1
|
Bonilla LF, Sandoval-Aldana A, Daza LD. Acrylamide: An approach to its knowledge and importance for roasted coffee. Food Chem 2025; 466:142247. [PMID: 39615358 DOI: 10.1016/j.foodchem.2024.142247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/16/2024] [Accepted: 11/23/2024] [Indexed: 12/14/2024]
Abstract
Acrylamide (AA) has been classified as a toxic, harmful, and carcinogenic substance since 2002, and therefore it is currently widely studied. When functional amino and carbonyl groups of asparagine and reducing sugars are condensed into Schiff bases, they are transformed into AA molecules at temperatures >120 °C. This mechanism is known as the Maillard reaction and is considered the main AA pathway. Simultaneously, desired browning and sensory properties are developed. However, changes in chemical composition of the matrix, properties, and secondary reactions trigger intermediary synthesis, destabilizing the medium and leading to new AA molecules. Coffee has become the most consumed beverage worldwide. Therefore, the World Health Organization established recommended benchmark levels of AA concentrations that could be detected in roasted coffee beans and by-products (<850 μg/kg). Trace levels of AA can differ between samples due to roasting and brewing conditions, and the analytical and extraction methods chosen for sample analysis.
Collapse
Affiliation(s)
- Lina Fernanda Bonilla
- Departamento de Producción y Sanidad Vegetal, Facultad Ingeniería Agronómica, Universidad del Tolima, 730006 Ibagué, Colombia.
| | - Angélica Sandoval-Aldana
- Departamento de Producción y Sanidad Vegetal, Facultad Ingeniería Agronómica, Universidad del Tolima, 730006 Ibagué, Colombia.
| | - Luis Daniel Daza
- Departamento de Producción y Sanidad Vegetal, Facultad Ingeniería Agronómica, Universidad del Tolima, 730006 Ibagué, Colombia; Department of Chemistry, University of the Balearic Islands, Ctra. Valldemossa km. 7.5, 07122 Palma de Mallorca, Spain..
| |
Collapse
|
2
|
Kang L, Wu J, Lin X, Li J, Duan N, Wang Z, Wu S. Detection and simultaneous imaging of acrylamide, miR-21 and miR-221 based on multicolor aggregation-induced emission nanoparticles and DNAzyme walker. Biosens Bioelectron 2024; 264:116628. [PMID: 39133994 DOI: 10.1016/j.bios.2024.116628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024]
Abstract
Acrylamide (AA) in heat-processed foods has emerged as a global health problem, mainly carcinogenic, neurotoxic, and reproductive toxicity, and an increasing number of researchers have delved into elucidating its toxicological mechanisms. Studies have demonstrated that exposure of HepG2 by AA in a range of concentrations can induce the upregulation of miR-21 and miR-221. Monitoring the response of intracellular miRNAs can play an important role in unraveling the mechanisms of AA toxicity. Here, multicolor aggregation induced emission nano particle (AIENP) probes were constructed from three AIE dyes for simultaneous imaging of intracellular AA and AA-induced miR-21/miR-221 by combining the recognition function of AA aptamers and the signal amplification of a DNAzyme walker. The surface of these nanoparticles contains carboxyl groups, facilitating their linkage to a substrate chain modified with a fluorescent quencher group via an amide reaction. Optimization experiments were conducted to determine the optimal substrate-to-DNAzyme ratio, confirming its efficacy as a walker for signal amplification. Sensitive detection of AA, miR-21 and miR-221 was achieved in extracellular medium, with detection limits of 0.112 nM for AA, 0.007 pM and 0.003 pM for miR-21 and miR-221, respectively, demonstrating excellent selectivity. Intracellularly, ZIF-8 structure collapsed, releasing Zn2+, activating DNAzyme cleavage activity, and the fluorescence of multicolor AIENPs within HepG2 cells gradually recovered with increasing stimulation time (0-12 h) and concentrations of AA (0-500 μM). This dynamic response unveiled the relationship between AA exposure and miR-21/miR-221 expression, further validating the carcinogenicity of AA.
Collapse
Affiliation(s)
- Lixin Kang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jiajun Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xianfeng Lin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jin Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
3
|
Yang H, Zhang X, Zhu Y, Zhang B, Fan J, Zhao H, Zhang B. Utilization of Peptidoglycans from Lactic Acid Bacterial Cell Walls for the Mitigation of Acrylamide and 5-Hydroxymethylfurfural. TOXICS 2024; 12:380. [PMID: 38922060 PMCID: PMC11209152 DOI: 10.3390/toxics12060380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
Acrylamide (AA) and 5-hydroxymethylfurfural (HMF), which are potentially carcinogenic to humans, are often produced during the hot processing of foods. This study first used a molecular docking model to simulate the binding behavior of four lactic acid bacteria peptidoglycans (PGNs) to AA/HMF, and the binding rate of LAB-based PGNs to AA/HMF was evaluated in vitro. In silico results show that interaction energy is the driving force responsible for the adsorption of LAB-derived PGNs to AA/HMF. In vitro results showed that the PGN of B. lactis B1-04 bound the most AA (28.7%) and HMF (48.0%), followed by L. acidophilus NCFM, B. breve CICC 6079, and L. plantarum CICC 22135. Moreover, an AA/HMF-bound layer on the cell surface of B. lactis B1-04 was observed via AFM and SEM due to adsorption. XPS analysis indicated the removal rate of AA/HMF by selected strains was positively correlated with the proportion of C-O, C=O, and N-H groups of PGNs. The atoms O1, O2, O3, O4, N1, N2, N3, H1, and H2 are involved in the adsorption of LAB-based PGNs to AA/HMF. Thus, the PGNs derived from these four Lactobacillus strains can be regarded as natural adsorbents for the binding of AA/HMF.
Collapse
Affiliation(s)
| | | | | | | | | | - Hongfei Zhao
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China; (H.Y.); (X.Z.); (Y.Z.); (B.Z.); (J.F.)
| | - Bolin Zhang
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China; (H.Y.); (X.Z.); (Y.Z.); (B.Z.); (J.F.)
| |
Collapse
|
4
|
Adimas MA, Abera BD, Adimas ZT, Woldemariam HW, Delele MA. Traditional food processing and Acrylamide formation: A review. Heliyon 2024; 10:e30258. [PMID: 38720707 PMCID: PMC11076960 DOI: 10.1016/j.heliyon.2024.e30258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Tradition methods that are applied for the processing of food commonly use relatively high temperature and long cooking time for the preparation of foods. This relatively high temperature and long processing time of foods especially in the presence of carbohydrate is highly associated with the formation of acrylamide. Acrylamide is a process contaminant that is highly toxic to humans and remains as a global issue. The occurrence of acrylamide in traditional foods is a major public health problem. Studies that are conducted in different countries indicated that traditionally processed foods are highly linked to the formation of acrylamide. Therefore, understanding the factors influencing acrylamide formation during traditional food processing techniques is crucial for ensuring food safety and minimizing exposure to this harmful chemical compound. Several research reports indicate that proper food processing is the most effective solution to address food safety concerns by identifying foods susceptible to acrylamide formation. This review aims to provide an overview of traditional food processing techniques and their potential contribution to the formation acrylamide and highlight the importance of mitigating its formation in food products. The information obtained in this review may be of great value to future researchers, policymakers, society, and manufacturers.
Collapse
Affiliation(s)
- Mekuannt Alefe Adimas
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, P. O. Box 26, Bahir Dar, Ethiopia
| | - Biresaw Demelash Abera
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, P. O. Box 26, Bahir Dar, Ethiopia
| | - Zemenu Tadesse Adimas
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, P. O. Box 26, Bahir Dar, Ethiopia
| | - Henock Woldemichael Woldemariam
- Department of Chemical Engineering, College of Engineering, Addis Ababa Science and Technology University, P. O. Box-16417, Addis Ababa, Ethiopia
- Center of Excellence for Biotechnology and Bioprocess, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| | - Mulugeta Admasu Delele
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, P. O. Box 26, Bahir Dar, Ethiopia
| |
Collapse
|
5
|
Sharafi K, Kiani A, Massahi T, Mansouri B, Ebrahimzadeh G, Moradi M, Fattahi N, Omer AK. Acrylamide in potato chips in Iran, health risk assessment and mitigation. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2024; 17:46-55. [PMID: 37982369 DOI: 10.1080/19393210.2023.2283055] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
This study aimed to determine the acrylamide content in potato chips sold in Kermanshah, Iran and assess the potential health concerns associated with acrylamide exposure. HPLC-DAD was used to analyse 120 samples across 40 brands. The possible non-carcinogenic risk index for adults was below 1 for all 40 brands (100%), but for children it was only below 1 for 9 brands (22.5%) and above 1 for 31 brands (77.5%). Regarding the possible carcinogenic risk index, for adults only 1 out of 40 brands rated > 10-4, whereas for children all brands rated > 10-4. This shows that children's exposure to acrylamide through potato chips consumption in Kermanshah can be considered a risk on cancer and exposure of adults requires attention and monitoring. The best way to reduce acrylamide in potato chips and associated health risks is to improve the production process, especially temperature and time.
Collapse
Affiliation(s)
- Kiomars Sharafi
- Research Center for Environmental Determinants of Health (RCEDH), Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Environmental Health Engineering, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Kiani
- Regenerative Medicine Research Center (RMRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tooraj Massahi
- Student research committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Borhan Mansouri
- Substance Abuse Prevention Research Center, Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gholamreza Ebrahimzadeh
- Department of Environmental Health Engineering, School of Public Health, Zabol University of Medical Sciences, Zabol, Iran
| | - Masoud Moradi
- Research Center for Environmental Determinants of Health (RCEDH), Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nazir Fattahi
- Research Center for Environmental Determinants of Health (RCEDH), Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abdullah Khalid Omer
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
6
|
Lin X, Zhang B, Zeng M. The Generation and Control of Harmful Products in Food Processing. Foods 2023; 12:3679. [PMID: 37835332 PMCID: PMC10572146 DOI: 10.3390/foods12193679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Food processing is an integral part of the modern food industry aimed at improving the quality, taste, and preservation of food products [...].
Collapse
Affiliation(s)
- Xiaodong Lin
- Zhuhai UM Science & Technology Research Institute, Zhuhai 519000, China;
| | - Biao Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Fan M, Xu X, Lang W, Wang W, Wang X, Xin A, Zhou F, Ding Z, Ye X, Zhu B. Toxicity, formation, contamination, determination and mitigation of acrylamide in thermally processed plant-based foods and herbal medicines: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115059. [PMID: 37257344 DOI: 10.1016/j.ecoenv.2023.115059] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
Thermal processing is one of the important techniques for most of the plant-based food and herb medicines before consumption and application in order to meet the specific requirement. The plant and herbs are rich in amino acids and reducing sugars, and thermal processing may lead to Maillard reaction, resulting as a high risk of acrylamide pollution. Acrylamide, an organic pollutant that can be absorbed by the body through the respiratory tract, digestive tract, skin and mucous membranes, has potential carcinogenicity, neurological, genetic, reproductive and developmental toxicity. Therefore, it is significant to conduct pollution determination and risk assessment for quality assurance and security of medication. This review demonstrates state-of-the-art research of acrylamide focusing on the toxicity, formation, contamination, determination, and mitigation in taking food and herb medicine, to provide reference for scientific processing and ensure the security of consumers.
Collapse
Affiliation(s)
- Min Fan
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China; Wenshui Center for Disease Control and Prevention, Luliang City, Shanxi Province 032100 PR China
| | - Xiaoying Xu
- Zhejiang Institute for Food and Drug Control, Hangzhou, Zhejiang 310000, PR China
| | - Wenjun Lang
- Zhejiang Institute for Food and Drug Control, Hangzhou, Zhejiang 310000, PR China
| | - Wenjing Wang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China
| | - Xinyu Wang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China
| | - Angjun Xin
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China
| | - Fangmei Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China.
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China.
| |
Collapse
|
8
|
Wittek O, Römpp A. Autofocusing MALDI MS imaging of processed food exemplified by the contaminant acrylamide in German gingerbread. Sci Rep 2023; 13:5400. [PMID: 37012286 PMCID: PMC10070467 DOI: 10.1038/s41598-023-32004-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
Acrylamide is a toxic reaction product occurring in dry-heated food such as bakery products. To meet the requirements laid down in recent international legal norms calling for reduction strategies in food prone to acrylamide formation, efficient chromatography-based quantification methods are available. However, for an efficient mitigation of acrylamide levels, not only the quantity, but also the contaminant's distributions are of interest especially in inhomogeneous food consisting of multiple ingredients. A promising tool to investigate the spatial distribution of analytes in food matrices is mass spectrometry imaging (MS imaging). In this study, an autofocusing MALDI MS imaging method was developed for German gingerbread as an example for highly processed and instable food with uneven surfaces. Next to endogenous food constituents, the process contaminant acrylamide was identified and visualized keeping a constant laser focus throughout the measurement. Statistical analyses based on relative acrylamide intensities suggest a higher contamination of nut fragments compared to the dough. In a proof-of-concept experiment, a newly developed in-situ chemical derivatization protocol is described using thiosalicylic acid for highly selective detection of acrylamide. This study presents autofocusing MS imaging as a suitable complementary method for the investigation of analytes' distributions in complex and highly processed food.
Collapse
Affiliation(s)
- Oliver Wittek
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Universitaetsstrasse 30, 95447, Bayreuth, Germany
| | - Andreas Römpp
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Universitaetsstrasse 30, 95447, Bayreuth, Germany.
| |
Collapse
|
9
|
Basaran B, Faiz O. Determining the Levels of Acrylamide in Some Traditional Foods Unique to Turkey and Risk Assessment. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e123948. [PMID: 35765504 PMCID: PMC9191220 DOI: 10.5812/ijpr.123948] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/18/2021] [Accepted: 12/18/2021] [Indexed: 11/16/2022]
Abstract
In this study, exposure risk assessment was made by determining the acrylamide levels of some traditional foods frequently consumed by the Turkish society and registered geographical indication. For this purpose, acrylamide levels of 20 traditional foods [7 meat products, 3 loaves of bread, 3 bagels (simit), and 7 desserts] obtained from different bakeries, patisseries, and restaurants were determined by LC-MS/MS. Acrylamide levels were determined between 12.7 - 299 μg/kg in meat products, 11.8 - 69.3 μg/kg in bread, 11.8 - 179 μg/kg in bagels, 11.7 - 85.0 μg/kg in baked desserts, and 32.3 - 527 μg/kg in deep-fried desserts. According to the portion size, the food with the highest acrylamide level in meat products is Adana kebab (17.70 μg/180 g). Formulation and cooking techniques are thought to be the main determinants of acrylamide level detected in traditional foods. Dietary acrylamide exposure was calculated according to the deterministic model. Exposure was calculated as 0.20, 0.53, and 0.98 μg/kg bw per day for good, average and bad scenarios, respectively. The calculated acrylamide exposure value is below the reference values stated by FAO/WHO. The acrylamide dietary exposure was not of concern concerning neurotoxicity and carcinogenicity. The results can be used to reduce acrylamide levels in foods and risk assessment studies.
Collapse
Affiliation(s)
- Burhan Basaran
- Department of Travel, Tourism and Recreation Services, Ardeşen Vocational School, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Ozlem Faiz
- Department of Chemistry, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| |
Collapse
|
10
|
Soliman MM, Alotaibi SS, Sayed S, Hassan MM, Althobaiti F, Aldhahrani A, Youssef GBA, El-Shehawi AM. The Protective Impact of Salsola imbricata Leaf Extract From Taif Against Acrylamide-Induced Hepatic Inflammation and Oxidative Damage: The Role of Antioxidants, Cytokines, and Apoptosis-Associated Genes. Front Vet Sci 2022; 8:817183. [PMID: 35155650 PMCID: PMC8835116 DOI: 10.3389/fvets.2021.817183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/21/2021] [Indexed: 12/22/2022] Open
Abstract
Salsola imbricata is a herbal plant native to Saudi Arabia, known for its antioxidative and anti-inflammatory properties. This study explored the protective effects of an ethanolic leaf extract of Salsola imbricata against the oxidative stress and hepatic injury caused by acrylamide. Rats received intragastric administrations of 20 mg/kg of body weight of acrylamide to induce hepatic injury, or 300 mg/kg of body weight of Salsola ethanolic extract orally for 7 days before acrylamide administration. The treatments were continued for 3 weeks. Blood and liver samples were collected from all the groups, and the following biochemical parameters were tested: serum ALT (alanine aminotransferase), AST (aspartate aminotransferase), GGT (gamma glutaryl transferase), urea, albumin, total proteins, catalase, SOD (superoxide dismutase), reduced glutathione (GSH), nitric oxide (NO), and MDA (malondialdehyde). Quantitative real-time PCR (qRT-PCR) was used to examine the expression of Nrf2 (Nuclear factor-erythroid factor 2-related factor 2), HO-1 (Hemoxygenase-1), COX-2 (Cyclooxgenase-2), TGF-β1 (transforming growth factor-beta1), Bax, and Bcl2 (B-cell lymphoma 2), which are associated with oxidative stress, fibrosis, apoptosis, and anti-apoptotic effects. The annexin and survivin immunoreactivity were examined at the immunohistochemical level. Pretreatment with the Salsola ethanolic extract reduced the negative impact of acrylamide on ALT, AST, GGT, urea, albumin, and total proteins. The Salsola ethanolic extract reversed acrylamide's effects on serum and tissue antioxidants. Nrf2/HO-1 expression was downregulated, while COX-2 and TGF-β1 were upregulated in the acrylamide-administered group and normalized by the pre-administration of Salsola ethanolic extract to the acrylamide experimental group. The immunoreactivity of annexin and survivin was restored in the experimental group administered Salsola ethanolic extract plus acrylamide. In conclusion, Salsola ethanolic extract inhibits and regulates the side effects induced in the liver by acrylamide. Salsola induced its impacts by regulating inflammation, oxidative stress, and apoptosis-/anti-apoptosis-associated genes at the biochemical, molecular, and cellular levels. Salsola is recommended as oxidative stress relievers against environmental toixicity at high altitude areas.
Collapse
Affiliation(s)
- Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
- *Correspondence: Mohamed Mohamed Soliman
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Samy Sayed
- Department of Science and Technology, University College-Ranyah, Taif University, Taif, Saudi Arabia
| | - Mohamed M. Hassan
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Fayez Althobaiti
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Adil Aldhahrani
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Gehan B. A. Youssef
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| |
Collapse
|
11
|
Analysis of acrylamide in vegetable chips after derivatization with 2-mercaptobenzoic acid by liquid chromatography–mass spectrometry. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-021-03898-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractSince many years, acrylamide (AA) is a well-known toxicologically relevant processing contaminant (“food-borne toxicant”). However, only during the recent years, high levels of acrylamide have been reported in vegetable chips. In the present study, AA was quantitated via a modified derivatization procedure with 2-mercaptobenzoic acid based on stable isotope dilution analysis and liquid chromatography–mass spectrometry. Extraction with a modified QuEChERS (quick, easy, cheap, efficient, rugged, safe) method, defatting with n-hexane, and a solid phase extraction clean-up with strong cation-exchange material were performed prior to the derivatization step. Limits of detection and quantitation (LoD and LoQ) were 12 and 41 µg of AA/kg of vegetable chips (estimated via signal-to-noise ratios of 3:1 and 10:1, respectively), and thus below the LoQ of 50 µg/kg requested by the European Food Safety Authority. Recovery rates between 92 and 101% at four spiking levels with a good precision expressed as a relative standard deviation < 7% were determined. With this method at hand, a survey of the current AA amounts in 38 vegetable chips from the worldwide market was performed, showing a remarkable variability between the different vegetables, but also between different products of the same vegetable. Thereby, the AA amounts ranged between 77.3 and 3090 µg/kg, with an average of 954 µg/kg which was distinctly higher in comparison to commercially available potato chips also analyzed in the present study (12 samples, range: 117–832 µg/kg, average: 449 µg/kg). While for sweet potato and parsnip relatively low AA amounts were found, beetroot and carrot showed rather high contents.
Collapse
|
12
|
Sharanagat VS, Nema PK, Singh L, Kumar A. Formation of acrylamide in microwave‐roasted sorghum and associated dietary risk. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Lochan Singh
- Contract Research Organization NIFTEM Kundli 131028 India
| | - Ankur Kumar
- Department of Basic and Applied Sciences NIFTEM Kundli 131028 India
| |
Collapse
|
13
|
Gaikwad PS, Sarma C, Negi A, Pare A. Alternate Food Preservation Technology. Food Chem 2021. [DOI: 10.1002/9781119792130.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Sen M. Food Chemistry: Role of Additives, Preservatives, and Adulteration. Food Chem 2021. [DOI: 10.1002/9781119792130.ch1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Su Y, Gao J, Tang S, Feng L, Azam SMR, Zheng T. Recent advances in physical fields-based frying techniques for enhanced efficiency and quality attributes. Crit Rev Food Sci Nutr 2021; 62:5183-5202. [PMID: 33563022 DOI: 10.1080/10408398.2021.1882933] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Frying is one of the most common units in food processing and catering worldwide, which involves simultaneous physicochemical and structural changes. However, the problems of traditional frying technology, such as low thermal utilization and poor processing efficiency, have been gradually exposed to industrial production. In this paper, strategies of applying physical fields, such as pressure field, electromagnetic field, and acoustic field in frying technology separately or synergistically with improved efficiency and quality attributes are reviewed. The role of physical fields in the frying process was discussed with modifications in heat and mass transfer and porous structures. The effects of physical fields and their processing parameters on moisture loss kinetics, oil uptake, texture, color, and nutrients retention of fried food are introduced, respectively. Recent advances in multi-physical field-based frying techniques were recommended with synergistic benefits. Furthermore, the trends and challenges that could further develop the multi-physical field-based frying techniques are proposed, showing further commercial prospects for the purpose. The application of physical fields has brought new inspiration to the exploitation of efficient and high-qualified frying technologies, while higher technical levels and economic costs need to be taken into consideration. HighlightsThe role of physical fields in pretreatments and frying process were reviewed.The mechanism of physics fields on frying efficiency and quality was summarized.The physicochemical and microstructure changes by physics fields were discussed.The synergy of physical fields in frying technology were outlined.The trends for further multi-physical field-based frying techniques were proposed.
Collapse
Affiliation(s)
- Ya Su
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Jiayue Gao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Song Tang
- Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Lei Feng
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - S M Roknul Azam
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Tiesong Zheng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, China
| |
Collapse
|
16
|
Effects of growing environment, genotype, and commercial fertilization levels on free asparagine concentration in Western Canadian wheat. Cereal Chem 2020. [DOI: 10.1002/cche.10364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Mousavi Khaneghah A, Fakhri Y, Nematollahi A, Seilani F, Vasseghian Y. The Concentration of Acrylamide in Different Food Products: A Global Systematic Review, Meta-Analysis, and Meta-Regression. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1791175] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Sao Paulo, Brazil
| | - Yadolah Fakhri
- Department of Environmental Health Engineering, Student Research Committee, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amene Nematollahi
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| | - Fatemeh Seilani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasser Vasseghian
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
18
|
Asadi S, Aalami M, Shoeibi S, Kashaninejad M, Ghorbani M, Delavar M. Effects of different roasting methods on formation of acrylamide in pistachio. Food Sci Nutr 2020; 8:2875-2881. [PMID: 32566205 PMCID: PMC7300066 DOI: 10.1002/fsn3.1588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/29/2019] [Accepted: 10/05/2019] [Indexed: 11/24/2022] Open
Abstract
Drying and roasting are conventional processes in the nut industry. However, roasting as an important procedure in nuts manufacturing may cause some physicochemical changes in nuts. Acrylamide is one of these chemical compounds that is formed due to the roasting process. Acrylamide is known as a neurotoxicant, carcinogen, and reproductive toxicant. In this study, raw and salted pistachios were roasted under three conditions including hot-air, infrared (IR), and microwave methods. Then, 80 pistachio kernels were analyzed by ultra-high-performance liquid chromatography. The results showed that all samples contained different ranges of acrylamide between 57 ± 0.86 and 851 ± 2.8 μg/kg. Besides, raw pistachios and sun-dried pistachios also contained acrylamide, with the amount of 57 ± 0.86 and 93 ± 1.07 μg/kg, respectively. The highest acrylamide amount was found in raw pistachio (unsalted) roasted by IR method, while lower acrylamide amount observed in the microwave method. The amount of acrylamide in salted and roasted pistachios was less than just roasted pistachios under the same conditions. Finally, in all the treatments, increasing temperature, time, voltage, and power lead to an increase in acrylamide levels. The results showed that acrylamide in the roasted pistachios may cause health problems. This study presents a novel investigation in the effects of roasting conditions (temperature, power, voltage, and time) on acrylamide content in pistachios.
Collapse
Affiliation(s)
- Sonia Asadi
- Department of Food Science and TechnologyGorgan University of Agricultural Sciences and Natural ResourcesGorganIran
| | - Mehran Aalami
- Department of Food Science and TechnologyGorgan University of Agricultural Sciences and Natural ResourcesGorganIran
| | - Shahram Shoeibi
- Food and Drug Laboratories Research CenterIRAN Food and Drug Administration (IFDA)TehranIran
| | - Mehdi Kashaninejad
- Department of Food Process EngineeringGorgan University of Agricultural Science and Natural ResourcesGorganIran
| | - Mohammad Ghorbani
- Department of Food Science and TechnologyGorgan University of Agricultural Sciences and Natural ResourcesGorganIran
| | - Mostafa Delavar
- Department of PharmacologyArak University of Medical ScienceArakIran
| |
Collapse
|
19
|
Pan M, Liu K, Yang J, Hong L, Xie X, Wang S. Review of Research into the Determination of Acrylamide in Foods. Foods 2020; 9:E524. [PMID: 32331265 PMCID: PMC7230758 DOI: 10.3390/foods9040524] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 01/01/2023] Open
Abstract
Acrylamide (AA) is produced by high-temperature processing of high carbohydrate foods, such as frying and baking, and has been proved to be carcinogenic. Because of its potential carcinogenicity, it is very important to detect the content of AA in foods. In this paper, the conventional instrumental analysis methods of AA in food and the new rapid immunoassay and sensor detection are reviewed, and the advantages and disadvantages of various analysis technologies are compared, in order to provide new ideas for the development of more efficient and practical analysis methods and detection equipment.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (L.H.); (X.X.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (L.H.); (X.X.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (L.H.); (X.X.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Liping Hong
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (L.H.); (X.X.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaoqian Xie
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (L.H.); (X.X.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (L.H.); (X.X.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
20
|
Khorshidian N, Yousefi M, Shadnoush M, Siadat SD, Mohammadi M, Mortazavian AM. Using probiotics for mitigation of acrylamide in food products: a mini review. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.01.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Yoshioka T, Izumi Y, Takahashi M, Suzuki K, Miyamoto Y, Nagatomi Y, Bamba T. Identification of Acrylamide Adducts Generated during Storage of Canned Milk Coffee. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3859-3867. [PMID: 32122130 DOI: 10.1021/acs.jafc.9b08139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Since coffee is a significant contributor to the consumption of acrylamide, its reduction is required. Acrylamide is produced during the roasting of coffee beans, but the roasting process is an essential step in determining the taste of coffee. Acrylamide content in coffee has been suggested to decrease by reacting with proteins and/or other substances during storage, but details are unknown. Investigation of acrylamide adducts may contribute to a strategy for acrylamide reduction in coffee. In this study, a stable isotope labeling technique, combined with high-resolution mass spectrometry, allows the identification of acrylamide adducts (3-hydroxypyridine-acrylamide and pyridine-acrylamide) in canned milk coffee. Other acrylamide adducts derived from milk coffee proteins, Lys-acrylic acid and CysSO2-acrylic acid, were identified. During a 4-month storage period, the formation of these four adducts was found to reduce the total content of acrylamide by 75.3% in canned milk coffee. Therefore, endogenous proteins can be used in acrylamide reduction.
Collapse
Affiliation(s)
- Toshiaki Yoshioka
- Food Safety Laboratories, Asahi Quality & Innovations, LTD., 1-1-21 Midori, Moriya, Ibaraki 302-0106, Japan
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshihiro Izumi
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Koji Suzuki
- Food Safety Laboratories, Asahi Quality & Innovations, LTD., 1-1-21 Midori, Moriya, Ibaraki 302-0106, Japan
| | - Yasuhisa Miyamoto
- Food Safety Laboratories, Asahi Quality & Innovations, LTD., 1-1-21 Midori, Moriya, Ibaraki 302-0106, Japan
| | - Yasushi Nagatomi
- Food Safety Laboratories, Asahi Quality & Innovations, LTD., 1-1-21 Midori, Moriya, Ibaraki 302-0106, Japan
| | - Takeshi Bamba
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
22
|
Acrylamide determination during an industrial roasting process of coffee and the influence of asparagine and low molecular weight sugars. Food Chem 2020; 303:125372. [DOI: 10.1016/j.foodchem.2019.125372] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 11/20/2022]
|
23
|
Pratama Y, Jacxsens L. Quantitative Risk Assessment of Acrylamide in Indonesian Deep Fried Fritters as Street Food Products. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE 2019. [DOI: 10.12944/crnfsj.7.3.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Acrylamide, a carcinogenic and neurotoxic compound, is a public health concern in fried food products. This paper demonstrated, for the first time, the exposure assessment and risk characterization of acrylamide through consumption of deep fried fritters, a popular snack of Indonesian population which commonly sold as street food. Acrylamide concentration data were collected from selected monitoring data and laboratory simulated researches, while the consumption data covered 263 respondents (adult, age 16-40). Exposure assessment was conducted with probabilistic approach and followed by Margin of Exposure (MoE) calculation. Estimated mean, median (P50) and P95 acrylamide intake were 14.85, 4.10 and 76.06 µg/kg- bw/week, respectively. Thus, resulted in estimated 17.4% of population exceed the reported tolerable intake value (18.2 µg/kg-bw/week). MoE derived from average exposure was 75, indicating significant risk and need of risk management action. Possible mitigation of 70% acrylamide level reduction was simulated and MoE shifted towards 248. Although the MoE was increased, the value was still lower than 10,000 indicating a public health concern. The risk assessment study can be a valuable input for risk managers such as food safety authorities across Indonesia or neighboring countries consuming fried street foods.
Collapse
Affiliation(s)
- Yoga Pratama
- Department of Food Technology, Faculty of Animal and Agricultural Sciences, Diponegoro University, Jl. Prof. Soedarto Tembalang Semarang 50275, Indonesia
| | - Liesbeth Jacxsens
- Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
24
|
Vejdovszky K, Mihats D, Griesbacher A, Wolf J, Steinwider J, Lueckl J, Jank B, Kopacka I, Rauscher-Gabernig E. Modified Reference Point Index (mRPI) and a decision tree for deriving uncertainty factors: A practical approach to cumulative risk assessment of food contaminant mixtures. Food Chem Toxicol 2019; 134:110812. [PMID: 31505235 DOI: 10.1016/j.fct.2019.110812] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 10/26/2022]
Abstract
Risk assessment of chemical mixtures remains a challenging task in all areas of food and consumer safety. So far, no general method has been developed that is best suited to several subject areas (e.g. food contaminants, additives and supplements, plant protection products). Especially for mixtures of food contaminants sophisticated methods are typically not applicable due to a general lack of complete toxicological data sets. We developed a new approach, the modified Reference Point Index (mRPI), that combines the advantages of the Hazard Index and the Reference Point Index. Furthermore, we developed a decision tree for the determination of specific uncertainty factors that makes the mRPI an easy to use method for cumulative risk assessment even in a data poor field such as food contaminants. To further characterise the estimated cumulative risks, the Maximum Cumulative Ratio (MCR) was adapted to be applied on the mRPI, and the modified Maximum Cumulative Ratio (mMCR) was established to identify whether the risks are dominated by a single substance. We present two case studies assessing the nephrotoxic and neurotoxic risks for the Austrian population originating from food contaminant mixtures. Calculations could not rule out potential cumulative risks, yet, they seemed to be dominated by single substances.
Collapse
Affiliation(s)
- Katharina Vejdovszky
- Department of Risk Assessment, Division of Data, Statistics & Risk Assessment, Austrian Agency for Health and Food Safety (AGES), Spargelfeldstraße 191, 1220, Vienna, Austria.
| | - Daniela Mihats
- Department of Data Management, Division of Data, Statistics & Risk Assessment, Austrian Agency for Health and Food Safety (AGES), Spargelfeldstraße 191, 1220, Vienna, Austria.
| | - Antonia Griesbacher
- Department of Statistics and Analytical Epidemiology, Division of Data, Statistics & Risk Assessment, Austrian Agency for Health and Food Safety (AGES), Spargelfeldstraße 191, 1220, Vienna, Austria.
| | - Josef Wolf
- Department of Data Management, Division of Data, Statistics & Risk Assessment, Austrian Agency for Health and Food Safety (AGES), Spargelfeldstraße 191, 1220, Vienna, Austria.
| | - Johann Steinwider
- Department of Risk Assessment, Division of Data, Statistics & Risk Assessment, Austrian Agency for Health and Food Safety (AGES), Spargelfeldstraße 191, 1220, Vienna, Austria
| | - Johannes Lueckl
- Department of Statistics and Analytical Epidemiology, Division of Data, Statistics & Risk Assessment, Austrian Agency for Health and Food Safety (AGES), Spargelfeldstraße 191, 1220, Vienna, Austria.
| | - Bernhard Jank
- Department of Food Safety and Consumer Protection, Federal Ministry of Labour, Social Affairs, Health and Consumer Protection, Radetzkystraße 2, 1030, Vienna, Austria.
| | - Ian Kopacka
- Department of Statistics and Analytical Epidemiology, Division of Data, Statistics & Risk Assessment, Austrian Agency for Health and Food Safety (AGES), Spargelfeldstraße 191, 1220, Vienna, Austria.
| | - Elke Rauscher-Gabernig
- Department of Risk Assessment, Division of Data, Statistics & Risk Assessment, Austrian Agency for Health and Food Safety (AGES), Spargelfeldstraße 191, 1220, Vienna, Austria.
| |
Collapse
|
25
|
Yang S, Li Y, Li F, Yang Z, Quan F, Zhou L, Pu Q. Thiol-ene Click Derivatization for the Determination of Acrylamide in Potato Products by Capillary Electrophoresis with Capacitively Coupled Contactless Conductivity Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8053-8060. [PMID: 31276393 DOI: 10.1021/acs.jafc.9b01525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The development of analytical methods for acrylamide formed during food processing is of great significance for food safety, but limited by its inherent characteristics, the analysis of acrylamide is a continuing challenge. In this study, an efficient derivatization strategy for acrylamide based on thiol-ene click reaction with cysteine as derivatization reagent was proposed, and the resulting derivative was then analyzed by capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C4D). After systematic investigation including catalyst dosage (0-20 mM), reaction temperature (30-90 °C) and time (1-60 min), and cysteine concentration (0.2-3.6 mM), acrylamide could be efficiently labeled by 2.0 mM cysteine at 70 °C for 10 min using 4 mM n-butylamine as catalyst. Application of 10 mM triethylamine as separation buffer, the labeled acrylamide was analyzed within 2.0 min, and the relative standard deviations of migration time and peak area were less than 0.84% and 5.6%, indicating good precision. The C4D signal of acrylamide derivative showed a good linear relationship with acrylamide concentration in the range of 7-200 μM with the correlation coefficient of 0.9991. The limit of detection and limit of quantification were calculated to be 0.16 μM and 0.52 μM, respectively. Assisted further by the QuEChERS (quick, easy, cheap, effective, rugged, and safe) sample pretreatment, the developed derivatization strategy and subsequent CE-C4D method were successfully applied for the determination of acrylamide in potato products.
Collapse
Affiliation(s)
- Shuping Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Yuting Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Fan Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Zhenyu Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Feifei Quan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Lei Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Qiaosheng Pu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| |
Collapse
|
26
|
Yoshioka T, Izumi Y, Nagatomi Y, Miyamoto Y, Suzuki K, Bamba T. A highly sensitive determination method for acrylamide in beverages, grains, and confectioneries by supercritical fluid chromatography tandem mass spectrometry. Food Chem 2019; 294:486-492. [PMID: 31126491 DOI: 10.1016/j.foodchem.2019.05.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/21/2019] [Accepted: 05/07/2019] [Indexed: 12/23/2022]
Abstract
Acrylamide (AA) analysis is an important topic in food safety. However, it is difficult to rapidly and accurately analyze low concentrations of AA with currently available methods. In the present study, we introduce a highly sensitive method that enables the determination of AA in beverages, grains, and confectioneries by supercritical fluid chromatography tandem mass spectrometry (SFC/MS/MS). The sensitivity of the SFC/MS/MS technique is 11-times higher than that obtained by ultra-high performance liquid chromatography tandem mass spectrometry. We demonstrated that the highly sensitive SFC/MS/MS method was able to quantify low concentrations of AA in beverages (i.e., roasted barley tea and coffee) extracts at less than 10 µg kg-1 level without solid-phase purification. Furthermore, the simplification of the sample preparation procedure provided an improvement in data acquisition time (60 samples per 12 h). In conclusion, the developed analytical system is a potentially useful tool for practical AA determination.
Collapse
Affiliation(s)
- Toshiaki Yoshioka
- Food Safety Laboratories, Asahi Quality & Innovations, LTD., 1-1-21 Midori, Moriya, Ibaraki 302-0106, Japan; Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Yoshihiro Izumi
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Yasushi Nagatomi
- Food Safety Laboratories, Asahi Quality & Innovations, LTD., 1-1-21 Midori, Moriya, Ibaraki 302-0106, Japan.
| | - Yasuhisa Miyamoto
- Food Safety Laboratories, Asahi Quality & Innovations, LTD., 1-1-21 Midori, Moriya, Ibaraki 302-0106, Japan.
| | - Koji Suzuki
- Food Safety Laboratories, Asahi Quality & Innovations, LTD., 1-1-21 Midori, Moriya, Ibaraki 302-0106, Japan.
| | - Takeshi Bamba
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
27
|
Han Z, Gao J, Wang X, Wang W, Dong J, Zhang Y, Wang S. Formation and Alterations of the Potentially Harmful Maillard Reaction Products during the Production and Storage of Brown Fermented Milk. Molecules 2019; 24:E272. [PMID: 30642064 PMCID: PMC6359423 DOI: 10.3390/molecules24020272] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/05/2019] [Accepted: 01/05/2019] [Indexed: 01/19/2023] Open
Abstract
To improve the quality and safety of brown fermented milk (BFM), the formation and alterations of potentially harmful Maillard reaction products (MRPs), including 3-deoxyglucosone (3-DG), methylglyoxal (MGO), 5-(hydroxymethyl)-2-furfural (HMF), acrylamide and flavour components were investigated during the browning, fermentation and commercial storage. MRPs were shown to be produced mainly during the browning stage. The levels of different substances varied during the fermentation and commercial storage stage. The proportion and type of carboxylic acids in the flavour components significantly increased during the fermentation stage. Browning index of milk during the browning stage was shown to be positively associated with the 3-DG (Pearson's r = 0.9632), MGO (Pearson's r = 0.9915), HMF (Pearson's r = 0.9772), and acrylamide (Pearson's r = 0.7910) levels and the total percentage of the flavour components from four different categories (Pearson's r = 0.7407). Changes in physicochemical properties of BFM during production not only contribute to predict the formation of potentially unhealthy MRPs, but also Lactobacillus species used for the fermentation should be carefully selected to improve the quality of this product.
Collapse
Affiliation(s)
- Zhonghui Han
- College of Food Science and Engineering, Qilu University of Technology, Jinan 250353, China.
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Jianxin Gao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xiaomin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Wenxiang Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Jing Dong
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
28
|
Effects of Formulation and Baking Process on Acrylamide Formation in Kolompeh, a Traditional Cookie in Iran. J CHEM-NY 2019. [DOI: 10.1155/2019/1425098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Thermal treatments and recipes are two critical aspects for the formation of acrylamide at ordinary household cooking conditions and industrial level. Kolompeh is a traditional Iranian cookie, and the aim of this study was to monitor acrylamide formation in four different recipes: traditional sugary Kolompeh (TSK), traditional simple Kolompeh (TSIK), industrial sugary Kolompeh (ISK), and industrial simple Kolompeh (ISIK). Along with the measurement of reducing sugars, moisture, and pH, acrylamide was quantified by gas chromatography mass spectrometry (GC-MS). Results indicated that acrylamide content was 1758, 1048, 888, and 560 μg/kg for TSK, TSIK, ISK, and ISIK, respectively, revealing that the kind of thermal treatment in combination with higher concentrations of reducing sugars were the major driver for acrylamide formation. In particular, acrylamide concentration in TSIK direct heating was 1.87 times higher than industrial indirect heating treatment, highlighting that domestic preparation of Kolompeh required a specific attention as a source of potential toxic molecule formation.
Collapse
|
29
|
Synthesis and characterization of amoxicillin loaded poly (vinyl alcohol)-g-poly (acrylamide) (PVA-g-PAM) hydrogels and study of swelling triggered release of antibiotic drug. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2536-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Baskar G, Aiswarya R. Overview on mitigation of acrylamide in starchy fried and baked foods. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:4385-4394. [PMID: 29572830 DOI: 10.1002/jsfa.9013] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/19/2018] [Accepted: 03/12/2018] [Indexed: 05/17/2023]
Abstract
Acrylamide in fried and baked foods has the potential to cause toxic effects in animals and humans. A major challenge lies in developing an effective strategy for acrylamide mitigation in foods without altering its basic properties. Food scientists around the world have developed various methods to mitigate the presence of acrylamide in fried food products. Mitigation techniques using additives such as salts, amino acids, cations and organic acids along with blanching of foods have reduced the concentration of acrylamide. The use of secondary metabolites such as polyphenols also reduces acrylamide concentration in fried food products. Other mitigation techniques such as asparaginase pre-treatment and low-temperature air frying with chitosan have been effective in mitigating the concentration of acrylamide. The combined pre-treatment process along with the use of additives is the latest trend in acrylamide mitigation. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gurunathan Baskar
- Department of Biotechnology, St Joseph's College of Engineering, Chennai, India
| | - Ravi Aiswarya
- Department of Biotechnology, St Joseph's College of Engineering, Chennai, India
| |
Collapse
|
31
|
Kafouris D, Stavroulakis G, Christofidou M, Iakovou X, Christou E, Paikousis L, Christodoulidou M, Ioannou-Kakouri E, Yiannopoulos S. Determination of acrylamide in food using a UPLC–MS/MS method: results of the official control and dietary exposure assessment in Cyprus. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:1928-1939. [DOI: 10.1080/19440049.2018.1508893] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
| | | | | | - Xenia Iakovou
- State General Laboratory, Ministry of Health, Nicosia, Cyprus
| | | | | | | | | | | |
Collapse
|
32
|
Duke TJ, Ruestow PS, Marsh GM. The influence of demographic, physical, behavioral, and dietary factors on hemoglobin adduct levels of acrylamide and glycidamide in the general U.S. population. Crit Rev Food Sci Nutr 2017; 58:700-710. [PMID: 28956625 DOI: 10.1080/10408398.2016.1215289] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE This study aims to better understand the individual characteristics and dietary factors that affect the relationship between estimated consumption of acrylamide and measured acrylamide hemoglobin adduct levels (HbAA) and glycidamide hemoglobin adduct levels (HbGA). METHODS Acrylamide levels in individual food items, estimated by the U.S. Food and Drug Administration, were linked to data collected in the 2003-2004 National Health and Nutrition Examination Survey. Multivariable linear regression was used to evaluate the relationship between estimated consumption of acrylamide and HbAA. RESULTS A significant association between acrylamide intake and HbAA was observed, after adjustment for gender, race/ethnicity, smoking status, age, and BMI (R2 = 0.34). Across quartiles of acrylamide consumption, HbAA and HbGA levels increased monotonically. Among nonsmokers, an evaluation of three heavily consumed, high AA concentration foods showed a positive trend between the consumed amount of fried potatoes and HbAA in children, adolescents, and adults. A significant positive trend between the consumed amount of potato chips or coffee was indicated in adolescents, adults, and seniors. CONCLUSIONS Consumption of some individual foods affects HbAA concentrations more strongly and in an age-dependent manner. Our results suggest that effective dietary guidelines for controlling acrylamide intake should be subpopulation specific.
Collapse
Affiliation(s)
| | | | - Gary M Marsh
- b Department of Biostatistics , University of Pittsburgh , Pittsburgh , Pennsylvania , USA.,c Cardno ChemRisk , Pittsburgh , Pennsylvania , USA
| |
Collapse
|
33
|
Gezer PG, Liu GL, Kokini JL. Detection of acrylamide using a biodegradable zein-based sensor with surface enhanced Raman spectroscopy. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Wu M, Chen W, Wang G, He P, Wang Q. Analysis of acrylamide in food products by microchip electrophoresis with on-line multiple-preconcentration techniques. Food Chem 2016; 209:154-61. [DOI: 10.1016/j.foodchem.2016.04.065] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 04/04/2016] [Accepted: 04/18/2016] [Indexed: 12/16/2022]
|
35
|
Liska DJ, Cook CM, Wang DD, Szpylka J. Maillard reaction products and potatoes: have the benefits been clearly assessed? Food Sci Nutr 2016; 4:234-49. [PMID: 27004113 PMCID: PMC4779479 DOI: 10.1002/fsn3.283] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 07/10/2015] [Accepted: 07/23/2015] [Indexed: 12/29/2022] Open
Abstract
Cooking foods affords numerous food safety benefits. During heating, Maillard reaction products (MRPs) are formed. MRPs contribute sensory aspects to food, including color, taste, and texture. One MRP, acrylamide, has been implicated in negative health outcomes; however, emerging data suggests MRPs may also deliver certain health benefits. The food industry has taken steps to decrease acrylamide formation, but the perception that high levels of acrylamide compromise the nutritional benefit of certain foods has continued. Potatoes are susceptible to MRP formation during cooking but also are considered an affordable, high nutrient content food. In particular, potatoes contribute significantly to fiber and potassium intakes in the U.S. population, two nutrients of need. How, then, should potatoes be judged for effects on health? A structured evidence assessment was conducted to identify literature, specifically clinical trials, on MRPs from potatoes and health, as well as nutritional contribution of potatoes. The results indicate limited human clinical data are available on negative health outcomes of potato-based MRPs, whereas potatoes are important contributors of key nutrients, such as fiber and potassium. Therefore, a balanced benefit-risk approach is warranted in order to assure that decreasing consumption of certain foods, like potatoes, does not lead to unintended consequences of nutrition inadequacies.
Collapse
Affiliation(s)
| | - Chad M. Cook
- Biofortis Research211 E. Lake St.AddisonIllinois 60101
| | - Ding Ding Wang
- D&V Systematic Consulting1945 Eastchester Rd.Apt 26DBronxNew York 10461
| | - John Szpylka
- Silliker, a Mérieux NutriSciences CompanyChicagoIllinois 60601
| |
Collapse
|
36
|
Direct determination of acrylamide in potato chips by using headspace solid-phase microextraction coupled with gas chromatography-flame ionization detection. Talanta 2016; 146:417-22. [DOI: 10.1016/j.talanta.2015.09.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 01/23/2023]
|
37
|
|
38
|
Zamora R, Hidalgo FJ. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) formation and fate: an example of the coordinate contribution of lipid oxidation and Maillard reaction to the production and elimination of processing-related food toxicants. RSC Adv 2015. [DOI: 10.1039/c4ra15371e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Major chemical reactions dealing with carbonyl chemistry in foods (Maillard reaction and lipid oxidation) play a role in PhIP formation and fate, pointing to this and analogous heterocyclic aromatic amines as outcomes of this chemistry.
Collapse
Affiliation(s)
- Rosario Zamora
- Instituto de la Grasa
- Consejo Superior de Investigaciones Científicas
- 41013 Seville
- Spain
| | - Francisco J. Hidalgo
- Instituto de la Grasa
- Consejo Superior de Investigaciones Científicas
- 41013 Seville
- Spain
| |
Collapse
|
39
|
Zamora R, Navarro JL, Aguilar I, Hidalgo FJ. Lipid-derived aldehyde degradation under thermal conditions. Food Chem 2014; 174:89-96. [PMID: 25529656 DOI: 10.1016/j.foodchem.2014.11.034] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/09/2014] [Accepted: 11/04/2014] [Indexed: 11/19/2022]
Abstract
Nucleophilic degradation produced by reactive carbonyls plays a major role in food quality and safety. Nevertheless, these reactions are complex because reactive carbonyls are usually involved in various competitive reactions. This study describes the thermal degradation of 2-alkenals (2-pentenal and 2-octenal) and 2,4-alkadienals (2,4-heptadienal and 2,4-decadienal) in an attempt to both clarify the stability of aldehydes and determine new compounds that might also play a role in nucleophile/aldehyde reactions. The obtained results showed that alkenals and alkadienals decomposed rapidly in the presence of buffer and air to produce formaldehyde, acetaldehyde, and the aldehydes corresponding to the breakage of the carboncarbon double bonds: propanal, hexanal, 2-pentenal, 2-octenal, glyoxal, and fumaraldehyde. The activation energy of double bond breakage was relatively low (∼ 25 kJ/mol) and the yield of alkanals (10-18%) was higher than that of 2-alkenals (∼ 1%). All these results indicate that these reactions should be considered in order to fully understand the range of nucleophile/aldehyde adducts produced.
Collapse
Affiliation(s)
- Rosario Zamora
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Avenida Padre García Tejero 4, 41012 Seville, Spain
| | - José L Navarro
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Avenida Padre García Tejero 4, 41012 Seville, Spain
| | - Isabel Aguilar
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Avenida Padre García Tejero 4, 41012 Seville, Spain
| | - Francisco J Hidalgo
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Avenida Padre García Tejero 4, 41012 Seville, Spain.
| |
Collapse
|
40
|
Acrylamide in Chips and French Fries: a Novel and Simple Method Using Xanthydrol for Its GC-MS Determination. FOOD ANAL METHOD 2014. [DOI: 10.1007/s12161-014-0014-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
Vaclavik L, Capuano E, Gökmen V, Hajslova J. Prediction of acrylamide formation in biscuits based on fingerprint data generated by ambient ionization mass spectrometry employing direct analysis in real time (DART) ion source. Food Chem 2014; 173:290-7. [PMID: 25466025 DOI: 10.1016/j.foodchem.2014.09.151] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/24/2014] [Accepted: 09/26/2014] [Indexed: 12/01/2022]
Abstract
The objective of this study is the evaluation of the potential of high-throughput direct analysis in real time-high resolution mass spectrometry (DART-HRMS) fingerprinting and multivariate regression analysis in prediction of the extent of acrylamide formation in biscuit samples prepared by various recipes and baking conditions. Information-rich mass spectral fingerprints were obtained by analysis of biscuit extracts for preparation of which aqueous methanol was used. The principal component analysis (PCA) of the acquired data revealed an apparent clustering of samples according to the extent of heat-treatment applied during the baking of the biscuits. The regression model for prediction of acrylamide in biscuits was obtained by partial least square regression (PLSR) analysis of the data matrix representing combined positive and negative ionization mode fingerprints. The model provided a least root mean square error of cross validation (RMSECV) equal to an acrylamide concentration of 5.4 μg kg(-1) and standard error of prediction (SEP) of 14.8 μg kg(-1). The results obtained indicate that this strategy can be used to accurately predict the amounts of acrylamide formed during baking of biscuits. Such rapid estimation of acrylamide concentration can become a useful tool in evaluation of the effectivity of processes aiming at mitigation of this food processing contaminant. However, the robustness this approach with respect to variability in the chemical composition of ingredients used for preparation of biscuits should be tested further.
Collapse
Affiliation(s)
- Lukas Vaclavik
- Institute of Chemical Technology Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Edoardo Capuano
- RIKILT - Institute of Food Safety, Wageningen University and Research Centre, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - Vural Gökmen
- Hacettepe University, Department of Food Engineering, 06800 Beytepe, Ankara, Turkey
| | - Jana Hajslova
- Institute of Chemical Technology Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 5, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
42
|
Wu J, Shen YD, Lei HT, Sun YM, Yang JY, Xiao ZL, Wang H, Xu ZL. Hapten synthesis and development of a competitive indirect enzyme-linked immunosorbent assay for acrylamide in food samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:7078-7084. [PMID: 24998485 DOI: 10.1021/jf5015395] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The high level of acrylamide in widely consumed processed foods poses a potentially significant risk to human health, which has led to an increasing demand for rapid, simple, and selective analytical methods. In the present work, several haptens for acrylamide were designed in an attempt to prepare antibodies with acrylamide affinity, but they failed their purpose. However, a polyclonal antibody was produced against 4-mercaptophenylacetic acid (4-MPA)-derivatized acrylamide, which showed high binding affinity to the derivative. As acrylamide easily reacted with 4-MPA at high derivation yield, a competitive indirect enzyme-linked immunosorbent assay (ciELISA) for acrylamide via a preanalysis derivatization was developed. The derivatization and ELISA conditions were fully optimized to produce a method for acrylamide assay that exhibited an IC50 of 2.86 μg/kg, limit of detection at 0.036 μg/kg, and linear range of 0.25-24.15 μg/kg. The results of preanalysis recovery tests of acrylamide-spiked food samples and screening of blind food samples by both ciELISA and HPLC-MS/MS indicated the proposed ciELISA's good accuracy and reliability. This method was thus deemed suitable for routine acrylamide screening in food samples at low cost.
Collapse
Affiliation(s)
- Jing Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University , Guangzhou 510642, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Zhang Y, Chen X, Cheng J, Jin C, Zhang Y. The reduction effect of dietary flavone C- and O-glycosides on the formation of acrylamide and its correlation and prediction with the antioxidant activity of Maillard reaction products. RSC Adv 2014. [DOI: 10.1039/c4ra02793k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The effect of dietary flavone C- and O-glycosides on the formation of acrylamide contaminants has been investigated in the present work.
Collapse
Affiliation(s)
- Yu Zhang
- Zhejiang Key Laboratory for Agro-Food Processing
- Zhejiang R & D Center for Food Technology and Equipment
- Fuli Institute of Food Science
- Department of Food Science and Nutrition
- College of Biosystems Engineering and Food Science
| | - Xinyu Chen
- Zhejiang Key Laboratory for Agro-Food Processing
- Zhejiang R & D Center for Food Technology and Equipment
- Fuli Institute of Food Science
- Department of Food Science and Nutrition
- College of Biosystems Engineering and Food Science
| | - Jun Cheng
- Zhejiang Key Laboratory for Agro-Food Processing
- Zhejiang R & D Center for Food Technology and Equipment
- Fuli Institute of Food Science
- Department of Food Science and Nutrition
- College of Biosystems Engineering and Food Science
| | - Cheng Jin
- Zhejiang Key Laboratory for Agro-Food Processing
- Zhejiang R & D Center for Food Technology and Equipment
- Fuli Institute of Food Science
- Department of Food Science and Nutrition
- College of Biosystems Engineering and Food Science
| | - Ying Zhang
- Zhejiang Key Laboratory for Agro-Food Processing
- Zhejiang R & D Center for Food Technology and Equipment
- Fuli Institute of Food Science
- Department of Food Science and Nutrition
- College of Biosystems Engineering and Food Science
| |
Collapse
|