1
|
Yang C, Liu L, Cui C, Cai H, Dai Q, Chen G, McClements DJ, Hou R. Towards healthier low-sugar and low-fat beverages: Design, production, and characterization. Food Res Int 2025; 200:115457. [PMID: 39779115 DOI: 10.1016/j.foodres.2024.115457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/05/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Many consumers are adopting low-sugar and low-fat beverages to avoid excessive calories and the negative impact of high trans- and/or saturated fat on health and wellbeing. This article reviews strategies to reduce sugar, fat, and high trans- and/or saturated fat content in beverages while maintaining their desirable physicochemical and sensory attributes. It assesses the impact of various sugar and fat replacers on the aroma, taste, texture, appearance, and nutritional profile of beverages. Combinations of natural sugar replacers and protein or polysaccharide-based fat replacers have shown partial success in mimicking the qualities of sucrose and fat. Future strategies for designing low-sugar and low-fat beverages include developing novel replacers and using odorants to enhance sensory profiles. The article also highlights methods for flavor detection and oral tribology methods, emphasizing their role in development of low-sugar and low-fat beverages. The information presented in this review article is intended to stimulate research into the design of healthier low-sugar and low-fat beverages in the future.
Collapse
Affiliation(s)
- Chen Yang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315832, Zhejiang Province, China
| | - Chuanjian Cui
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Huimei Cai
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Qianying Dai
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Guijie Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, China
| | | | - Ruyan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, China; Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, New-style Industrial Tea Beverage Green Manufacturing Joint Laboratory of Anhui Province, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
2
|
Sharma D, Dhiman A, Thakur A, Kumar S, Saini R. Functional oligosaccharides as a promising food ingredient: a gleam into health apprehensions and techno-functional advantages. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2024. [DOI: 10.1007/s11694-024-02986-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/05/2024] [Indexed: 01/04/2025]
|
3
|
Wang Z, Shang P, Song X, Wu M, Zhang T, Zhao Q, Zhu S, Qiao Y, Zhao F, Zhang R, Wang J, Yu Y, Han H, Dong H. Alterations in Ileal Microbiota and Fecal Metabolite Profiles of Chickens with Immunity to Eimeria mitis. Animals (Basel) 2024; 14:3515. [PMID: 39682480 DOI: 10.3390/ani14233515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Coccidiosis, caused by different species of Eimeria parasites, is an economically important disease in poultry and livestock worldwide. This study aimed to investigate the changes in the ileal microbiota and fecal metabolites in chickens after repeated infections with low-dose E. mitis. The chickens developed solid immunity against a high dose of E. mitis infection after repeated infections with low-dose E. mitis. The composition of the ileal microbiota and the metabonomics of the Eimeria-immunized group and the control group were detected using 16S rRNA sequencing and liquid chromatography-mass spectrometry (LC-MS). The relative abundance of Neisseria, Erysipelotrichaceae, Incertae sedis, Coprobacter, Capnocytophaga, Bifidobacterium, and the Ruminococcus torques group declined in the Eimeria-immunized chickens, whereas Alloprevotella, Staphylococcus, Haemophilus, and Streptococcus increased. Furthermore, 286 differential metabolites (including N-undecylbenzenesulfonic acid, 1,25-dihydroxyvitamin D3, gluconic acid, isoleucylproline, proline, and 1-kestose) and 19 significantly altered metabolic pathways (including galactose metabolism, ABC transporters, starch and sucrose metabolism, the ErbB signaling pathway, and the MAPK signaling pathway) were identified between the Eimeria-immunized group and the control group. These discoveries will help us learn more about the composition and dynamics of the gut microbiota as well as the metabolic changes in chickens infected with Eimeria spp.
Collapse
Affiliation(s)
- Zhongchuang Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Peiyao Shang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
| | - Xingju Song
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Minghui Wu
- Beijing Yuanda Spark Medical Technology Co., Ltd., Beijing 102615, China
| | - Tong Zhang
- Beijing Yuanda Spark Medical Technology Co., Ltd., Beijing 102615, China
| | - Qiping Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
| | - Shunhai Zhu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
| | - Yu Qiao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
| | - Fanghe Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
| | - Ruiting Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jinwen Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
| | - Yu Yu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
| | - Hongyu Han
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
| | - Hui Dong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
| |
Collapse
|
4
|
Singarayar MS, Chandrasekaran A, Balasundaram D, Veerasamy V, Neethirajan V, Thilagar S. Prebiotics: Comprehensive analysis of sources, structural characteristics and mechanistic roles in disease regulation. Microb Pathog 2024; 197:107071. [PMID: 39447658 DOI: 10.1016/j.micpath.2024.107071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Prebiotics are nondigestible components that comprise short-chain carbohydrates, primarily oligosaccharides, which are converted into beneficial compounds by probiotics. Various plant substances with prebiotic properties provide substantial health benefits and are used to prevent different diseases and for medical and clinical applications. Consuming prebiotics gives impeccable benefits since it aids in gut microbial balance. Prebiotic research is primarily concerned with the influence of intestinal disorders. The proposed review will describe recent data on the sources, structures, implementation of prebiotics and potential mechanisms in preventing and treating various disorders, with an emphasis on the gut microbiome. Prebiotics have a distinctive impact on the gastro intestine by explicitly encouraging the growth of probiotic organisms like Bifidobacteria and Lactobacilli. This in turn augments the body's inherent ability to fend off harmful pathogens. Prebiotic carbohydrates may also provide other non-specific advantages due to their fermentation in the large intestine. Additional in vivo research is needed to fully comprehend the interactions between prebiotics and probiotics ingested by hosts to improve their nutritional and therapeutic benefits.
Collapse
Affiliation(s)
- Magdalin Sylvia Singarayar
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India.
| | - Ajithan Chandrasekaran
- Department of Horticulture, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | | | - Veeramurugan Veerasamy
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India.
| | - Vivek Neethirajan
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India.
| | - Sivasudha Thilagar
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India.
| |
Collapse
|
5
|
Li H, Tan P, Lei W, Yang S, Fan L, Yang X, Liang J, Long F, Zhao X, Gao Z. Effect of microwave-puffed on Auricularia auricula polysaccharide and probiotic fermentation on its biotransformation and quality characteristics during storage period. Int J Biol Macromol 2024; 281:136448. [PMID: 39389488 DOI: 10.1016/j.ijbiomac.2024.136448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 09/19/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
In this study, probiotics with superior fermentation performance were screened, and the mixed-bacteria fermentation was carried out with Auricularia auricula treated with microwave-puffed process as fermentation substrate, and the changes in nutritional quality under different storage conditions were investigated. The results showed that the acid and bile salt resistance of Lactiplantibacillus plantarum 21,801 and 21,805 reached 95 % and 75 % respectively, and the intestinal adhesion was superior; microwave puffing treatment had the highest retention rate of A. auricula polysaccharides and the lowest loss of polyphenols, and no effect on soluble protein. Mixed bacterial fermentation significantly increased the total polyphenols and total flavonoids of A. auricula (p < 0.05), and the DPPH and ABTS radical scavenging reached 48.31 % and 73.21 % respectively. Furthermore, the viable counts, DPPH radical scavenging, color, and sensory quality of fermented A. auricula remained stable when stored at 4 °C. In contrast, when stored at 25 °C for 7 days, the taste was unfavorable, undesirable odor and spoilage occurred; by 21 days, DPPH clearance rate dropped below 40 % and color changed significantly (△E > 2). In conclusion, the probiotic mixed fermentation and storage conditions had a significant effect on the biometabolic transformation of macromolecules and other substances in A. auricula.
Collapse
Affiliation(s)
- Hongcai Li
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Pei Tan
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Wenzhi Lei
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Siqi Yang
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Lingjia Fan
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Xue Yang
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Jingjing Liang
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Fangyu Long
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Xubo Zhao
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China.
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China.
| |
Collapse
|
6
|
Sun Y, Liang J, Zhang Z, Sun D, Li H, Chen L. Extraction, physicochemical properties, bioactivities and application of natural sweeteners: A review. Food Chem 2024; 457:140103. [PMID: 38905824 DOI: 10.1016/j.foodchem.2024.140103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/13/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
Natural sweeteners generally refer to a sweet chemical component directly extracted from nature or obtained through appropriate modifications, mainly secondary metabolites of plants. Compared to the first-generation sweeteners represented by sucrose and the second-generation sweeteners represented by sodium cyclamate, natural sweeteners usually have high sweetness, low-calorie content, good solubility, high stability, and rarely toxic side effects. Historically, researchers mainly focus on the function of natural sweeteners as substitutes for sugars in the food industry. This paper reviews the bioactivities of several typical natural sweeteners, including anti-cancer, anti-inflammatory, antioxidant, anti-bacterial, and anti-hyperglycemic activities. In addition, we have summarized the extraction, physicochemical properties, and application of natural sweeteners. The article aimed to comprehensively collate vital information about natural sweeteners and review the potentiality of tapping bioactive compounds from natural products. Hopefully, this review provides insights into the further development of natural sweeteners as therapeutic agents and functional foods.
Collapse
Affiliation(s)
- Yanyu Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhiruo Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
7
|
Jaswal AS, Elangovan R, Mishra S. Optimization of dilution rate and mixed carbon feed for continuous production of recombinant plant sucrose:sucrose 1-fructosyltransferase in Komagataella phaffii. Bioprocess Biosyst Eng 2024; 47:1499-1514. [PMID: 38904715 DOI: 10.1007/s00449-024-03045-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024]
Abstract
The trisaccharide 1-kestose, a major constituent of commercial fructooligosaccharide (FOS) formulations, shows a superior prebiotic effect compared to higher-chain FOS. The plant sucrose:sucrose 1-fructosyltransferases (1-SST) are extensively used for selective synthesis of lower chain FOS. In this study, enhanced recombinant (r) 1-SST production was achieved in Komagataella phaffii (formerly Pichia pastoris) containing three copies of a codon-optimized Festuca arundinacea 1-SST gene. R1-SST production reached 47 U/mL at the shake-flask level after a 96-h methanol induction phase. A chemostat-based strain characterization methodology was adopted to assess the influence of specific growth rate (µ) on cell-specific r1-SST productivity (Qp) and cell-specific oxygen uptake rate (Qo) under two different feeding strategies across dilution rates from 0.02 to 0.05 h-1. The methanol-sorbitol co-feeding strategy significantly reduced Qo by 46 ± 2.4% compared to methanol-only feeding without compromising r1-SST productivity. Based on the data, a dilution rate of 0.025 h-1 was applied for continuous cultivation of recombinant cells to achieve a sustained r1-SST productivity of 5000 ± 64.4 U/L/h for 15 days.
Collapse
Affiliation(s)
- Avijeet S Jaswal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz-Khas, New-Delhi, 110016, India
| | - Ravikrishnan Elangovan
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz-Khas, New-Delhi, 110016, India
| | - Saroj Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz-Khas, New-Delhi, 110016, India.
| |
Collapse
|
8
|
Rao Z, Li Y, Yang X, Guo Y, Zhang W, Wang Z. Diet xylo-oligosaccharide supplementation improves growth performance, immune function, and intestinal health of broilers. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:165-176. [PMID: 38779325 PMCID: PMC11109738 DOI: 10.1016/j.aninu.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 05/25/2024]
Abstract
The effects of xylo-oligosaccharides (XOS) on broiler growth performance, immune function, and intestinal health were investigated. A total of 540 one-d-old Arbor Acres Plus broilers were randomly divided into 5 groups with 6 replicates per group and 18 chickens per replicate. Broilers in the control (CON) group received a corn-soybean meal based basal diet, those in the antibiotics (ANT) group received the basal diet plus 500 mg/kg oxytetracycline, and those in XOS groups received the basal diet plus 150, 300, or 450 mg/kg XOS. Compared with CON, the body weight at 42 d and average daily gain from 1 to 42 d were significantly increased in the 150, 450 mg/kg XOS-added and ANT groups (P = 0.018), and the relative expression of claudin-1 and ZO-1 mRNA in the ileum was significantly higher in the 300 and 450 mg/kg XOS-added groups (P < 0.001). The feed conversion ratios (P < 0.001) and abdominal fat rates (P = 0.012) of broilers from 1 to 42 d of age were significantly lower in all XOS-added groups than in the control group. Splenic index (P = 0.036) and bursa of Fabricius index (P = 0.009) were significantly better in the ANT group and each XOS-added group than in the control group. Compared to CON and ANT, serum IgA (P = 0.007) and IgG (P = 0.002) levels were significantly higher in the 300 mg/kg XOS-added group, and the relative abundance of short-chain fatty acid-producing genera (Alistipes) was also significantly higher (P < 0.001). Meanwhile, ileal villus height (P < 0.001) and ratio of villus height to crypt depth (V:C) (P = 0.001) were significantly increased in XOS-added broilers. In analysis of relationships between cecal microbes and the physical barrier of the gut, [Ruminococcus]_torques_group was positively correlated with mRNA expression of ileal ZO-1 and claudin-1 (P < 0.05), and Bacteroides was positively correlated with increased ileal villus height and V:C (P < 0.05). Overall, XOS addition to broiler diets improved growth performance, promoted intestinal health by enhancing intestinal barrier function and regulating cecal microbiota diversity, and had positive effects on immunity.
Collapse
Affiliation(s)
- Zhiyong Rao
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Yue Li
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaopeng Yang
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Yongpeng Guo
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Wei Zhang
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhixiang Wang
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
9
|
Zeng H, Miao J, Liao J, Sui Z, Hou M, Hang S. Palm Kernel Cake Extracts Obtained from the Combination of Bacterial Fermentation and Enzymic Hydrolysis Promote Swine Small Intestine IPEC-J2 Cell Proliferation and Alleviate LPS-Induced Inflammation In Vitro. Antioxidants (Basel) 2024; 13:682. [PMID: 38929121 PMCID: PMC11200965 DOI: 10.3390/antiox13060682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/22/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Co-fermentation with bacteria and enzymes can reduce sugar content in palm kernel cake (PKC); however, the chemical changes and their effects on cell functionality are unclear. This study investigated the active components in pre-treated PKC extracts and their effects on pig small intestine IPEC-J2 cell proliferation and LPS-induced inflammation. The extracts contained 60.75% sugar, 36.80% mannose, 1.75% polyphenols and 0.59% flavone, as determined by chemical analyses, suggesting that the extracts were palm kernel cake oligosaccharides (PKCOS). Then, we found that 1000 µg/mL PKCOS counteracted the decrease in cell viability (CCK8 kit) caused by LPS induction by 5 µg/mL LPS (p < 0.05). Mechanistic studies conducted by RNA-seq and qPCR analyses suggested PKCOS promoted cell proliferation through the upregulation of TNF-α, PI3KAP1, MAP3K5 and Fos in the PI3K/MAPK signalling pathway; alleviated inflammation caused by LPS via the downregulation of the target genes Casp3 and TNF-α in association with apoptosis; and regulated the expression of the antioxidant genes SOD1, SOD2 and GPX4 to exert positive antioxidant effects (p < 0.05). Furthermore, PKCOS upregulated SLC5A1 (encoding SLGT1), HK and MPI in the glycolytic pathway (p < 0.05), suggesting cell survival. In summary, PKCOS has positive effects on promoting swine intestine cell proliferation against inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | - Suqin Hang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (J.M.); (J.L.); (Z.S.); (M.H.)
| |
Collapse
|
10
|
Yoo S, Jung SC, Kwak K, Kim JS. The Role of Prebiotics in Modulating Gut Microbiota: Implications for Human Health. Int J Mol Sci 2024; 25:4834. [PMID: 38732060 PMCID: PMC11084426 DOI: 10.3390/ijms25094834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
The human gut microbiota, an intricate ecosystem within the gastrointestinal tract, plays a pivotal role in health and disease. Prebiotics, non-digestible food ingredients that beneficially affect the host by selectively stimulating the growth and/or activity of beneficial microorganisms, have emerged as a key modulator of this complex microbial community. This review article explores the evolution of the prebiotic concept, delineates various types of prebiotics, including fructans, galactooligosaccharides, xylooligosaccharides, chitooligosaccharides, lactulose, resistant starch, and polyphenols, and elucidates their impact on the gut microbiota composition. We delve into the mechanisms through which prebiotics exert their effects, particularly focusing on producing short-chain fatty acids and modulating the gut microbiota towards a health-promoting composition. The implications of prebiotics on human health are extensively reviewed, focusing on conditions such as obesity, inflammatory bowel disease, immune function, and mental health. The review further discusses the emerging concept of synbiotics-combinations of prebiotics and probiotics that synergistically enhance gut health-and highlights the market potential of prebiotics in response to a growing demand for functional foods. By consolidating current knowledge and identifying areas for future research, this review aims to enhance understanding of prebiotics' role in health and disease, underscoring their importance in maintaining a healthy gut microbiome and overall well-being.
Collapse
Affiliation(s)
- Suyeon Yoo
- Department of Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Suk-Chae Jung
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Kihyuck Kwak
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jun-Seob Kim
- Department of Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Institute for New Drug Development, College of Life Science and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
11
|
Rawat HK, Nath S, Sharma I, Kango N. Recent developments in the production of prebiotic fructooligosaccharides using fungal fructosyltransferases. Mycology 2024; 15:564-584. [PMID: 39678637 PMCID: PMC11636151 DOI: 10.1080/21501203.2024.2323713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/21/2024] [Indexed: 12/17/2024] Open
Abstract
Prebiotic nutritional ingredients have received attention due to their health-promoting potential and related uses in the food and nutraceutical industries. Recent times have witnessed an increasing interest in the use of fructooligosaccharides (FOS) as prebiotics and their generation using microbial enzymes. FOS consumption is known to confer health benefits such as protection against colon cancer, improved mineral absorption, lowering effect on serum lipid and cholesterol concentration, antioxidant properties, favourable dietary modulation of the human colonic microbiota, and immuno-modulatory effects. Comparative analysis of molecular models of various fructosyltransferases (FTases) reveals the mechanism of action and interaction of substrate with the active site. Microbial FTases carry out transfructosylation of sucrose into fructooligosaccharides (kestose, nystose, and fructofuranosylnystose), the most predominantly used prebiotic oligosaccharides. Furthermore, FOS has also been used for other purposes, such as low-calorie sweeteners, dietary fibres, and as the substrates for fermentation. This review highlights the occurrence, characteristics, immobilisation, and potential applications of FOS-generating fungal FTases. Production, heterologous expression, molecular characteristics, and modelling of fungal FTases underpinning their biotechnological prospects are also discussed.
Collapse
Affiliation(s)
- Hemant Kumar Rawat
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| | - Suresh Nath
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| | - Isha Sharma
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| |
Collapse
|
12
|
Wan X, Wang L, Chang J, Zhang J, Zhang Z, Li K, Sun G, Liu C, Zhong Y. Effective synthesis of high-content fructooligosaccharides in engineered Aspergillus niger. Microb Cell Fact 2024; 23:76. [PMID: 38461254 PMCID: PMC10924377 DOI: 10.1186/s12934-024-02353-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/01/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Aspergillus niger ATCC 20611 is an industrially important fructooligosaccharides (FOS) producer since it produces the β-fructofuranosidase with superior transglycosylation activity, which is responsible for the conversion of sucrose to FOS accompanied by the by-product (glucose) generation. This study aims to consume glucose to enhance the content of FOS by heterologously expressing glucose oxidase and peroxidase in engineered A. niger. RESULTS Glucose oxidase was successfully expressed and co-localized with β-fructofuranosidase in mycelia. These mycelia were applied to synthesis of FOS, which possessed an increased purity of 60.63% from 52.07%. Furthermore, peroxidase was expressed in A. niger and reached 7.70 U/g, which could remove the potential inhibitor of glucose oxidase to facilitate the FOS synthesis. Finally, the glucose oxidase-expressing strain and the peroxidase-expressing strain were jointly used to synthesize FOS, which content achieved 71.00%. CONCLUSIONS This strategy allows for obtaining high-content FOS by the multiple enzymes expressed in the industrial fungus, avoiding additional purification processes used in the production of oligosaccharides. This study not only facilitated the high-purity FOS synthesis, but also demonstrated the potential of A. niger ATCC 20611 as an enzyme-producing cell factory.
Collapse
Affiliation(s)
- Xiufen Wan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Lu Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Jingjing Chang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Jing Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Zhiyun Zhang
- Shandong Academy of Pharmaceutical Sciences, Jinan, 250101, People's Republic of China
| | - Kewen Li
- Baolingbao Biology Co., Ltd, Dezhou, 251299, People's Republic of China
| | - Guilian Sun
- Baolingbao Biology Co., Ltd, Dezhou, 251299, People's Republic of China
| | - Caixia Liu
- Shandong Academy of Pharmaceutical Sciences, Jinan, 250101, People's Republic of China.
| | - Yaohua Zhong
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
13
|
Haala F, Dielentheis-Frenken MRE, Brandt FM, Karmainski T, Blank LM, Tiso T. DoE-based medium optimization for improved biosurfactant production with Aureobasidium pullulans. Front Bioeng Biotechnol 2024; 12:1379707. [PMID: 38511129 PMCID: PMC10953688 DOI: 10.3389/fbioe.2024.1379707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Polyol lipids (a.k.a. liamocins) produced by the polyextremotolerant, yeast-like fungus Aureobasidium pullulans are amphiphilic molecules with high potential to serve as biosurfactants. So far, cultivations of A. pullulans have been performed in media with complex components, which complicates further process optimization due to their undefined composition. In this study, we developed and optimized a minimal medium, focusing on biosurfactant production. Firstly, we replaced yeast extract and peptone in the best-performing polyol lipid production medium to date with a vitamin solution, a trace-element solution, and a nitrogen source. We employed a design of experiments approach with a factor screening using a two-level-factorial design, followed by a central composite design. The polyol lipid titer was increased by 56% to 48 g L-1, and the space-time yield from 0.13 to 0.20 g L-1 h-1 in microtiter plate cultivations. This was followed by a successful transfer to a 1 L bioreactor, reaching a polyol lipid concentration of 41 g L-1. The final minimal medium allows the investigation of alternative carbon sources and the metabolic pathways involved, to pinpoint targets for genetic modifications. The results are discussed in the context of the industrial applicability of this robust and versatile fungus.
Collapse
Affiliation(s)
| | | | | | | | | | - Till Tiso
- Institute of Applied Microbiology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
14
|
Basmak S, Turhan I. Production of β-mannanase, inulinase, and oligosaccharides from coffee wastes and extracts. Int J Biol Macromol 2024; 261:129798. [PMID: 38286365 DOI: 10.1016/j.ijbiomac.2024.129798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 01/31/2024]
Abstract
This study aimed to produce enzymes (beta (β)-mannanase using a recombinant Aspergillus sojae AsT3 and inulinase using Aspergillus niger A42) and oligosaccharides (mannooligosaccharides (MOS), fructooligosaccharides (FOS)) using coffee waste, ground coffee, and coffee extract by solid-state fermentation (SSF). Plackett-Burman Design (PBD) was used to create a design for enzyme production with four different parameters (temperature, pH, solid-to-liquid ratio (SLR), and mix with coffee wastes and ground coffee). The highest β-mannanase and inulinase activities were 71.17 and 564.07 U/mg of protein respectively. Statistical analysis showed that the temperature was statistically significant for the production of both enzymes (P < 0.05). The produced enzymes were utilized in French Pressed coffee extracts to produce oligosaccharides. As a result of the enzymatic hydrolyzation, the highest mannobiose, mannotriose, mannotetraose, and total MOS levels were 109.66, 101.11, 391.02, and 600.64 ppm, respectively. For the FOS production, the maximal 1,1,1-kestopentaose was 38.34 ppm. Consequently, this study demonstrates that a recombinant Aspergillus sojae AsT3 β-mannanase and Aspergillus niger A42 inulinase produced from coffee wastes and ground coffee can be used in coffee extracts to increase the amount of oligosaccharides in coffee extracts.
Collapse
Affiliation(s)
- Selin Basmak
- Department of Food Engineering, Akdeniz University, Antalya 07058, Turkey
| | - Irfan Turhan
- Department of Food Engineering, Akdeniz University, Antalya 07058, Turkey.
| |
Collapse
|
15
|
Liu T, Bai H, Wang S, Gong W, Li G, Wang Z. In vitro simulated canine and feline gastrointestinal digestion of fructooligosaccharides and isomaltooligosaccharides and their effects on intestinal microbiota. Anim Feed Sci Technol 2023; 306:115821. [DOI: 10.1016/j.anifeedsci.2023.115821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Li W, Zhang W, Fan X, Xu H, Yuan H, Wang Y, Yang R, Tian H, Wu Y, Yang H. Fructo-oligosaccharide enhanced bioavailability of polyglycosylated anthocyanins from red radish via regulating gut microbiota in mice. Food Chem X 2023; 19:100765. [PMID: 37780282 PMCID: PMC10534114 DOI: 10.1016/j.fochx.2023.100765] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 10/03/2023] Open
Abstract
The anthocyanins from red radish (ARR) rich in polyglycosylated pelargonidin glucosides were used as pigment. However, bioavailability of anthocyanins was considered at low level. This work examined the intensive effects of fructo-oligosaccharide (FOS) on ARR bioavailability. Pelargonidin, cyanidin and pelargonidin-3-glucoside showed higher level in serum of mice fed with FOS together with ARR for 8 weeks than that fed with only ARR. Co-ingestion of FOS and ARR more effectively elevated the hepatic antioxidant activity by increase in total antioxidant capacity and activities of superoxide dismutase and glutathione peroxidase when compared with intake of ARR. FOS also markedly increased pelargonidin level in cecum of mice. 16S RNA sequencing found that Bacteroides genus play an important role in FOS elevating bioavailability of ARR. Fecal bacteria transplantation verified the positive effects of FOS on ARR bioavailability. These results suggested that combined ingestion of FOS and ARR is effective strategy for bioactivity of ARR.
Collapse
Affiliation(s)
- Wenfeng Li
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China
| | - Wanjie Zhang
- Faculty of Science, The University of Hong Kong, Hong Kong 999077, China
| | - Xin Fan
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, China
| | - Hai Xu
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, China
| | - Hong Yuan
- Medical School, Xi’an Peihua University, Xi’an, Shaanxi 710125, China
| | - Yimeng Wang
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China
| | - Rui Yang
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China
| | - Hua Tian
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China
| | - Yinmei Wu
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, China
| | - Hongyan Yang
- School of Aerospace Medicine, Air Force Medical University, Xi’an 710032, China
| |
Collapse
|
17
|
Zhao K, Pang H, Shao K, Yang Z, Li S, He N. The function of human milk oligosaccharides and their substitute oligosaccharides as probiotics in gut inflammation. Food Funct 2023; 14:7780-7798. [PMID: 37575049 DOI: 10.1039/d3fo02092d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Gut inflammation seriously affects the healthy life of patients, and has a trend of increasing incidence rate. However, the current methods for treating gut inflammation are limited to surgery and drugs, which can cause irreversible damage to patients, especially infants. As natural oligosaccharides in human breast milk, human milk oligosaccharides (HMOs) function as probiotics in treating and preventing gut inflammation: improving the abundance of the gut microbiota, increasing the gut barrier function, and reducing the gut inflammatory reaction. Meanwhile, due to the complexity and high cost of their synthesis, people are searching for functional oligosaccharides that can replace HMOs as a food additive in infants milk powder and adjuvant therapy for chronic inflammation. The purpose of this review is to summarize the therapeutic and preventive effects of HMOs and their substitute functional oligosaccharides as probiotics in gut inflammation, and to summarize the prospect of their application in infant breast milk replacement in the future.
Collapse
Affiliation(s)
- Kunyi Zhao
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266003, China.
| | - Hao Pang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266003, China.
| | - Kaidi Shao
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266003, China.
| | - Zizhen Yang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266003, China.
| | - Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266003, China.
| | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266003, China.
| |
Collapse
|
18
|
Li D, Miyasaka Y, Kubota A, Kozono T, Kitano Y, Sasaki N, Fujii T, Tochio T, Kadota Y, Nishikawa A, Tonozuka T. Characterization and alteration of product specificity of Beijerinckia indica subsp. indica β-fructosyltransferase. Biosci Biotechnol Biochem 2023; 87:981-990. [PMID: 37280168 DOI: 10.1093/bbb/zbad074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023]
Abstract
The trisaccharide 1-kestose, a major constituent of fructooligosaccharide, has strong prebiotic effects. We used high-performance liquid chromatography and 1H nuclear magnetic resonance spectroscopy to show that BiBftA, a β-fructosyltransferase belonging to glycoside hydrolase family 68, from Beijerinckia indica subsp. indica catalyzes transfructosylation of sucrose to produce mostly 1-kestose and levan polysaccharides. We substituted His395 and Phe473 in BiBftA with Arg and Tyr, respectively, and analyzed the reactions of the mutant enzymes with 180 g/L sucrose. The ratio of the molar concentrations of glucose and 1-kestose in the reaction mixture with wild-type BiBftA was 100:8.1, whereas that in the reaction mixture with the variant H395R/F473Y was 100:45.5, indicating that H395R/F473Y predominantly accumulated 1-kestose from sucrose. The X-ray crystal structure of H395R/F473Y suggests that its catalytic pocket is unfavorable for binding of sucrose while favorable for transfructosylation.
Collapse
Affiliation(s)
- Ding Li
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Yuki Miyasaka
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Arisa Kubota
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Takuma Kozono
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Yoshikazu Kitano
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Nobumitsu Sasaki
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Tadashi Fujii
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
| | - Takumi Tochio
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
| | - Yoshihiro Kadota
- Research and Development Center, B Food Science Co., Ltd., Chita, Aichi, Japan
| | - Atsushi Nishikawa
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Takashi Tonozuka
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| |
Collapse
|
19
|
Canatar M, Tufan HNG, Ünsal SBE, Koc CY, Ozcan A, Kucuk G, Basmak S, Yatmaz E, Germec M, Yavuz I, Turhan I. Inulinase and fructooligosaccharide production from carob using Aspergillus niger A42 (ATCC 204447) under solid-state fermentation conditions. Int J Biol Macromol 2023:125520. [PMID: 37353118 DOI: 10.1016/j.ijbiomac.2023.125520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
This study aimed to the production of inulinase and fructooligosaccharides (FOSs) from carob under the solid-state fermentation (SSF) conditions by using Plackett-Burman Design (PBD). Based on the results the maximum inulinase and specific inulinase activities were 249.98 U/mL and 318.29 U/mg protein, respectively. When the fructooligosaccharide (FOS) results were evaluated, the maximum values of 1,1,1-Kestopentaose, 1,1-Kestotetraose, and 1-Kestose were 182.01, 506.16, 132.16 ppm while the lowest and highest total FOS values were 179.35 and 516.66 ppm, respectively. On the other hand, it was observed that the maximum inulinase activity was found at the center points of the design. Therefore, validation fermentations were carried out at center point conditions. Subsequently, the yielded bulk enzyme extracts were partially purified using Spin-X UF membranes with 10, 30, and 50 kDa cut-off values. After purification, the maximum inulinase activity was 247.30 U/mg using a 50 kDa cut-off value. Followed by this process, the purified enzyme was used to produce FOSs and the results indicated that the maximum total FOS amount was 28,712.70 ppm. Consequently, this study successfully demonstrates that Aspergillus niger A42 inulinase produced from carob under the SSF conditions can be used in FOSs production.
Collapse
Affiliation(s)
- Muge Canatar
- Manavgat Vocational School, Akdeniz University, Manavgat, Antalya 07600, Turkey
| | | | | | - Cansu Yılmazer Koc
- Department of Food Engineering, Akdeniz University, Antalya 07058, Turkey
| | - Ali Ozcan
- Department of Food Engineering, Akdeniz University, Antalya 07058, Turkey
| | - Gokce Kucuk
- Department of Food Engineering, Akdeniz University, Antalya 07058, Turkey
| | - Selin Basmak
- Department of Food Engineering, Akdeniz University, Antalya 07058, Turkey
| | - Ercan Yatmaz
- Göynük Culinary Arts Vocational School, Akdeniz University, Kemer, Antalya 07994, Turkey
| | - Mustafa Germec
- Department of Food Engineering, Akdeniz University, Antalya 07058, Turkey
| | - Ibrahim Yavuz
- Technical Sciences Vocational School, Department Of Plant And Animal Production, Organic Agriculture Pr, Akdeniz University, Antalya 07058, Turkey
| | - Irfan Turhan
- Department of Food Engineering, Akdeniz University, Antalya 07058, Turkey.
| |
Collapse
|
20
|
Roles of fermented plant-, dairy- and meat-based foods in the modulation of allergic responses. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Zhang Q, Hu S, Wu J, Sun P, Zhang Q, Wang Y, Zhao Q, Han T, Qin L, Zhang Q. Nystose attenuates bone loss and promotes BMSCs differentiation to osteoblasts through BMP and Wnt/β-catenin pathway in ovariectomized mice. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Veljković M, Stepanović R, Banjanac K, Ćorović M, Milivojević A, Simović M, Milivojević M, Bezbradica D. Continuous production of fructo-oligosaccharides using selectively immobilized fructosyltransferase from Aspergillus aculeatus onto Purolite® A109. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2022.09.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Zou LJ, Yang X, Zhao XR, He H, Zhang D, Song H, Xue F, Qin Y. Iterative Synthesis of Inulin-Type Fructooligosaccharides Enabled by Stereoselective β-d-Fructofuranosylation. J Org Chem 2022; 87:15273-15288. [PMID: 36318096 DOI: 10.1021/acs.joc.2c01849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Inulin-type fructooligosaccharides (FOSs) constitute an abundant subgroup of fructans with important biological activities. However, the availability of individual fructooligosaccharides with an accurate structure in high purity and quality remains challenging. We herein report the first iterative synthesis of five inulin-type FOSs with degrees of polymerization ranging from 3 to 7 via highly stereoselective β-(2 → 1)-d-fructofuranosylation on a gram scale. Central to the synthesis is the decisive use of the 1-O-TIPS-6-O-picoloyl-protected fructofuranosyl thioglycoside donor, which assured the excellent β-selective glycosylation by the hydrogen-bond-mediated aglycone delivery (HAD).
Collapse
Affiliation(s)
- Liang-Jing Zou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Xing Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Xi-Rui Zhao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Huan He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Dan Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Hao Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Fei Xue
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Yong Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
24
|
Liu L, Li JT, Li SH, Liu LP, Wu B, Wang YW, Yang SH, Chen CH, Tan FR, He MX. The potential use of Zymomonas mobilis for the food industry. Crit Rev Food Sci Nutr 2022; 64:4134-4154. [PMID: 36345974 DOI: 10.1080/10408398.2022.2139221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Zymomonas mobilis is a gram-negative facultative anaerobic spore, which is generally recognized as a safe. As a promising ethanologenic organism for large-scale bio-ethanol production, Z. mobilis has also shown a good application prospect in food processing and food additive synthesis for its unique physiological characteristics and excellent industrial characteristics. It not only has obvious advantages in food processing and becomes the biorefinery chassis cell for food additives, but also has a certain healthcare effect on human health. Until to now, most of the research is still in theory and laboratory scale, and further research is also needed to achieve industrial production. This review summarized the physiological characteristics and advantages of Z. mobilis in food industry for the first time and further expounds its research status in food industry from three aspects of food additive synthesis, fermentation applications, and prebiotic efficacy, it will provide a theoretical basis for its development and applications in food industry. This review also discussed the shortcomings of its practical applications in the current food industry, and explored other ways to broaden the applications of Z. mobilis in the food industry, to promote its applications in food processing.
Collapse
Affiliation(s)
- Lu Liu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, P.R. China
- College of Food and Bioengineering, Chengdu University, Chengdu, P.R. China
| | - Jian-Ting Li
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, P.R. China
| | - Sheng-Hao Li
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, P.R. China
| | - Lin-Pei Liu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, P.R. China
| | - Bo Wu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, P.R. China
| | - Yan-Wei Wang
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, P.R. China
| | - Shi-Hui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, Hubei, P.R. China
| | - Cheng-Han Chen
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, P.R. China
| | - Fu-Rong Tan
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, P.R. China
| | - Ming-Xiong He
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, P.R. China
- College of Food and Bioengineering, Chengdu University, Chengdu, P.R. China
- Institute of Ecological Environment, Chengdu University of Technology, Chengdu, P.R. China
- Chengdu National Agricultural Science and Technology Center, Chengdu, P.R. China
| |
Collapse
|
25
|
Jiang K, Wang D, Su L, Liu X, Yue Q, Li B, Li K, Zhang S, Zhao L. Structural characteristics of locust bean gum hydrolysate and its alleviating effect on dextran sulfate sodium-induced colitis. Front Microbiol 2022; 13:985725. [PMID: 36033869 PMCID: PMC9399726 DOI: 10.3389/fmicb.2022.985725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Background Ulcerative colitis (UC) is an inflammatory lesion of the colon from various causes. As current therapeutic drugs have adverse effects on patients with UC, there is a growing demand for alternative medicines from natural and functional foods. Locust bean gum, as a dietary fiber, has a variety of physiological effects. Methods In the present study, locust bean gum hydrolysate (LBGH) was obtained from the acid hydrolysis of locust bean gum. The structure of LBGH was characterized by thin-layer chromatography and high performance liquid chromatography (HPLC)-electrospray ionization (ESI)-mass spectrometry (MS)/MS analysis. And we investigated the therapeutic effect of LBGH on a mouse model of dextran sulfate sodium (DSS)-induced colitis. Results It was observed that the LBGH consisted of a mixture of monosaccharides and oligosaccharides with a degree of polymerization (DP) 2–7. LBGH treatment dramatically alleviated colonic pathological damage, suppressed the overproduction of pro-inflammatory factors and the activation of nuclear factor κB (NF-κB), increased the mRNA expression of tight junction proteins, and increased the abundance of probiotics such as Lactobacillus and Bifidobacterium in the gut. Conclusion There is a correlation between these mitigating effects on inflammation and the treatment of LBGH. Therefore, LBGH has tremendous potential in the treatment of colitis.
Collapse
Affiliation(s)
- Kangjia Jiang
- State Key Laboratory of Bio-Based Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Duo Wang
- State Key Laboratory of Bio-Based Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Le Su
- State Key Laboratory of Bio-Based Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Xinli Liu
- State Key Laboratory of Bio-Based Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Qiulin Yue
- State Key Laboratory of Bio-Based Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Baojun Li
- Shandong Zhuoran Biotechnology Co., Ltd., Jinan, China
| | - Kunlun Li
- Shandong Zhuoran Biotechnology Co., Ltd., Jinan, China
| | - Song Zhang
- State Key Laboratory of Bio-Based Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- *Correspondence: Song Zhang,
| | - Lin Zhao
- State Key Laboratory of Bio-Based Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- Shandong Chenzhang Biotechnology Co., Ltd., Jinan, China
- Lin Zhao,
| |
Collapse
|
26
|
Nomi Y, Sato T, Mori Y, Matsumoto H. Evaluation of Fructo-, Inulin-, and Galacto-Oligosaccharides on the Maillard Reaction Products in Model Systems with Whey Protein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9154-9165. [PMID: 35849535 DOI: 10.1021/acs.jafc.2c03197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The present study aimed to investigate the effects of fructo-, inulin-, and galacto-oligosaccharides (FOS, IOS, and GOS) on forming the Maillard reaction products such as browning, α-dicarbonyl compounds, and advanced glycation end products (AGEs). The model solutions at pH 6.8 containing each carbohydrate (mono-, di-, and oligosaccharides) and whey protein were incubated at 50 °C for 8 weeks. In the IOS model, sugars of DP3 or larger were significantly decreased at 4 weeks, whereas at 6 weeks in the FOS model. The residual amount of GOS after 8 weeks was higher than FOS and IOS; however, a large amount of 3-deoxyglucosone was formed compared to the other models. Nε-Carboxymethyllysine (CML) concentrations in oligosaccharide models were about half of those in monosaccharide and lactose models. The highest concentrations of glyoxal- and methylglyoxal-derived hydroimidazolones 3 (G-H3 and MG-H3) were observed in the IOS model, indicating the involvement of fructose units linked by β-2 → 1 bonds. G-H3 and MG-H3 quantification could be a useful indicator to reflect the modification of an arginine residue by fructose if used acid-hydrolysis for AGE analysis. CML, G-H3, and MG-H3 were considerably formed even in the FOS model, which has no reducing terminal site, suggesting that degradation products of oligosaccharides probably participated in the formation of AGEs.
Collapse
Affiliation(s)
- Yuri Nomi
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan
| | - Tae Sato
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan
| | - Yuki Mori
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan
| | - Hitoshi Matsumoto
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan
| |
Collapse
|
27
|
Chen X, Chen X, Zhu L, Liu W, Jiang L. Efficient production of inulo-oligosaccharides from inulin by exo- and endo-inulinase co-immobilized onto a self-assembling protein scaffold. Int J Biol Macromol 2022; 210:588-599. [PMID: 35513090 DOI: 10.1016/j.ijbiomac.2022.04.213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 11/19/2022]
Abstract
Inulin can be hydrolyzed by inulinases to yield inulo-oligosaccharides (IOSs), which have great application potential in the food and nutraceutical industries. However, conventional enzymatic production of IOSs is limited by long hydrolysis times and poor thermo-stability of inulinases. Here, the self-assembling protein scaffold EutM was engineered to co-immobilize exo-inulinase (EXINU) and endo-inulinase (ENINU) for synergistic hydrolysis of inulin to produce IOSs with 3 to 5 monosaccharide units (DP3-5 IOSs). The immobilization of EXINU/ENINU onto the EutM scaffold resulted in an increase of catalytic efficiency, a 65% increase of the Vmax of ENINU, as well as an increase of thermo-stability, with 4.26-fold higher residual activity of EXINU after 22 h-incubation at 50 °C. After optimization, two efficient production protocols were obtained, in which the yield and productivity of DP3-5 IOSs reached 80.38% and 70.86 g·(L·h)-1, respectively, which were at a high level in similar studies. Overall, this study provides an attractive self-assembling protein platform for the co-immobilization of inulinases, as well as optimized bioprocesses with great promise for the industrial production of DP3-5 IOSs.
Collapse
Affiliation(s)
- Xinyi Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Xianhan Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Liying Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China
| | - Wei Liu
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China..
| | - Ling Jiang
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China..
| |
Collapse
|
28
|
Cao W, Deng T, Cao W, Shen F, Wan Y. From sucrose to fructo-oligosaccharides: Production and purification of fructo-oligosaccharides by an integrated enzymatic catalysis and membrane separation process. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Nath S, Kango N. Recent Developments in Industrial Mycozymes: A Current Appraisal. Mycology 2022; 13:81-105. [PMID: 35711326 PMCID: PMC9196846 DOI: 10.1080/21501203.2021.1974111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fungi, being natural decomposers, are the most potent, ubiquitous and versatile sources of industrial enzymes. About 60% of market share of industrial enzymes is sourced from filamentous fungi and yeasts. Mycozymes (myco-fungus; zymes-enzymes) are playing a pivotal role in several industrial applications and a number of potential applications are in the offing. The field of mycozyme production, while maintaining the old traditional methods, has also witnessed a sea change due to advents in recombinant DNA technology, optimisation protocols, fermentation technology and systems biology. Consolidated bioprocessing of abundant lignocellulosic biomass and complex polysaccharides is being explored at an unprecedented pace and a number of mycozymes of diverse fungal origins are being explored using suitable platforms. The present review attempts to revisit the current status of various mycozymes, screening and production strategies and applications thereof.
Collapse
Affiliation(s)
- Suresh Nath
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| |
Collapse
|
30
|
Enzymatic and structural characterization of β-fructofuranosidase from the honeybee gut bacterium Frischella perrara. Appl Microbiol Biotechnol 2022; 106:2455-2470. [PMID: 35267055 DOI: 10.1007/s00253-022-11863-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 11/02/2022]
Abstract
Fructooligosaccharide is a mixture of mostly the trisaccharide 1-kestose (GF2), tetrasaccharide nystose (GF3), and fructosyl nystose (GF4). Enzymes that hydrolyze GF3 may be useful for preparing GF2 from the fructooligosaccharide mixture. A β-fructofuranosidase belonging to glycoside hydrolase family 32 (GH32) from the honeybee gut bacterium Frischella perrara (FperFFase) was expressed in Escherichia coli and purified. The time course of the hydrolysis of 60 mM sucrose, GF2, and GF3 by FperFFase was analyzed, showing that the hydrolytic activity of FperFFase for trisaccharide GF2 was lower than those for disaccharide sucrose and tetrasaccharide GF3. The crystal structure of FperFFase and its structure in complex with fructose were determined. FperFFase was found to be structurally homologous to bifidobacterial β-fructofuranosidases even though bifidobacterial enzymes preferably hydrolyze GF2 and the amino acid residues interacting with fructose at subsite - 1 are mostly conserved between them. A proline residue was inserted between Asp298 and Ser299 using site-directed mutagenesis, and the activity of the variant 298P299 was measured. The ratio of activities for 60 mM GF2/GF3 by wild-type FperFFase was 35.5%, while that of 298P299 was 23.6%, indicating that the structure of the loop comprising Trp297-Asp298-Ser299 correlated with the substrate preference of FperFFase. The crystal structure also shows that a loop consisting of residues 117-127 is likely to contribute to the substrate binding of FperFFase. The results obtained herein suggest that FperFFase is potentially useful for the manufacture of GF2. KEY POINTS: • Frischella β-fructofuranosidase hydrolyzed nystose more efficiently than 1-kestose. • Trp297-Asp298-Ser299 was shown to be correlated with the substrate preference. • Loop consisting of residues 117-127 appears to contribute to the substrate binding.
Collapse
|
31
|
Ojwach J, Adetunji AI, Mutanda T, Mukaratirwa S. Oligosaccharides production from coprophilous fungi: An emerging functional food with potential health-promoting properties. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 33:e00702. [PMID: 35127459 PMCID: PMC8803601 DOI: 10.1016/j.btre.2022.e00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/08/2022] [Accepted: 01/13/2022] [Indexed: 11/26/2022]
Abstract
Functional foods are essential food products that possess health-promoting properties for the treatment of infectious diseases. In addition, they provide energy and nutrients, which are required for growth and survival. They occur as prebiotics or dietary supplements, including oligosaccharides, processed foods, and herbal products. However, oligosaccharides are more efficiently recognized and utilized, as they play a fundamental role as functional ingredients with great potential to improve health in comparison to other dietary supplements. They are low molecular weight carbohydrates with a low degree of polymerization. They occur as fructooligosaccharide (FOS), inulooligosaccharadie (IOS), and xylooligosaccahride (XOS), depending on their monosaccharide units. Oligosaccharides are produced by acid or chemical hydrolysis. However, this technique is liable to several drawbacks, including inulin precipitation, high processing temperature, low yields, and high production costs. As a consequence, the application of microbial enzymes for oligosaccharide production is recognized as a promising strategy. Microbial enzymatic production of FOS and IOS occurs by submerged or solid-state fermentation in the presence of suitable substrates (sucrose, inulin) and catalyzed by fructosyltransferases and inulinases. Incorporation of FOS and IOS enriches the rheological and physiological characteristics of foods. They are used as low cariogenic sugar substitutes, suitable for diabetics, and as prebiotics, probiotics and nutraceutical compounds. In addition, these oligosaccharides are employed as anticancer, antioxidant agents and aid in mineral absorption, lipid metabolism, immune regulation etc. This review, therefore, focuses on the occurrence, physico-chemical characteristics, and microbial enzymatic synthesis of FOS and IOS from coprophilous fungi. In addition, the potential health benefits of these oligosaccharides were discussed in detail.
Collapse
Affiliation(s)
- Jeff Ojwach
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
- Department of Biodiversity and Conservation Biology, Faculty of Natural Science, University of the Western Cape, Private Bag X17 Bellville 7530, South Africa
- School of Life Sciences, College of Agriculture Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
| | - Adegoke Isiaka Adetunji
- School of Life Sciences, College of Agriculture Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
| | - Taurai Mutanda
- Centre for Algal Biotechnology, Department of Nature Conservation, Faculty of Natural Sciences, Mangosuthu University of Technology, P.O. Box 12363, Jacobs 4026, Durban, South Africa
| | - Samson Mukaratirwa
- School of Life Sciences, College of Agriculture Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
- One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University, School of Veterinary Medicine, P.O. Box 334, Basseterre, St. Kitts, West Indies
| |
Collapse
|
32
|
Zeng W, Leng S, Zhang Y, Chen G, Liang Z. Development of new strategies for the production of high-purity fructooligosaccharides using β-fructofuranosidase and a novel isolated Wickerhamomycesanomalus. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Panwar D, Panesar PS, Saini A. Prebiotics and their Role in Functional Food Product Development. PROBIOTICS, PREBIOTICS AND SYNBIOTICS 2022:233-271. [DOI: 10.1002/9781119702160.ch11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
34
|
Fan R, Dresler J, Tissen D, Wen L, Czermak P. In situ purification and enrichment of fructo-oligosaccharides by fermentative treatment with Bacillus coagulans and selective catalysis using immobilized fructosyltransferase. BIORESOURCE TECHNOLOGY 2021; 342:125969. [PMID: 34587583 DOI: 10.1016/j.biortech.2021.125969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Fructo-oligosaccharides (FOS) are prebiotic sugar substitutes that can be produced from sucrose using fructosyltransferases (FTases). However, the economic value of this process is limited by inefficient product purification and enzyme reusability. In this study, enzyme-free FOS preparations were produced by immobilizing the FTase on resin carriers. This also increased the catalytic selectivity of the enzyme. However, the crude FOS preparations still contained high concentrations of monosaccharide byproducts and residual disaccharides that must be removed because they lack prebiotic activity. A hybrid process was developed in which fed-batch fermentation was combined with the probiotic bacterium Bacillus coagulans (which selectively utilizes monosaccharides) and the simultaneous conversion of residual sucrose using the FTase to increase FOS purity. This process depleted the monosaccharides and increased the concentration of FOS to 130-170 g·L-1. The residual sucrose was converted to FOS by the immobilized FTase, increasing the overall purity of FOS to 92.1%.
Collapse
Affiliation(s)
- Rong Fan
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany; Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392, Giessen, Germany.
| | - Josephine Dresler
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany; Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392, Giessen, Germany
| | - Dennis Tissen
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany
| | - Linxuan Wen
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany; Faculty of Biology and Chemistry, Justus-Liebig University of Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany; Faculty of Biology and Chemistry, Justus-Liebig University of Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| |
Collapse
|
35
|
Kestose-enriched fructo-oligosaccharide alleviates atopic dermatitis by modulating the gut microbiome and immune response. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
36
|
Chen Y, Xie Y, Ajuwon KM, Zhong R, Li T, Chen L, Zhang H, Beckers Y, Everaert N. Xylo-Oligosaccharides, Preparation and Application to Human and Animal Health: A Review. Front Nutr 2021; 8:731930. [PMID: 34568407 PMCID: PMC8458953 DOI: 10.3389/fnut.2021.731930] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/16/2021] [Indexed: 01/19/2023] Open
Abstract
Xylo-oligosaccharides (XOS) are considered as functional oligosaccharides and have great prebiotic potential. XOS are the degraded products of xylan prepared via chemical, physical or enzymatic degradation. They are mainly composed of xylose units linked by β-1, 4 bonds. XOS not only exhibit some specific physicochemical properties such as excellent water solubility and high temperature resistance, but also have a variety of functional biological activities including anti-inflammation, antioxidative, antitumor, antimicrobial properties and so on. Numerous studies have revealed in the recent decades that XOS can be applied to many food and feed products and exert their nutritional benefits. XOS have also been demonstrated to reduce the occurrence of human health-related diseases, improve the growth and resistance to diseases of animals. These effects open a new perspective on XOS potential applications for human consumption and animal production. Herein, this review aims to provide a general overview of preparation methods for XOS, and will also discuss the current application of XOS to human and animal health field.
Collapse
Affiliation(s)
- Yuxia Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, Gembloux, Belgium
| | - Yining Xie
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Kolapo M Ajuwon
- Departments of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Li
- Hunan United Bio-Technology Co., Changsha, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yves Beckers
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, Gembloux, Belgium
| | - Nadia Everaert
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, Gembloux, Belgium
| |
Collapse
|
37
|
Khatun MS, Hassanpour M, Mussatto SI, Harrison MD, Speight RE, O'Hara IM, Zhang Z. Transformation of sugarcane molasses into fructooligosaccharides with enhanced prebiotic activity using whole-cell biocatalysts from Aureobasidium pullulans FRR 5284 and an invertase-deficient Saccharomyces cerevisiae 1403-7A. BIORESOUR BIOPROCESS 2021; 8:85. [PMID: 38650262 PMCID: PMC10992603 DOI: 10.1186/s40643-021-00438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/25/2021] [Indexed: 11/10/2022] Open
Abstract
Fructooligosaccharides (FOS) can be used as feed prebiotics, but are limited by high production costs. In this study, low-cost sugarcane molasses was used to produce whole-cell biocatalysts containing transfructosylating enzymes by Aureobasidium pullulans FRR 5284, followed by FOS production from molasses using the whole-cells of A. pullulans. A. pullulans in molasses-based medium produced cells and broth with a total transfructosylating activity of 123.6 U/mL compared to 61.0 and 85.8 U/mL in synthetic molasses-based and sucrose-based media, respectively. It was found that inclusion of glucose in sucrose medium reduced both transfructosylating and hydrolytic activities of the produced cells and broth. With the use of pure glucose medium, cells and broth had very low levels of transfructosylating activities and hydrolytic activities were not detected. These results indicated that A. pullulans FRR 5284 produced both constitutive and inducible enzymes in sucrose-rich media, such as molasses while it only produced constitutive enzymes in the glucose media. Furthermore, treatment of FOS solutions generated from sucrose-rich solutions using an invertase-deficient Saccharomyces yeast converted glucose to ethanol and acetic acid and improved FOS content in total sugars by 20-30%. Treated FOS derived from molasses improved the in vitro growth of nine probiotic strains by 9-63% compared to a commercial FOS in 12 h incubation. This study demonstrated the potential of using molasses to produce FOS for feed application.
Collapse
Affiliation(s)
- Most Sheauly Khatun
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Morteza Hassanpour
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Solange I Mussatto
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800, Kongens Lyngby, Denmark
| | - Mark D Harrison
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Robert E Speight
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- ARC Centre of Excellence in Synthetic Biology, QUT, Brisbane, QLD, 4000, Australia
| | - Ian M O'Hara
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- ARC Centre of Excellence in Synthetic Biology, QUT, Brisbane, QLD, 4000, Australia
| | - Zhanying Zhang
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- ARC Centre of Excellence in Synthetic Biology, QUT, Brisbane, QLD, 4000, Australia.
| |
Collapse
|
38
|
Liang X, Li C, Cao W, Cao W, Shen F, Wan Y. Fermentative Production of Fructo-Oligosaccharides Using Aureobasidium pullulans: Effect of Dissolved Oxygen Concentration and Fermentation Mode. Molecules 2021; 26:molecules26133867. [PMID: 34202788 PMCID: PMC8270319 DOI: 10.3390/molecules26133867] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022] Open
Abstract
Fructo-oligosaccharides (FOS) are prebiotics with numerous health benefits. So far, the dissolved oxygen (DO) concentration control strategy for fermentative production of FOS is still unknown. In order to improve FOS production, the effects of DO concentration and fermentation mode on FOS using Aureobasidium pullulans were investigated in this study. The greatest FOS production (123.2 ± 6.2 g/L), with a yield of 61.6% ± 3.0% (g FOS/g sucrose), was obtained in batch culture under high DO concentration. Furthermore, repeated-batch culture revealed that enzyme production and FOS production were not closely associated with cell growth. By keeping the DO concentration above 5% in the repeated-batch culture, a maximum FOS concentration of 548.3 ± 37.4 g/L and yield of 68.6% ± 2.6% (g FOS/g sucrose) were obtained, which were 3.45% and 11.4% times higher than those obtained in the batch culture without DO control, respectively. Additionally, the ratios of 1-fructofuranosyl nystose (GF4) and 1,1,1,1-kestohexose (GF5) were 33.8% and 23.2%, respectively, in the product of repeated-batch culture, but these compounds were not detected in batch culture. Thus, it can be concluded that the DO concentration affects not only the yield of FOS but also the composition of FOS with different degrees of polymerization, which is the key factor in the fermentative production of FOS with a high polymerization degree.
Collapse
Affiliation(s)
- Xinquan Liang
- Department of Sugar Engineering, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (X.L.); (C.L.)
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (W.C.); (F.S.); (Y.W.)
| | - Chenglin Li
- Department of Sugar Engineering, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (X.L.); (C.L.)
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (W.C.); (F.S.); (Y.W.)
| | - Weifeng Cao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (W.C.); (F.S.); (Y.W.)
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel./Fax: +86-10-62650673
| | - Weilei Cao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (W.C.); (F.S.); (Y.W.)
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (W.C.); (F.S.); (Y.W.)
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (W.C.); (F.S.); (Y.W.)
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
39
|
Khatun MS, Hassanpour M, Harrison MD, Speight RE, O'Hara IM, Zhang Z. Highly efficient production of transfructosylating enzymes using low-cost sugarcane molasses by A. pullulans FRR 5284. BIORESOUR BIOPROCESS 2021; 8:48. [PMID: 38650217 PMCID: PMC10992317 DOI: 10.1186/s40643-021-00399-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022] Open
Abstract
Fructooligosaccharides (FOS) are a type of important prebiotics and produced by transfructosylating enzymes. In this study, sugarcane molasses was used as the substrate for production of transfructosylating enzymes by Aureobasidium pullulans FRR 5284. NaNO3 was a superior nitrogen source to yeast extract for production of transfructosylating enzymes by A. pullulans FRR 5284 and decreasing the ratio of NaNO3 to yeast extract nitrogen from 1:0 to 1:1 resulted in the reduction of the total transfructosylating activity from 109.8 U/mL to 82.5 U/mL. The addition of only 4.4 g/L NaNO3 into molasses-based medium containing 100 g/L mono- and di-saccharides resulted in total transfructosylating activity of 123.8 U/mL. Scale-up of the A. pullulans FRR 5284 transfructosylating enzyme production process from shake flasks to 1 L bioreactors improved the enzyme activity and productivity to 171.7 U/mL and 3.58 U/mL/h, 39% and 108% higher than those achieved from shake flasks, respectively. Sucrose (500 g/L) was used as a substrate for extracellular, intracellular, and total A. pullulans FRR 5284 transfructosylating enzymes, with a maximum yield of 61%. Intracellular, extracellular, and total A. pullulans FRR 5284 transfructosylating enzymes from different production systems resulted in different FOS profiles, indicating that FOS profiles can be controlled by adjusting intracellular and extracellular enzyme ratios and, hence prebiotic activity.
Collapse
Affiliation(s)
- Most Sheauly Khatun
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Morteza Hassanpour
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Mark D Harrison
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Robert E Speight
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Ian M O'Hara
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Zhanying Zhang
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
| |
Collapse
|
40
|
Wu S, Greiner S, Ma C, Zhong J, Huang X, Rausch T, Zhao H. A Fructan Exohydrolase from Maize Degrades Both Inulin and Levan and Co-Exists with 1-Kestotriose in Maize. Int J Mol Sci 2021; 22:5149. [PMID: 34068004 PMCID: PMC8152283 DOI: 10.3390/ijms22105149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 12/03/2022] Open
Abstract
Enzymes with fructan exohydrolase (FEH) activity are present not only in fructan-synthesizing species but also in non-fructan plants. This has led to speculation about their functions in non-fructan species. Here, a cell wall invertase-related Zm-6&1-FEH2 with no "classical" invertase motif was identified in maize. Following heterologous expression in Pichia pastoris and in Nicotiana benthamiana leaves, the enzyme activity of recombinant Zm-6&1-FEH2 displays substrate specificity with respect to inulin and levan. Subcellular localization showed Zm-6&1-FEH2 exclusively localized in the apoplast, and its expression profile was strongly dependent on plant development and in response to drought and abscisic acid. Furthermore, formation of 1-kestotriose, an oligofructan, was detected in vivo and in vitro and could be hydrolyzed by Zm-6&1-FEH2. In summary, these results support that Zm-6&1-FEH2 enzyme from maize can degrade both inulin-type and levan-type fructans, and the implications of the co-existence of Zm-6&1-FEH2 and 1-kestotriose are discussed.
Collapse
Affiliation(s)
- Silin Wu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, College of Horticulture, South China Agricultural University, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; (S.W.); (X.H.)
| | - Steffen Greiner
- Centre for Organismal Studies Heidelberg, Department of Plant Molecular Physiology, University of Heidelberg, 69120 Heidelberg, Germany; (S.G.); (J.Z.); (T.R.)
| | - Chongjian Ma
- Department of Horticulture, Henry Fok College of Biology and Agricultural Science, Shaoguan University, Shaoguan 512005, China;
| | - Jiaxin Zhong
- Centre for Organismal Studies Heidelberg, Department of Plant Molecular Physiology, University of Heidelberg, 69120 Heidelberg, Germany; (S.G.); (J.Z.); (T.R.)
| | - Xiaojia Huang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, College of Horticulture, South China Agricultural University, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; (S.W.); (X.H.)
| | - Thomas Rausch
- Centre for Organismal Studies Heidelberg, Department of Plant Molecular Physiology, University of Heidelberg, 69120 Heidelberg, Germany; (S.G.); (J.Z.); (T.R.)
| | - Hongbo Zhao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, College of Horticulture, South China Agricultural University, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; (S.W.); (X.H.)
| |
Collapse
|
41
|
Kaur AP, Bhardwaj S, Dhanjal DS, Nepovimova E, Cruz-Martins N, Kuča K, Chopra C, Singh R, Kumar H, Șen F, Kumar V, Verma R, Kumar D. Plant Prebiotics and Their Role in the Amelioration of Diseases. Biomolecules 2021; 11:440. [PMID: 33809763 PMCID: PMC8002343 DOI: 10.3390/biom11030440] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Prebiotics are either natural or synthetic non-digestible (non-)carbohydrate substances that boost the proliferation of gut microbes. Undigested fructooligosaccharides in the large intestine are utilised by the beneficial microorganisms for the synthesis of short-chain fatty acids for their own growth. Although various food products are now recognized as having prebiotic properties, several others, such as almonds, artichoke, barley, chia seeds, chicory, dandelion greens, flaxseeds, garlic, and oats, are being explored and used as functional foods. Considering the benefits of these prebiotics in mineral absorption, metabolite production, gut microbiota modulation, and in various diseases such as diabetes, allergy, metabolic disorders, and necrotising enterocolitis, increasing attention has been focused on their applications in both food and pharmaceutical industries, although some of these food products are actually used as food supplements. This review aims to highlight the potential and need of these prebiotics in the diet and also discusses data related to the distinct types, sources, modes of action, and health benefits.
Collapse
Affiliation(s)
- Amrit Pal Kaur
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (A.P.K.); (H.K.)
| | - Sonali Bhardwaj
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India; (S.B.); (D.S.D.); (C.C.); (R.S.)
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India; (S.B.); (D.S.D.); (C.C.); (R.S.)
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, 4200-135 Porto, Portugal
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India; (S.B.); (D.S.D.); (C.C.); (R.S.)
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India; (S.B.); (D.S.D.); (C.C.); (R.S.)
| | - Harsh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (A.P.K.); (H.K.)
| | - Fatih Șen
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, EvliyaÇelebi Campus, Dumlupınar University, Kütahya 43100, Turkey;
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK430AL, UK;
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India;
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (A.P.K.); (H.K.)
| |
Collapse
|
42
|
Catenza KF, Donkor KK. Recent approaches for the quantitative analysis of functional oligosaccharides used in the food industry: A review. Food Chem 2021; 355:129416. [PMID: 33774226 DOI: 10.1016/j.foodchem.2021.129416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/15/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
Functional oligosaccharides (OS) are diverse groups of carbohydrates that confer several health benefits stemming from their prebiotic activity. Commonly used oligosaccharides, fructooligosaccharides and galactooligosaccharides, are used in a wide range of applications from food ingredients to mimic the prebiotic activity of human milk oligosaccharides (HMOs) in infant formula to sugar and fat replacers in dairy and bakery products. However, while consumption of these compounds is associated with several positive health effects, increased consumption can cause intestinal discomfort and aggravation of intestinal bowel syndrome symptoms. Hence, it is essential to develop rapid and reliable techniques to quantify OS for quality control and proper assessment of their functionality in food and food products. The present review will focus on recent analytical techniques used to quantify OS in different matrices such as food and beverage products.
Collapse
Affiliation(s)
- K F Catenza
- Department of Physical Sciences (Chemistry), Thompson Rivers University, 805 TRU Way, Kamloops, BC V2C 0C8, Canada
| | - K K Donkor
- Department of Physical Sciences (Chemistry), Thompson Rivers University, 805 TRU Way, Kamloops, BC V2C 0C8, Canada.
| |
Collapse
|
43
|
Abbasi AR, Liu J, Wang Z, Zhao A, Ying H, Qu L, Alam MA, Xiong W, Xu J, Lv Y. Recent Advances in Producing Sugar Alcohols and Functional Sugars by Engineering Yarrowia lipolytica. Front Bioeng Biotechnol 2021; 9:648382. [PMID: 33777917 PMCID: PMC7992007 DOI: 10.3389/fbioe.2021.648382] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
The sugar alcohols and functional sugars have wide applications in food, pharmaceutical, and chemical industries. However, the smaller quantities of natural occurring sugar alcohols and functional sugars restricted their applications. The enzymatic and whole-cell catalyst production is emerging as the predominant alternatives. The properties of Yarrowia lipolytica make it a promising sugar alcohol and functional sugar producer. However, there are still some issues to be resolved. As there exist reviews about the chemical structures, physicochemical properties, biological functions, applications, and biosynthesis of sugar alcohols and/or functional sugars in Y. lipolytica, this mini review will not only update the recent advances in enzymatic and microbial production of sugar alcohols (erythritol, D-threitol, and xylitol) and functional sugars (isomaltulose, trehalose, fructo-oligosaccharides, and galacto-oligosaccharides) by using recombinant Y. lipolytica but also focus on the studies of gene discovery, pathway engineering, expanding substrate scope, bioprocess engineering, and novel breeding methods to resolve the aforementioned issues.
Collapse
Affiliation(s)
| | - Jinle Liu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhi Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, China
| | - Anqi Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Hanjie Ying
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, China
| | - Lingbo Qu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, China
| | - Md. Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, China
| | - Wenlong Xiong
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, China
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, China
- Zhengzhou Tuoyang Industrial Co., Ltd., Zhengzhou, China
- Zhengzhou University Industrial Technology Research Institute Co., Ltd., Zhengzhou, China
| | - Yongkun Lv
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
44
|
Singh RS, Singh T, Singh D, Kennedy JF. HPTLC-densitometry quantification of fructooligosaccharides from inulin hydrolysate. Int J Biol Macromol 2021; 177:221-228. [PMID: 33609578 DOI: 10.1016/j.ijbiomac.2021.02.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 10/22/2022]
Abstract
The objective of present research was to develop an easy, precise and accurate HPTLC densitometry method for quantification of fructooligosaccharides (FOSs) from inulin hydrolysate. The chromatographic separation of FOSs was performed on pre-coated silica gel (60, F254) TLC plates using a mobile phase (butanol:ethanol:water, 60:24:16), and densitometry evaluation of FOSs was performed at A500. Both kestose and nystose were successfully resolved with Rf value of 0.43 and 0.34, respectively. The accuracy, reliability and reproducibility of developed method was assessed by percent relative standard deviation of kestose and nystose for instrument precision (1.43% and 1.50%), repeatability (1.48% and 1.56%), intra-day precision (1.60% and 1.63%), inter-day precision (1.62% and 1.66%), limit of detection (4.58 ng/spot and 4.58 ng/spot), limit of quantification (13.87 ng/spot and 13.89 ng/spot) and recovery (98.81% and 98.69%). Moreover, overlapping spectra of test sample with standard confirms the specificity of developed method, which was validated as per ICH guidelines.
Collapse
Affiliation(s)
- R S Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147 002, Punjab, India.
| | - Taranjeet Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147 002, Punjab, India
| | - Dhandeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147 002, India
| | - John F Kennedy
- Chembiotech Laboratories, Advanced Science and Technology Institute, 5 The Croft, Buntsford Drive, Stoke Heath, Bromsgrove, Worcs B60 4JE, UK
| |
Collapse
|
45
|
Temkov M, Dimitrovski D, Velickova E, Krastanov A. Inulinase immobilisation in PAA/PEG composite for efficient fructooligosaccharides production. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1858815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Mishela Temkov
- Faculty of Technology and Metallurgy, Ss. Cyril and Methodius University in Skopje, Skopje, Republic of North Macedonia
- Faculty of Technology, University of Food Technologies, Plovdiv, Bulgaria
| | - Darko Dimitrovski
- Faculty of Technology and Metallurgy, Ss. Cyril and Methodius University in Skopje, Skopje, Republic of North Macedonia
| | - Elena Velickova
- Faculty of Technology and Metallurgy, Ss. Cyril and Methodius University in Skopje, Skopje, Republic of North Macedonia
| | - Albert Krastanov
- Faculty of Technology, University of Food Technologies, Plovdiv, Bulgaria
| |
Collapse
|
46
|
Schematic overview of oligosaccharides, with survey on their major physiological effects and a focus on milk ones. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2020. [DOI: 10.1016/j.carpta.2020.100013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
47
|
Singh R, Singh T, Hassan M, Kennedy JF. Updates on inulinases: Structural aspects and biotechnological applications. Int J Biol Macromol 2020; 164:193-210. [DOI: 10.1016/j.ijbiomac.2020.07.078] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022]
|
48
|
Efficient production of fructo-oligosaccharides from sucrose and molasses by a novel Aureobasidium pullulan strain. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107747] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Production and purification of fructo-oligosaccharides using an enzyme membrane bioreactor and subsequent fermentation with probiotic Bacillus coagulans. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117291] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Porwal K, Pal S, Kulkarni C, Singh P, Sharma S, Singh P, Prajapati G, Gayen JR, Ampapathi RS, Mullick A, Chattopadhyay N. A prebiotic, short-chain fructo-oligosaccharides promotes peak bone mass and maintains bone mass in ovariectomized rats by an osteogenic mechanism. Biomed Pharmacother 2020; 129:110448. [PMID: 32776872 DOI: 10.1016/j.biopha.2020.110448] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/18/2020] [Accepted: 06/21/2020] [Indexed: 11/24/2022] Open
Abstract
In preclinical studies, fructooligosaccharide (FOS) showed beneficial skeletal effects but its effect on peak bone mass (PBM) and bone loss caused by estrogen (E2) deficiency has not been studied, and we set out to study these effects in rats. Short-chain (sc)-FOS had no effect on body weight, body composition, and energy metabolism of ovary intact (sham) and ovariectomized (OVX) rats. scFOS did not affect serum and urinary calcium and phosphorus levels, and on calcium absorption, although an increasing trend was noted in the sham group. Sham and OVX rats given scFOS had better skeletal parameters than their respective controls. scFOS treatment resulted in a higher bone anabolic response but had no effect on the catabolic parameters. scFOS increased serum levels of a short-chain fatty acid, butyrate which is known to have osteogenic effect. Our study for the first time demonstrates that in rats scFOS at the human equivalent dose enhances PBM and protects against E2 deficiency-induced bone loss by selective enhancement of new bone formation, and implicates butyrate in this process.
Collapse
Affiliation(s)
- Konica Porwal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Subhashis Pal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Chirag Kulkarni
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Priya Singh
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Shivani Sharma
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Pragati Singh
- Division of Pharmaceutics, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Gurudayal Prajapati
- NMR Facility, SAIF Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Jiaur R Gayen
- Division of Pharmaceutics, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Ravi S Ampapathi
- NMR Facility, SAIF Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Ashim Mullick
- Tata Chemicals Limited-Innovation Centre, Paud Road, Mulshi, Pune, Maharashtra 412111, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|