1
|
Shamsabadi E, Akhlaghi H, Baghayeri M, Motavalizadehkakhky A. Preparation and application of a new ion-imprinted polymer for nanomolar detection of mercury(II) in environmental waters. Sci Rep 2024; 14:25052. [PMID: 39443653 PMCID: PMC11499607 DOI: 10.1038/s41598-024-77139-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024] Open
Abstract
This study introduces a novel ion-imprinted polymer for the ultrasensitive detection of mercury(II) in water. The ion-imprinted polymer was synthesized via a simple bulk polymerization process using methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross-linker, morpholine-4-carbodithioic acid phenyl ester as the chelating agent, and ammonium persulfate as the initiator. The electrochemical mercury(II) sensing capability of the ion-imprinted polymer was studied via the modification of a cost-effective carbon paste electrode. A stripping voltammetric technique was utilized to quantify the analyte ions following open-circuit enrichment. Critical experimental parameters, including the nature and concentration of the eluent, solution pH, preconcentration duration, ion-imprinted polymer dosage, sample solution volume and reduction potential, were systematically studied and optimized. Under optimal conditions, the sensor exhibited a linear response in the range of 1.0 to 240.0 nM, with a low detection limit of 0.2 nM. The sensor demonstrated remarkable selectivity against potential interfering ions, including lead(II), cadmium(II), copper(II), zinc(II), manganese(II), iron(II), magnesium(II), calcium(II), sodium(I) and cobalt(II). The practical applicability of the developed method was successfully validated through the analysis of real water samples, suggesting its potential for environmental monitoring applications.
Collapse
Affiliation(s)
- Ebrahim Shamsabadi
- Department of Chemistry, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
| | - Hashem Akhlaghi
- Department of Chemistry, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran.
| | - Mehdi Baghayeri
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, P.O. Box 397, Sabzevar, Iran.
| | | |
Collapse
|
2
|
Zepeda-Navarro A, Segoviano-Garfias JJN, Bivián-Castro EY. The Multi-Challenges of the Multi-Ion-Imprinted Polymer Synthesis. Polymers (Basel) 2024; 16:2804. [PMID: 39408513 PMCID: PMC11478749 DOI: 10.3390/polym16192804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Multi-ion-imprinted polymers (MIIPs) are materials with a wide range of applications mainly focused on environmental recovery, mining, technology, sensors, etc. MIIPs can incorporate ions such as heavy metals, transition metals, rare earth elements, radionuclides, and other types of ions. The chemical structures of MIIPs can be designed for different purposes and with certain morphologies, such as gels, crystals, or powders, and the surface area and porosity are also considered. All these properties provide the material with several desirable characteristics, like high selectivity, high specificity, adequate efficiency, good stability, the possibility of reusability, and strategy technology adaptation. In this review, we show the multitude of challenges of multi-ion imprinted polymer chemical synthesis based on the different and interesting methods reported previously.
Collapse
Affiliation(s)
- Abraham Zepeda-Navarro
- Centro Universitario de los Lagos, Universidad de Guadalajara, Av. Enrique Díaz de León 1144, Col. Paseos de la Montaña, Lagos de Moreno 47460, Jalisco, Mexico;
| | - José J. N. Segoviano-Garfias
- División de Ciencias de la Vida, Carr. Irapuato-Silao Km. 12.5, Ex-Hacienda El Copal, Irapuato 36821, Guanajuato, Mexico;
| | - Egla Yareth Bivián-Castro
- Centro Universitario de los Lagos, Universidad de Guadalajara, Av. Enrique Díaz de León 1144, Col. Paseos de la Montaña, Lagos de Moreno 47460, Jalisco, Mexico;
| |
Collapse
|
3
|
Topcu C, Yilmaz RR, Atasoy BH, Ocsoy I, Yilmaz V. A novel composite electrochemical sensor doped ion-imprinted polymer based on N-methacryloyl-L-histidine/ethylene glycol dimethacrylate for ultrasensitive determination of copper (II) ions in food supplements. CHEMICAL PAPERS 2024; 78:8245-8260. [DOI: 10.1007/s11696-024-03664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/19/2024] [Indexed: 03/29/2025]
|
4
|
Du M, Xu Z, Xue Y, Li F, Bi J, Liu J, Wang S, Guo X, Zhang P, Yuan J. Application Prospect of Ion-Imprinted Polymers in Harmless Treatment of Heavy Metal Wastewater. Molecules 2024; 29:3160. [PMID: 38999112 PMCID: PMC11243660 DOI: 10.3390/molecules29133160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
With the rapid development of industry, the discharge of heavy metal-containing wastewater poses a significant threat to aquatic and terrestrial environments as well as human health. This paper provides a brief introduction to the basic principles of ion-imprinted polymer preparation and focuses on the interaction between template ions and functional monomers. We summarized the current research status on typical heavy metal ions, such as Cu(II), Ni(II), Cd(II), Hg(II), Pb(II), and Cr(VI), as well as metalloid metal ions of the As and Sb classes. Furthermore, it discusses recent advances in multi-ion-imprinted polymers. Finally, the paper addresses the challenges faced by ion-imprinted technology and explores its prospects for application.
Collapse
Affiliation(s)
- Mengzhen Du
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
| | - Zihao Xu
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
| | - Yingru Xue
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
| | - Fei Li
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Jingtao Bi
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Jie Liu
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Shizhao Wang
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Xiaofu Guo
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Panpan Zhang
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Junsheng Yuan
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| |
Collapse
|
5
|
Minaberry YS, Medina LS, Cataneo D, Stripeikis J, Tudino M. Bifunctional magnetic nanoparticles with ion imprinting for improving the flow through determination of ultratraces of Cd(II) using magnetic preconcentration. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4178-4186. [PMID: 38874550 DOI: 10.1039/d3ay02047a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
A novel bifunctional magnetic sorbent with mercapto and amino groups and ion imprinting (MBII) was synthesized using a one-step aqueous sol-gel process for preconcentration and determination of Cd(II) ions. MBII was employed as a microcolumn (MC) filler in a flow-through system coupled to GFAAS. The magnetic properties of the solid allowed microcolumn magnetic solid-phase extraction (MCMSPE) to be performed by simply including a single circular magnet around the MC. This assembly enabled complete attachment of the solid to the MC wall leaving a central void to facilitate higher sample flow rates without blockage or material loss. For comparison, a bifunctional magnetic solid without imprinting (MBNI) was also synthesized and evaluated. Both MBII and MBNI were characterized by FTIR, SEM, EDX, BET and magnetization measurements. The results showed the preservation of the magnetic core, its superparamagnetism and the functional groups in the solid. Batch studies revealed a maximum adsorption capacity for both materials at pH around 6 with equilibrium reached within 5 minutes. The advantages were reflected in the maximum adsorption capacity of MBII, which was found to be 2.5 times greater than that of MBNI. Both adsorbents were compared as MC fillers for dynamic preconcentration in MCMSPE systems. Under optimized conditions, MBNI showed a PCF of 125 and MBII of 250. The higher selectivity of MBII was corroborated by interfering ion studies. The analytical performance parameters for the proposed method using MBII as an adsorbent showed a detection limit of 0.05 ng L-1, a linear range of 2.0-80 ng L-1, an RSD% of 2.2 (n = 7; 20 ng L-1) and a lifetime of more than 300 preconcentration-elution cycles without loss of sensitivity or need for refilling. The method was successfully applied to the determination of trace Cd(II) in osmosis, lake and tap water with recoveries ranging from 98 to 105%. Comparison of these results with those of similar reported methods showed a considerable improvement primarily attributed to the combined effect of MBII's higher retention capacity and its magnetic properties that allowed higher sample flow rates and, thus, enhanced figures of merit.
Collapse
Affiliation(s)
- Yanina Susana Minaberry
- DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. II, Ciudad de Buenos Aires, C1428EHA, Argentina.
- Instituto Tecnológico de Buenos Aires, ITBA, Iguazú 341, Ciudad de Buenos Aires, Argentina
| | - Leila Saleh Medina
- DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. II, Ciudad de Buenos Aires, C1428EHA, Argentina.
- INQUIMAE, Instituto de Química Inorgánica Analítica y Química Física, Ciudad Universitaria Pab. II, Ciudad de Buenos Aires, C1428EHA, Argentina
| | - Daiana Cataneo
- DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. II, Ciudad de Buenos Aires, C1428EHA, Argentina.
| | - Jorge Stripeikis
- Instituto Tecnológico de Buenos Aires, ITBA, Iguazú 341, Ciudad de Buenos Aires, Argentina
| | - Mabel Tudino
- DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. II, Ciudad de Buenos Aires, C1428EHA, Argentina.
| |
Collapse
|
6
|
Cao P, Pichon V, Dreanno C, Boukerma K, Delaunay N. Use of the dummy approach for the synthesis of ion imprinted polymers with Ni(II) or Zn(II) as template ion for the solid-phase extraction of Cu(II). J Sep Sci 2024; 47:e2300891. [PMID: 38520247 DOI: 10.1002/jssc.202300891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/22/2024] [Accepted: 03/02/2024] [Indexed: 03/25/2024]
Abstract
There is a strong interest in monitoring copper in environmental waters, but its direct analysis suffers from strong matrix interferences. This is why, a sample pretreatment based on solid-phase extraction (SPE) is often used but conventional sorbents usually lack specificity. It is overcome with ion-imprinted polymers (IIPs). This work evaluates for the first time the use of the dummy approach for the synthesis of Cu(II)-targeting IIPs. Two analog ions Ni(II) and Zn(II) were tested as templates and the resulting IIPs were packed in SPE cartridges. The SPE procedure was designed by optimizing a washing step following the sample percolation, to eliminate the interfering ions retained on the IIP by non-specific interactions. To optimize the washing step, solutions at different pH or containing tris(hydroxymethyl)aminomethane as a complexing agent at different concentrations were tested and combined. Zn-IIP appeared more promising than Ni-IIP, showing excellent specificity and a high selectivity. Its retention capacity was determined to be 100 µg/g, and different isotherm models were evaluated to fit with the adsorption data. Finally, applications to mineral and sea waters were successfully completed and led to high and repeatable extraction recoveries for Cu(II) (88 ± 1% and 83 ± 3%, respectively).
Collapse
Affiliation(s)
- Pengchao Cao
- Department of Analytical, Bioanalytical Sciences, and Miniaturization, UMR 8231 Chemistry, Biology, and Innovation, ESPCI Paris, PSL Research University, CNRS, Paris, France
- Laboratoire Détection, Capteurs et Mesures, Ifremer, Centre Bretagne, Technopole pointe du diable, Plouzané, France
| | - Valérie Pichon
- Department of Analytical, Bioanalytical Sciences, and Miniaturization, UMR 8231 Chemistry, Biology, and Innovation, ESPCI Paris, PSL Research University, CNRS, Paris, France
- Sorbonne University, Paris, France
| | - Catherine Dreanno
- Laboratoire Détection, Capteurs et Mesures, Ifremer, Centre Bretagne, Technopole pointe du diable, Plouzané, France
| | - Kada Boukerma
- Laboratoire Détection, Capteurs et Mesures, Ifremer, Centre Bretagne, Technopole pointe du diable, Plouzané, France
| | - Nathalie Delaunay
- Department of Analytical, Bioanalytical Sciences, and Miniaturization, UMR 8231 Chemistry, Biology, and Innovation, ESPCI Paris, PSL Research University, CNRS, Paris, France
| |
Collapse
|
7
|
Dakova I, Yordanova T, Karadjova I. Polymeric Materials in Speciation Analysis Based on Solid-Phase Extraction. Molecules 2023; 29:187. [PMID: 38202769 PMCID: PMC10780835 DOI: 10.3390/molecules29010187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Speciation analysis is a relevant topic since the (eco)toxicity, bioavailability, bio (geo)chemical cycles, and mobility of a given element depend on its chemical forms (oxidation state, organic ligands, etc.). The reliability of analytical results for chemical species of elements depends mostly on the maintaining of their stability during the sample pretreatment step and on the selectivity of further separation step. Solid-phase extraction (SPE) is a matter of choice as the most suitable and widely used procedure for both enrichment of chemical species of elements and their separation. The features of sorbent material are of great importance to ensure extraction efficiency from one side and selectivity from the other side of the SPE procedure. This review presents an update on the application of polymeric materials in solid-phase extraction used in nonchromatographic methods for speciation analysis.
Collapse
Affiliation(s)
| | | | - Irina Karadjova
- Faculty of Chemistry and Pharmacy, University of Sofia “St. Kliment Ohridski”, 1, James. Bourchier Blvd.1, 1164 Sofia, Bulgaria; (I.D.); (T.Y.)
| |
Collapse
|
8
|
Zhang M, Wang H, Wu Y, Yu X. Silver ion-imprinted magnetic adsorbent hyphenated to single particle-ICP-MS for separation and analysis of dissolved silver and silver nanoparticles in antibacterial gel extracts. Anal Chim Acta 2023; 1279:341846. [PMID: 37827657 DOI: 10.1016/j.aca.2023.341846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/17/2023] [Accepted: 09/23/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Silver nanoparticles (Ag NPs) are extensively used in various applications, but their reactivity leads to oxidative dissolution into Ag(I). When dealing with real samples involving Ag NPs, it is inevitable to encounter situations where both Ag NPs and Ag(I) coexist. Single particle-inductively coupled plasma mass spectrometry (SP-ICP-MS) is a valuable technique for nanoparticle size characterization. However, the presence of coexisting dissolved ions strongly interferes with the accuracy of particle size analysis using SP-ICP-MS. Therefore, it is crucial to develop a reliable separation analysis method to accurately measure both Ag NPs and Ag(I). RESULTS In this study, we synthesized a silver ion-imprinted magnetic adsorbent with high adsorption capacity (149 mg g-1) and rapid adsorption kinetics (30 min) at both μg L-1 and mg L-1 concentration. The adsorbent selectively adsorbs Ag(I) at pH 7 while hardly adsorbing Ag NPs. It is reusable for more than 5 cycles after regeneration. Using this magnetic adsorbent prior to SP-ICP-MS, we accurately determined the sizes of standard Ag NPs in agreement with the size determined by transmission electron microscopy. The detection limit of particle size and number concentrations of Ag NPs was 12.6 nm and 6.3 × 105 particles L-1. Moreover, we successfully applied the developed method to analyze Ag(I) and Ag NPs in antibacterial gel extracts and validated its accuracy through acid digestion-ICP-MS, TEM, and spiking experiments. SIGNIFICANCE AND NOVELTY Direct SP-ICP-MS analysis in the presence of Ag(I) led to a high baseline, obscuring signals from smaller Ag NPs. Our method of selectively removing Ag(I) substantially improves the accuracy of Ag NPs detection via SP-ICP-MS in the antibacterial gel extracts (e.g. from 48.26 to 35.67 nm). Compared to other approaches used in SP-ICP-MS, our method has a higher adsorption capacity, allowing for better tolerance of coexisting Ag(I).
Collapse
Affiliation(s)
- Meng Zhang
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Han Wang
- Wuhan Customs District of China, Wuhan, 430020, China
| | - Yiwei Wu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Xiaoxiao Yu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China.
| |
Collapse
|
9
|
Ye S, Zhang W, Hu X, He H, Zhang Y, Li W, Hu G, Li Y, Deng X. Selective Adsorption Behavior and Mechanism for Cd(II) in Aqueous Solution with a Recoverable Magnetie-Surface Ion-Imprinted Polymer. Polymers (Basel) 2023; 15:polym15112416. [PMID: 37299215 DOI: 10.3390/polym15112416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
A novel recoverable magnetic Cd(II) ion-imprinted polymer was synthesized on the surface of silica-coated Fe3O4 particles via the surface imprinting technique and chemical grafting method. The resulting polymer was used as a highly efficient adsorbent for the removal of Cd(II) ions from aqueous solutions. The adsorption experiments revealed that Fe3O4@SiO2@IIP had a maximum adsorption capacity of up to 29.82 mg·g-1 for Cd(II) at an optimal pH of 6, with the adsorption equilibrium achieved within 20 min. The adsorption process followed the pseudo-second-order kinetic model and the Langmuir isotherm adsorption model. Thermodynamic studies showed that the adsorption of Cd(II) on the imprinted polymer was spontaneous and entropy-increasing. Furthermore, the Fe3O4@SiO2@IIP could rapidly achieve solid-liquid separation in the presence of an external magnetic field. More importantly, despite the poor affinity of the functional groups constructed on the polymer surface for Cd(II), we improved the specific selectivity of the imprinted adsorbent for Cd(II) through surface imprinting technology. The selective adsorption mechanism was verified by XPS and DFT theoretical calculations.
Collapse
Affiliation(s)
- Siqing Ye
- Yunnan Key Laboratory of Food Safety Testing Technology, College of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Weiye Zhang
- Yunnan Key Laboratory of Food Safety Testing Technology, College of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Xingliang Hu
- Kunming Lüdao Environmental Technology Co., Ltd., Kunming 650228, China
| | - Hongxing He
- Yunnan Key Laboratory of Food Safety Testing Technology, College of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Yi Zhang
- Yunnan Key Laboratory of Food Safety Testing Technology, College of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Weili Li
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Guangyuan Hu
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Yue Li
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Xiujun Deng
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| |
Collapse
|
10
|
Zhang Y, Zhang X, Wang S. Recent advances in the removal of emerging contaminants from water by novel molecularly imprinted materials in advanced oxidation processes-A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163702. [PMID: 37105485 DOI: 10.1016/j.scitotenv.2023.163702] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/31/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023]
Abstract
Recently, there has been a global focus on effectively treating emerging contaminants (ECs) in water bodies. Advanced oxidation processes (AOPs) are the primary technology used for ECs removal. However, the low concentrations of ECs make it difficult to overcome the interference of background substances in complex water quality, which limits the practical application of AOPs. To address this limitation, many researchers are developing new catalysts with preferential adsorption. Molecular imprinting technology (MIT) combined with conventional catalysts has been found to effectively enhance the selectivity of catalysts for the targeted catalytic degradation of pollutants. This review presents a comprehensive summary of the progress made in research on molecularly imprinted polymers (MIPs) in the selective oxidation of ECs in water. The preparation methods, principles, and control points of novel MIP catalysts are discussed. Furthermore, the performance and mechanism of the catalysts in photocatalytic oxidation, electrocatalytic oxidation, and persulfate activation are analyzed with examples. The possible ecotoxicological risks of MIP catalysts are also discussed. Finally, the challenges and prospects of applying MIP catalysts in AOP are presented along with proposed solutions. This review provides a better understanding of using MIP catalysts in AOPs to target the degradation of ECs.
Collapse
Affiliation(s)
- Yang Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Xiaodong Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| | - Shuguang Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
11
|
C. G AM, Agnihotri AS, Varghese A, M N. Ion-imprinted chitosan-stabilized biogenic silver nanoparticles for the electrochemical detection of arsenic ( iii) in water samples. NEW J CHEM 2023. [DOI: 10.1039/d2nj04804c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
A schematic representation showing the modified glassy carbon electrode for the detection of arsenic (iii) in water samples.
Collapse
Affiliation(s)
- Ann Maria. C. G
- Department of Chemistry, CHRIST (Deemed to be University), Bengaluru-560029, India
| | - Ananya S Agnihotri
- Department of Chemistry, CHRIST (Deemed to be University), Bengaluru-560029, India
| | - Anitha Varghese
- Department of Chemistry, CHRIST (Deemed to be University), Bengaluru-560029, India
| | - Nidhin M
- Department of Chemistry, CHRIST (Deemed to be University), Bengaluru-560029, India
| |
Collapse
|
12
|
Yu L, Sun L, Zhang Q, Zhou Y, Zhang J, Yang B, Xu B, Xu Q. Nanomaterials-Based Ion-Imprinted Electrochemical Sensors for Heavy Metal Ions Detection: A Review. BIOSENSORS 2022; 12:bios12121096. [PMID: 36551065 PMCID: PMC9775266 DOI: 10.3390/bios12121096] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 05/13/2023]
Abstract
Heavy metal ions (HMIs) pose a serious threat to the environment and human body because they are toxic and non-biodegradable and widely exist in environmental ecosystems. It is necessary to develop a rapid, sensitive and convenient method for HMIs detection to provide a strong guarantee for ecology and human health. Ion-imprinted electrochemical sensors (IIECSs) based on nanomaterials have been regarded as an excellent technology because of the good selectivity, the advantages of fast detection speed, low cost, and portability. Electrode surfaces modified with nanomaterials can obtain excellent nano-effects, such as size effect, macroscopic quantum tunneling effect and surface effect, which greatly improve its surface area and conductivity, so as to improve the detection sensitivity and reduce the detection limit of the sensor. Hence, the present review focused on the fundamentals and the synthetic strategies of ion-imprinted polymers (IIPs) and IIECSs for HMIs detection, as well as the applications of various nanomaterials as modifiers and sensitizers in the construction of HMIIECSs and the influence on the sensing performance of the fabricated sensors. Finally, the potential challenges and outlook on the future development of the HMIIECSs technology were also highlighted. By means of the points presented in this review, we hope to provide some help in further developing the preparation methods of high-performance HMIIECSs and expanding their potential applications.
Collapse
Affiliation(s)
- Liangyun Yu
- School of Light Industry, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China
| | - Liangju Sun
- School of Light Industry, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China
| | - Qi Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yawen Zhou
- School of Light Industry, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China
| | - Jingjing Zhang
- School of Light Industry, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China
| | - Bairen Yang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Baocai Xu
- School of Light Industry, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China
- Correspondence: (B.X.); (Q.X.); Tel.: +86-514-8797-5257 (Q.X.)
| | - Qin Xu
- College of Chemistry and Engineering, Yangzhou University, Yangzhou 225002, China
- Correspondence: (B.X.); (Q.X.); Tel.: +86-514-8797-5257 (Q.X.)
| |
Collapse
|
13
|
Insights into ion-imprinted materials for the recovery of metal ions: Preparation, evaluation and application. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
14
|
|
15
|
Yu P, Zhou G, Yang R, Li Y, Zhang L, Sun L, Fu X, Hao T. Green synthesis of ion-imprinted macroporous composite magnetic hydrogels for selective removal of nickel (II) from wastewater. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Letsoalo M, Ambushe AA, Mamo MA. Novel Chemoresistive Sensor for Sensitive Detection of Pb 2+ Ions Using an Interdigital Gold Electrode Fabricated with a Reduced Graphene Oxide-Based Ion-Imprinted Polymer. ACS OMEGA 2021; 6:31528-31538. [PMID: 34869979 PMCID: PMC8637608 DOI: 10.1021/acsomega.1c03955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
This study presents novel chemoresistive reduced graphene oxide-ion-imprinted polymer (IIP-rGO)-based sensors for detection of lead (Pb2+) ions. The ion-imprinted polymer was synthesized by bulk polymerization and modified with a variable amount of rGO incorporated to form an IIP-rGO composite. The amount of rGO in the polymer matrix affected the sensor's relative response, and 1:3 mass ratio produced excellent results, with a consistent trend as the concentration of Pb2+ ions increased in the solution. The decrease in relative resistance (ΔR/R o) followed an exponential decay relationship between the ΔR/R o response and the concentration of Pb2+ ions in aqueous solutions. After solving the exponential decay function, it is observed that the sensor has the upper limit of ΔR/R o >1.7287 μg L-1, and the limit of detection of the sensor is 1.77 μg L-1. A nonimprinted polymer (NIP)-based sensor responded with a low relative resistance of the same magnitude although the concentration was varied. The response ratio of the IIP-based sensor to the NIP-based sensor (ΔR/R o)IIP/(ΔR/R o)NIP as a function of the concentration of Pb2+ ions in the solution shows that the response ratios recorded a maximum of around 22 at 50 μg L-1 and then decreased as the concentration increased, following an exponential decay function with the minimum ratio of 2.09 at 200 μg L-1 but never read 1. The sensor showed excellent selectivity against the bivalent cations Mn2+, Fe2+, Sn2+, and Ti2+. The sensor was capable of exhibiting 90% ΔR/R o response repeatability in a consecutive test.
Collapse
Affiliation(s)
- Mokgehle
R. Letsoalo
- Department
of Chemical Sciences, Faculty of Science, University of Johannesburg, Auckland Park Campus, P. O. Box
17011, Johannesburg 2028, South Africa
| | - Abayneh A. Ambushe
- Department
of Chemical Sciences, Faculty of Science, University of Johannesburg, Auckland Park Campus, P. O. Box
17011, Johannesburg 2028, South Africa
| | - Messai A. Mamo
- Department
of Chemical Science, Faculty of Science, University of Johannesburg, Doornfontein Campus, P. O. Box
17011, Johannesburg 2028, South Africa
| |
Collapse
|
17
|
Larki A, Saghanezhad SJ, Ghomi M. Recent advances of functionalized SBA-15 in the separation/preconcentration of various analytes: A review. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Gugushe AS, Mpupa A, Munonde TS, Nyaba L, Nomngongo PN. Adsorptive Removal of Cd, Cu, Ni and Mn from Environmental Samples Using Fe 3O 4-Zro 2@APS Nanocomposite: Kinetic and Equilibrium Isotherm Studies. Molecules 2021; 26:molecules26113209. [PMID: 34071940 PMCID: PMC8198006 DOI: 10.3390/molecules26113209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/14/2022] Open
Abstract
In this study, Fe3O4-ZrO2 functionalized with 3-aminopropyltriethoxysilane (Fe3O4-ZrO2@APS) nanocomposite was investigated as a nanoadsorbent for the removal of Cd(II), Cu(II), Mn (II) and Ni(II) ions from aqueous solution and real samples in batch mode systems. The prepared magnetic nanomaterials were characterized using X-ray powder diffraction (XRD), scanning electron microscopy/energy dispersion x-ray (SEM/EDX) Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). Factors (such as adsorbent dose and sample pH) affecting the adsorption behavior of the removal process were studied using the response surface methodology. Under optimized condition, equilibrium data obtained were fitted into the Langmuir and Freundlich isotherms and the data fitted well with Langmuir isotherms. Langmuir adsorption capacities (mg/g) were found to be 113, 111, 128, and 123 mg/g for Cd, Cu, Ni and Mn, respectively. In addition, the adsorption kinetics was analyzed using five kinetic models, pseudo-first order, pseudo-second order, intraparticle diffusion and Boyd models. The adsorbent was successfully applied for removal of Cd(II), Cu(II), Mn (II) and Ni(II) ions in wastewater samples.
Collapse
Affiliation(s)
- Aphiwe Siyasanga Gugushe
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa; (A.S.G.); (A.M.); (T.S.M.); (L.N.)
| | - Anele Mpupa
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa; (A.S.G.); (A.M.); (T.S.M.); (L.N.)
- Department of Science and Innovation (DSI)/National Research Foundation (NRF) South African Research Chair Initiative (SARChI), Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
| | - Tshimangadzo Saddam Munonde
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa; (A.S.G.); (A.M.); (T.S.M.); (L.N.)
- Department of Science and Innovation (DSI)/National Research Foundation (NRF) South African Research Chair Initiative (SARChI), Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
| | - Luthando Nyaba
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa; (A.S.G.); (A.M.); (T.S.M.); (L.N.)
- Department of Science and Innovation (DSI)/National Research Foundation (NRF) South African Research Chair Initiative (SARChI), Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
| | - Philiswa Nosizo Nomngongo
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa; (A.S.G.); (A.M.); (T.S.M.); (L.N.)
- Department of Science and Innovation (DSI)/National Research Foundation (NRF) South African Research Chair Initiative (SARChI), Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein 2028, South Africa
- Correspondence: ; Tel.: +27-11-559-6187
| |
Collapse
|
19
|
Munonde TS, Nomngongo PN. Nanocomposites for Electrochemical Sensors and Their Applications on the Detection of Trace Metals in Environmental Water Samples. SENSORS (BASEL, SWITZERLAND) 2020; 21:E131. [PMID: 33379201 PMCID: PMC7795550 DOI: 10.3390/s21010131] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022]
Abstract
The elevated concentrations of various trace metals beyond existing guideline recommendations in water bodies have promoted research on the development of various electrochemical nanosensors for the trace metals' early detection. Inspired by the exciting physical and chemical properties of nanomaterials, advanced functional nanocomposites with improved sensitivity, sensitivity and stability, amongst other performance parameters, have been synthesized, characterized, and applied on the detection of various trace metals in water matrices. Nanocomposites have been perceived as a solution to address a critical challenge of distinct nanomaterials that are limited by agglomerations, structure stacking leading to aggregations, low conductivity, and limited porous structure for electrolyte access, amongst others. In the past few years, much effort has been dedicated to the development of various nanocomposites such as; electrochemical nanosensors for the detection of trace metals in water matrices. Herein, the recent progress on the development of nanocomposites classified according to their structure as carbon nanocomposites, metallic nanocomposites, and metal oxide/hydroxide nanocomposites is summarized, alongside their application as electrochemical nanosensors for trace metals detection in water matrices. Some perspectives on the development of smart electrochemical nanosensors are also introduced.
Collapse
Affiliation(s)
- Tshimangadzo S. Munonde
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein 2028, South Africa;
- DST/NRF SARChI Chair, Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
| | - Philiswa N. Nomngongo
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein 2028, South Africa;
- DST/NRF SARChI Chair, Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
- DST/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein 2028, South Africa
| |
Collapse
|
20
|
Mesa RL, Villa JEL, Khan S, Peixoto RRA, Morgano MA, Gonçalves LM, Sotomayor MDPT, Picasso G. Rational Design of an Ion-Imprinted Polymer for Aqueous Methylmercury Sorption. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2541. [PMID: 33348754 PMCID: PMC7766906 DOI: 10.3390/nano10122541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
Methylmercury (MeHg+) is a mercury species that is very toxic for humans, and its monitoring and sorption from environmental samples of water are a public health concern. In this work, a combination of theory and experiment was used to rationally synthesize an ion-imprinted polymer (IIP) with the aim of the extraction of MeHg+ from samples of water. Interactions among MeHg+ and possible reaction components in the pre-polymerization stage were studied by computational simulation using density functional theory. Accordingly, 2-mercaptobenzimidazole (MBI) and 2-mercaptobenzothiazole (MBT), acrylic acid (AA) and ethanol were predicted as excellent sulfhydryl ligands, a functional monomer and porogenic solvent, respectively. Characterization studies by scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) revealed the obtention of porous materials with specific surface areas of 11 m2 g-1 (IIP-MBI-AA) and 5.3 m2 g-1 (IIP-MBT-AA). Under optimized conditions, the maximum adsorption capacities were 157 µg g-1 (for IIP-MBI-AA) and 457 µg g-1 (for IIP-MBT-AA). The IIP-MBT-AA was selected for further experiments and application, and the selectivity coefficients were MeHg+/Hg2+ (0.86), MeHg+/Cd2+ (260), MeHg+/Pb2+ (288) and MeHg+/Zn2+ (1510), highlighting the material's high affinity for MeHg+. The IIP was successfully applied to the sorption of MeHg+ in river and tap water samples at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Ruddy L. Mesa
- Laboratory of Physical Chemistry Research, Faculty of Sciences, National University of Engineering, Lima 15333, Peru; (R.L.M.M.); (S.K.)
| | - Javier E. L. Villa
- Institute of Chemistry, State University of São Paulo (UNESP), Araraquara, SP 14800-060, Brazil;
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara, SP 14800-060, Brazil
| | - Sabir Khan
- Laboratory of Physical Chemistry Research, Faculty of Sciences, National University of Engineering, Lima 15333, Peru; (R.L.M.M.); (S.K.)
- Institute of Chemistry, State University of São Paulo (UNESP), Araraquara, SP 14800-060, Brazil;
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara, SP 14800-060, Brazil
| | - Rafaella R. Alves Peixoto
- Department of Analytical Chemistry, Fluminense Federal University (UFF), Niterói, RJ 24020-150, Brazil;
| | | | | | - Maria D. P. T. Sotomayor
- Institute of Chemistry, State University of São Paulo (UNESP), Araraquara, SP 14800-060, Brazil;
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara, SP 14800-060, Brazil
| | - Gino Picasso
- Laboratory of Physical Chemistry Research, Faculty of Sciences, National University of Engineering, Lima 15333, Peru; (R.L.M.M.); (S.K.)
| |
Collapse
|