-Pereira JS, Peterson VL, Rea K, Ritz NL, Sherwin E, Spichak S, Teichman EM, van de Wouw M, Ventura-Silva AP, Wallace-Fitzsimons SE, Hyland N, Clarke G, Dinan TG. The Microbiota-Gut-Brain Axis. Physiol Rev 2019; 99:1877-2013. [PMID: 31460832 DOI: 10.1152/physrev.00018.2018] [Citation(s) in RCA: 2606] [Impact Index Per Article: 434.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson’s disease, and Alzheimer’s disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kenneth J. O'Riordan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitlin S. M. Cowan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kiran V. Sandhu
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Thomaz F. S. Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcus Boehme
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Martin G. Codagnone
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Sofia Cussotto
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Christine Fulling
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Anna V. Golubeva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Katherine E. Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Minal Jaggar
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitriona M. Long-Smith
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joshua M. Lyte
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Jason A. Martin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Alicia Molinero-Perez
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Moloney
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emanuela Morelli
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Enrique Morillas
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Rory O'Connor
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joana S. Cruz-Pereira
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Veronica L. Peterson
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Nathaniel L. Ritz
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Eoin Sherwin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Simon Spichak
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emily M. Teichman
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcel van de Wouw
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Ana Paula Ventura-Silva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Shauna E. Wallace-Fitzsimons
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Niall Hyland
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Timothy G. Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
28
|
Yuan T, Chu C, Shi R, Cui T, Zhang X, Zhao Y, Shi X, Hui Y, Pan J, Qian R, Dai X, Liu Z, Liu X. ApoE-Dependent Protective Effects of Sesamol on High-Fat Diet-Induced Behavioral Disorders: Regulation of the Microbiome-Gut-Brain Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6190-6201. [PMID: 31117496 DOI: 10.1021/acs.jafc.9b01436] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sesamol, an antioxidant lignan from sesame oil, possesses neuroprotective bioactivities. The present work was aimed to elucidate the systemic protective effects of sesamol on cognitive deficits and to determine the possible link between gut and brain. Wildtype and ApoE-/- mice were treated with a high-fat diet and sesamol (0.05%, w/v, in drinking water) for 10 weeks. Behavioral tests including Morris-water maze, Y-maze, and elevated plus maze tests indicated that sesamol could only improve cognitive deficits and anxiety behaviors in wildtype. Consistently, sesamol improved synapse ultrastructure and inhibited Aβ accumulation in an ApoE-dependent manner. Moreover, sesamol prevented dietary-induced gut barrier damages and systemic inflammation. Sesamol also reshaped gut microbiome and improved the generation of microbial metabolites short-chain fatty acids. To summarize, this study revealed that the possible mechanism of neuroprotective effects of sesamol might be ApoE-dependent, and its beneficial effects on gut microbiota/metabolites could be translated into neurodegenerative diseases treatment.
Collapse
Affiliation(s)
- Tian Yuan
- College of Food Science and Engineering , Northwest A&F University , Yangling , China
| | - Chuanqi Chu
- School of Food Science and Technology , Jiangnan University , Wuxi , China
| | - Rubing Shi
- College of Food Science and Engineering , Northwest A&F University , Yangling , China
| | - Tianlin Cui
- College of Food Science and Engineering , Northwest A&F University , Yangling , China
| | - Xinglin Zhang
- College of Food Science and Engineering , Northwest A&F University , Yangling , China
| | - Yihang Zhao
- College of Food Science and Engineering , Northwest A&F University , Yangling , China
| | - Xu Shi
- College of Food Science and Engineering , Northwest A&F University , Yangling , China
| | - Yan Hui
- Department of Food Science , University of Copenhagen , Copenhagen , Denmark
| | - Junru Pan
- College of Food Science and Engineering , Northwest A&F University , Yangling , China
| | - Rui Qian
- Food Analysis and Development Center , Beijing ZhiYunDa Technology, Co., LTD. , Beijing , China
| | - Xiaoshuang Dai
- BGI Institute of Applied Agriculture , BGI-Shenzhen , Shenzhen , China
| | - Zhigang Liu
- College of Food Science and Engineering , Northwest A&F University , Yangling , China
| | - Xuebo Liu
- College of Food Science and Engineering , Northwest A&F University , Yangling , China
| |
Collapse
|
29
|
Ghaffarzadegan T, Essén S, Verbrugghe P, Marungruang N, Hållenius FF, Nyman M, Sandahl M. Determination of free and conjugated bile acids in serum of Apoe(-/-) mice fed different lingonberry fractions by UHPLC-MS. Sci Rep 2019; 9:3800. [PMID: 30846721 PMCID: PMC6405994 DOI: 10.1038/s41598-019-40272-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/08/2019] [Indexed: 12/13/2022] Open
Abstract
Bile acids (BAs) are known to be involved in cholesterol metabolism but interactions between the diet, BA profiles, gut microbiota and lipid metabolism have not been extensively explored. In the present study, primary and secondary BAs including their glycine and taurine-conjugated forms were quantified in serum of Apoe−/− mice by protein precipitation followed by reversed phase ultra-high-performance liquid chromatography and QTOF mass spectrometry. The mice were fed different lingonberry fractions (whole, insoluble and soluble) in a high-fat setting or cellulose in a high and low-fat setting. Serum concentrations of BAs in mice fed cellulose were higher with the high-fat diet compared to the low-fat diet (20–70%). Among the lingonberry diets, the diet containing whole lingonberries had the highest concentration of chenodeoxycholic acid (CDCA), ursodeoxycholic acid (UDCA), tauro-ursodeoxycholic acid (T-UDCA), α and ω-muricholic acids (MCA) and tauro-α-MCA (T-α-MCA), and the lowest concentration of tauro-cholic acid (T-CA), deoxycholic acid (DCA) and tauro-deoxycholic acid (T-DCA). The glycine-conjugated BAs were very similar with all diets. CDCA, UDCA and α-MCA correlated positively with Bifidobacterium and Prevotella, and T-UDCA, T-α-MCA and ω-MCA with Bacteroides and Parabacteroides.
Collapse
Affiliation(s)
- Tannaz Ghaffarzadegan
- Food for Health Science Centre, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden. .,Food Technology, Engineering and Nutrition, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden.
| | - Sofia Essén
- Centre for Analysis and Synthesis, Department of Chemistry, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Phebe Verbrugghe
- Food Technology, Engineering and Nutrition, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Nittaya Marungruang
- Food for Health Science Centre, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden.,Food Technology, Engineering and Nutrition, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Frida Fåk Hållenius
- Food for Health Science Centre, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden.,Food Technology, Engineering and Nutrition, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Margareta Nyman
- Food for Health Science Centre, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden.,Food Technology, Engineering and Nutrition, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Margareta Sandahl
- Centre for Analysis and Synthesis, Department of Chemistry, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| |
Collapse
|