1
|
Mandal A, Maurer C, Plett C, Chandramohan KRK, Fleischer R, Schnakenburg G, Grimme S, Bunescu A. Selective C-H Borylation of Polyaromatic Compounds Enabled by Metal-Arene π-Complexation. J Am Chem Soc 2025. [PMID: 40265718 DOI: 10.1021/jacs.5c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
The undirected Ir-catalyzed C-H borylation usually occurs preferentially at the least hindered and more acidic C-H bond of the aromatic ring. In the case of polyaromatic compounds possessing multiple unbiased and sterically accessible C-H bonds, the site selectivity for the nondirected C-H borylation is low. Here, we report the dramatic effect exerted by the π-complexation of a chromium tricarbonyl unit on the aromatic ring in the context of Ir-catalyzed C-H borylation. Competition experiments demonstrate that the C-H bonds of an aromatic ring bound to the chromium tricarbonyl unit react on average two orders in magnitude faster toward the C-H borylation than the unbound arenes. This enables an unprecedented C-H borylation with high site selectivity of the aromatic ring π-complexed with a chromium tripod in a series of organic polyaromatic compounds. Besides, the drastic enhancement of the reactivity of C-H bonds induced by the chromium tripod allows the C-H borylation to occur at room temperature with the substrate as a limiting reagent. The DFT studies indicate that the oxidative addition of the C-H bonds has lower activation barriers when the arenes are complexed with a chromium tricarbonyl unit, explaining the observed exceptional site selectivity. This study will further spearhead the development of nondirected C-H borylation with a bimetallic system to harness the effect of the noncovalent metal-arene π-type interactions on the reactivity and the selectivity of the C-H functionalization.
Collapse
Affiliation(s)
- Anup Mandal
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Clemens Maurer
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Christoph Plett
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Kavin Raj Kumar Chandramohan
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Ruben Fleischer
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Gregor Schnakenburg
- Institute of Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Ala Bunescu
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| |
Collapse
|
2
|
Wang Y, Xu Y, Wu D, Wang D, Fu P, Zhu W, Wang L. Semisynthesis of Nocarterphenyl A and Its Analogues. JOURNAL OF NATURAL PRODUCTS 2025; 88:133-140. [PMID: 39730310 DOI: 10.1021/acs.jnatprod.4c01198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
p-Terphenyl compounds are known to possess a diverse range of biological activities, making the synthesis of novel p-terphenyl derivatives a significant research objective. In this study, we report the first synthesis of nocarterphenyl A (1), characterized by a thiazole-fused p-terphenyl framework. Furthermore, we synthesized 18 additional analogs, including the naturally occurring compound 5-methoxy-4,7-bis(4-methoxyphenyl)benzo[d]thiazol-6-ol (9), employing a similar synthetic approach. Notably, compounds 12, 13, 15-17, and 19 demonstrated potent inhibitory effects against protein tyrosine phosphatase 1B (PTP1B), exhibiting IC50 values ranging from 2.2 to 7.9 μM, which are lower than that of oleanolic acid (13.2 μM). Additionally, compound 14 was found to inhibit α-glucosidase from human colorectal adenocarcinoma (Caco-2) cells with an IC50 value of 10.4 μM, which is also lower than that of acarbose (11.2 μM).
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yanchao Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Dan Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Dongyang Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Peng Fu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Weiming Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Liping Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| |
Collapse
|
3
|
Liu YY, Zhang M, Tang F, Wang HQ, Gao JM, Li M, Qi J. Exploring the molecular tapestry of Sarcodon secondary metabolites: chemical structures, activities, and biosynthesis. Mycology 2024; 16:158-179. [PMID: 40083417 PMCID: PMC11899242 DOI: 10.1080/21501203.2024.2380381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/10/2024] [Indexed: 03/16/2025] Open
Abstract
Sarcodon mushrooms are esteemed as a rare and highly valuable resource for both culinary and medicinal purposes. Ancient medical classics have documented their beneficial effects on conditions such as indigestion, loss of appetite, and neurological disorders. Modern phytochemical research into their secondary metabolites has led to the discovery of numerous bioactive compounds with significant biological activities. Despite notable achievements in the study of the chemical composition and bioactivity of Sarcodon mushrooms, a comprehensive understanding of these findings has been lacking. This review provides an exhaustive summary of the advancements in the phytochemistry of Sarcodon mushrooms, as well as the biological and pharmacological activities of the isolated compounds and crude extracts derived from Sarcodon over the past nine decades. A total of 100 secondary metabolites isolated from these mushrooms have been classified into five major categories based on their chemical structures, which exhibit bioactivities such as anti-tumour, neurotrophic, and neuroprotective, antioxidant, anti-inflammatory, antimicrobial, and hypoglycaemic properties. The aim of this study is to establish a scientific foundation for future research in drug discovery, biotechnological development, and the exploration of functional foods involving Sarcodon mushrooms.
Collapse
Affiliation(s)
- Yu-Ying Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
- Center of Edible Fungi, Northwest A&F University, Yangling, China
| | - Ming Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Fei Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
- Center of Edible Fungi, Northwest A&F University, Yangling, China
| | - Hai-Qiang Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Minglei Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
- Center of Edible Fungi, Northwest A&F University, Yangling, China
| | - Jianzhao Qi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
- Center of Edible Fungi, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Otsuka H, Nakai K, Shimizu E, Yamaguchi T, Yamano M, Sasaki H, Koyama K, Kinoshita K. Photoreaction products of extract from the fruiting bodies of Polyozellus multiplex. J Nat Med 2024; 78:547-557. [PMID: 38509426 DOI: 10.1007/s11418-024-01790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 02/12/2024] [Indexed: 03/22/2024]
Abstract
Photochemical reactions are powerful tools for synthesizing organic molecules. The input of energy provided by light offers a means to produce strained and unique molecules that cannot be assembled using thermal protocols, allowing for the production of immense molecular complexity in a single chemical step. Furthermore, unlike thermal reactions, photochemical reactions do not require active reagents such as acids, bases, metals, or enzymes. Photochemical reactions play a central role in green chemistry. This article reports the isolation and structure determination of four new compounds (1-4) from the photoreaction products of the Polyozellus multiplex MeOH ext. The structures of the new compounds were elucidated using MS, IR, comprehensive NMR measurements and microED. The four compounds were formed by deacetylation of polyozellin, the main secondary metabolite of P. multiplex, and addition of singlet oxygen generated by sunlight. To develop drugs for treating Alzheimer's disease (AD) on the basis of the amyloid cascade hypothesis, the compounds (1-4) obtained by photoreaction were evaluated for BACE1 inhibitory activity. The hydrolysates (5 and 6) of polyozellin, the main secondary metabolites of P. multiplex, were also evaluated. The photoreaction products (3 and 4) and hydrolysates (5 and 6) of polyozellin showed BACE1 inhibitory activity (IC50: 2.2, 16.4, 23.3, and 5.3 μM, respectively).
Collapse
Affiliation(s)
- Hayato Otsuka
- Department of Pharmacognosy and Phytochemistry, Meiji Pharmaceutical University, Noshio 2-522-1, Kiyose-Shi, Tokyo, 204-8588, Japan
| | - Keiyo Nakai
- Department of Chemistry, Chemical R&D Laboratory, SPERA PHARMA, Inc, 17-85, Jusohonmachi 2-Chome, Yodogawa-Ku, Osaka, 532-0024, Japan
| | - Emi Shimizu
- Department of Pharmacognosy and Phytochemistry, Meiji Pharmaceutical University, Noshio 2-522-1, Kiyose-Shi, Tokyo, 204-8588, Japan
| | - Takamasa Yamaguchi
- Department of Pharmacognosy and Phytochemistry, Meiji Pharmaceutical University, Noshio 2-522-1, Kiyose-Shi, Tokyo, 204-8588, Japan
| | - Mitsuhisa Yamano
- Department of Chemistry, Chemical R&D Laboratory, SPERA PHARMA, Inc, 17-85, Jusohonmachi 2-Chome, Yodogawa-Ku, Osaka, 532-0024, Japan
| | - Hiroaki Sasaki
- Department of Pharmacognosy and Phytochemistry, Meiji Pharmaceutical University, Noshio 2-522-1, Kiyose-Shi, Tokyo, 204-8588, Japan
| | - Kiyotaka Koyama
- Department of Pharmacognosy and Phytochemistry, Meiji Pharmaceutical University, Noshio 2-522-1, Kiyose-Shi, Tokyo, 204-8588, Japan
| | - Kaoru Kinoshita
- Department of Pharmacognosy and Phytochemistry, Meiji Pharmaceutical University, Noshio 2-522-1, Kiyose-Shi, Tokyo, 204-8588, Japan.
| |
Collapse
|
5
|
Ji L, Tan L, Shang Z, Li W, Mo X, Yang S, Yu G. Discovery of New Antimicrobial Metabolites in the Coculture of Medicinal Mushrooms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5247-5257. [PMID: 38425052 DOI: 10.1021/acs.jafc.3c09476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Bioactivity screening revealed that the antifungal activities of EtOAc extracts from coculture broths of Trametes versicolor SY630 with either Vanderbylia robiniophila SY341 or Ganoderma gibbosum SY1001 were significantly improved compared to that of monocultures. Activity-guided isolation led to the discovery of five aromatic compounds (1-5) from the coculture broth of T. versicolor SY630 and V. robiniophila SY341 and two sphingolipids (6 and 7) from the coculture broth of T. versicolor SY630 and G. gibbosum SY1001. Tramevandins A-C (1-3) and 17-ene-1-deoxyPS (6) are new compounds, while 1-deoxyPS (7) is a new natural product. Notably, compound 2 represents a novel scaffold, wherein the highly modified p-terphenyl bears a benzyl substituent. The absolute configurations of those new compounds were elucidated by X-ray diffraction, ECD calculations, and analysis of physicochemical constants. Compounds 1, 2, and 5-7 exhibited different degrees of antimicrobial activity, and the antifungal activities of compounds 6 and 7 against Candida albicans and Cryptococcus neoformans are comparable to those of fluconazole, nystatin, and sphingosine, respectively. Transcriptome analysis, propidium iodide staining, ergosterol quantification, and feeding assays showed that the isolated sphingolipids can extensively downregulate the late biosynthetic pathway of ergosterol in C. albicans, representing a promising mechanism to combat antibiotic-resistant fungi.
Collapse
Affiliation(s)
- Linwei Ji
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China
| | - Lingling Tan
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China
| | - Zhaomeng Shang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China
| | - Wanting Li
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China
| | - Xuhua Mo
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China
| | - Song Yang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China
| | - Guihong Yu
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China
| |
Collapse
|
6
|
Zeng Y, Wang S, Peng H, Zhao W, Chang W, Wang H, Chen H, Dai H. p-Terphenyl and Diphenyl Ether Derivatives from the Marine-Derived Fungus Aspergillus candidus HM5-4. Mar Drugs 2023; 22:13. [PMID: 38248638 PMCID: PMC10817493 DOI: 10.3390/md22010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Two undescribed p-terphenyl derivatives, asperterphenylcins A-B (1-2), and two undescribed diphenyl ether derivatives, asperdiphenylcins A-B (3-4), together with three previously described p-terphenyl derivatives-4″-deoxyterprenin (5), terphenyllin (6), and 3″-hydroxyterphenyllin (7)-were obtained from the solid-rice culture of the marine-derived fungus Aspergillus candidus HM5-4, which was isolated from sponges from the South China Sea. Their structures were elucidated by HRESIMS data and NMR spectroscopic analysis. Compound 1 showed a strong inhibitory effect on Neoscytalidium dimidiatum, with an inhibition circle diameter of 31.67 ± 2.36 mm at a concentration of 10.0 µg/disc. Compounds 5 and 7 displayed cytotoxic activity against human chronic myeloid leukemia cells (K562), human liver cancer cells (BEL-7402), human gastric cancer cells (SGC-7901), human non-small cell lung cancer cells (A549) and human HeLa cervical cancer cells, with IC50 values ranging from 3.32 to 60.36 µM, respectively. Compounds 2, 6 and 7 showed potent inhibitory activity against α-glucosidase, with IC50 values of 1.26 ± 0.19, 2.16 ± 0.44 and 13.22 ± 0.55 µM, respectively.
Collapse
Affiliation(s)
- Yanbo Zeng
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China; (S.W.); (H.P.); (W.Z.); (W.C.); (H.W.); (H.C.)
- Ocean College of Hebei Agricultural University, Qinhuangdao 066000, China
- Zhanjiang Experimental Station of Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
| | - Shirong Wang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China; (S.W.); (H.P.); (W.Z.); (W.C.); (H.W.); (H.C.)
- Ocean College of Hebei Agricultural University, Qinhuangdao 066000, China
| | - Hanyang Peng
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China; (S.W.); (H.P.); (W.Z.); (W.C.); (H.W.); (H.C.)
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weibo Zhao
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China; (S.W.); (H.P.); (W.Z.); (W.C.); (H.W.); (H.C.)
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Wenjun Chang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China; (S.W.); (H.P.); (W.Z.); (W.C.); (H.W.); (H.C.)
- Zhanjiang Experimental Station of Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
| | - Hao Wang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China; (S.W.); (H.P.); (W.Z.); (W.C.); (H.W.); (H.C.)
| | - Huiqin Chen
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China; (S.W.); (H.P.); (W.Z.); (W.C.); (H.W.); (H.C.)
| | - Haofu Dai
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China; (S.W.); (H.P.); (W.Z.); (W.C.); (H.W.); (H.C.)
| |
Collapse
|
7
|
Janzen DJ, Zhou J, Li SM. Biosynthesis of p-Terphenyls in Aspergillus ustus Implies Enzymatic Reductive Dehydration and Spontaneous Dibenzofuran Formation. Org Lett 2023; 25:6311-6316. [PMID: 37607357 DOI: 10.1021/acs.orglett.3c02234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
p-Terphenyls contain a central benzene ring substituted with two phenyl residues at its para positions. Heterologous expression of a biosynthetic gene cluster from Aspergillus ustus led to the formation of four new p-terphenyl derivatives. Gene deletion experiments proved the formation and reductive dehydration of the terphenylquinone atromentin, followed by O-methylation and prenylation. Spontaneous dibenzofuran formation led to the final products. These results provide new insights into the biosynthesis of p-terphenyls in fungi and dibenzofuran formation in the biosynthesis of numerous natural products.
Collapse
Affiliation(s)
- Daniel J Janzen
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Jing Zhou
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
- School of Life Sciences, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| |
Collapse
|
8
|
Qi X, Chen W, Chen L, Hu Y, Wang X, Han W, Xiao J, Pang X, Yao X, Liu S, Li Y, Yang J, Wang J, Liu Y. Structurally various p-terphenyls with neuraminidase inhibitory from a sponge derived fungus Aspergillus sp. SCSIO41315. Bioorg Chem 2023; 132:106357. [PMID: 36642018 DOI: 10.1016/j.bioorg.2023.106357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/18/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
Guided by Global Natural Products Social molecular networking, 14 new p-terphenyl derivatives, asperterphenyls A-N (1-14), together with 20 known p-terphenyl derivatives (15-34), were obtained from a sponge derived fungus Aspergillus sp. SCSIO41315. Among them, new compounds 2-8 and 15-17 were ten pairs of enantiomers. Comprehensive methods such as chiral-phase HPLC analysis, ECD calculations and X-ray diffraction analysis were applied to determine the absolute configurations. Asperterphenyls B (2) and C (3) represented the first reported natural p-terphenyl derivatives possessing a dicarboxylic acid system. Asperterphenyl A (1) displayed neuraminidase inhibitory activity with an IC50 value of 1.77 ± 0.53 µM and could efficiently inhibit infection of multiple strains of H1N1 with IC50 values from 0.67 ± 0.28 to 1.48 ± 0.60 µM through decreasing viral plaque formation in a dose-dependent manner, which suggested that asperterphenyl A (1) might be exploited as a potential antiviral compound in the pharmaceutical fields.
Collapse
Affiliation(s)
- Xin Qi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
| | - Weihao Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
| | - Liurong Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Yiwei Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
| | - Xueni Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
| | - Wenrong Han
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
| | - Jiao Xiao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, People's Republic of China
| | - Xingang Yao
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Shuwen Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Yong Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, People's Republic of China
| | - Jie Yang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China.
| | - Junfeng Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, People's Republic of China.
| | - Yonghong Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, People's Republic of China; Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, People's Republic of China.
| |
Collapse
|
9
|
Choi DC, Ki DW, Kim JY, Lee IK, Yun BS. p-Terphenyl glucosides from the culture broth of Phlebiopsis castanea. J Antibiot (Tokyo) 2023; 76:52-55. [PMID: 36380241 DOI: 10.1038/s41429-022-00579-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022]
Abstract
A new p-terphenyl derivative, hydroxystrepantibin D (1), was isolated along with two known p-terphenyls (2 and 3) from the culture broth of Phlebiopsis castanea. These compounds were isolated using silica gel column chromatography, reversed-phase medium-pressure liquid chromatography, Sephadex LH-20 column chromatography, and preparative HPLC. Their structures were determined based on spectroscopic methods. These compounds exhibited free radical scavenging activities with IC50 values in the range from 22.2 to 158.4 μM against 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical and in the range from 161.1 to 356.1 μM against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical.
Collapse
Affiliation(s)
- Dae-Cheol Choi
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Gobong-ro 79, Iksan, 54596, Korea
| | - Dae-Won Ki
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Gobong-ro 79, Iksan, 54596, Korea
| | - Ji-Yul Kim
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea, Seocheon, Korea
| | - In-Kyoung Lee
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Gobong-ro 79, Iksan, 54596, Korea
| | - Bong-Sik Yun
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Gobong-ro 79, Iksan, 54596, Korea.
| |
Collapse
|
10
|
Bailly C, Vergoten G. Binding of Vialinin A and p-Terphenyl Derivatives to Ubiquitin-Specific Protease 4 (USP4): A Molecular Docking Study. Molecules 2022; 27:5909. [PMID: 36144645 PMCID: PMC9505430 DOI: 10.3390/molecules27185909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
The para-terphenyl derivative vialinin A (Vi-A), isolated from Thelephora fungi, has been characterized as a potent inhibitor of the ubiquitin-specific protease 4 (USP4). Blockade of USP4 contributes to the anti-inflammatory and anticancer properties of the natural product. We have investigated the interaction of Vi-A with USP4 by molecular modeling, to locate the binding site (around residue V98 within the domain in USP segment) and to identify the binding process and interaction contacts. From this model, a series of 32 p-terphenyl compounds were tested as potential USP4 binders, mainly in the vialinin, terrestrin and telephantin series. We identified 11 compounds presenting a satisfactory USP4 binding capacity, including two fungal products, vialinin B and aurantiotinin A, with a more favorable empirical energy of USP4 interaction (ΔE) than the reference product Vi-A. The rare p-terphenyl aurantiotinin A, isolated from the basidiomycete T. aurantiotincta, emerged as a remarkable USP4 binder. Structure-binding relationships have been identified and discussed, to guide the future design of USP4 inhibitors based on the p-terphenyl skeleton. The docking study should help the identification of other protease inhibitors from fungus.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Consulting Scientific Office, 59290 Lille (Wasquehal), France
| | - Gérard Vergoten
- Institut de Chimie Pharmaceutique Albert Lespagnol, Faculté de Pharmacie, University of Lille, Inserm, INFINITE-U1286, 3 rue du Professeur Laguesse, BP-83, 59006 Lille, France
| |
Collapse
|
11
|
Chen T, Zheng X, He X, You Y, Huang G, Cao Y, He L, Wu Y. Comprehensive characterization of polycyclic aromatic hydrocarbon emissions from heavy-duty diesel vehicles utilizing GC × GC-ToF-MS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155127. [PMID: 35421477 DOI: 10.1016/j.scitotenv.2022.155127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/15/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Comprehensive characterization of diesel vehicle emitted polycyclic aromatic hydrocarbon (PAH) emissions is yet to achieve due to the limitation of analytical methods. Therefore, we herein developed a two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-ToF-MS) method and quantified the total PAHs from diesel vehicles based on their characteristic fragments and mass spectral patterns. Overall, the emission factors (EFs) of total PAHs (gas + particle) are observed to range from 4.1 ± 2.5 mg km-1 to 51.4 ± 22.2 mg km-1 under cold-start and hot-start conditions for one China IV and two China VI heavy-duty diesel vehicles (HDDVs), of which the un-speciated PAHs account for more than 97%. Gaseous PAHs (g-PAHs) are dominated by three-ring PAHs, whereas particulate PAHs (p-PAHs) are dominated by two-ring PAHs. The total PAHs partition significantly into the gas phase for whole fleets and cycles, except that five-ring PAHs partition almost completely into the particle phase. The aftertreatment technologies (e.g., diesel particulate filter, DPF) significantly reduce the total PAH emissions by 49.8 ± 33.2%. The minimum toxic equivalency factors (TEFs) are deployed to estimate the toxicity of the total PAHs. Much higher toxicity is obtained than those in previous studies, indicating that the PAH toxicity of diesel vehicle emissions might be largely underestimated.
Collapse
Affiliation(s)
- Ting Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xuan Zheng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Xiao He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Yan You
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Macao SAR 999078, China
| | - Guanghan Huang
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Yihuan Cao
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Liqiang He
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Ye Wu
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Chen Y, Ren J, Yang R, Li J, Huang SX, Yan Y. Isolation and biosynthesis of daturamycins from Streptomyces sp. KIB-H1544. Beilstein J Org Chem 2022; 18:1009-1016. [PMID: 36051563 PMCID: PMC9379647 DOI: 10.3762/bjoc.18.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Two novel diarylcyclopentenones daturamycin A and B (1 and 2), and one new p-terphenyl daturamycin C (3), along with three known congeners (4-6), were isolated from a rhizosphere soil-derived Streptomyces sp. KIB-H1544. The structures of new compounds were elucidated via a joint use of spectroscopic analyses and single-crystal X-ray diffractions. Compounds 1 and 2 belong to a rare class of tricyclic 6/5/6 diarylcyclopentenones, and compounds 3-6 possess a C-18 tricyclic aromatic skeleton. The biosynthetic gene cluster of daturamycins was identified through gene knockout and biochemical characterization experiments and the biosynthetic pathway of daturamycins was proposed.
Collapse
Affiliation(s)
- Yin Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinqiu Ren
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ruimin Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jie Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sheng-Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yijun Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
13
|
Bailly C. Anti-inflammatory and anticancer p-terphenyl derivatives from fungi of the genus Thelephora. Bioorg Med Chem 2022; 70:116935. [PMID: 35901638 DOI: 10.1016/j.bmc.2022.116935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/22/2022] [Accepted: 07/11/2022] [Indexed: 02/08/2023]
Abstract
Fungi from the genus Thelephora have been exploited to identify bioactive compounds. The main natural products characterized are para-terphenyl derivatives, chiefly represented by the lead anti-inflammatory compound vialinin A isolated from species T. vialis and T. terrestris. Different series of p-terphenyls have been identified, including vialinins, ganbajunins, terrestrins, telephantins and other products. Their mechanism of action is not always clearly identified, and different potential molecule targets have been proposed. The lead vialinin A functions as a protease inhibitor, efficiently targeting ubiquitin-specific peptidases USP4/5 and sentrin-specific protease SENP1 which are prominent anti-inflammatory and anticancer targets. Protease inhibition is coupled with a powerful inhibition of the cellular production of tumor necrosis factor TNFα. Other mechanisms contributing to the anti-inflammatory or anti-proliferative action of these p-terphenyl compounds have been invoked, including the formation of cytotoxic copper complexes for derivatives bearing a catechol central unit such vialinin A, terrestrin B and telephantin O. These p-terphenyl compounds could be further exploited to design novel anticancer agents, as evidenced with the parent compound terphenyllin (essentially found in Aspergillus species) which has revealed marked antitumor and anti-metastatic effects in xenograft models of gastric and pancreatic cancer. This review shed light on the structural and functional diversity of p-terphenyls compounds isolated from Thelephora species, their molecular targets and pharmacological properties.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, Lille (Wasquehal) 59290, France.
| |
Collapse
|
14
|
Bioactive Terphenyls Isolated from the Antarctic Lichen Stereocaulon alpinum. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072363. [PMID: 35408757 PMCID: PMC9000585 DOI: 10.3390/molecules27072363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022]
Abstract
Three p-terphenyls (2–4)—2-hydroxy-3,5-dimethoxy-p-terphenyl (2), 2-hydroxy-3,6-dimethoxy-p-terphenyl (3), and 2,3,5,6-tetramethoxy-p-terphenyl (4)—were isolated for the first time as natural products along with seven known compounds (1, 5–10) from the Antarctic lichen Stereocaulon alpinum. Structures of the new compounds were elucidated by comprehensive analyses of 1D and 2D NMR and HREIMS experiments. Compound 3 exhibited cytotoxicity against HCT116 cells with the IC50 value of 3.76 ± 0.03 μM and also inhibited NO production in LPS-induced RAW264.7 macrophages with the IC50 value of 22.82 ± 0.015 μM.
Collapse
|
15
|
Lee S, Yu JS, Lee SR, Kim KH. Non-peptide secondary metabolites from poisonous mushrooms: overview of chemistry, bioactivity, and biosynthesis. Nat Prod Rep 2022; 39:512-559. [PMID: 34608478 DOI: 10.1039/d1np00049g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Covering: up to June 2021A wide variety of mushrooms have traditionally been recognized as edible fungi with high nutritional value and low calories, and abundantly produce structurally diverse and bioactive secondary metabolites. However, accidental ingestion of poisonous mushrooms can result in serious illnesses and even death. Chemically, mushroom poisoning is associated with secondary metabolites produced in poisonous mushrooms, causing specific toxicity. However, many poisonous mushrooms have not been fully investigated for their secondary metabolites, and the secondary metabolites of poisonous mushrooms have not been systematically summarized for details such as chemical composition and biosynthetic mechanisms. The isolation and identification of secondary metabolites from poisonous mushrooms have great research value since these compounds could be lethal toxins that contribute to the toxicity of mushrooms or could provide lead compounds with remarkable biological activities that can promote advances in other related disciplines, such as biochemistry and pharmacology. In this review, we summarize the structures and biological activities of secondary metabolites identified from poisonous mushrooms and provide an overview of the current information on these metabolites, focusing on their chemistry, bioactivity, and biosynthesis.
Collapse
Affiliation(s)
- Seulah Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea. .,Division of Life Sciences, Korea Polar Research Institute, KIOST, Incheon 21990, Republic of Korea
| | - Jae Sik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Seoung Rak Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea. .,Department of Chemistry, Princeton University, New Jersey, 08544, USA
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
16
|
Zhou G, Zhu T, Che Q, Zhang G, Li D. Structural diversity and biological activity of natural p-terphenyls. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:62-73. [PMID: 37073357 PMCID: PMC10077223 DOI: 10.1007/s42995-021-00117-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 07/26/2021] [Indexed: 05/03/2023]
Abstract
p-Terphenyls are aromatic compounds consisting of a central benzene ring substituted with two phenyl groups, and they are mainly isolated from terrestrial and marine organisms. The central ring of p-Terphenyls is usually modified into more oxidized forms, e.g., para quinone and phenols. In some cases, additional ring systems were observed on the terphenyl-type core structure or between two benzene moieties. p-Terphenyls have been reported to have cytotoxic, antimicrobial, antioxidant and α-glucosidase inhibitory effects. In this review, we will mainly summarize the structural diversity and biological activity of naturally occurring p-Terphenyls referring to the research works published before. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-021-00117-8.
Collapse
Affiliation(s)
- Guoliang Zhou
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Chinese Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Chinese Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Qian Che
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Chinese Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Chinese Ministry of Education, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Dehai Li
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Chinese Ministry of Education, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| |
Collapse
|
17
|
Yang B, Liu SH, He Y, Li Y, Feng L, Zhang M, Zhao J, Zhang Y, Yu X, Chen H, Hou D, Zhao J, Yu M. Integration of transcriptomics and metabolomics to identify key coumarin biosynthetic genes in Bupleurum chinense. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2021.2023327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Bin Yang
- Department of Agronomy, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, PR China
| | - Shi-Hang Liu
- Department of Genetic Resources, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Yilian He
- Department of Agronomy, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, PR China
| | - Yuchan Li
- Department of Agronomy, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, PR China
| | - Liang Feng
- Department of Agronomy, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, PR China
| | - Meng Zhang
- Department of Agronomy, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, PR China
| | - Jun Zhao
- Department of Agronomy, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, PR China
| | - Yiguan Zhang
- Department of Genetic Resources, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, PR China
| | - Xia Yu
- Department of Genetic, Genetic Research Institute, Yongchuan Hospital of Chongqing Medical University, Yongchuan, Chongqing, PR China
| | - Hua Chen
- Department of Agronomy, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, PR China
| | - Dabin Hou
- Department of Agronomy, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, PR China
| | - Junning Zhao
- Department of Genetic Resources, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, PR China
| | - Ma Yu
- Department of Agronomy, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, PR China
| |
Collapse
|
18
|
Chen W, Zhang J, Qi X, Zhao K, Pang X, Lin X, Liao S, Yang B, Zhou X, Liu S, Wang J, Yao X, Liu Y. p-Terphenyls as Anti-HSV-1/2 Agents from a Deep-Sea-Derived Penicillium sp. JOURNAL OF NATURAL PRODUCTS 2021; 84:2822-2831. [PMID: 34766503 DOI: 10.1021/acs.jnatprod.1c00400] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Guided by Global Natural Products Social molecular networking, two p-terphenyl derivatives and one 4,5-diphenyl-2-pyrone analogue, peniterphenyls A-C (1-3), together with five known p-terphenyl derivatives (4-8) and sulochrin (9), were obtained from a deep-sea-derived Penicillium sp. SCSIO41030. Their structures were elucidated using extensive NMR spectroscopic and HRESIMS data and by comparing the information with literature data. Peniterphenyl B (2) represented the first reported natural product possessing a 4,5-diphenyl-substituted 2-pyrone derivative. The p-terphenyl derivatives displayed inhibitory activities against HSV-1/2 with EC50 values ranging from 1.4 ± 0.6 to 9.3 ± 3.7 μM in Vero cells, which showed that they possessed antiviral activities with low cytotoxicity, superior to the current clinical drug acyclovir (EC50 3.6 ± 0.7 μM). Peniterphenyl A (1) inhibited HSV-1/2 virus entry into cells and may block HSV-1/2 infection through direct interaction with virus envelope glycoprotein D to interfere with virus adsorption and membrane fusion, and thus differs from the nucleoside analogues such as acyclovir. Our study indicated peniterphenyl A (1) could be a promising lead compound against HSV-1/2.
Collapse
Affiliation(s)
- Weihao Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, People's Republic of China
| | - Jiawen Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Xin Qi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
| | - Kai Zhao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
| | - Xiuping Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, People's Republic of China
- Sanya Institute of Oceanology, SCSIO, Yazhou Scientific Bay, Sanya 572000, People's Republic of China
| | - Shengrong Liao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, People's Republic of China
- Sanya Institute of Oceanology, SCSIO, Yazhou Scientific Bay, Sanya 572000, People's Republic of China
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, People's Republic of China
- Sanya Institute of Oceanology, SCSIO, Yazhou Scientific Bay, Sanya 572000, People's Republic of China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, People's Republic of China
- Sanya Institute of Oceanology, SCSIO, Yazhou Scientific Bay, Sanya 572000, People's Republic of China
| | - Shuwen Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Junfeng Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, People's Republic of China
- Sanya Institute of Oceanology, SCSIO, Yazhou Scientific Bay, Sanya 572000, People's Republic of China
| | - Xingang Yao
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, People's Republic of China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, People's Republic of China
- Sanya Institute of Oceanology, SCSIO, Yazhou Scientific Bay, Sanya 572000, People's Republic of China
| |
Collapse
|
19
|
Hai Y, Wei MY, Wang CY, Gu YC, Shao CL. The intriguing chemistry and biology of sulfur-containing natural products from marine microorganisms (1987-2020). MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:488-518. [PMID: 37073258 PMCID: PMC10077240 DOI: 10.1007/s42995-021-00101-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/18/2021] [Indexed: 05/03/2023]
Abstract
Natural products derived from marine microorganisms have received great attention as a potential resource of new compound entities for drug discovery. The unique marine environment brings us a large group of sulfur-containing natural products with abundant biological functionality including antitumor, antibiotic, anti-inflammatory and antiviral activities. We reviewed all the 484 sulfur-containing natural products (non-sulfated) isolated from marine microorganisms, of which 59.9% are thioethers, 29.8% are thiazole/thiazoline-containing compounds and 10.3% are sulfoxides, sulfones, thioesters and many others. A selection of 133 compounds was further discussed on their structure-activity relationships, mechanisms of action, biosynthesis, and druggability. This is the first systematic review on sulfur-containing natural products from marine microorganisms conducted from January 1987, when the first one was reported, to December 2020. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-021-00101-2.
Collapse
Affiliation(s)
- Yang Hai
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Mei-Yan Wei
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Yu-Cheng Gu
- Syngenta Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42 6EY UK
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| |
Collapse
|
20
|
Peng GY, Kurtán T, Mándi A, He J, Cao ZY, Tang H, Mao SC, Zhang W. Neuronal Modulators from the Coral-Associated Fungi Aspergillus candidus. Mar Drugs 2021; 19:md19050281. [PMID: 34069724 PMCID: PMC8161303 DOI: 10.3390/md19050281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 11/16/2022] Open
Abstract
Three new p-terphenyl derivatives, named 4″-O-methyl-prenylterphenyllin B (1) and phenylcandilide A and B (17 and 18), and three new indole-diterpene alkaloids, asperindoles E-G (22-24), were isolated together with eighteen known analogues from the fungi Aspergillus candidus associated with the South China Sea gorgonian Junceela fragillis. The structures and absolute configurations of the new compounds were elucidated on the basis of spectroscopic analysis, and DFT/NMR and TDDFT/ECD calculations. In a primary cultured cortical neuronal network, the compounds 6, 9, 14, 17, 18 and 24 modulated spontaneous Ca2+ oscillations and 4-aminopyridine hyperexcited neuronal activity. A preliminary structure-activity relationship was discussed.
Collapse
Affiliation(s)
- Gao-Yang Peng
- School of Pharmacy, Nanchang University, 461 Bayi Road, Nanchang 330006, China;
- School of Medicine, Tongji University, 1239 Si-Ping Road, Shanghai 200092, China
- School of Pharmacy, Navy Medical University, 325 Guo-He Rd., Shanghai 200433, China
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary; (T.K.); (A.M.)
| | - Attila Mándi
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary; (T.K.); (A.M.)
| | - Jing He
- State Key Laboratory of Natural Medicines, Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long-Mian Ave., Nanjing 211198, China; (J.H.); (Z.-Y.C.)
| | - Zheng-Yu Cao
- State Key Laboratory of Natural Medicines, Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long-Mian Ave., Nanjing 211198, China; (J.H.); (Z.-Y.C.)
| | - Hua Tang
- Institute of Translational Medicine, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China;
| | - Shui-Chun Mao
- School of Pharmacy, Nanchang University, 461 Bayi Road, Nanchang 330006, China;
- Correspondence: (S.-C.M.); (W.Z.)
| | - Wen Zhang
- School of Medicine, Tongji University, 1239 Si-Ping Road, Shanghai 200092, China
- School of Pharmacy, Navy Medical University, 325 Guo-He Rd., Shanghai 200433, China
- Correspondence: (S.-C.M.); (W.Z.)
| |
Collapse
|
21
|
Zhou K, Yang S, Li SM. Naturally occurring prenylated chalcones from plants: structural diversity, distribution, activities and biosynthesis. Nat Prod Rep 2021; 38:2236-2260. [PMID: 33972962 DOI: 10.1039/d0np00083c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Covering: up to July 2020Naturally occurring chalcones carrying up to three modified or unmodified C5-, C10-, and C15-prenyl moieties on both rings A and B as well as at the α- and β-carbons are widely distributed in plants of the families of Fabaceae, Moraceae, Zingiberaceae and Cannabaceae. Xanthohumol and isobavachalcone being the most investigated representatives, exhibit diverse and remarkable biological and pharmacological activities. The present review deals with their structural characters, biological activities and occurrence in the plant kingdom. Biosynthesis of prenylated chalcones and metabolism of xanthohumol are also discussed.
Collapse
Affiliation(s)
- Kang Zhou
- Guizhou University, School of Pharmaceutical Sciences, Huaxi Avenue 2708, Guiyang, 550025, China
| | - Song Yang
- Guizhou University, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, Centre for R&D of Fine Chemicals, Huaxi Avenue 2708, Guiyang, 550025, China
| | - Shu-Ming Li
- Philipps-Universität Marburg, Fachbereich Pharmazie, Institut für Pharmazeutische Biologie und Biotechnologie, Robert-Koch-Straße 4, 35037, Marburg, Germany.
| |
Collapse
|
22
|
Zhu J, Liu M, Deng J, Chen W, Zhu D, Duan J, Li Y, Wang H, Shen Y. The coupled reaction catalyzed by EchB and EchC lead to the formation of the common 2',3',5'-trihydroxy-benzene core in echosides biosynthesis. Biochem Biophys Res Commun 2021; 559:62-69. [PMID: 33932901 DOI: 10.1016/j.bbrc.2021.04.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/21/2021] [Indexed: 11/15/2022]
Abstract
p-Terphenyls represent a unique family of aromatic natural products generated by nonribosomal peptide synthetase-like (NRPS-like) enzyme. After formation of p-terphenyl skeleton, tailoring modifications will give rise to structural diversity and various biological activities. Here we demonstrated a two-enzyme (EchB, a short-chain dehydrogenase/reductase (SDR), and EchC, a nuclear transport factor 2 (NTF2)-like dehydratase) participated transformation from dihydroxybenzoquinone core to 2',3',5'-trihydroxy-benzene in the biosynthesis of echosides. Beginning with polyporic acid as substrate, successive steps of reduction-dehydration-reduction cascade catalyzed by EchB-EchC-EchB were concluded after in vivo gene disruption and in vitro bioassay experiments. These findings demonstrated a conserved synthesis pathway of 2',3',5'-trihydroxy-p-terphenyls in bacteria, such as Actinomycetes and Burkholderia. The parallel pathway in fungi has yet to be explored.
Collapse
Affiliation(s)
- Jing Zhu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Mengyujie Liu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Jingjing Deng
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Wang Chen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Deyu Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Jing Duan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Yaoyao Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Haoxin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China.
| | - Yuemao Shen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China; Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China.
| |
Collapse
|
23
|
Chang Y, Che Q, Xing L, Ma C, Han Y, Zhu T, Pfeifer BA, Peng J, Zhang G, Li D. Antibacterial p-Terphenyl with a Rare 2,2'-Bithiazole Substructure and Related Compounds Isolated from the Marine-Derived Actinomycete Nocardiopsis sp. HDN154086. JOURNAL OF NATURAL PRODUCTS 2021; 84:1226-1231. [PMID: 33600172 DOI: 10.1021/acs.jnatprod.0c01296] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Assisted by MS/MS-based molecular networking and X-ray diffraction analysis, five new p-terphenyl derivatives, namely, nocarterphenyls D-H (1-5), were obtained and characterized from the cultures of the marine sediment-derived actinomycete Nocardiopsis sp. HDN154086. The skeleton of nocarterphenyl D (1) was defined to possess a rare 2,2'-bithiazole scaffold, naturally occurring for the first time, and nocarterphenyls E-H (2-5) are p-terphenylquinones with unusual thioether linked fatty acid methyl ester substitutions. Compound 1 showed promising activity against multiple bacteria with MIC values ranging from 1.5 to 6.2 μM, and 2 exhibited notable antibacterial activity against MRSA which surpassed the positive control ciprofloxacin.
Collapse
Affiliation(s)
- Yimin Chang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Qian Che
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Li Xing
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Chuanteng Ma
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Yaxin Han
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Tianjiao Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Blaine A Pfeifer
- Department of Chemical and Biological Engineering, The State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Jixing Peng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Guojian Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Dehai Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| |
Collapse
|
24
|
Xu Y, Wang Y, Wu D, He W, Wang L, Zhu W. p-Terphenyls From Aspergillus sp. GZWMJZ-055: Identification, Derivation, Antioxidant and α-Glycosidase Inhibitory Activities. Front Microbiol 2021; 12:654963. [PMID: 33717048 PMCID: PMC7947296 DOI: 10.3389/fmicb.2021.654963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
One new (1) and fifteen known (2–16) p-terphenyls were isolated from a solid culture of the endophytic fungus Aspergillus sp. GZWMJZ-055 by adding the leaves of its host Eucommia ulmoides. Furthermore, nine p-terphenyls (17–25) were synthesized from the main compounds (5–7), among which derivatives 18, 19, 21, 22, and 25 are new p-terphenyls. Compounds 15 and 16 were also, respectively, synthesized from compounds 6 and 7 by oxidative cyclization of air in the presence of silica gel. These p-terphenyls especially those with 4,2′,4″-trihydroxy (4–7, 20, 21) or 4, 4″-dihydroxy-1,2,1′,2′-furan (15, 16) substituted nucleus, exhibited significant antioxidant and α-glucosidase inhibitory activities and lower cytotoxicity to caco-2 cells. The results indicated their potential use as lead compounds or dietary supplements for treating or preventing the diabetes.
Collapse
Affiliation(s)
- Yanchao Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China.,School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China.,Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang, China
| | - Yong Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China.,School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China.,Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang, China
| | - Dan Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China.,Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang, China
| | - Wenwen He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China.,Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang, China
| | - Liping Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China.,School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China.,Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang, China
| | - Weiming Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| |
Collapse
|
25
|
Sharma M, Khurana H, Singh DN, Negi RK. The genus Sphingopyxis: Systematics, ecology, and bioremediation potential - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111744. [PMID: 33280938 DOI: 10.1016/j.jenvman.2020.111744] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
The genus Sphingopyxis was first reported in the year 2001. Phylogenetically, Sphingopyxis is well delineated from other genera Sphingobium, Sphingomonas and Novosphingobium of sphingomonads group, family Sphingomonadaceae of Proteobacteria. To date (at the time of writing), the genus Sphingopyxis comprises of twenty validly published species available in List of Prokaryotic Names with Standing in Nomenclature. Sphingopyxis spp. have been isolated from diverse niches including, agricultural soil, marine and fresh water, caves, activated sludge, thermal spring, oil and pesticide contaminated soil, and heavy metal contaminated sites. Sphingopyxis species have drawn considerable attention not only for their ability to survive under extreme environments, but also for their potential to degrade number of xenobiotics and other environmental contaminants that impose serious threat to human health. At present, genome sequence of both cultivable and non-cultivable strains (metagenome assembled genome) are available in the public databases (NCBI) and genome wide studies confirms the presence of mobile genetic elements and plethora of degradation genes and pathways making them a potential candidate for bioremediation. Beside genome wide predictions there are number of experimental evidences confirm the degradation potential of bacteria belonging to genus Sphingopyxis and also the production of different secondary metabolites that help them interact and survive in their ecological niches. This review provides detailed information on ecology, general characteristic and the significant implications of Sphingopyxis species in environmental management along with the bio-synthetic potential.
Collapse
Affiliation(s)
- Monika Sharma
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi-110007, India
| | - Himani Khurana
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi-110007, India
| | - Durgesh Narain Singh
- Bacterial Pathogenesis Laboratory, Department of Zoology, University of Delhi, Delhi-110007, India
| | - Ram Krishan Negi
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi-110007, India.
| |
Collapse
|
26
|
Polyhydroxy p-Terphenyls from a Mangrove Endophytic Fungus Aspergillus candidus LDJ-5. Mar Drugs 2021; 19:md19020082. [PMID: 33540563 PMCID: PMC7912881 DOI: 10.3390/md19020082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 11/17/2022] Open
Abstract
Six undescribed polyhydroxy p-terphenyls, namely asperterphenyllins A–F, were isolated from an endophytic fungus Aspergillus candidus LDJ-5. Their structures were determined by NMR and MS data. Differing from the previously reported p-terphenyls, asperterphenyllin A represents the first p-terphenyl dimer connected by a C-C bond. Asperterphenyllin A displayed anti-influenza virus A (H1N1) activity and protein tyrosine phosphatase 1B (PTP1B) inhibitory activity with IC50 values of 53 μM and 21 μM, respectively. The anti-influenza virus A (H1N1) activity and protein tyrosine phosphatase 1B (PTP1B) inhibitory activity of p-terphenyls are reported for the first time. Asperterphenyllin G exhibited cytotoxicity against nine cell lines with IC50 values ranging from 0.4 to 1.7 μM. Asperterphenyllin C showed antimicrobial activity against Proteus species with a MIC value of 19 μg/mL.
Collapse
|
27
|
Li X, Zhang T, Hu R, Zhang H, Ren C, Yuan Z. A one-pot protocol for the fluorosulfonation and Suzuki coupling of phenols and bromophenols, streamlined access to biaryls and terphenyls. Org Biomol Chem 2020; 18:4748-4753. [PMID: 32315002 DOI: 10.1039/d0ob00406e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A one-pot protocol for the fluorosulfation and Suzuki coupling of phenols is described. The tandem reaction proceeds efficiently at room temperature, and various biaryls and biaryl fluorosulfates were obtained in good to excellent yields. Furthermore, biaryl fluorosulfates were utilized as versatile building blocks for the preparation of terphenyls.
Collapse
Affiliation(s)
- Xinmin Li
- School of Pharmacy, Zunyi Medical University, Zunyi, China.
| | - Tingting Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi, China.
| | - Rui Hu
- School of Pharmacy, Zunyi Medical University, Zunyi, China.
| | - Hang Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi, China.
| | - Changyue Ren
- School of Pharmacy, Zunyi Medical University, Zunyi, China.
| | - Zeli Yuan
- School of Pharmacy, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
28
|
Ramos-Morales E, Lyons L, de la Fuente G, Braganca R, Newbold CJ. Not all saponins have a greater antiprotozoal activity than their related sapogenins. FEMS Microbiol Lett 2020; 366:5528311. [PMID: 31271417 PMCID: PMC6666788 DOI: 10.1093/femsle/fnz144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 07/03/2019] [Indexed: 11/17/2022] Open
Abstract
The antiprotozoal effect of saponins varies according to both the structure of the sapogenin and the composition and linkage of the sugar moieties to the sapogenin. The effect of saponins on protozoa has been considered to be transient as it was thought that when saponins were deglycosilated to sapogenins in the rumen they became inactive; however, no studies have yet evaluated the antiprotozoal effect of sapogenins compared to their related saponins. The aims of this study were to evaluate the antiprotozoal effect of eighteen commercially available triterpenoid and steroid saponins and sapogenins in vitro, to investigate the effect of variations in the sugar moiety of related saponins and to compare different sapogenins bearing identical sugar moieties. Our results show that antiprotozoal activity is not an inherent feature of all saponins and that small variations in the structure of a compound can have a significant influence on their biological activity. Some sapogenins (20(S)-protopanaxatriol, asiatic acid and madecassic acid) inhibited protozoa activity to a greater extent than their corresponding saponins (Re and Rh1 and asiaticoside and madecassoside), thus the original hypothesis that the transient nature of the antiprotozoal action of saponins is due to the deglycosilation of saponins needs to be revisited.
Collapse
Affiliation(s)
| | - L Lyons
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, SY23 3DA, Aberystwyth, UK
| | - G de la Fuente
- Dept. Ciència Animal, Universitat de Lleida, Lleida, 25198, Spain
| | - R Braganca
- BioComposites Centre, Bangor University, Bangor, LL57 2UW, UK
| | - C J Newbold
- Scotland's Rural College, Edinburgh, EH9 3JG, UK
| |
Collapse
|
29
|
El-Hawary SS, Moawad AS, Bahr HS, Abdelmohsen UR, Mohammed R. Natural product diversity from the endophytic fungi of the genus Aspergillus. RSC Adv 2020; 10:22058-22079. [PMID: 35516645 PMCID: PMC9054607 DOI: 10.1039/d0ra04290k] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022] Open
Abstract
The endophytic fungus Aspergillus is considered as an enormous source of chemical leads with promising biological activities. Different Aspergillus species have proved their ability to produce plenty of secondary metabolites including butenolides, alkaloids, terpenoids, cytochalasins, phenalenones, ρ-terphenyls, xanthones, sterols, diphenyl ether and anthraquinone derivatives with diverse biological activities, such as anti-cancer, antifungal, anti-bacterial, anti-viral, anti-inflammatory, antitrypanosomal and antileishmanial activities. From January 2015 until December 2019, three hundred and sixty-one secondary metabolites were reported from different endophytic Aspergillus species. This review discusses the isolated secondary metabolites from different endophytic Aspergillus species reported from January 2015 to December 2019 along with their reported biological activities and structural aspects whenever applicable.
Collapse
Affiliation(s)
- Seham S El-Hawary
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University 11936 Cairo Egypt
| | - Abeer S Moawad
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University 62514 Beni-Suef Egypt
| | - Hebatallah S Bahr
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University 62513 Beni-Suef Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone P. O. Box 61111 New Minia City Minia Egypt
| | - Rabab Mohammed
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University 62514 Beni-Suef Egypt
| |
Collapse
|
30
|
Sugawara S, Meguro Y, Sato S, Enomoto M, Ogura Y, Kuwahara S. Total synthesis of terfestatins a and B. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
31
|
|
32
|
Zhou G, Chen X, Zhang X, Che Q, Zhang G, Zhu T, Gu Q, Li D. Prenylated p-Terphenyls from a Mangrove Endophytic Fungus, Aspergillus candidus LDJ-5. JOURNAL OF NATURAL PRODUCTS 2020; 83:8-13. [PMID: 31904949 DOI: 10.1021/acs.jnatprod.9b00004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nine previously undescribed prenylated p-terphenyls, prenylterphenyllins F-J (1, 2, 4-6) and prenylcandidusins D-G (3, 7-9), were isolated from an endophytic fungus, Aspergillus candidus LDJ-5. Their structures were determined from NMR and MS data. Differing from previously reported p-terphenyls, compound 3 represents a rare 6,5,6,6-fused ring system. Compounds 4-6 are antimicrobial, and compounds 1, 4, 6, and 9 are cytotoxic.
Collapse
Affiliation(s)
- Guoliang Zhou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Xiaohui Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Xiaomin Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Qian Che
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
- Laboratory for Marine Drugs and Bioproducts , Pilot National Laboratory for Marine Science and Technology , Qingdao 266237 , People's Republic of China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Qianqun Gu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
- Laboratory for Marine Drugs and Bioproducts , Pilot National Laboratory for Marine Science and Technology , Qingdao 266237 , People's Republic of China
- Open Studio for Druggability Research of Marine Natural Products , Pilot National Laboratory for Marine Science and Technology , Qingdao 266237 , People's Republic of China
| |
Collapse
|
33
|
Wang D, Wang Y, Ouyang Y, Fu P, Zhu W. Cytotoxic p-Terphenyls from a Marine-Derived Nocardiopsis Species. JOURNAL OF NATURAL PRODUCTS 2019; 82:3504-3508. [PMID: 31820976 DOI: 10.1021/acs.jnatprod.9b00963] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Three new p-terphenyl derivatives, nocarterphenyls A-C (1-3), along with three known analogues (4-6) were isolated from the marine-derived actinobacterial strain Nocardiopsis sp. OUCMDZ-4936. Their structures were elucidated on the basis of spectroscopic analysis and a single-crystal X-ray diffraction experiment. Compounds 1 and 2 possess a benzothiazole and benzothiazine moiety, respectively, which are rare in the skeleton of p-terphenyls. Nocarterphenyl A (1) showed potent cytotoxic activity against the HL60 and HCC1954 cancer cell lines with the IC50 values of 0.38 and 0.10 μM among 26 human cancer cell lines.
Collapse
Affiliation(s)
- Dongyang Wang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , China
| | - Yi Wang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , China
| | - Yinfeng Ouyang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , China
| | - Peng Fu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , China
- Open Studio for Druggability Research of Marine Natural Products, Laboratory for Marine Drugs and Bioproducts , Pilot National Laboratory for Marine Science and Technology (Qingdao) , Qingdao 266003 , China
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , China
- Open Studio for Druggability Research of Marine Natural Products, Laboratory for Marine Drugs and Bioproducts , Pilot National Laboratory for Marine Science and Technology (Qingdao) , Qingdao 266003 , China
| |
Collapse
|
34
|
Han X, Xie Y, Wu C, Ai H, Lei X, Wang X. Novel Metabolites from the Endophytic Fungus
Chaetomium subaffine
L01. Chem Biodivers 2019; 16:e1900471. [DOI: 10.1002/cbdv.201900471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/14/2019] [Indexed: 01/28/2023]
Affiliation(s)
- Xiao‐Yang Han
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education CommitteeNortheast Agricultural University Harbin 150030 P. R. China
| | - Yi‐Xuan Xie
- School of Pharmaceutical SciencesSouth-Central University for Nationalities Wuhan 430074 P. R. China
| | - Chao‐Qun Wu
- School of Pharmaceutical SciencesSouth-Central University for Nationalities Wuhan 430074 P. R. China
| | - Hong‐Lian Ai
- School of Pharmaceutical SciencesSouth-Central University for Nationalities Wuhan 430074 P. R. China
| | - Xin‐Xiang Lei
- School of Pharmaceutical SciencesSouth-Central University for Nationalities Wuhan 430074 P. R. China
| | - Xiang‐Jing Wang
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education CommitteeNortheast Agricultural University Harbin 150030 P. R. China
| |
Collapse
|
35
|
Zhang FM, Wang YH, Zhao P, Yu FQ. A new p-terphenyl derivative from the fruiting bodies of Sarcodon imbricatus (L.) P. Karst. Nat Prod Res 2019; 35:2482-2488. [PMID: 31674837 DOI: 10.1080/14786419.2019.1680664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A new p-terphenyl, 2',3'-diacetoxy-4,5,5',6',4'',5''-hexahydroxy-p-terphenyl (1), along with 12 known compounds were isolated from the fruiting bodies of Sarcodon imbricatus (Bankeraceae). Their structures were confirmed on the basis of extensive spectroscopic analysis and comparison with the spectral data in the literature. Compound 1 exhibited weak cytotoxicity against colon cancer SW480 and leukemia HL-60 cell lines, with IC50 values of 55.02 ± 1.79 μM and 44.71 ± 2.15 μM, respectively.
Collapse
Affiliation(s)
- Feng-Ming Zhang
- Key Laboratory of State Forestry Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming, China.,SWFU-KIBCAS Joint Institute for Applied Mycology, Southwest Forestry University, Kunming, China
| | - Yue-Hu Wang
- SWFU-KIBCAS Joint Institute for Applied Mycology, Southwest Forestry University, Kunming, China.,Key Laboratory of Economic Plant and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Ping Zhao
- Key Laboratory of State Forestry Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming, China
| | - Fu-Qiang Yu
- Key Laboratory of Economic Plant and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
36
|
Lu DD, Ren JW, Du QQ, Song YJ, Lin SQ, Li X, Li EW, Xie WD. p-Terphenyls and actinomycins from a Streptomyces sp. associated with the larva of mud dauber wasp. Nat Prod Res 2019; 35:1869-1873. [PMID: 31305144 DOI: 10.1080/14786419.2019.1639177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In the course of searching for cytotoxic metabolites from insects associated actinomyces, two new natural p-terphenyl glycosides, strepantibin D (1) and strepantibin E (2), along with terferol (3), actinomycin D (4), actinomycin V (5) and actinomycin V0β (6), were identified from the fermentation medium of a Streptomyces sp. which was obtained from the larva body of mud dauber wasp. Strepantibin D (1), previously reported as a synthetic derivative of terfestatin A, is firstly isolated as a natural p-terphenyl in this research. Strepantibin D (1) and terferol (3) showed medium cytotoxic activity against breast cancer cells MCF-7, MDA-MB-231 and BT-474. Actinomycins (4-6), especially actinomycin V (5), displayed remarkable cytotoxicity against breast cancer cells, with IC50 values ranging from 0.83 nM to 369.90 nM.
Collapse
Affiliation(s)
- Dan-Dan Lu
- College of Marine Science, Shandong University at Weihai, Weihai, People's Republic of China.,State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jin-Wei Ren
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qian-Qian Du
- College of Marine Science, Shandong University at Weihai, Weihai, People's Republic of China.,State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ya-Jie Song
- College of Marine Science, Shandong University at Weihai, Weihai, People's Republic of China
| | - Shi-Qi Lin
- College of Marine Science, Shandong University at Weihai, Weihai, People's Republic of China
| | - Xia Li
- College of Marine Science, Shandong University at Weihai, Weihai, People's Republic of China
| | - Er-Wei Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Wei-Dong Xie
- College of Marine Science, Shandong University at Weihai, Weihai, People's Republic of China
| |
Collapse
|
37
|
Song YJ, Zheng HB, Peng AH, Ma JH, Lu DD, Li X, Zhang HY, Xie WD. Strepantibins A-C: Hexokinase II Inhibitors from a Mud Dauber Wasp Associated Streptomyces sp. JOURNAL OF NATURAL PRODUCTS 2019; 82:1114-1119. [PMID: 31013087 DOI: 10.1021/acs.jnatprod.8b00821] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Two new p-terphenyls, strepantibins A and B (1 and 2), along with the first representative of a naturally occurring bisphenyltropone, strepantibin C (3), were characterized from a Streptomyces sp. associated with the larvae of the mud dauber wasp Sceliphron madraspatanum. Their structures were determined by high-resolution electrospray ionization mass spectrometry, NMR, and X-ray crystallography data interpretation. Strepantibins A-C inhibited hexokinase II (HK2) activity and displayed antiproliferative activity against hepatoma carcinoma cells HepG-2, SMMC-7721 and plc-prf-5. In SMMC-7721 cells treated with strepantibin A, the morphological characteristics of apoptosis were observed.
Collapse
Affiliation(s)
- Ya-Jie Song
- Department of Pharmacy, College of Marine Science , Shandong University at Weihai , Weihai 264209 , People's Republic of China
| | - Hong-Bo Zheng
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Science , Shandong University , Jinan 250012 , People's Republic of China
| | - Ai-Hong Peng
- Department of Pharmacy, College of Marine Science , Shandong University at Weihai , Weihai 264209 , People's Republic of China
| | - Jia-Hui Ma
- Department of Pharmacy, College of Marine Science , Shandong University at Weihai , Weihai 264209 , People's Republic of China
| | - Dan-Dan Lu
- Department of Pharmacy, College of Marine Science , Shandong University at Weihai , Weihai 264209 , People's Republic of China
| | - Xia Li
- Department of Pharmacy, College of Marine Science , Shandong University at Weihai , Weihai 264209 , People's Republic of China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences , Guiyang 550002 , People's Republic of China
| | - Hang-Yu Zhang
- Department of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering , Dalian University of Technology , Dalian 116024 , People's Republic of China
| | - Wei-Dong Xie
- Department of Pharmacy, College of Marine Science , Shandong University at Weihai , Weihai 264209 , People's Republic of China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences , Guiyang 550002 , People's Republic of China
| |
Collapse
|
38
|
Li X, Liu C, Wang L, Ye Q, Jin X, Jin Z. Temperature-controlled sequential Suzuki-Miyaura reactions for preparing unsymmetrical terphenyls. Org Biomol Chem 2019; 16:8719-8723. [PMID: 30191227 DOI: 10.1039/c8ob01661e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A one-pot protocol of double Suzuki-Miyaura reactions has been developed for the synthesis of unsymmetrical terphenyls. In the absence of a ligand, potassium bromophenyltrifluoroborate reacts with arylboronic acid and then sequentially with a hetero/aryl bromide by controlling the reaction temperature, providing unsymmetrical p- and m-terphenyl compounds in moderate to good overall yields. This protocol provides a convenient and practical approach to unsymmetrical terphenyls under ligand-free and aerobic conditions.
Collapse
Affiliation(s)
- Xinmin Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Linggong Road 2, Dalian 116024, China.
| | | | | | | | | | | |
Collapse
|
39
|
Isolation and Characterization of a Bacterial Strain Capable of Efficient Berberine Degradation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16040646. [PMID: 30795638 PMCID: PMC6406382 DOI: 10.3390/ijerph16040646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/17/2019] [Accepted: 02/19/2019] [Indexed: 11/17/2022]
Abstract
Background: Berberine (BBR) is a pharmaceutical chemical with a broad antibacterial spectrum, and its biological treatment has been of research and practical interest. In this study, a pure bacterial strain B16 was isolated from the activated sludge in a pharmaceutical wastewater treatment plant. The aim of the study is to characterize the properties of the strain B16, especially its BBR degradation capability. Methods: The identification of strain B16 was conducted by visual observation, as well as biochemical and phylogenetic analysis. The degradation kinetics of strain B16 was tentatively described by Haldane model. Results: The strain B16 was 100% determined as a Sphingopyxis sp. The kinetic parameters of BBR degradation by strain B16 were as follows: Vmax 54.73 ± 5.54 mg (g MLSS · h)−1, Km 66.68 ± 8.95 mg L−1, and Ki 43.16 ± 5.92 mg L−1, with an R2 of 0.996. Stain B16 exhibited considerable capability of BBR degradation. BBR of initial concentration 40 mg L−1 could be completely degraded in 48 h under optimal conditions. Conclusions: strain B16 was the first pure culture found with the ability to totally mineralize BBR, indicating the potential of B16 application in real industrial processes.
Collapse
|
40
|
Xu K, Gao Y, Li YL, Xie F, Zhao ZT, Lou HX. Cytotoxic p-Terphenyls from the Endolichenic Fungus Floricola striata. JOURNAL OF NATURAL PRODUCTS 2018; 81:2041-2049. [PMID: 30137985 DOI: 10.1021/acs.jnatprod.8b00362] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Eleven new p-terphenyls, floricolins K-U (1-11), together with 13 biosynthetically related known compounds (12-24) were isolated from an endolichenic fungus, Floricola striata. Their structures were elucidated by extensive spectroscopic analyses and single-crystal X-ray diffraction measurements. The newly isolated p-terphenyls inhibited the growth of A2780, MCF-7, and A549 cell lines. Further evaluation for the multidrug resistance (MDR) reversal activity of compound 5 revealed it enhanced the sensitivity of MCF-7/ADR cells toward adriamycin 39-fold at 10 μM through modulating P-glycoprotein-mediated drug exclusion.
Collapse
Affiliation(s)
- Ke Xu
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences , Shandong University , No. 44 West Wenhua Road , Jinan 250012 , People's Republic of China
| | - Yun Gao
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences , Shandong University , No. 44 West Wenhua Road , Jinan 250012 , People's Republic of China
| | - Yue-Lan Li
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences , Shandong University , No. 44 West Wenhua Road , Jinan 250012 , People's Republic of China
| | - Fei Xie
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences , Shandong University , No. 44 West Wenhua Road , Jinan 250012 , People's Republic of China
| | - Zun-Tian Zhao
- College of Life Sciences , Shandong Normal University , No. 88 East Wenhua Road , Jinan 250014 , People's Republic of China
| | - Hong-Xiang Lou
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences , Shandong University , No. 44 West Wenhua Road , Jinan 250012 , People's Republic of China
| |
Collapse
|