1
|
Brandolini M, Rocculi P, Morbarigazzi M, De Pascali AM, Dirani G, Zannoli S, Lelli D, Lavazza A, Battioni F, Grumiro L, Semprini S, Guerra M, Gatti G, Dionisi L, Ingletto L, Colosimo C, Marzucco A, Montanari MS, Cricca M, Scagliarini A, Sambri V. Development and in vivo evaluation of a SARS-CoV-2 inactivated vaccine using high hydrostatic pressure. NPJ Vaccines 2025; 10:83. [PMID: 40280930 PMCID: PMC12032236 DOI: 10.1038/s41541-025-01136-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Developing low-cost vaccine production strategies is crucial to achieving global health equity and mitigating the spread and impact of disease outbreaks. High hydrostatic pressure (HHP) technology is a widely used technology employed in the food industry for long-term preservation. This project aims at validating HHP as a cost-effective method for the production of highly immunogenic thermal stable whole-virus SARS-CoV-2 vaccines. Structural studies on HHP-inactivated viruses demonstrated pressure-dependent effects, with higher pressures (500-600 MPa) destabilizing viral morphology. Immunogenicity assessments, in animal models, revealed that 500 MPa treatment elicited the most robust humoral and cellular immune responses, outperforming heat inactivation. Additionally, HHP-inactivated viral preparation retained thermostability for 30 days at 4 °C, reducing cold-chain dependencies and enabling vaccine distribution also in low-resource settings. With its rapid, cost-effective, and scalable production process, HHP presents a transformative, equitable solution for global vaccine development, particularly for emerging pathogens.
Collapse
Affiliation(s)
- Martina Brandolini
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy.
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40138, Bologna, Italy.
| | - Pietro Rocculi
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum, University of Bologna, 47521, Cesena, Italy
| | | | - Alessandra Mistral De Pascali
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40138, Bologna, Italy
| | - Giorgio Dirani
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
| | - Silvia Zannoli
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
| | - Davide Lelli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna "Bruno Ubertini" (IZSLER), 25124, Brescia, Italy
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna "Bruno Ubertini" (IZSLER), 25124, Brescia, Italy
| | - Francesca Battioni
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna "Bruno Ubertini" (IZSLER), 25124, Brescia, Italy
| | - Laura Grumiro
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40138, Bologna, Italy
| | - Simona Semprini
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
| | - Massimiliano Guerra
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
| | - Giulia Gatti
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40138, Bologna, Italy
| | - Laura Dionisi
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40138, Bologna, Italy
| | - Ludovica Ingletto
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40138, Bologna, Italy
| | - Claudia Colosimo
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40138, Bologna, Italy
| | - Anna Marzucco
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
| | - Maria Sofia Montanari
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40138, Bologna, Italy
| | - Monica Cricca
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40138, Bologna, Italy
| | - Alessandra Scagliarini
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40138, Bologna, Italy
| | - Vittorio Sambri
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40138, Bologna, Italy
| |
Collapse
|
2
|
Zhang S, Ramaswamy HS, Xiao T, Hu L, Mao Y, Zhu S, Liu Y, Yu Y. Unveiling the impact of high pressure and low temperature coupling on gelatin gel properties. Food Chem 2025; 483:144363. [PMID: 40250296 DOI: 10.1016/j.foodchem.2025.144363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/25/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
Balancing shelf life extension and food quality is a key challenge in food processing. Conventional air freezing (CAF) methods inhibit microbial growth but often create large ice crystals that damage food texture, nutrition, flavor, and water holding capacity. High-pressure and low-temperature coupling (HPLT) technologies, such as pressure-shift freezing (PSF) and pressure-assisted freezing (PAF), offer innovative solutions to these limitations. This study explores the effects of HPLT on gelatin gel, focusing on ice crystal morphology, mechanical properties, and water distribution. PSF and PAF produce smaller, more uniform ice crystals, reducing structural damage and preserving gel strength and texture. HPLT also decreases water loss, enhancing gel integrity during freezing. These results demonstrate HPLT's potential to revolutionize frozen food processing, minimizing quality degradation, reducing food waste, and promoting global food security.
Collapse
Affiliation(s)
- Sinan Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Hosahalli S Ramaswamy
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Road, St-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Ting Xiao
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Lihui Hu
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yuxiao Mao
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Songming Zhu
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Ying Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yong Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
3
|
Mozafari L, Martínez-Zamora L, Cano-Lamadrid M, Gómez PA, Artés-Hernández F. Boosting Antioxidant Quality in Cucumber Beverages with Encapsulated Tomato Carotenoids. Antioxidants (Basel) 2025; 14:354. [PMID: 40227401 PMCID: PMC11939665 DOI: 10.3390/antiox14030354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/12/2025] [Accepted: 03/15/2025] [Indexed: 04/15/2025] Open
Abstract
Tomato by-products are widely generated during processing, which deserve revalorization due to being rich in bioactive compounds that can be incorporated into novel formulas. This study explores the use of tomato by-products as a source of pigments and antioxidant compounds to develop a seasoned cucumber beverage enriched with encapsulated carotenoids. Extracts from industrial tomato pomace were obtained using ultrasound-assisted extraction (USAE) and accelerated solvent extraction (ASE), and then encapsulated by spray-drying with inulin (I), maltodextrin (M), or a maltodextrin-inulin blend (MI). The powders were added to a cucumber beverage treated with high hydrostatic pressure (HHP) and stored for 28 days at 4 °C. Physicochemical properties, microbial load, carotenoid content (U-HPLC), free phenolic content (FPC), and total antioxidant capacity (TAC) were monitored. Beverage samples with maltodextrin (ASE-M, USAE-M) and the maltodextrin-inulin blend (ASE-MI, USAE-MI) showed superior color stability and pH maintenance. USAE-MI achieved the highest TAC at the end of storage and ensured microbial safety by reducing mesophilic bacteria, molds, and yeast. During storage, FPC declined (to ~3.5-5 mg 100 mL-1), TAC increased (to ~16-20 mg 100 mL-1), and carotenoid was kept stable (~9-13 mg L-1). These results highlight the potential of combining HHP with tomato by-product encapsulates to improve the shelf life, quality, pigment stability, and antioxidant properties of vegetable-based beverages.
Collapse
Affiliation(s)
- Laleh Mozafari
- Postharvest and Refrigeration Group, Department of Agricultural Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain; (L.M.); (L.M.-Z.); (P.A.G.)
| | - Lorena Martínez-Zamora
- Postharvest and Refrigeration Group, Department of Agricultural Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain; (L.M.); (L.M.-Z.); (P.A.G.)
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, University of Murcia, 30071 Murcia, Spain
| | - Marina Cano-Lamadrid
- Postharvest and Refrigeration Group, Department of Agricultural Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain; (L.M.); (L.M.-Z.); (P.A.G.)
| | - Perla A. Gómez
- Postharvest and Refrigeration Group, Department of Agricultural Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain; (L.M.); (L.M.-Z.); (P.A.G.)
| | - Francisco Artés-Hernández
- Postharvest and Refrigeration Group, Department of Agricultural Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain; (L.M.); (L.M.-Z.); (P.A.G.)
| |
Collapse
|
4
|
Mozafari L, Martínez-Zamora L, Cano-Lamadrid M, Aguayo E, Artés-Hernández F. Enhancing avocado puree with encapsulated tomato by-products. Effect of processing methods in the bioactive quality retention. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40079337 DOI: 10.1002/jsfa.14226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/06/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND This study investigates the possible use of revalorized tomato waste as a source of encapsulated bioactive compounds to develop a carotenoid-enriched spreadable avocado puree. Conventional pasteurization (CP), high hydrostatic pressure (HHP), ultrasound (US), and a combination of US and HHP (US + HHP) were the processing treatments assayed. Fresh blended puree was used as control (CTRL). A shelf-life study of 22 days at 4 °C was performed where physicochemical properties, microbial load, free polyphenol content (FPC), and carotenoid content were periodically assessed. RESULTS HHP treatment preserved colour stability (by ~50-75% compared to the remaining treatments) and decreased microbial load (by 2-4 log CFU g-1), while US was less successful for this purpose. Phenolics and carotenoids were highly retained by encapsulation, and samples treated with HHP preserved the greatest amounts by approximately 25-35% compared to CTRL. CONCLUSIONS The quality of the developed avocado puree is improved throughout the shelf-life using a non-thermal HHP processing combined with the supplementation of encapsulated biocompounds from tomato by-products. This opens an opportunity to revalorize horticultural by-products as possible functional ingredients into novel food matrices. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Laleh Mozafari
- Postharvest and Refrigeration Group. Department of Agricultural Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Lorena Martínez-Zamora
- Postharvest and Refrigeration Group. Department of Agricultural Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Cartagena, Spain
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, University of Murcia, Espinardo, Spain
| | - Marina Cano-Lamadrid
- Postharvest and Refrigeration Group. Department of Agricultural Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Encarna Aguayo
- Postharvest and Refrigeration Group. Department of Agricultural Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Francisco Artés-Hernández
- Postharvest and Refrigeration Group. Department of Agricultural Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Cartagena, Spain
| |
Collapse
|
5
|
Deng Z, Du X, Liu S, Xiong Y, Wang Y, Rao L, Liu M, Zhao L, Liao X. Modification of pepper seed protein isolate to improve its functional characteristic by high hydrostatic pressure. Food Chem 2025; 464:141594. [PMID: 39476588 DOI: 10.1016/j.foodchem.2024.141594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/23/2024] [Accepted: 10/07/2024] [Indexed: 11/28/2024]
Abstract
Pepper seed protein isolate (PSPI) is a valuable plant-based protein source, yet the impact of processing methods such as high hydrostatic pressure (HHP) on its properties remains unclear. The impact of HHP on the structural and functional properties of PSPI at pH 7 and pH 9 was evaluated. Structural changes in PSPI were analyzed using spectral techniques, revealing significant alterations in the secondary and tertiary structures induced by HHP treatment. HHP treatment caused the unfolding of the PSPI structure, leading to the exposure of previously hidden chromophores and hydrophobic groups. The treatment also led to changes in free sulfhydryl groups and increased average particle size suggesting the formation of macromolecular polymers or insoluble aggregates. Consequently, the water-holding capacity, oil-holding capacity, foaming characteristics, and emulsifying activity index of the modified PSPI were significantly enhanced both at pH 7 and pH 9, with maximum improvements of 121.98 %, 157.29 %, 100.00 %, and 265.78 %, respectively. In conclusion, HHP is a promising strategy for enhancing the physicochemical properties of PSPI for various applications.
Collapse
Affiliation(s)
- Zimeng Deng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing 100083, China
| | - Xinyu Du
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing 100083, China
| | - Sidi Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing 100083, China
| | - Yandi Xiong
- Gaoling Township, Baoding 071000, Hebei, China
| | - Yongtao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing 100083, China
| | - Lei Rao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing 100083, China
| | - Meng Liu
- Wangdu Pepper Industry Development Service Centre, Baoding 071000, Hebei, China
| | - Liang Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing 100083, China.
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing 100083, China
| |
Collapse
|
6
|
Deepa G, Daniel I, Sugumar S. An insight into the applications of bacteriophages against food-borne pathogens. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2025; 62:1-10. [PMID: 39867606 PMCID: PMC11754761 DOI: 10.1007/s13197-024-06070-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/15/2024] [Accepted: 08/20/2024] [Indexed: 01/28/2025]
Abstract
Novel and emerging pathogens, enduring contamination, antibiotic resistance, an environment that is always changing, and the complexity of food production systems all contribute to the worsening of foodborne illness. It has been proposed that bacteriophages can serve as both fast food-borne pathogen detection tools and natural food preservatives in a variety of foods. Phages, like many other antimicrobial interventions used in food production systems, are not a cure-all for issues related to food safety, though. Consequently, phage-based biocontrol has a generally narrower antibacterial spectrum than most antibiotics, even though it can be promising in the fight against foodborne infections. Among the difficulties phage-based biocontrol techniques encounter are forming phage-insensitive single-cell variations and creating potent cocktails. To better understand when and where phage-based applications can be successfully implemented at the production and processing levels, this review focuses on phage-based applications at crucial control points in food production systems.
Collapse
Affiliation(s)
- Gutti Deepa
- Department of Genetic Engineering, Faculty of Engineering and Technology, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu 603203 India
| | - Irene Daniel
- Department of Genetic Engineering, Faculty of Engineering and Technology, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu 603203 India
| | - Shobana Sugumar
- Department of Genetic Engineering, Faculty of Engineering and Technology, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu 603203 India
| |
Collapse
|
7
|
Shankar S, Mohanty AK, DeEll JR, Carter K, Lenz R, Misra M. Advances in antimicrobial techniques to reduce postharvest loss of fresh fruit by microbial reduction. NPJ SUSTAINABLE AGRICULTURE 2024; 2:25. [PMID: 39759422 PMCID: PMC11698397 DOI: 10.1038/s44264-024-00029-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 10/08/2024] [Indexed: 01/07/2025]
Abstract
This review will provide new ideas for preserving fruits and decreasing fruit waste. This review outlines and evaluates research concerning postharvest fruit preservation employing antimicrobial strategies, which involve the integration of biological control alongside physical or chemical methods. The concurrent deployment of two or three of these techniques, particularly biological approaches, has demonstrated enhanced and synergistic antimicrobial outcomes in practical scenarios.
Collapse
Affiliation(s)
- Shiv Shankar
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, 50 Stone Road East, Guelph, ON Canada
- School of Engineering, Thornbrough Building, University of Guelph, 50 Stone Road East, Guelph, ON Canada
| | - Amar K. Mohanty
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, 50 Stone Road East, Guelph, ON Canada
- School of Engineering, Thornbrough Building, University of Guelph, 50 Stone Road East, Guelph, ON Canada
| | - Jennifer R. DeEll
- Ontario Ministry of Agriculture, Food and Rural Affairs, Simcoe Research Station, 1283 Blueline Road, Simcoe, ON Canada
| | - Kathryn Carter
- Ontario Ministry of Agriculture, Food and Rural Affairs, Simcoe Research Station, 1283 Blueline Road, Simcoe, ON Canada
| | - Ruben Lenz
- Advanced Micro Polymers Inc., Steeles Ave E, Milton, ON Canada
| | - Manjusri Misra
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, 50 Stone Road East, Guelph, ON Canada
- School of Engineering, Thornbrough Building, University of Guelph, 50 Stone Road East, Guelph, ON Canada
| |
Collapse
|
8
|
Pierozan MB, Oliveira Filho JGD, Cappato LP, Costa AC, Egea MB. Essential Oils Against Spoilage in Fish and Seafood: Impact on Product Quality and Future Challenges. Foods 2024; 13:3903. [PMID: 39682976 DOI: 10.3390/foods13233903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
The preservation of fish and seafood represents a significant challenge for the food industry due to these products' high susceptibility to microbial spoilage. Essential oils (EOs), classified as Generally Recognized as Safe (GRAS), have become a natural alternative to synthetic preservatives due to their antimicrobial and antioxidant properties. This review aims to analyze the specific potential of EOs in extending the shelf life of fish and seafood products, offering a natural and effective preservation solution. It provides a detailed overview of EOs applications and mechanisms, highlighting their role in controlling spoilage microorganisms while maintaining product quality. The main methods of EOs application include immersion, spraying, and pipetting, with antimicrobial effectiveness influenced by factors such as concentration, exposure time, and food characteristics like chemical composition and biofilms. Direct EOs application shows challenges that can be countered by exploring nanoemulsion technology as an effective strategy to enhance EOs stability and controlled release, maximizing their preservation impact. Additionally, coatings made from chitosan, gelatin, Farsi gum, and carrageenan, combined with EOs such as oregano, clove, and thyme have shown efficacy in preserving species like rainbow trout, mackerel, and shrimp. However, the commercial feasibility of using EOs in fish preservation depends on consumer acceptance and regulatory compliance. This review offers valuable insights for the industry and researchers by highlighting the practical applications and commercial challenges of EOs in seafood products, underscoring the importance of consumer acceptance and regulatory adherence for market viability.
Collapse
Affiliation(s)
- Matheus Barp Pierozan
- Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde 75901-970, GO, Brazil
| | | | - Leandro Pereira Cappato
- Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde 75901-970, GO, Brazil
| | - Adriano Carvalho Costa
- Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde 75901-970, GO, Brazil
| | - Mariana Buranelo Egea
- Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde 75901-970, GO, Brazil
| |
Collapse
|
9
|
Zhao Z, Chen J, Jiang Y, Ci F, Liu T, Li L, Sun Y, Zhang J, Yuwen W. Antheraxanthin: Insights delving from biosynthesis to processing effects. Food Res Int 2024; 194:114879. [PMID: 39232517 DOI: 10.1016/j.foodres.2024.114879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
Antheraxanthin (C40H56O3) is one of fat-soluble carotenoids belonging to natural pigments. Its chemical structure is based on the unsaturated polyene chain skeleton, with a hydroxy-β-ionone ring and an epoxy-β-ionone ring on each side of the skeleton. It is found in a wide range of plants and photosynthetic bacteria, and external stimuli (high temperature, drought, ozone treatment, etc.) can significantly affect its synthesis. It also, like other carotenoids, exhibits a diverse potential pharmacological profile as well as nutraceutical values. However, it is worth noting that various food processing methods (extrusion, puffing, baking, etc.) and storage conditions for fruits and vegetables have distinct impacts on the bioaccessibility and retention of antheraxanthin. This compilation of antheraxanthin includes sources, biosynthesis, chemical analysis, and processing effects.
Collapse
Affiliation(s)
- Zilong Zhao
- College of Chemical Engineering, Northwest University, Xi'an 710000, China
| | - Jing Chen
- College of Environment and Food Engineering, Liuzhou Vocational and Technical University, Liuzhou 545006, China.
| | - Yingxue Jiang
- College of Chemical Engineering, Northwest University, Xi'an 710000, China
| | - Fangfang Ci
- Weihai Institute for Food and Drug Control, Weihai 264200, China
| | - Taishan Liu
- College of Chemical Engineering, Northwest University, Xi'an 710000, China
| | - Lei Li
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China
| | - Yingying Sun
- Eastex Industrial Science and Technology Co., Ltd., Langfang 065001, China
| | - Jiangrui Zhang
- Xi'an Giant Biotechnology Co., Ltd., Xi'an 710000, China
| | - Weigang Yuwen
- Xi'an Giant Biotechnology Co., Ltd., Xi'an 710000, China
| |
Collapse
|
10
|
Shymialevich D, Wójcicki M, Sokołowska B. The Novel Concept of Synergically Combining: High Hydrostatic Pressure and Lytic Bacteriophages to Eliminate Vegetative and Spore-Forming Bacteria in Food Products. Foods 2024; 13:2519. [PMID: 39200446 PMCID: PMC11353811 DOI: 10.3390/foods13162519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
The article focuses on the ongoing challenge of eliminating vegetative and spore-forming bacteria from food products that exhibit resistance to the traditional preservation methods. In response to this need, the authors highlight an innovative approach based on the synergistic utilization of high-hydrostatic-pressure (HHP) and lytic bacteriophages. The article reviews the current research on the use of HHP and lytic bacteriophages to combat bacteria in food products. The scope includes a comprehensive review of the existing literature on bacterial cell damage following HHP application, aiming to elucidate the synergistic effects of these technologies. Through this in-depth analysis, the article aims to contribute to a deeper understanding of how these innovative techniques can improve food safety and quality. There is no available research on the use of HHP and bacteriophages in the elimination of spore-forming bacteria; however, an important role of the synergistic effect of HHP and lytic bacteriophages with the appropriate adjustment of the parameters has been demonstrated in the more effective elimination of non-spore-forming bacteria from food products. This suggests that, when using this approach in the case of spore-forming bacteria, there is a high chance of the effective inactivation of this biological threat.
Collapse
Affiliation(s)
- Dziyana Shymialevich
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland; (M.W.); (B.S.)
| | | | | |
Collapse
|
11
|
Palamae S, Temdee W, Saetang J, Patil U, Suyapoh W, Yingkajorn M, Fan X, Zhang B, Benjakul S. Impact of high-pressure processing on hemolymph, color, lipid globular structure and oxidation of the edible portion of blood clams. Food Chem 2024; 447:138948. [PMID: 38513490 DOI: 10.1016/j.foodchem.2024.138948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/21/2024] [Accepted: 03/03/2024] [Indexed: 03/23/2024]
Abstract
Impact of high-pressure processing (HP-P) on hemolymph and lipid globular structures of the edible portion (EP) of blood clams (BC) was investigated. HP-P above 400 MPa decreased heme iron content, while upsurged non-heme iron content. Increasing pressure induced gaps and abnormal hemocyte cell arrangements. However, HP-P at 300 MPa improved and maintained total hemocyte counts, the heme iron content, and a*-value in BC-EP. For lipid globular structures, the mean diameter drastically decreased when an HP-P pressure of 600 MPa was employed. HP-P at higher pressure induced lipid oxidation, along with decreases in monounsaturated and polyunsaturated fatty acids as well as increases in thiobarbituric acid reactive substances and peroxide value. FTIR spectra displayed a reduction in phosphate groups and cis double bonds in lipids from HP-P treated BC, compared to controls. Therefore, HP-P at 300 MPa is recommended for preparing ready-to-cook BC with less tissue damage and lipid oxidation.
Collapse
Affiliation(s)
- Suriya Palamae
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Wattana Temdee
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Jirakrit Saetang
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Umesh Patil
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Watcharapol Suyapoh
- Veterinary Pathology Unit, Department of Veterinary Science, Faculty of Veterinary Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Mingkwan Yingkajorn
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Xinru Fan
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
12
|
Guo W, Mehrparvar S, Hou W, Pan J, Aghbashlo M, Tabatabaei M, Rajaei A. Unveiling the impact of high-pressure processing on anthocyanin-protein/polysaccharide interactions: A comprehensive review. Int J Biol Macromol 2024; 270:132042. [PMID: 38710248 DOI: 10.1016/j.ijbiomac.2024.132042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024]
Abstract
Anthocyanins, natural plant pigments responsible for the vibrant hues in fruits, vegetables, and flowers, boast antioxidant properties with potential human health benefits. However, their susceptibility to degradation under conditions such as heat, light, and pH fluctuations necessitates strategies to safeguard their stability. Recent investigations have focused on exploring the interactions between anthocyanins and biomacromolecules, specifically proteins and polysaccharides, with the aim of enhancing their resilience. Notably, proteins like soy protein isolate and whey protein, alongside polysaccharides such as pectin, starch, and chitosan, have exhibited promising affinities with anthocyanins, thereby enhancing their stability and functional attributes. High-pressure processing (HPP), emerging as a non-thermal technology, has garnered attention for its potential to modulate these interactions. The application of high pressure can impact the structural features and stability of anthocyanin-protein/polysaccharide complexes, thereby altering their functionalities. However, caution must be exercised, as excessively high pressures may yield adverse effects. Consequently, while HPP holds promise in upholding anthocyanin stability, further exploration is warranted to elucidate its efficacy across diverse anthocyanin variants, macromolecular partners, pressure regimes, and their effects within real food matrices.
Collapse
Affiliation(s)
- Wenjuan Guo
- School of Pharmaceutical Sciences, Tiangong University, Tianjin 300087, China
| | - Sheida Mehrparvar
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| | - Weizhao Hou
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300087, China
| | - Junting Pan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Ahmad Rajaei
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran.
| |
Collapse
|
13
|
Tsutsuura S, Matsumoto M, Sakai K, Motegi R, Nishiumi T. Long-term storage under pressure in deep sea improved the microbiological safety and physical properties of whale meat. Heliyon 2024; 10:e29631. [PMID: 38655287 PMCID: PMC11036056 DOI: 10.1016/j.heliyon.2024.e29631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024] Open
Abstract
This study aimed to clarify the effects of deep-sea pressure storage on the quality of whale meat, especially microbiological safety and physical properties, to examine the effectiveness of deep-sea storage for long-term aging of whale meat. Microbiological safety, physical properties, color and appearance, water content, water activity, and pH of whale meat were examined after storage in the deep sea at depths of 2200-6000 m (22-60 MPa) for 4 months. During storage under high pressure at a depth of >4000 m (40 MPa), the growth of aerobic bacteria was inhibited in whale meat. The toughness of whale meat stored in deep sea at a depth of >4000 m became significantly tender than that before deep-sea storage. Long-term storage of whale meat under high pressure and low-temperature conditions in the deep sea at a depth of >4000 m was clarified to improve the microbiological safety and tenderness of whale meat.
Collapse
Affiliation(s)
- Satomi Tsutsuura
- Faculty of Agriculture, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan
| | - Maki Matsumoto
- Faculty of Agriculture, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan
| | - Kana Sakai
- Faculty of Agriculture, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan
| | - Ryosuke Motegi
- Faculty of Agriculture, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan
| | - Tadayuki Nishiumi
- Faculty of Agriculture, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan
| |
Collapse
|
14
|
Nilsuwan K, Palamae S, Naher J, Buamard N, Zhang B, Benjakul S. Quality of Refrigerated Squid Mantle Cut Treated with Mint Extract Subjected to High-Pressure Processing. Foods 2024; 13:1264. [PMID: 38672936 PMCID: PMC11049107 DOI: 10.3390/foods13081264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Squid (Loligo vulgaris) is commonly prone to spoilage, leading to a short shelf-life. High-pressure processing (HPP) can play a role in maintaining the quality and freshness of squid. Along with HPP, food preservatives from natural sources such as mint extract (ME), which are effective, safe, available, and cost-effective, are required. The present study aimed to investigate the combined effect of ME and HPP on the quality of refrigerated squid mantle cuts (SMC) over a period of 15 days. The time-kill profiles of ME and planktonic cell inactivation by HPP were assessed. ME (400 mg/L) inhibited bacterial growth, while planktonic cells treated with HPP (400 MPa) exhibited a reduction at 5 min. Physicochemical and microbial qualities of SMC treated with ME (0, 200, 400 mg/L) followed by HPP (0.1, 200, 400 MPa) for 5 min were monitored during refrigerated storage. Samples treated with ME (400 mg/L) and HPP (400 MPa) exhibited lower weight loss, cooking loss, pH changes, volatile base content, microbial counts, and higher textural properties than other samples. Based on next-generation sequencing results, Brochothrix campestris from family Listeriaceae was the predominant spoilage bacteria in treated sample after 12 days of storage. Therefore, ME and HPP combined treatments exhibited effectiveness in extending the shelf-life of refrigerated SMC.
Collapse
Affiliation(s)
- Krisana Nilsuwan
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkla 90110, Thailand; (K.N.); (S.P.); (J.N.); (N.B.)
| | - Suriya Palamae
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkla 90110, Thailand; (K.N.); (S.P.); (J.N.); (N.B.)
| | - Jasmin Naher
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkla 90110, Thailand; (K.N.); (S.P.); (J.N.); (N.B.)
| | - Natchaphol Buamard
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkla 90110, Thailand; (K.N.); (S.P.); (J.N.); (N.B.)
| | - Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China;
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkla 90110, Thailand; (K.N.); (S.P.); (J.N.); (N.B.)
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
15
|
Nie T, Huang S, Yang Y, Hu A, Wang J, Cheng Z, Liu W. A review of the world's salt reduction policies and strategies - preparing for the upcoming year 2025. Food Funct 2024; 15:2836-2859. [PMID: 38414443 DOI: 10.1039/d3fo03352j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Excessive consumption of dietary sodium is a significant contributor to non-communicable diseases, including hypertension and cardiovascular disease. There is now a global consensus that regulating salt intake is among the most cost-effective measures for enhancing public health. More than half of the countries worldwide have implemented multiple strategies to decrease salt consumption. Nevertheless, a report on sodium intake reduction published by the World Health Organization revealed that the world is off-track to meet its targeted reduction of 30% by 2025. The global situation regarding salt reduction remains concerning. This review will center on domestic and international salt reduction policies, as well as diverse strategies, given the detrimental effects of excessive dietary salt intake and the existing global salt intake scenario. Besides, we used visualization software to analyze the literature related to salt reduction research in the last five years to explore the research hotspots in this field. Our objective is to enhance public awareness regarding the imperative of reducing salt intake and promoting the active implementation of diverse salt reduction policies.
Collapse
Affiliation(s)
- Ting Nie
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| | - Siqi Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| | - Yuxin Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| | - Anna Hu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| | - Jianing Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| | - Zeneng Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| | - Wenjie Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
16
|
Toffoletto N, Salema-Oom M, Nicoli S, Pescina S, González-Fernández FM, Pinto CA, Saraiva JA, Alves de Matos AP, Vivero-Lopez M, Huete-Toral F, Carracedo G, Saramago B, Serro AP. Dexamethasone phosphate and penetratin co-eluting contact lenses: a strategy to enhance ocular drug permeability. Int J Pharm 2024; 650:123685. [PMID: 38072146 DOI: 10.1016/j.ijpharm.2023.123685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023]
Abstract
Contact lenses (CLs) have been suggested as drug delivery platforms capable of increasing the drug residence time on the cornea and therefore its bioavailability. However, when targeting the posterior segment of the eye, the drug released from CLs still encounters the barrier effect of the ocular tissues, which considerably reduces the efficacy of administration. This work aims at the development of CLs able to simultaneously deliver an anti-inflammatory drug (dexamethasone sodium phosphate) and a cell-penetrating peptide (penetratin), the latter acting as a drug carrier across the tissues. Hydroxyethyl methacrylate (HEMA)-based hydrogels were functionalized with acrylic acid (AAc) and/or aminopropyl methacrylamide (APMA) to serve as CL materials with increased affinity for the drug and peptide. APMA-functionalized hydrogels sustained the dual release for 8 h, which is compatible with the wearing time of daily CLs. Hydrogels demonstrated suitable light transmittance, swelling capacity and in vitro biocompatibility. The anti-inflammatory activity of the drug was not compromised by the presence of the peptide nor by sterilization. The ocular distribution of the drug after 6 h of CL wearing was evaluated in vivo in rabbits and revealed that the amount of drug in the cornea and aqueous humor significantly increased when the drug was co-delivered with penetratin.
Collapse
Affiliation(s)
- Nadia Toffoletto
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz School of Health & Science, Campus Universitario, 2829-511 Caparica, Portugal.
| | - Madalena Salema-Oom
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz School of Health & Science, Campus Universitario, 2829-511 Caparica, Portugal.
| | - Sara Nicoli
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/a, 43124 Parma, Italy.
| | - Silvia Pescina
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/a, 43124 Parma, Italy.
| | - Felipe M González-Fernández
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/a, 43124 Parma, Italy.
| | - Carlos A Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Jorge A Saraiva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - António P Alves de Matos
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz School of Health & Science, Campus Universitario, 2829-511 Caparica, Portugal.
| | - Maria Vivero-Lopez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Insititute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Fernando Huete-Toral
- Ocupharm Research Group, Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Complutense University of Madrid, C/Arcos de Jalón 118, 28037 Madrid, Spain.
| | - Gonzalo Carracedo
- Ocupharm Research Group, Department of Optometry and Vision, Faculty of Optics and Optometry, Complutense University of Madrid, C/Arcos de Jalón 118, 28037 Madrid, Spain.
| | - Benilde Saramago
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
| | - Ana Paula Serro
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz School of Health & Science, Campus Universitario, 2829-511 Caparica, Portugal.
| |
Collapse
|
17
|
Lee Y, Yoon Y. Principles and Applications of Non-Thermal Technologies for Meat Decontamination. Food Sci Anim Resour 2024; 44:19-38. [PMID: 38229860 PMCID: PMC10789560 DOI: 10.5851/kosfa.2023.e72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 01/18/2024] Open
Abstract
Meat contains high-value protein compounds that might degrade as a result of oxidation and microbial contamination. Additionally, various pathogenic and spoilage microorganisms can grow in meat. Moreover, contamination with pathogenic microorganisms above the infectious dose has caused foodborne illness outbreaks. To decrease the microbial population, traditional meat preservation methods such as thermal treatment and chemical disinfectants are used, but it may have limitations for the maintenance of meat quality or the consumers acceptance. Thus, non-thermal technologies (e.g., high-pressure processing, pulsed electric field, non-thermal plasma, pulsed light, supercritical carbon dioxide technology, ozone, irradiation, ultraviolet light, and ultrasound) have emerged to improve the shelf life and meat safety. Non-thermal technologies are becoming increasingly important because of their advantages in maintaining low temperature, meat nutrition, and short processing time. Especially, pulsed light and pulsed electric field treatment induce few sensory and physiological changes in high fat and protein meat products, making them suitable for the application. Many research results showed that these non-thermal technologies may keep meat fresh and maintain heat-sensitive elements in meat products.
Collapse
Affiliation(s)
- Yewon Lee
- Risk Analysis Research Center, Sookmyung
Women’s University, Seoul 04310, Korea
| | - Yohan Yoon
- Risk Analysis Research Center, Sookmyung
Women’s University, Seoul 04310, Korea
- Department of Food and Nutrition,
Sookmyung Women’s University, Seoul 04310, Korea
| |
Collapse
|
18
|
Pei L, Liu W, Jiang L, Xu H, Liu L, Wang X, Liu M, Abudureheman B, Zhang H, Chen J. Effect of high hydrostatic pressure on aroma volatile compounds and aroma precursors of Hami melon juice. Front Nutr 2023; 10:1285590. [PMID: 38024363 PMCID: PMC10667450 DOI: 10.3389/fnut.2023.1285590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
High hydrostatic pressure (HHP) treatment is an effective technique for processing heat-sensitive fruits and causes changes in volatile compounds and their precursors while maintaining quality. We investigated the changes and correlations of volatile compounds, related enzyme activities and precursor amino acids, and fatty acids in Hami melon juice under 350-500 MPa pressure. The application of HHP treatment resulted in a considerable reduction of esters and a substantial increase in aldehydes and alcohols in C6 and C9. Activities of lipoxygenase (LOX), alcohol acyltransferase (AAT), and phospholipase A2 (PLA2) were lower than those of the untreated group, alcohol dehydrogenase (ADH) activity was reversed. When compared to fresh cantaloupe juice, there was an increase in both the types and contents of amino acids with lower total fatty acid contents than the control group. Positive correlations were observed among six ester-related substances and eight alcohol-related substances. Additionally, the correlations between volatile compounds and fatty acids were more substantial compared to those between volatile compounds and amino acids. HHP treatment increases Hami melon flavor precursors and is an effective way to maintain the aroma volatile compounds and flavor of Hami melon juice.
Collapse
Affiliation(s)
- Longying Pei
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, Xinjiang Province, China
| | - Wei Liu
- College of Food Science and Engineering, Tarim University, Alar, Xinjiang Province, China
| | - Luxi Jiang
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, Xinjiang Province, China
| | - Heng Xu
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, Xinjiang Province, China
| | - Luping Liu
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, Xinjiang Province, China
| | - Xiaoyu Wang
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, Xinjiang Province, China
| | - Manli Liu
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, Xinjiang Province, China
| | - Buhailiqiemu Abudureheman
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, Xinjiang Province, China
| | - Heng Zhang
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, Xinjiang Province, China
| | - Jiluan Chen
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang Province, China
| |
Collapse
|
19
|
Yang Y, Chen Q, Liu Q, Wang X, Bai W, Chen Z. Effect of High-Hydrostatic-Pressure Treatment on the Physicochemical Properties of Kafirin. Foods 2023; 12:4077. [PMID: 38002135 PMCID: PMC10670736 DOI: 10.3390/foods12224077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The kafirin derived from Jin Nuo 3 sorghum underwent a high-hydrostatic-pressure (HHP) treatment of 100, 300, and 600 MPa for 10 min to investigate alterations in its physicochemical attributes. The findings exhibited a reduction in protein solubility, declining from 83% to 62%, consequent to the application of the HHP treatment. However, this treatment did not lead to subunit-specific aggregation. The absorption intensity of UV light diminished, and the peak fluorescence absorption wavelength exhibited a shift from 342 nm to 344 nm, indicating an increased polarity within the amino acid microenvironment. In an aqueous solution, the specific surface area expanded from 294.2 m2/kg to 304.5 m2/kg, while the average particle-size value in a 70% ethanol solution rose to 26.3 nm. Conversely, the zeta-potential value decreased from 3.4 mV to 1.3 mV, suggesting a propensity for aggregation in ethanol solutions. A notable rise in the intermolecular β-sheet content to 21.06% was observed, along with a shift in the peak denaturation temperature from 76.33 °C to 86.33 °C. Additionally, the content of disulfide bonds increased to 14.5 μmol/g. Collectively, the application of the HHP treatment not only enhanced the thermal stability but also induced a more ordered secondary structure within the kafirin.
Collapse
Affiliation(s)
- Yajing Yang
- College of Food Science and Engineering, Shanxi Agricultural University, No. 1, Mingxian South Road, Taigu Direct, Jinzhong 030801, China; (Y.Y.); (Q.C.); (X.W.)
| | - Qiongling Chen
- College of Food Science and Engineering, Shanxi Agricultural University, No. 1, Mingxian South Road, Taigu Direct, Jinzhong 030801, China; (Y.Y.); (Q.C.); (X.W.)
| | - Qingshan Liu
- The Sorghum Research Institute, Shanxi Agricultural University, No. 238, Yunhua West Road, Yuci Direct, Jinzhong 030600, China; (Q.L.); (W.B.)
| | - Xiaowen Wang
- College of Food Science and Engineering, Shanxi Agricultural University, No. 1, Mingxian South Road, Taigu Direct, Jinzhong 030801, China; (Y.Y.); (Q.C.); (X.W.)
| | - Wenbin Bai
- The Sorghum Research Institute, Shanxi Agricultural University, No. 238, Yunhua West Road, Yuci Direct, Jinzhong 030600, China; (Q.L.); (W.B.)
| | - Zhenjia Chen
- College of Food Science and Engineering, Shanxi Agricultural University, No. 1, Mingxian South Road, Taigu Direct, Jinzhong 030801, China; (Y.Y.); (Q.C.); (X.W.)
| |
Collapse
|
20
|
Khan FM, Chen JH, Zhang R, Liu B. A comprehensive review of the applications of bacteriophage-derived endolysins for foodborne bacterial pathogens and food safety: recent advances, challenges, and future perspective. Front Microbiol 2023; 14:1259210. [PMID: 37869651 PMCID: PMC10588457 DOI: 10.3389/fmicb.2023.1259210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Foodborne diseases are caused by food contaminated by pathogenic bacteria such as Escherichia coli, Salmonella, Staphylococcus aureus, Listeria monocytogenes, Campylobacter, and Clostridium, a critical threat to human health. As a novel antibacterial agent against foodborne pathogens, endolysins are peptidoglycan hydrolases encoded by bacteriophages that lyse bacterial cells by targeting their cell wall, notably in Gram-positive bacteria due to their naturally exposed peptidoglycan layer. These lytic enzymes have gained scientists' interest in recent years due to their selectivity, mode of action, engineering potential, and lack of resistance mechanisms. The use of endolysins for food safety has undergone significant improvements, which are summarized and discussed in this review. Endolysins can remove bacterial biofilms of foodborne pathogens and their cell wall-binding domain can be employed as a tool for quick detection of foodborne pathogens. We explained the applications of endolysin for eliminating pathogenic bacteria in livestock and various food matrices, as well as the limitations and challenges in use as a dietary supplement. We also highlight the novel techniques of the development of engineering endolysin for targeting Gram-negative bacterial pathogens. In conclusion, endolysin is safe and effective against foodborne pathogens and has no adverse effect on human cells and beneficial microbiota. As a result, endolysin could be employed as a functional bio-preservative agent to improve food stability and safety and maintain the natural taste of food quality.
Collapse
Affiliation(s)
- Fazal Mehmood Khan
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Jie-Hua Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Rui Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Bin Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| |
Collapse
|
21
|
Zadeike D, Degutyte R. Recent Advances in Acoustic Technology in Food Processing. Foods 2023; 12:3365. [PMID: 37761074 PMCID: PMC10530031 DOI: 10.3390/foods12183365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The development of food industry technologies and increasing the sustainability and effectiveness of processing comprise some of the relevant objectives of EU policy. Furthermore, advances in the development of innovative non-thermal technologies can meet consumers' demand for high-quality, safe, nutritious, and minimally processed foods. Acoustic technology is characterized as environmentally friendly and is considered an alternative method due to its sustainability and economic efficiency. This technology provides advantages such as the intensification of processes, increasing the efficiency of processes and eliminating inefficient ones, improving product quality, maintaining the product's texture, organoleptic properties, and nutritional value, and ensuring the microbiological safety of the product. This review summarizes some important applications of acoustic technology in food processing, from monitoring the safety of raw materials and products, intensifying bioprocesses, increasing the effectiveness of the extraction of valuable food components, modifying food polymers' texture and technological properties, to developing biodegradable biopolymer-based composites and materials for food packaging, along with the advantages and challenges of this technology.
Collapse
Affiliation(s)
- Daiva Zadeike
- Department of Food Science and Technology, Faculty of Chemical Technology, Kaunas University of Technology, 50254 Kaunas, Lithuania;
| | | |
Collapse
|
22
|
Rathnakumar K, Balakrishnan G, Ramesh B, Sujayasree OJ, Pasupuleti SK, Pandiselvam R. Impact of emerging food processing technologies on structural and functional modification of proteins in plant-based meat alternatives: An updated review. J Texture Stud 2023; 54:599-612. [PMID: 36849713 DOI: 10.1111/jtxs.12747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
In the past decade, the plant-based meat alternative industry has grown rapidly due to consumers' demand for environmental-friendly, nutritious, sustainable and humane choices. Consumers are not only concerned about the positive relationship between food consumption and health, they are also keen on the environmental sustainability. With such increased consumers' demand for meat alternatives, there is an urgent need for identification and modification of protein sources to imitate the functionality, textural, organoleptic and nutritional characteristics of traditional meat products. However, the plant proteins are not readily digestible and require more functionalization and modification are required. Proteins has to be modified to achieve high quality attributes such as solubility, gelling, emulsifying and foaming properties to make them more palatable and digestible. The protein source from the plant source in order to achieve the claims which needs more high protein digestibility and amino acid bioavailability. In order to achieve these newer emerging non-thermal technologies which can operate under mild temperature conditions can reach a balance between feasibility and reduced environmental impact maintaining the nutritional attributes and functional attributes of the proteins. This review article has discussed the mechanism of protein modification and advancements in the application of non-thermal technologies such as high pressure processing and pulsed electric field and emerging oxidation technologies (ultrasound, cold plasma, and ozone) on the structural modification of plant-based meat alternatives to improve, the techno-functional properties and palatability for successful food product development applications.
Collapse
Affiliation(s)
- Kaavya Rathnakumar
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | - O J Sujayasree
- Division of Post-Harvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Ravi Pandiselvam
- Physiology, Biochemistry, and Post-Harvest Technology Division, ICAR - Central Plantation Crops Research Institute, Kasaragod, Kerala, India
| |
Collapse
|
23
|
Bakshi S, Paswan VK, Yadav SP, Bhinchhar BK, Kharkwal S, Rose H, Kanetkar P, Kumar V, Al-Zamani ZAS, Bunkar DS. A comprehensive review on infant formula: nutritional and functional constituents, recent trends in processing and its impact on infants' gut microbiota. Front Nutr 2023; 10:1194679. [PMID: 37415910 PMCID: PMC10320619 DOI: 10.3389/fnut.2023.1194679] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Human milk is considered the most valuable form of nutrition for infants for their growth, development and function. So far, there are still some cases where feeding human milk is not feasible. As a result, the market for infant formula is widely increasing, and formula feeding become an alternative or substitute for breastfeeding. The nutritional value of the formula can be improved by adding functional bioactive compounds like probiotics, prebiotics, human milk oligosaccharides, vitamins, minerals, taurine, inositol, osteopontin, lactoferrin, gangliosides, carnitine etc. For processing of infant formula, diverse thermal and non-thermal technologies have been employed. Infant formula can be either in powdered form, which requires reconstitution with water or in ready-to-feed liquid form, among which powder form is readily available, shelf-stable and vastly marketed. Infants' gut microbiota is a complex ecosystem and the nutrient composition of infant formula is recognized to have a lasting effect on it. Likewise, the gut microbiota establishment closely parallels with host immune development and growth. Therefore, it must be contemplated as an important factor for consideration while developing formulas. In this review, we have focused on the formulation and manufacturing of safe and nutritious infant formula equivalent to human milk or aligning with the infant's needs and its ultimate impact on infants' gut microbiota.
Collapse
Affiliation(s)
- Shiva Bakshi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Vinod Kumar Paswan
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Satya Prakash Yadav
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Basant Kumar Bhinchhar
- Department of Livestock Production Management, Sri Karan Narendra Agriculture University, Jobner, India
| | - Sheela Kharkwal
- Department of Agriculture Economics, Sri Karan Narendra Agriculture University, Jobner, India
| | - Hency Rose
- Division of Dairy Technology, ICAR—National Dairy Research Institute, Karnal, India
| | - Prajasattak Kanetkar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Vishal Kumar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Zakarya Ali Saleh Al-Zamani
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
- Department of Food Technology and Science, Faculty of Agriculture and Veterinary Medicine, Ibb University, Ibb, Yemen
| | - Durga Shankar Bunkar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
24
|
Teixeira RF, Balbinot Filho CA, Oliveira DD, Zielinski AAF. Prospects on emerging eco-friendly and innovative technologies to add value to dry bean proteins. Crit Rev Food Sci Nutr 2023; 64:10256-10280. [PMID: 37341113 DOI: 10.1080/10408398.2023.2222179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
The world's growing population and evolving food habits have created a need for alternative plant protein sources, with pulses playing a crucial role as healthy staple foods. Dry beans are high-protein pulses rich in essential amino acids like lysine and bioactive peptides. They have gathered attention for their nutritional quality and potential health benefits concerning metabolic syndrome. This review highlights dry bean proteins' nutritional quality, health benefits, and limitations, focusing on recent eco-friendly emerging technologies for their obtaining and functionalization. Antinutritional factors (ANFs) in bean proteins can affect their in vitro protein digestibility (IVPD), and lectins have been identified as potential allergens. Recently, eco-friendly emerging technologies such as ultrasound, microwaves, subcritical fluids, high-hydrostatic pressure, enzyme technology, and dry fractionation methods have been explored for extracting and functionalizing dry bean proteins. These technologies have shown promise in reducing ANFs, improving IVPD, and modifying allergen epitopes. Additionally, they enhance the techno-functional properties of bean proteins, making them more soluble, emulsifying, foaming, and gel-forming, with enhanced water and oil-holding capacities. By utilizing emerging innovative technologies, protein recovery from dry beans and the development of protein isolates can meet the demand for alternative protein sources while being eco-friendly, safe, and efficient.
Collapse
Affiliation(s)
- Renata Fialho Teixeira
- Department of Chemical Engineering and Food Engineering, UFSC, Florianópolis, SC, Brazil
| | | | - Débora de Oliveira
- Department of Chemical Engineering and Food Engineering, UFSC, Florianópolis, SC, Brazil
| | | |
Collapse
|
25
|
Habinshuti I, Nsengumuremyi D, Muhoza B, Ebenezer F, Yinka Aregbe A, Antoine Ndisanze M. Recent and novel processing technologies coupled with enzymatic hydrolysis to enhance the production of antioxidant peptides from food proteins: A review. Food Chem 2023; 423:136313. [PMID: 37182498 DOI: 10.1016/j.foodchem.2023.136313] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Antioxidant peptides obtained through enzymatic hydrolysis of food proteins exhibit a broad range of bioactivities both in vitro and in vivo models. The antioxidant peptides showed the potential to fight against the reactive oxygen species, free radicals and other pro-oxidative substances which are considered the source of various chronic diseases for humans. Both animals and plants have been recognized as natural protein sources and attracted much research interest over the synthetic ones in terms of safety. However, the main challenge remains to increase the antioxidant peptides yield, reduce the enzyme quantity and the reaction time. Consequently, different efficient and innovative food processing technologies such as thermal, ultrasound, microwave, high hydrostatic pressure, pulsed electric field, etc. have been developed and currently used to treat food proteins before (pretreatment) or during the enzymatic hydrolysis (assisted). Those technologies were found to significantly enhance the degree of hydrolysis and the production of substantial antioxidant peptides. These emerging technologies enhance the enzymatic hydrolysis by inducing protein denaturation/unfolding, and the enzymatic activation without altering their functional and nutritional properties. This review discusses the state of the art of thermal, ultrasound, high hydrostatic pressure, microwave, and pulsed electric field techniques, their applications while coupled with enzymatic hydrolysis, their comparison and potential challenges for the production of antioxidant peptides from food proteins.
Collapse
Affiliation(s)
- Ildephonse Habinshuti
- INES-Ruhengeri, Institute of Applied Sciences, B.P. 155, Ruhengeri, Rwanda; Organization of African Academic Doctors (OAAD), Off Kamiti Road P.O. Box 25305-00100, Nairobi, Kenya; Thought For Food Foundation, 2101 Highland Ave, Birmingham, Alabama 35205, USA.
| | | | - Bertrand Muhoza
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Falade Ebenezer
- Organization of African Academic Doctors (OAAD), Off Kamiti Road P.O. Box 25305-00100, Nairobi, Kenya
| | - Afusat Yinka Aregbe
- Organization of African Academic Doctors (OAAD), Off Kamiti Road P.O. Box 25305-00100, Nairobi, Kenya
| | | |
Collapse
|
26
|
Guzmán-Altamirano MÁ, Rebollo-Plata B, Joaquín-Ramos ADJ, Gómez-Espinoza MG. Green synthesis and antimicrobial mechanism of nanoparticles: applications in agricultural and agrifood safety. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2727-2744. [PMID: 35941521 DOI: 10.1002/jsfa.12162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 06/29/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The growing demand for food and its safety are a challenge for agriculture and agrifood. This has led to the incorporation of alternatives such as organic agriculture, the use of biocontrollers, the development of transgenic plants resistant to pathogens and the incorporation of nanotechnology. In this sense, agrochemicals based on nanoparticles (NPs) have been developed. Recently, the green synthesis of NPs has grown rapidly and, for this reason, molecules, microorganisms, fungi and plants are used. Synthesis from plant extracts offers a broad spectrum and, despite the fact that NPs are usually dispersed in size and shape, extensive antimicrobial effectiveness has been demonstrated at nanomolar concentrations. It has been shown that the mechanism of action can be through the dissipation of the driving force of the protons, the alteration of cellular permeability, the formation of bonds with the thiol group of the proteins, the generation of reactive species of oxygen, and the hyperoxidation of DNA, RNA and even the cell membrane. To improve the efficiency of NPs, modifications have been made such as coating with other metals, the addition of antibiotics, detergents and surfactants, as well as the acidification of the solution. Consequently, NPs are considered as a promising method for achieving safety in the agricultural and agrifood area. However, it is necessary to investigate the side effects of NPs, when applied in agroecological systems, on the textural, nutriment and sensory properties of food, as well as the impact on human health. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Bernabe Rebollo-Plata
- Departamento de Ing. Electrónica, Instituto Tecnológico superior de Irapuato, Guanajuato, México
| | | | | |
Collapse
|
27
|
Tang W, Lin X, Walayat N, Liu J, Zhao P. Dietary fiber modification: structure, physicochemical properties, bioactivities, and application-a review. Crit Rev Food Sci Nutr 2023; 64:7895-7915. [PMID: 36995253 DOI: 10.1080/10408398.2023.2193651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
There is increasing attention on the modification of dietary fiber (DF), since its effective improvement on properties and functions of DF. Modification of DF can change their structure and functions to enhance their bioactivities, and endow them with huge application potential in the field of food and nutrition. Here, we classified and explained the different modification methods of DF, especially dietary polysaccharides. Different modification methods exert variable effects on the chemical structure of DF such as molecular weight, monosaccharide composition, functional groups, chain structure, and conformation. Moreover, we have discussed the change in physicochemical properties and biological activities of DF, resulting from alterations in the chemical structure of DF, along with a few applications of modified DF. Finally, we have summarized the modified effects of DF. This review will provide a foundation for further studies on DF modification and promote the future application of DF in food products.
Collapse
Affiliation(s)
- Wei Tang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Xinyi Lin
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Peicheng Zhao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
28
|
Yu Q, Liu J, Yang J, Lou Y, Li Y, Zhang M. Postharvest Preservation Technologies for Marine-Capture Shrimp: A Review. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03049-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
29
|
Nevado DL, Delos Santos S, Bastian G, Deyta J, Managuelod EJ, Fortaleza JA, De Jesus R. Detection, Identification, and Inactivation of Histamine-forming Bacteria in Seafood: A Mini-review. J Food Prot 2023; 86:100049. [PMID: 36916556 DOI: 10.1016/j.jfp.2023.100049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/30/2023]
Abstract
Seafood is one of the essential sources of nutrients for the human diet. However, they can be subject to contamination and can cause foodborne illnesses, including scombroid fish poisoning caused by histamine. Many microorganisms can produce enzymes that eventually decompose endogenous histidine to histamine in postmortem fish muscles and tissues. One of these is histamine-forming bacteria (HFB), primarily found in the gills, gut, and skin of fishes. Previous studies linked a plethora of Gram-negative HFB including Morganella spp. and Photobacterium spp. to scombroid fish poisoning from many types of seafood, especially the Scombridae family. These bacteria possess the hdc gene to produce histidine decarboxylase enzyme. It was reported that Gram-negative HFB produced 6345 ppm in tuna and 1223 ppm in Spanish mackerel. Interestingly, Gram-positive HFB have been isolated in the seafood samples with lower histamine levels. It suggests that Gram-negative HFB are the major contributor to the accumulation of histamine in seafood. Several analytical methods are available to detect and identify HFB and their histamine metabolites from seafood substrates. Rapid test kits can be used in food production settings for early detection of histamine to avoid food intoxication. Furthermore, high hydrostatic pressure and irradiation treatment could prevent the proliferation of HFB and inactivate the existing histidine decarboxylase (HDC) activity. As demonstrated in different seafood model systems, the HDC activity was deactivated at a maximum high hydrostatic pressure level of 400 MPa. The complete inactivation of HFB was achieved by gamma irradiation at a dose of 4.0 kGy. Other postharvest treatments, like enzymatic degradation and electrolyzed oxidizing water, were studied as sustainable methods for bacterial growth prevention and enzyme inactivation. However, other HFB react differently to these treatment conditions, and further studies are recommended.
Collapse
Affiliation(s)
- Daniel Lance Nevado
- Department of Biology, College of Arts and Sciences, Our Lady of Fatima University, Quezon City 1118, Philippines
| | - Sophia Delos Santos
- Department of Biology, College of Arts and Sciences, Our Lady of Fatima University, Quezon City 1118, Philippines
| | - Gelian Bastian
- Department of Biology, College of Arts and Sciences, Our Lady of Fatima University, Quezon City 1118, Philippines
| | - Jimson Deyta
- Department of Biology, College of Arts and Sciences, Our Lady of Fatima University, Quezon City 1118, Philippines
| | - El-Jay Managuelod
- Department of Biology, College of Arts and Sciences, Our Lady of Fatima University, Quezon City 1118, Philippines
| | - Jamil Allen Fortaleza
- Department of Biology, College of Arts and Sciences, Our Lady of Fatima University, Quezon City 1118, Philippines
| | - Rener De Jesus
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| |
Collapse
|
30
|
Yang D, Li R, Dong P, Rao L, Wang Y, Liao X. Influence of pressurization rate and mode on cell damage of Escherichia coli and Staphyloccocus aureus by high hydrostatic pressure. Front Microbiol 2023; 14:1108194. [PMID: 36937272 PMCID: PMC10018152 DOI: 10.3389/fmicb.2023.1108194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
As a non-thermal technology, high hydrostatic pressure (HHP) has been widely investigated for inactivating microorganisms in food. Few studies have been presented on the pressurization/depressurization rate and mode of microbial inactivation. In this study, effect of pressurization rate and mode on Escherichia coli and Staphylococcus aureus cell damage during HHP treatment was investigated. The results showed that fast pressurization + linear mode (FL) treatment has the best bactericidal effect on E. coli and S. aureus, followed by fast pressurization + stepwise mode (FS) and slow pressurization + stepwise mode (SS) treatments. FL treatment caused more morphological damage to the cell wall, cell membrane, and cytoplasmic components compared with FS and SS treatment detected by SEM and TEM. Additionally, the damage to membrane permeability of them was also enhanced after FL treatment. Therefore, our results indicated that FL treatment could be applied to enhance the bactericidal effect of HHP on bacteria by increasing the damage to cell morphological structure and membrane integrity.
Collapse
Affiliation(s)
- Dong Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory for Food Non-Thermal Processing, Beijing, China
| | - Renjie Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory for Food Non-Thermal Processing, Beijing, China
| | - Peng Dong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory for Food Non-Thermal Processing, Beijing, China
| | - Lei Rao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory for Food Non-Thermal Processing, Beijing, China
| | - Yongtao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory for Food Non-Thermal Processing, Beijing, China
- *Correspondence: Yongtao Wang,
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory for Food Non-Thermal Processing, Beijing, China
- Xiaojun Liao,
| |
Collapse
|
31
|
Kian-Pour N, Yildirim-Yalcin M, Kurt A, Ozmen D, Toker OS. A review on latest innovations in physical modifications of galactomannans. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
32
|
Shymialevich D, Wójcicki M, Wardaszka A, Świder O, Sokołowska B, Błażejak S. Application of Lytic Bacteriophages and Their Enzymes to Reduce Saprophytic Bacteria Isolated from Minimally Processed Plant-Based Food Products-In Vitro Studies. Viruses 2022; 15:9. [PMID: 36680050 PMCID: PMC9865725 DOI: 10.3390/v15010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to isolate phage enzymes and apply them in vitro for eradication of the dominant saprophytic bacteria isolated from minimally processed food. Four bacteriophages-two Enterobacter-specific and two Serratia-specific, which produce lytic enzymes-were used in this research. Two methods of phage enzyme isolation were tested, namely precipitation with acetone and ultracentrifugation. It was found that the number of virions could be increased almost 100 times due to the extension of the cultivation time (72 h). The amplification of phage particles and lytic proteins was dependent on the time of cultivation. Considering the influence of isolated enzymes on the growth kinetics of bacterial hosts, proteins isolated with acetone after 72-hour phage propagation exhibited the highest inhibitory effect. The reduction of bacteria count was dependent on the concentration of enzymes in the lysates. The obtained results indicate that phages and their lytic enzymes could be used in further research aiming at the improvement of microbiological quality and safety of minimally processed food products.
Collapse
Affiliation(s)
- Dziyana Shymialevich
- Culture Collection of Industrial Microorganisms—Microbiological Resources Center, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Artur Wardaszka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Stanisław Błażejak
- Department of Biotechnology and Food Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences (WULS–SGGW), Nowoursynowska 166 Street, 02-776 Warsaw, Poland
| |
Collapse
|
33
|
Impacts of high-hydrostatic pressure on the organoleptic, microbial, and chemical qualities and bacterial community of freshwater clam during storage studied using high-throughput sequencing. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Li H, Kong B, Liu Q, Chen Q, Sun F, Liu H, Xia X. Ultrasound pretreatment for improving the quality and protein digestibility of stir-frying chicken gizzards. Food Res Int 2022; 161:111782. [DOI: 10.1016/j.foodres.2022.111782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/24/2022] [Accepted: 08/17/2022] [Indexed: 11/04/2022]
|
35
|
Yu Q, Zhang M, Ju R, Mujumdar AS, Wang H. Advances in prepared dish processing using efficient physical fields: A review. Crit Rev Food Sci Nutr 2022; 64:4031-4045. [PMID: 36300891 DOI: 10.1080/10408398.2022.2138260] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Prepared dishes are increasingly popular convenience food that can be eaten directly from hygienic packaging by heating. Physics field (PF) is food processing method built with physical processing technology, which has the characteristics of high efficiency and environmental safety. This review focuses on summarizing the application of PFs in prepared dishes, evaluating and comparing PFs through quality changes during processing and storage of prepared dishes. Currently, improving the quality and extending the shelf life of prepared dishes through thermal and non-thermal processing are the main modes of action of PFs. Most PFs show good potential in handing prepared dishes, but may also react poorly to some prepared dishes. In addition, the difficulty of precise control of processing conditions has led to research mostly at the laboratory stage, but as physical technology continues to break through, more PFs and multi-physical field will be promoted for commercial use in the future. This review contributes to a deeper understanding of the effect of PFs on prepared dishes, and provides theoretical reference and practical basis for future processing research in the development of various enhanced PFs.
Collapse
Affiliation(s)
- Qi Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Ronghua Ju
- Agricultural and Forestry Products Deep Processing Technology and Equipment Engineering Center of Jiangsu Province, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Haixiang Wang
- Yechun Food Production and Distribution Co., Ltd, Yangzhou, Jiangsu, China
| |
Collapse
|
36
|
Huang CH, Lin CS, Lee YC, Ciou JW, Kuo CH, Huang CY, Tseng CH, Tsai YH. Quality Improvement in Mackerel Fillets Caused by Brine Salting Combined with High-Pressure Processing. BIOLOGY 2022; 11:1307. [PMID: 36138786 PMCID: PMC9495997 DOI: 10.3390/biology11091307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/28/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
The purpose of the study is to investigate the effects of brine salting and high-pressure processing (HPP) on the microbial inactivation and quality parameters of mackerel fillets. Mackerel fillets were immersed in 3% and 9% sodium chloride brine for 90 min at refrigerator temperature, and then treated at 300, 400, 500, and 600 MPa pressure for 5 min. The microbial counts and physicochemical qualities of the fish were examined. In comparison with fish fillets treated with brine or high pressure alone, those treated with the combination of brine salting and HPP showed significantly reduced aerobic plate count (APC) and psychrotrophic bacteria count (PBC). The hardness and chewiness of salt-brined fillets were obviously lower than those of the unsalted fillets under the same pressure condition. Thus, brine salting imparted mackerel fillets a softer texture, which compensated for the HPP-induced increased hardness and chewiness of the fillets. The L* (lightness) and ΔE (colour difference) values of the fillets increased with increasing pressure, with or without brine salting. Conversely, a* (redness) values decreased with increasing pressure. The samples treated with 3% brine in combination with 300 or 400 MPa pressure had a* values similar to those of the samples processed under similar HPP conditions alone but showed lower ΔE values than the other groups. Therefore, as a very high pressure would adversely affect the texture and colour of the fish fillets, this study suggests that immersion in an appropriate brine concentration (3%) and treatment with HPP at 400 MPa for 5 min improved or maintained the colour and texture relatively well and produced a synergistic bactericidal effect.
Collapse
Affiliation(s)
- Chih-Hsiung Huang
- Department of Fisheries Production and Management, National Kaohsiung University of Science and Technology, Kaohsiung 811213, Taiwan
| | - Chung-Saint Lin
- Department of Food Science, Yuanpei University of Medical Technology, Hsin-Chu 30015, Taiwan
| | - Yi-Chen Lee
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811213, Taiwan
| | - Jhih-Wei Ciou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811213, Taiwan
| | - Chia-Hung Kuo
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811213, Taiwan
| | - Chun-Yung Huang
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811213, Taiwan
| | - Chih-Hua Tseng
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Yung-Hsiang Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811213, Taiwan
| |
Collapse
|
37
|
Characterization and emulsifying properties of mantle proteins from scallops (Patinopecten yessoensis) treated by high hydrostatic pressure treatment. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Gharbi N, Marciniak A, Doyen A. Factors affecting the modification of bovine milk proteins in high hydrostatic pressure processing: An updated review. Compr Rev Food Sci Food Saf 2022; 21:4274-4293. [PMID: 35904187 DOI: 10.1111/1541-4337.13012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/17/2022] [Accepted: 07/03/2022] [Indexed: 01/28/2023]
Abstract
High hydrostatic pressure (HHP) treatment induces structural changes in bovine milk proteins depending on factors such as the temperature, pH, concentration, decompression rate, cycling, composition of the medium and pressure level and duration. An in-depth understanding of the impact of these factors is important for controlling HHP-induced modification of milk proteins and the interactions within or between them, which can be applied to prevent undesired aggregation, gelation, and precipitation during HHP processing or to obtain specific milk protein modifications to attain specific protein properties. In this regard, understanding the influences of these factors can provide insight into the modulation and optimization of HHP conditions to attain specific milk protein structures. In recent years, there has been a great research attention on HHP-induced changes in milk proteins influenced by factors such as pH, temperature, concentration, cycling, decompression condition, and medium composition. Hence, to provide insight into how these factors control milk protein structures under HHP treatment and to understand if their effects depend on HHP parameters and environmental conditions, this review discusses recent findings on how various factors (pH, temperature, cycling, decompression rate, medium composition, and concentration) affect HHP-induced bovine milk protein modification. Practical Application: The information provided in this review will be very useful to anticipate the challenges related to the formulation and development of pressure-treated milk and dairy products.
Collapse
Affiliation(s)
- Negar Gharbi
- Departement of Food Sciences, Institute of Nutrition and Functional Foods (INAF) and Dairy Science and Technology Research Centre (STELA), Laval University, Quebec City, Canada
| | - Alice Marciniak
- Department of Food Science, University of Guelph, Guelph, Canada
| | - Alain Doyen
- Departement of Food Sciences, Institute of Nutrition and Functional Foods (INAF) and Dairy Science and Technology Research Centre (STELA), Laval University, Quebec City, Canada
| |
Collapse
|
39
|
Dundar Kirit B, Akyıldız A. Rheological properties of thermally or non‐thermally treated juice/nectar/puree: A review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Burcu Dundar Kirit
- Department of Food Engineering, Faculty of Agriculture Cukurova University Adana Turkey
| | - Asiye Akyıldız
- Department of Food Engineering, Faculty of Agriculture Cukurova University Adana Turkey
| |
Collapse
|
40
|
Alexi N, Sfyra K, Basdeki E, Athanasopoulou E, Spanou A, Chryssolouris M, Tsironi T. Raw and Cooked Quality of Gilthead Seabream Fillets (Sparus aurata, L.) after Mild Processing via Osmotic Dehydration for Shelf Life Extension. Foods 2022; 11:foods11142017. [PMID: 35885260 PMCID: PMC9318255 DOI: 10.3390/foods11142017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
The current study aimed to explore the effects of mild processing for shelf-life extension on the raw an-d cooked quality of gilthead seabream fillets stored at 2 °C. Control and Treated (via osmotic dehydration) fillets were sampled at the beginning (D1), middle (D5) and end (D7) of commercial shelf life. The raw quality was evaluated via the quality index method (QIM), microbial measurements and for D1 through tetrad discrimination testing. The cooked quality was evaluated for the same samples via sensory descriptive analyses with a trained panel. The tetrad results indicated similar characteristics between treatments for raw fillets on D1 and a 29% shelf-life extension for Treated fillets vs. the Control ones, defined by Quality Index Method and microbial measurements. The raw quality was reflected in the cooked quality of the tissue, with the Treated fillets exhibiting less intense spoilage-related sensory attributes as well as enhanced or retained freshness-related attributes throughout storage, when compared to the Control ones. A range of treatment induced sensory characteristics, partly associated to Maillard reactions, were developed in the Treated fillets. Overall, the treatment affected positively both the raw and cooked quality of the fillet, showing promising results as a shelf-life extension method for fish fillet preservation.
Collapse
Affiliation(s)
- Niki Alexi
- Food Quality Perception and Society Science Team, iSENSE Lab, Department of Food Science, Faculty of Technical Sciences, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark;
- Correspondence:
| | - Konstantina Sfyra
- Food Quality Perception and Society Science Team, iSENSE Lab, Department of Food Science, Faculty of Technical Sciences, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark;
| | - Eugenia Basdeki
- Laboratory of Food Process Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.B.); (E.A.); (A.S.); (T.T.)
- SuSea BV, High Tech Campus 1, 5656 AE Eindhoven, The Netherlands;
| | - Evmorfia Athanasopoulou
- Laboratory of Food Process Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.B.); (E.A.); (A.S.); (T.T.)
| | - Aikaterini Spanou
- Laboratory of Food Process Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.B.); (E.A.); (A.S.); (T.T.)
| | | | - Theofania Tsironi
- Laboratory of Food Process Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.B.); (E.A.); (A.S.); (T.T.)
| |
Collapse
|
41
|
Impact of High-Pressure Processing (HPP) on Selected Quality and Nutritional Parameters of Cauliflower (Brassica oleracea var. Botrytis). APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
In recent years, innovative food processing methods, such as high-pressure processing (HPP) treatment, have been shown to improve food quality. The purpose of this work was to determine the effects of high-pressure processing (HPP; 400 and 600 MPa for 2 or 5 min, 20 °C) of cauliflower. Microbial shelf-life (total aerobic count and spores), texture, color, drip loss, dry matter, antioxidative capacity, total phenolic content, and ascorbic acid were analyzed before and after processing, as well as during storage (4 °C) for up to 42 days. Among the different treatments, HPP at 600 MPa exhibited low microbial counts between days 14 and 28 of storage, while at 400 MPa already had high bacterial counts between days 7 and 14. HPP at both 400 and 600 MPa was the best method to maintain the color during storage. The texture of the cauliflower did not differ from the control during storage for HPP. For all samples, the dry matter content remained stable during storage, with few differences between treatments. The nutritional quality of high-pressure-processed cauliflower at 600 MPa for 2 min remained high until day 28. The overall results of this study demonstrate that HPP has the potential to preserve the quality of cauliflower.
Collapse
|
42
|
Consumer Attitudes towards Food Preservation Methods. Foods 2022; 11:foods11091349. [PMID: 35564072 PMCID: PMC9099755 DOI: 10.3390/foods11091349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 02/04/2023] Open
Abstract
The development and scope of using various food preservation methods depends on the level of consumers’ acceptance. Despite their advantages, in the case of negative attitudes, producers may limit their use if it determines the level of sales. The aim of this study was to evaluate the perception of seven different food processing methods and to identify influencing factors, such as education as well as living area and, at the same time, to consider whether consumers verify this type of information on the labels. Additionally, the study included the possibility of influencing consumer attitudes by using alternative names for preservation methods, on the example of microwave treatment. The results showed that conventional heat treatments were the most preferred preservation methods, whereas preservatives, irradiation, radio waves and microwaves were the least favored, suggesting that consumers dislike methods connected with “waves” to a similar extent as their dislike for preservatives. The control factors proved to significantly modify the evaluation of the methods. The analysis of alternative names for microwave treatment showed that “dielectric heating” was significantly better perceived. These research findings are important as the basis for understanding consumer attitudes. Implications for business and directions of future research are also indicated.
Collapse
|
43
|
Tsai YH, Kung HF, Lin CS, Hwang CC, Lou SS, Huang CY, Chang SKC, Lee YC. Combined effect of brine salting and high-hydrostatic-pressure processing to improve the microbial quality and physicochemical properties of milkfish fillet. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2066120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yung-Hsiang Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | | | - Chung-Saint Lin
- Department of Food Science, Yuanpei University of Medical Technology, Hsin-Chu, Taiwan
| | - Chiu-Chu Hwang
- Department of Hospitality Management, Yu Da University of Science and Technology, Miaoli, Taiwan
| | - Su-Shing Lou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Chun-Yung Huang
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Sam K. C. Chang
- Experimental Seafood Processing Laboratory, Coastal Research and Extension center, and Department of Food Science, Nutrition and Health Promotion. Mississippi State University, Pascagoula, MS, USA
| | - Yi-Chen Lee
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| |
Collapse
|
44
|
Kung HF, Lin CS, Liu SS, Huang CY, Chiu K, Lee YC, Tsai YH. High pressure processing extend the shelf life of milkfish flesh during refrigerated storage. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Lee YC, Kung HF, Cheng QL, Lin CS, Tseng CH, Chiu K, Tsai YH. Effects of high-hydrostatic-pressure processing on the chemical and microbiological quality of raw ready-to-eat hard clam marinated in soy sauce during cold storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Feng L, Xu M, Zhu J, Lu H. Genetic Basis of High-Pressure Tolerance of a Vibrio parahaemolyticus Mutant and Its Pathogenicity. Front Microbiol 2022; 13:827856. [PMID: 35432286 PMCID: PMC9008460 DOI: 10.3389/fmicb.2022.827856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/07/2022] [Indexed: 11/30/2022] Open
Abstract
Foodborne pathogens with high-pressure processing (HPP) tolerance and their pathogenicity have gained considerable attention in the field of food safety. However, tolerance to pressure treatment varies among microorganisms and growth phases, and the mechanism by which Vibrio parahaemolyticus can become tolerant of HPP is currently not known. In this study, 183 strains of V. parahaemolyticus were isolated from seafood products, and one strain, C4, carried a thermostable direct hemolysin (tdh) gene. A strain, N11, which was acquired from the C4 strain through adaptive laboratory evolution under HPP stress, could tolerate up to 200 MPa for 10 min. Compared with the C4 strain, the catalase and Na+/K+-ATPase activities in N11 strain were increased by about 2–3 times, and the cells maintained an intact cell membrane structure under HPP treatment. As shown by murine infection trials, the C4 and N11 strains impacted the physiological activities of mice and damaged liver and spleen cells. Comparative genomic analysis showed that 19 nucleotides were mutated in the N11 strain, which led to sustained high expression of mlaC and mlaD genes in this strain. Knockout of these genes confirmed that they were involved in the high-pressure stress response, and also related to pathogenicity of V. parahaemolyticus. Thereby, our findings revealed a HPP tolerance mechanism of V. parahaemolyticus, and the high-pressure-tolerant strain still retained pathogenicity in mice with skin and fur pleating and lethargy, indicating the pressure-tolerant foodborne pathogens present health risks.
Collapse
|
47
|
Lai YY, Chen JH, Liu YC, Hsiao YT, Wang CY. Evaluation of microbiological safety, physicochemical and aromatic qualities of shiikuwasha ( Citrus depressa Hayata) juice after high pressure processing. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:990-1000. [PMID: 35153324 PMCID: PMC8814125 DOI: 10.1007/s13197-021-05103-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 11/29/2022]
Abstract
This study evaluated high pressure processing (HPP) for achieving greater than 5-log reduction of Escherichia coli O157:H7 in shiikuwasha (Citrus depressa Hayata) juices and compare quality parameters, including microbiological safety, total phenolic content (TPC), total flavanones (TFC), and polymethoxylated flavones, browning, volatile aromatic, and physicochemical properties of HPP-treated juice with those of high-temperature short-time pasteurized juice. A HPP of 600 MPa for 150 s was identified capable of achieving greater than 5.15-log reductions of E. coli O157:H7 in shiikuwasha juice. The microbiological shelf life of the juices were at least 28 days when processed at HPP for 600 MPa/150 s or HTST for 90 °C/60 s. The color, aromatic, and antioxidant contents (TPC, TFC, Tangeletin, Nobiletin) were well preserved after HPP, however, HTST resulted in a significant (p < 0.05) loss of antioxidant content (TPC (8.8%), Tangeletin (6.8%)), and negatively impacted the juice color. By the end of storage, the amount of these aroma relevant volatiles appears to still be higher in HPP pasteurized juices compared to their conventional counterparts. This study demonstrated that under optimal conditions of HPP can attain the same level of microbiological safety as thermal pasteurization and preserved the acceptable quality of shiikuwasha juice.
Collapse
Affiliation(s)
- Yen-Ying Lai
- Department of Biotechnology, National Formosa University, Huwei Township, No. 64, Wenhua Rd, Yunlin, 632 Taiwan
| | - Jian-Hua Chen
- Department of Biotechnology, National Formosa University, Huwei Township, No. 64, Wenhua Rd, Yunlin, 632 Taiwan
| | - Yao-Chia Liu
- Department of Biotechnology, National Formosa University, Huwei Township, No. 64, Wenhua Rd, Yunlin, 632 Taiwan
| | - Yun-Ting Hsiao
- Department of Biotechnology, National Formosa University, Huwei Township, No. 64, Wenhua Rd, Yunlin, 632 Taiwan
| | - Chung-Yi Wang
- Department of Biotechnology, National Formosa University, Huwei Township, No. 64, Wenhua Rd, Yunlin, 632 Taiwan
| |
Collapse
|
48
|
Lin CS, Lee YC, Kung HF, Cheng QL, Ou TY, Chang SK, Tsai YH. Inactivation of microbial loads and retardation of quality loss in Asian hard clam (Meretrix lusoria) using high-hydrostatic-pressure processing during refrigerated storage. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108583] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Advances, Applications, and Comparison of Thermal (Pasteurization, Sterilization, and Aseptic Packaging) against Non-Thermal (Ultrasounds, UV Radiation, Ozonation, High Hydrostatic Pressure) Technologies in Food Processing. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042202] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nowadays, food treatment technologies are constantly evolving due to an increasing demand for healthier and tastier food with longer shelf lives. In this review, our aim is to highlight the advantages and disadvantages of some of the most exploited industrial techniques for food processing and microorganism deactivation, dividing them into those that exploit high temperatures (pasteurization, sterilization, aseptic packaging) and those that operate thanks to their inherent chemical–physical principles (ultrasound, ultraviolet radiation, ozonation, high hydrostatic pressure). The traditional thermal methods can reduce the number of pathogenic microorganisms to safe levels, but non-thermal technologies can also reduce or remove the adverse effects that occur using high temperatures. In the case of ultrasound, which inactivates pathogens, recent advances in food treatment are reported. Throughout the text, novel discoveries of the last decade are presented, and non-thermal methods have been demonstrated to be more attractive for processing a huge variety of foods. Preserving the quality and nutritional values of the product itself and at the same time reducing bacteria and extending shelf life are the primary targets of conscious producers, and with non-thermal technologies, they are increasingly possible.
Collapse
|
50
|
Feng T, Zhang M, Sun Q, Mujumdar AS, Yu D. Extraction of functional extracts from berries and their high quality processing: a comprehensive review. Crit Rev Food Sci Nutr 2022; 63:7108-7125. [PMID: 35187995 DOI: 10.1080/10408398.2022.2040418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Berry fruits have attracted increasing more attention of the food processing industry as well as consumers due to their widely acclaimed advantages as highly effective anti-oxidant properties which may provide protection against some cancers as well as aging. However, the conventional extraction methods are inefficient and wasteful of solvent utilization. This paper presents a critical overview of some novel extraction methods applicable to berries, including pressurized-liquid extraction, ultrasound-assisted extraction, microwave-assisted extraction, supercritical fluid extraction, enzyme-assisted extraction as well as some combined extraction methods. When combined with conventional methods, the new technologies can be more efficient and environmentally friendly. Additionally, high quality processing of the functional extracts from berry fruits, such as refined processing technology, is introduced in this review. Finally, progress of applications of berry functional extracts in the food industry is described in detail; this should encourage further scientific research and industrial utilization.
Collapse
Affiliation(s)
- Tianlin Feng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Qing Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Quebec, Canada
| | - Dongxing Yu
- Shanghao Biotech Co., Ltd, Qingdao, Shandong, China
| |
Collapse
|