1
|
He L, Yang G, Li T, Li W, Yang R. Metabolic profile of procyanidin A2 by human intestinal microbiota and their antioxidant and hypolipidemic potential in HepG2 cells. Eur J Nutr 2025; 64:113. [PMID: 40056191 DOI: 10.1007/s00394-025-03638-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 02/25/2025] [Indexed: 03/10/2025]
Abstract
PURPOSE Procyanidins have strong potential for antioxidation and decreasing hepatic fat accumulation thus preventing non-alcoholic fatty liver disease (NAFLD). Procyanidin A2 (PCA2), predominately found in cranberries, avocado, peanut red skins and litchi fruit pericarp, is poorly absorbed in the gastrointestinal tract. However, literatures about its metabolic profile by gut microbiota and effects on lipid metabolism are limited. Therefore, the metabolites of PCA2 by human intestinal microbiota as well as their antioxidant and hypolipidemic potential were investigated. METHODS PCA2 was incubated with human intestinal microbiota and the metabolites produced were characterized by UPLC-Q-TOF-MS. The antioxidant and hypolipidemic potential of PCA2 and its microbial metabolites (MPCA2) were evaluated and compared. RESULTS The metabolism of PCA2 resulted in the formation of 14 metabolites, and the highest antioxidant capacity values were reached after 6 h incubation. In addition, PCA2 and MPCA2 were effective in reducing oxidative stress and lipid accumulation induced by oleic acid (OA) in HepG2 cells. They significantly promoted the phosphorylation of AMP-activated protein kinase (AMPK) and thus stimulated hepatic lipolysis by up-regulating of the expression of carnitine palmitoyl transferase I (CPT-I) and suppressed hepatic lipogenesis by down-regulation of the expression of 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMG-CoA) reductase, fatty acid synthase (FAS) and sterol regulatory element binding proteins 1c (SREBP-1c). CONCLUSION Our results indicated that PCA2 and MPCA2 were effective to prevent OA-induced lipid accumulation and oxidative stress in HepG2 cells, implying that microbial metabolites may play a crucial role in the realization of human health effects of PCA2.
Collapse
Affiliation(s)
- Liangqian He
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Guangmei Yang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Tongyun Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wu Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China.
| | - Ruili Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Guglielmetti M, Ferraris C, Tagliabue A, Frias-Toral E, Tavazzi E, La Malfa A, Greco G, Bergamaschi R, Zambrano-Villacres R, Godos J, Grosso G. (Poly)phenols and Multiple Sclerosis: Results from an Observational Cross-Sectional Study. Antioxidants (Basel) 2025; 14:188. [PMID: 40002375 PMCID: PMC11852120 DOI: 10.3390/antiox14020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
(Poly)phenols are a wide and heterogeneous class of substances with several potential health benefits. Their role in neuroprotection and cognition is still questionable. This study's scope is to examine the possible association between total and individual (poly)phenol intake, major dietary sources, and the severity of multiple sclerosis (MS) in a cohort of MS patients. Participants' demographics, physical activity, smoking, and dietary information were collected, alongside clinical parameters including the Expanded Disability Status Score (EDSS), Multiple Sclerosis Severity Score (MSSS), MS phenotype, and current therapy. A validated 110-item food frequency questionnaire (FFQ) was used to assess participants' habits. The (poly)phenol content of foods was estimated using the Phenol-Explorer database. Data from 106 participants were analyzed. A high intake of vegetables was associated with a 4.6-fold higher probability of mild MS (95% CI: 1.49, 14.28), whereas no association was found for other food and beverage sources. Hydroxycinnamic acids were significantly related to MSSS (OR: 6.55, 95% CI: 2.15, 19.92). Although coffee intake differed significantly between patients with mild and severe MS (90.5 ± 53.9 vs. 59.4 ± 40.8 mL/d, respectively), linear regression analysis did not confirm an association with MSSS. A higher intake of hydroxycinnamic acids and vegetables may impact MS severity. Coffee's role remains unclear and needs to be further investigated.
Collapse
Affiliation(s)
- Monica Guglielmetti
- Human Nutrition Center, Department of Public Health, Experimental and Forensics Medicine, University of Pavia, 27100 Pavia, Italy; (M.G.); (A.T.)
- Food Education and Sport Nutrition Laboratory, Department of Public Health, Experimental and Forensics Medicine, University of Pavia, 27100 Pavia, Italy
| | - Cinzia Ferraris
- Human Nutrition Center, Department of Public Health, Experimental and Forensics Medicine, University of Pavia, 27100 Pavia, Italy; (M.G.); (A.T.)
- Food Education and Sport Nutrition Laboratory, Department of Public Health, Experimental and Forensics Medicine, University of Pavia, 27100 Pavia, Italy
| | - Anna Tagliabue
- Human Nutrition Center, Department of Public Health, Experimental and Forensics Medicine, University of Pavia, 27100 Pavia, Italy; (M.G.); (A.T.)
- Food Education and Sport Nutrition Laboratory, Department of Public Health, Experimental and Forensics Medicine, University of Pavia, 27100 Pavia, Italy
| | - Evelyn Frias-Toral
- School of Medicine, Universidad Católica de Santiago de Guayaquil, Av. Pdte. Carlos Julio Arosemena Tola, Guayaquil 090615, Ecuador
| | - Eleonora Tavazzi
- Multiple Sclerosis Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (E.T.); (A.L.M.); (G.G.); (R.B.)
| | - Alessandro La Malfa
- Multiple Sclerosis Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (E.T.); (A.L.M.); (G.G.); (R.B.)
| | - Giacomo Greco
- Multiple Sclerosis Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (E.T.); (A.L.M.); (G.G.); (R.B.)
| | - Roberto Bergamaschi
- Multiple Sclerosis Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (E.T.); (A.L.M.); (G.G.); (R.B.)
| | | | - Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
- Center for Human Nutrition and Mediterranean Foods (NUTREA), University of Catania, 95123 Catania, Italy
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
- Center for Human Nutrition and Mediterranean Foods (NUTREA), University of Catania, 95123 Catania, Italy
| |
Collapse
|
3
|
Zhang T, Li M, Lu J, Wang J, Zhang M, Panichayupakaranant P, Chen H. Insights into the Sources, Structure, and Action Mechanisms of Quinones on Diabetes: A Review. Molecules 2025; 30:665. [PMID: 39942768 PMCID: PMC11820715 DOI: 10.3390/molecules30030665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Quinones, one of the oldest organic compounds, are of increasing interest due to their abundant presence in a wide range of natural sources and their remarkable biological activity. These compounds occur naturally in green leafy vegetables, fruits, herbs, animal and marine sources, and fermented products, and have demonstrated promising potential for use in health interventions, particularly in the prevention and management of type 2 diabetes (T2DM). This review aims to investigate the potential of quinones as a health intervention for T2DM from the multidimensional perspective of their sources, types, structure-activity relationship, glucose-lowering mechanism, toxicity reduction, and bioavailability enhancement. Emerging research highlights the hypoglycemic activities of quinones, mainly driven by their redox properties, which lead to covalent binding, and their structural substituent specificity, which leads to their non-covalent binding to biocomplexes. Quinones can improve insulin resistance and regulate glucose homeostasis by modulating mitochondrial function, inflammation, lipid profile, gastrointestinal absorption, and by acting as insulin mimetics. Meanwhile, increasing attention is being given to research focused on mitigating the toxicity of quinones during administration and enhancing their bioavailability. This review offers a critical foundation for the development of quinone-based health therapies and functional foods aimed at diabetes management.
Collapse
Affiliation(s)
- Tingting Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (T.Z.)
| | - Mingyue Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (T.Z.)
| | - Jingyang Lu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (T.Z.)
| | - Jia Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (T.Z.)
| | - Min Zhang
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300384, China
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Pharkphoom Panichayupakaranant
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (T.Z.)
| |
Collapse
|
4
|
Liu L, Dai J, Yang Q, Lv L. A comprehensive review on anti-allergic natural bioactive compounds for combating food allergy. Food Res Int 2025; 201:115565. [PMID: 39849714 DOI: 10.1016/j.foodres.2024.115565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/18/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Food allergy poses a great challenge to food safety and public health worldwide. Currently, clinical symptoms are primarily managed with medications, which can lead to drug resistance, adverse effects, and disruptions in gut flora balance. As a result, there has been a focus on researching safe and effective anti-allergic natural ingredients. This paper provides a comprehensive overview of food allergy mechanisms, methods of assessment of anti-food allergy studies, and a classification of natural substances with anti-allergic properties. It also examines the anti-allergic effects of these substances on food allergies and investigates gut microbiota changes induced by these natural bioactives, highlighting their significance to food allergies.Natural actives with anti-food allergic properties may alleviate allergic reactions through multiple targets and pathways. These mechanisms include promoting a shift in the Th1/Th2 balance, reducting IgE synthesis, preventing cellular degranulation and reducing the release of allergic mediator. The gut environment is closely related to food allergy and there is a significant interaction between the two. By targeting the intestinal flora, we can adopt dietary interventions to effectively address and control food allergies. This provides valuable insights for the future development of functional foods targeting the alleviation of food allergies.
Collapse
Affiliation(s)
- Lu Liu
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Jing Dai
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Qingli Yang
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Liangtao Lv
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|
5
|
Petkova-Parlapanska K, Stefanov I, Ananiev J, Georgiev T, Hadzhibozheva P, Petrova-Tacheva V, Kaloyanov N, Georgieva E, Nikolova G, Karamalakova Y. Sambucus nigra-Lyophilized Fruit Extract Attenuated Acute Redox-Homeostatic Imbalance via Mutagenic and Oxidative Stress Modulation in Mice Model on Gentamicin-Induced Nephrotoxicity. Pharmaceuticals (Basel) 2025; 18:85. [PMID: 39861148 PMCID: PMC11768164 DOI: 10.3390/ph18010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Gentamicin (GM) administration is associated with decreased metabolism, increased oxidative stress, and induction of nephrotoxicity. Sambucus nigra L., containing flavonoids, anthocyanins, and phytosterols, possesses antioxidant and anti-inflammatory potential. Objectives: The present study aimed to investigate the nephroprotective and anti-inflammatory potential of lyophilized Sambucus nigra fruit extract (S. nigra extract) to reduce acute oxidative stress and residual toxicity of GM in a 7-day experimental model in Balb/c rodents. Methods: The S. nigra extract was lyophilized (300 rpm; 10 min; -45 °C) to improve pharmacological properties. Balb/c mice were divided into four (n = 6) groups: controls; S. nigra extract per os (120 mg kg-1 day-1 bw); GM (200 mg kg-1 day-1 bw) (4); and GM + S. nigra therapy. The activities of antioxidant and renal enzymes, cytokines, and levels of oxidative stress biomarkers-Hydroxiproline, CysC, GST, KIM-1, PGC-1α, MDA, GSPx-were analyzed by ELISA tests. The ROS and RNS levels, as well as 5-MSL-protein oxidation, were measured by EPR spectroscopy. Results: The antioxidant-protective effect of S. nigra extract (120 mg kg-1) was demonstrated by reduced MDA, ROS, and RNS and increased activation of endogenous enzymes. Furthermore, S. nigra extract significantly reduced the expression of IL-1β, IL-6, IL-10, TNF-α, IFN-γ, and KIM-1 and regulated collagen/protein (PGC-1α and albumin) deposition in renal tissues. Conclusions: Histological evaluation confirmed that S. nigra (120 mg kg-1) attenuated renal dysfunction and structural damage by modulating oxidative stress and acute inflammation and could be used as an anti-fibrotic alternative in GM nephrotoxicity.
Collapse
Affiliation(s)
- Kamelia Petkova-Parlapanska
- Department of Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria;
| | - Ivaylo Stefanov
- Department of General and Clinical Pathology, Forensic Medicine and Deontology, Faculty of Medicine, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (I.S.); (J.A.); (E.G.)
| | - Julian Ananiev
- Department of General and Clinical Pathology, Forensic Medicine and Deontology, Faculty of Medicine, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (I.S.); (J.A.); (E.G.)
| | - Tsvetelin Georgiev
- Department “Physiology, Pathophysiology and Pharmacology” Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (T.G.); (P.H.)
| | - Petya Hadzhibozheva
- Department “Physiology, Pathophysiology and Pharmacology” Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (T.G.); (P.H.)
| | - Veselina Petrova-Tacheva
- Department of Molecular Biology, Immunology and Medical Genetics, Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Nikolay Kaloyanov
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 8 St. Kliment Ohridski Blvd., 1756 Sofia, Bulgaria;
| | - Ekaterina Georgieva
- Department of General and Clinical Pathology, Forensic Medicine and Deontology, Faculty of Medicine, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (I.S.); (J.A.); (E.G.)
| | - Galina Nikolova
- Department of Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria;
| | - Yanka Karamalakova
- Department of Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria;
| |
Collapse
|
6
|
Liu B, Tian H, Momeni MR. The interplay of exercise and green tea: a new road in cancer therapy. Cancer Cell Int 2025; 25:6. [PMID: 39773739 PMCID: PMC11705833 DOI: 10.1186/s12935-024-03632-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025] Open
Abstract
Exercise is one of the most important activities for every individual due to its proven health beneficials. Several investigations have highlighted the advantageous impacts of aerobic exercise, largely attributed to its capacity to enhance the body's capability to defend against threats against oxidative stress. The information currently accessible suggests that adding regular aerobic exercise to a daily routine greatly decreases the chances of developing serious cancer and passing away. An unevenness in the levels of free radicals and the body's antioxidant defenses, made up of enzyme and non-enzyme antioxidants, results in oxidative pressure. Generally, an imbalance in the levels of oxidative stress triggers the creation of harmful reactive oxygen or nitrogen compounds, causing the development or progression of numerous ailments, including cancer. The equilibrium between pro-oxidant and antioxidant substances is a direct indicator of this imbalance. Green tea and its derivatives are rich sources of bioactive substances such as flavonoids and polyphenols which possess antioxidant abilities. Moreover, modulation of epigenetic targets as well as inflammatory pathways including ERK1/2 and NF-κB are other proposed mechanisms for its antioxidant activity. Recent studies demonstrate the promise of green tea as an antioxidant, showing its ability to decrease the likelihood of developing cancer by impacting actions like cell growth, blood vessel formation, and spread of cancer cells. This summary will concentrate on the complex network of different pathways related to physical activity and consumption of green tea. In particular, the focus of this research will be on examining how oxidative stress contributes to health and investigating the potential antioxidant properties of green tea, and the interconnected relationship between exercise and green tea in the treatment of cancer. Elucidation of these different pathways would help scientists for development of better therapeutic targets and further increase of current anticancer agents efficiency.
Collapse
Affiliation(s)
- Bing Liu
- Henan University of Chinese Medicine, Zhengzhou, 450000, Henan, China
| | - Heyu Tian
- Henan University of Chinese Medicine, Zhengzhou, 450000, Henan, China.
| | | |
Collapse
|
7
|
Kuć-Szymanek A, Kubik-Machura D, Kościelecka K, Męcik-Kronenberg T, Radko L. Neurotoxicological Effects of Some Mycotoxins on Humans Health and Methods of Neuroprotection. Toxins (Basel) 2025; 17:24. [PMID: 39852977 PMCID: PMC11769516 DOI: 10.3390/toxins17010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
Food contamination with mycotoxin-producing fungi increases the risk of many diseases, including neurological diseases closely related to the neurotoxicity of these toxins. Based on the latest literature data, we presented the association of common Fusarium mycotoxins with neurological diseases. Articles from 2001 to 2024 were analyzed. The mechanisms underlying the neurotoxicity of the described mycotoxins were presented. They are mainly related to the increase in oxidative stress in neuronal cells, which leads to higher levels of pro-inflammatory cytokines as IL-1β, IL-6 and TNF-α, enzymatic activity as GST, GPx, CAT and SOD and neurotransmitter dysfunction (5-HT, serotonin, dopamine and GABA). At the end of the article, based on the literature data, we attempted to present ways to mitigate mycotoxin neurotoxicity using mainly natural substances of plant origin. The data in this review focus on the Fusarium mycotoxins most frequently found in food and will be useful as comparative information for future studies. It is important to conduct further studies to mitigate the neurotoxic effects of Fusarium mycotoxins in order to reduce the development of diseases of the nervous system.
Collapse
Affiliation(s)
- Aleksandra Kuć-Szymanek
- Faculty of Medical and Health Sciences, University in Siedlce, Stanisława Konarskiego St. 2, 08-110 Siedlce, Poland;
| | - Daria Kubik-Machura
- Provincial Specialist Hospital No. 5 St. Barbara in Sosnowiec, Trauma Center, Plac Medyków St. 1, 41-200 Sosnowiec, Poland;
| | | | - Tomasz Męcik-Kronenberg
- Department of Pathomorphology, Faculty of Medical Sciences in Zabrze, 3 Maja St. 13, 41-800 Zabrze, Poland;
- Collegium Medicum im. Dr. Władysław Biegański, Jan Długosz University, Wahington St. 4/8, 42-200 Czestochowa, Poland
| | - Lidia Radko
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Wolynska St. 35, 60-637 Poznan, Poland
| |
Collapse
|
8
|
Hu Q, Tang X, Long R, Pan X, Shi S, Liu J, Pan Y, Li L, Gong L, Liao W, Zheng P, Luo X, Wang Q, Luo M, Fu C, Li R, Xiao H. Self-assembled nano delivery system of fenugreek polysaccharides: Effects on curcumin bioavailability and molecular mechanisms. Int J Biol Macromol 2025; 286:138294. [PMID: 39631596 DOI: 10.1016/j.ijbiomac.2024.138294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/23/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Self-assembly of fenugreek polysaccharides FS60 (a natural macromolecular material) with curcuminoid has been proved to improve curcumin (Cur) water dispersion in preliminary studies. This study further explored the effect of FS60 on Cur bioavailability in vivo to assess the significance of this delivery method. In this study, we optimized the formulation parameters of FS60-curcuminoid aggregates (FC) and studied their effects on Cur pharmacokinetics in rats. Results showed that the optimized aggregates had an encapsulation efficiency (EE) of 88.22 % and hydrodynamic diameter (DH) of 231.48 nm. Additionally, administering FC significantly increased curcumin glucuronide (Cur-O-Glu) levels. The Cmax was 51 times higher and AUC0-12h was 19 times higher than curcuminoid alone. Moreover, FS60 intervention for seven days increased the absorption speed of Cur-O-Glu into the bloodstream. Further mechanistic studies indicated that FS60 promoted Cur ingestion, increased UGT expression, and inhibited enterocyte transporters, allowing large amounts of Cur-O-Glu to enter the bloodstream. Moreover, the gut microbiota modulated by FS60 accelerated the mutual conversion of pentose and gluconate to provide sufficient glucuronic acid for the glucuronidation of Cur in enterocytes. Consequently, the nano delivery system composed by FS60 and curcuminoid facilitated gastrointestinal Cur glucuronidation and Cur-O-Glu absorption.
Collapse
Affiliation(s)
- Qiongdan Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Xinxing Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Rui Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Xiaoqi Pan
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Jia Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Yuan Pan
- Innovative Institute of Chinese Medicine and Pharmay, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Ling Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Leiqiang Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Wan Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Ping Zheng
- Chengdu Institute for Drug Control, NMPA Key Laboratory for Quality Monitoring and Evaluation of Traditional Chinese Medicine, Chengdu 610045, PR China
| | - Xiao Luo
- Chengdu Institute for Drug Control, NMPA Key Laboratory for Quality Monitoring and Evaluation of Traditional Chinese Medicine, Chengdu 610045, PR China
| | - Qi Wang
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Minna Luo
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China.
| | - Rui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China; Sichuan Jinhong Keyou Biotechnology Co., Ltd, PR China.
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, United States.
| |
Collapse
|
9
|
Shin JH, Shin SH. A Comprehensive Review of Naringenin, a Promising Phytochemical with Therapeutic Potential. J Microbiol Biotechnol 2024; 34:2425-2438. [PMID: 39572023 PMCID: PMC11733549 DOI: 10.4014/jmb.2410.10006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/01/2024] [Accepted: 11/12/2024] [Indexed: 12/31/2024]
Abstract
Disorders, including cancer, metabolic disorders, and neurodegenerative diseases, can threaten human health; therefore, disease prevention is essential. Naringenin, a phytochemical with low toxicity, has been used in various disease prevention studies. This study aimed to comprehensively review the effects of naringenin on human health. First, we introduced the general characteristics of naringenin and its pharmacokinetic features when absorbed in the body. Next, we summarized the inhibitory effects of naringenin on colorectal, gastric, lung, breast, ovarian, cervical, prostate, bladder, liver, pancreatic, and skin cancers in preclinical studies. Lastly, we investigated the inhibitory effects of naringenin on metabolic disorders, including diabetes, obesity, hyperlipidemia, hypertension, cardiac toxicity, hypertrophy, steatosis, liver disease, and arteriosclerosis, as well as on neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. In conclusion, naringenin may serve as a significant natural compound that benefits human health.
Collapse
Affiliation(s)
- Jun Hong Shin
- Department of Food and Nutrition, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seung Ho Shin
- Department of Food and Nutrition, Gyeongsang National University, Jinju 52828, Republic of Korea
- Department of Bio & Medical Bigdata (BK4 Program), Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
10
|
Zhu Z, Xia Q, Zhan X, Li W, He X, Wang B, Zhou Q, Huang J, Ye Y. Preparation of Green Tea Polyphenol-Loaded Diacylglycerol Nanostructured Lipid Carrier Hydrogels and Their Activities Related to Skin Protection. MATERIALS (BASEL, SWITZERLAND) 2024; 17:6227. [PMID: 39769828 PMCID: PMC11676713 DOI: 10.3390/ma17246227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
Diacylglycerol (DAG) is a functional oil but is rarely used in the cosmetic industry because low solubility, susceptibility to leakage and low viscosity to skin are still the main hurdles. A novel diacylglycerol nanostructured lipid carrier hydrogel (GTP-DAG-NLC-GEL) loaded with green tea polyphenol (GTP) was designed and successfully prepared to broaden DAG's application in cosmetics, which significantly improved GTP stability and skin stickiness of DAG. The results showed that DAG-NLC-GEL had good viscosity, which was 980 Pa·s when the shear rate was 5 rpm, and its viscosity decreased quickly with the increase in shear rate, making it easily expand on skin. Meanwhile, the encapsulation rate and drug loading of GTP in GDP-DAG-NLC-GEL reached 86.7% and 2.6%, respectively, and the DPPH free radicals scavenging rate and inhibition rate of the advanced glycation end-products (AGEs) were 85.46% and 89.72%, respectively, which indicate that GTP-DAG-NLC-GEL has significant skin sunscreen, antioxidant and anti-glycation activities. The GTP-loaded nanostructured lipid carrier hydrogel can be deemed to have great prospects for skin protection in cosmetics.
Collapse
Affiliation(s)
- Zhini Zhu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China; (Z.Z.); (Q.X.); (X.Z.); (W.L.)
| | - Qiu Xia
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China; (Z.Z.); (Q.X.); (X.Z.); (W.L.)
| | - Xinxia Zhan
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China; (Z.Z.); (Q.X.); (X.Z.); (W.L.)
| | - Wenyuan Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China; (Z.Z.); (Q.X.); (X.Z.); (W.L.)
| | - Xuan He
- Ganzhou Hake Biotech Co., Ltd., Ganzhou 341008, China;
| | - Bo Wang
- Ganzhou Forestry Science Research Institute, Ganzhou 341000, China;
| | - Qizhi Zhou
- Hunan Singular Biotech Co., Ltd., Changsha 410329, China
| | - Jian Huang
- Jiangxi Ruijia Biotech Co., Ltd., Yichun 330899, China
| | - Yong Ye
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China; (Z.Z.); (Q.X.); (X.Z.); (W.L.)
| |
Collapse
|
11
|
Zhou J, Ren Y, Yu J, Zeng Y, Ren J, Wu Y, Zhang Q, Xiao X. The effect of maternal dietary polyphenol consumption on offspring metabolism. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 39698806 DOI: 10.1080/10408398.2024.2442539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The early intrauterine environment of mothers during pregnancy significantly affects the metabolic health of their offspring. Existing studies suggest that poor maternal nutrition during pregnancy increases the risk of obesity or diabetes in offspring, so it is highly important to intervene during pregnancy to prevent metabolic disorders in mothers and their offspring. Polyphenols with anti-inflammatory and antioxidant properties are found in many foods and have protective effects on obesity, diabetes, cancer, and cardiovascular disease. Furthermore, recent evidence indicates that maternal dietary polyphenols could be a potential therapy for improving pregnancy outcomes and offspring metabolism. In this review, we discuss the studies and mechanisms of different kinds of maternal dietary polyphenols during pregnancy and lactation in improving the metabolism of offspring, analyze the limitations of the current studies, and propose possible directions of further research, which provide new ideas and directions for reducing metabolic diseases in offspring.
Collapse
Affiliation(s)
- Jing Zhou
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yaolin Ren
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Yu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Zeng
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Ren
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yifan Wu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Zhang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Čolić M, Kraljević Pavelić S, Peršurić Ž, Agaj A, Bulog A, Pavelić K. Enhancing the bioavailability and activity of natural antioxidants with nanobubbles and nanoparticles. Redox Rep 2024; 29:2333619. [PMID: 38577911 PMCID: PMC11000614 DOI: 10.1080/13510002.2024.2333619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
KEY POLICY HIGHLIGHTSNanobubbles and nanoparticles may enhance the polyphenols' bioavailabilityNanobubbles may stimulate the activation of Nrf2 and detox enzymesArmoured oxygen nanobubbles may enhance radiotherapy or chemotherapy effects.
Collapse
Affiliation(s)
| | | | - Željka Peršurić
- Faculty of Medicine, Juraj Dobrila University of Pula, Pula, Croatia
| | - Andrea Agaj
- Faculty of Medicine, Juraj Dobrila University of Pula, Pula, Croatia
| | - Aleksandar Bulog
- Teaching Institute for Public Health of Primorsko-Goranska County, Rijeka, Croatia
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Krešimir Pavelić
- Faculty of Medicine, Juraj Dobrila University of Pula, Pula, Croatia
| |
Collapse
|
13
|
Bej E, Cesare P, d’Angelo M, Volpe AR, Castelli V. Neuronal Cell Rearrangement During Aging: Antioxidant Compounds as a Potential Therapeutic Approach. Cells 2024; 13:1945. [PMID: 39682694 PMCID: PMC11639796 DOI: 10.3390/cells13231945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/02/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Aging is a natural process that leads to time-related changes and a decrease in cognitive abilities, executive functions, and attention. In neuronal aging, brain cells struggle to respond to oxidative stress. The structure, function, and survival of neurons can be mediated by different pathways that are sensitive to oxidative stress and age-related low-energy states. Mitochondrial impairment is one of the most noticeable signs of brain aging. Damaged mitochondria are thought to be one of the main causes that feed the inflammation related to aging. Also, protein turnover is involved in age-related impairments. The brain, due to its high oxygen usage, is particularly susceptible to oxidative damage. This review explores the mechanisms underlying neuronal cell rearrangement during aging, focusing on morphological changes that contribute to cognitive decline and increased susceptibility to neurodegenerative diseases. Potential therapeutic approaches are discussed, including the use of antioxidants (e.g., Vitamin C, Vitamin E, glutathione, carotenoids, quercetin, resveratrol, and curcumin) to mitigate oxidative damage, enhance mitochondrial function, and maintain protein homeostasis. This comprehensive overview aims to provide insights into the cellular and molecular processes of neuronal aging and highlight promising therapeutic avenues to counteract age-related neuronal deterioration.
Collapse
Affiliation(s)
- Erjola Bej
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (E.B.); (P.C.); (M.d.)
- Department of the Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, Catholic University Our Lady of Good Counsel, 1001 Tirana, Albania
| | - Patrizia Cesare
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (E.B.); (P.C.); (M.d.)
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (E.B.); (P.C.); (M.d.)
| | - Anna Rita Volpe
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (E.B.); (P.C.); (M.d.)
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (E.B.); (P.C.); (M.d.)
- Department of the Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, Catholic University Our Lady of Good Counsel, 1001 Tirana, Albania
| |
Collapse
|
14
|
Grabarczyk M, Justyńska W, Czpakowska J, Smolińska E, Bielenin A, Glabinski A, Szpakowski P. Role of Plant Phytochemicals: Resveratrol, Curcumin, Luteolin and Quercetin in Demyelination, Neurodegeneration, and Epilepsy. Antioxidants (Basel) 2024; 13:1364. [PMID: 39594506 PMCID: PMC11591432 DOI: 10.3390/antiox13111364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Polyphenols are an important group of biologically active compounds present in almost all food sources of plant origin and are primarily known for their anti-inflammatory and antioxidative capabilities. Numerous studies have indicated their broad spectrum of pharmacological properties and correlations between their increased supply in the human diet and lower prevalence of various disorders. The positive effects of polyphenols application are mostly discussed in terms of cardiovascular system well-being. However, in recent years, they have also increasingly mentioned as prophylactic and therapeutic factors in the context of neurological diseases, being able to suppress the progression of such disorders and soothe accompanying symptoms. Among over 8000 various compounds, that have been identified, the most widely examined comprise resveratrol, curcumin, luteolin and quercetin. This review focuses on in vitro assessments, animal models and clinical trials, reflecting the most actual state of knowledge, of mentioned polyphenols' medicinal capabilities in epilepsy, demyelinating and neurodegenerative diseases of the central nervous system.
Collapse
Affiliation(s)
- Mikołaj Grabarczyk
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Weronika Justyńska
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Joanna Czpakowska
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland; (J.C.)
| | - Ewa Smolińska
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Aleksandra Bielenin
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Andrzej Glabinski
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland; (J.C.)
| | - Piotr Szpakowski
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland; (J.C.)
| |
Collapse
|
15
|
Li Q, Wu Y, Qi X, Liu Z, Wang C, Ma X, Ma Y. Prickly Ash Seeds Improve the Ruminal Epithelial Development and Growth Performance of Hu Sheep by Modulating the Rumen Microbiota and Metabolome. Microorganisms 2024; 12:2242. [PMID: 39597631 PMCID: PMC11596069 DOI: 10.3390/microorganisms12112242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
It is known that the addition of feed rich in bioactive components to animal diets will affect rumen fermentation parameters and flora structure. However, research on the regulatory effects of prickly ash seeds (PASs) during rumen development or on the rumen microbiome and its metabolites in sheep is limited. The current study was designed to explore the effects of PASs on sheep rumen development and growth performance using metagenomics and metabolomics. Eighteen 3-month-old Hu lambs were randomly allotted to three different dietary treatment groups: 0% (basal diet, CK), 3% (CK with 3% PAS, low-dose PAS, LPS), and 6% (CK with 6% PAS, high-dose PAS, HPS) PASs. The lambs were slaughtered to evaluate production performance. Our results showed that dietary PAS addition improved the average daily gain and reduced the F/G ratio of the experimental animals. Additionally, the height and width of the rumen papilla in the treatment groups were significantly higher than those in the CK group. The fermentation parameters showed that the levels of acetate and butyrate were significantly higher in the LPS group than in the CK and HPS groups. The propionate levels in the HPS group were significantly higher than those in the CK and LPS groups. Metagenomics analysis revealed that PAS dietary supplementation improved the abundance of Clostridiales and Bacteroidales and reduced the abundance of Prevotella, Butyrivibrio, and Methanococcus. Metabolomic analyses revealed that increased metabolite levels, such as those of serotonin, L-isoleucine, and L-valine, were closely related to growth-related metabolic pathways. The correlations analyzed showed that papilla height and muscular thickness were positively and negatively correlated with serotonin and L-valine, respectively. Average daily gain (ADG) was positively and negatively correlated with L-valine and several Prevotella, respectively. In addition, muscular thickness was positively correlated with Sodaliphilus pleomorphus, four Prevotella strains, Sarcina_sp_DSM_11001, and Methanobrevibacter_thaueri. Overall, PAS addition improved sheep growth performance by regulating beneficial microorganism and metabolite abundances, facilitating bacterial and viral invasion resistance.
Collapse
Affiliation(s)
- Qiao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Q.L.); (Y.W.); (X.Q.); (Z.L.); (C.W.); (X.M.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yi Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Q.L.); (Y.W.); (X.Q.); (Z.L.); (C.W.); (X.M.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Xingcai Qi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Q.L.); (Y.W.); (X.Q.); (Z.L.); (C.W.); (X.M.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Zilong Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Q.L.); (Y.W.); (X.Q.); (Z.L.); (C.W.); (X.M.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Chunhui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Q.L.); (Y.W.); (X.Q.); (Z.L.); (C.W.); (X.M.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Xueyi Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Q.L.); (Y.W.); (X.Q.); (Z.L.); (C.W.); (X.M.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Q.L.); (Y.W.); (X.Q.); (Z.L.); (C.W.); (X.M.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| |
Collapse
|
16
|
Mahmutović L, Sezer A, Bilajac E, Hromić-Jahjefendić A, Uversky VN, Glamočlija U. Polyphenol stability and bioavailability in cell culture medium: Challenges, limitations and future directions. Int J Biol Macromol 2024; 279:135232. [PMID: 39218177 DOI: 10.1016/j.ijbiomac.2024.135232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Polyphenols are abundant natural plant micronutrients that commonly contribute to human health due to their anti-inflammatory, antioxidant, antiviral, anti-carcinogenic, anti-aging, anti-allergic, and other biological activities. Their therapeutic benefits mainly depend on the structure, stability, chemical interactions, and absorption, which ultimately affect the bioavailability of these compounds. The bioactivity of polyphenols is evaluated by in vitro and in vivo studies, sometimes yielding inconsistent results due to numerous differences between used models. Among the main differences is the production of reactive oxygen species (ROS) in cultured cell models, potentially leading to misinterpretation of the effects of polyphenolic compounds. Little attention is paid to the polyphenol stability in cell culture medium and the potential generation of artifacts due to their chemical instability. Stability tests of polyphenols are strongly advised to be performed in parallel with cell culture, to help avoid misleading conclusions. This review highlights the existing challenges with cell-based research, focusing on polyphenols' stability in the cell culture media. We also emphasize that new methods analyzing the molecular interactions of compounds with cell culture media supplements are essential to provide a comprehensive understanding of the polyphenols in in vitro models.
Collapse
Affiliation(s)
- Lejla Mahmutović
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnička cesta 15, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Abas Sezer
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnička cesta 15, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Esma Bilajac
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnička cesta 15, 71000 Sarajevo, Bosnia and Herzegovina
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnička cesta 15, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Una Glamočlija
- Department of Pharmaceutical Biochemistry and Laboratory Diagnostics, University of Sarajevo - Faculty of Pharmacy, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; Department of Histology and Embryology, School of Medicine, University of Mostar, Zrinskog Frankopana 34, 88000 Mostar, Bosnia and Herzegovina; Scientific Research Unit, Bosnalijek JSC, Jukićeva 53, Sarajevo 71000, Bosnia and Herzegovina.
| |
Collapse
|
17
|
Bavaro AR, Tarantini A, Bruno A, Logrieco AF, Gallo A, Mita G, Valerio F, Bleve G, Cardinali A. Functional foods in Mediterranean diet: exploring the functional features of vegetable case-studies obtained also by biotechnological approaches. Aging Clin Exp Res 2024; 36:208. [PMID: 39412623 PMCID: PMC11485090 DOI: 10.1007/s40520-024-02860-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/28/2024] [Indexed: 10/19/2024]
Abstract
The Mediterranean Diet (MedDiet) is a widely recognized dietary pattern, with its effects largely attributed to "functional foods" which are able to positively influence one or more target functions, improving health and maintaining a state of well-being.In this review, three "case-study" typical of the MedDiet, such as artichokes, capers and table olives are considered as traditional functional vegetables rich in bioactive compounds, mainly polyphenols. The review extensively discusses the antioxidant effects of these molecules, as well as their role in aging prevention and reduction, maintaining human health, and influencing the abundance and composition of intestinal microbiota. Additionally, this review focuses on the fate of the dietary polyphenols along the digestive tract.Among biotechnological strategies, the review explores the role of fermentation process in modifying the biochemical profile, recovery, bioaccessibility and bioavailability of bioactive compounds present in some vegetable foods of MedDiet. Finally, the main challenges in the selection, addition, and maintenance of probiotic strains in traditional food products are also summarized, with a view to develop new probiotic carriers for "functional diets".
Collapse
Affiliation(s)
- Anna Rita Bavaro
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, 70126, Italy
| | - Annamaria Tarantini
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Lecce, 73100, Italy
| | - Angelica Bruno
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, 70126, Italy
| | - Antonio F Logrieco
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, 70126, Italy
- Xianghu Lab, Biomanufactoring Institute, Hangzhou, Zhejiang, China
| | - Antonia Gallo
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Lecce, 73100, Italy
| | - Giovanni Mita
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Lecce, 73100, Italy
| | - Francesca Valerio
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, 70126, Italy.
| | - Gianluca Bleve
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Lecce, 73100, Italy.
| | - Angela Cardinali
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, 70126, Italy
| |
Collapse
|
18
|
Harriden B, Speer K, Sergi D, Gill CIR, Popović-Djordjević J, McKune A, Naumovski N. The phytochemical composition and unexplored potential of Australian native plants for application in physical activity-related muscle recovery and inflammation: a literature review. Food Funct 2024; 15:9718-9733. [PMID: 39279540 DOI: 10.1039/d4fo02067g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Native plants are adaptable in various environmental conditions in part through the production of unique phytochemicals which may have beneficial effects on human health. Native Australian fruits contain higher phytochemical and antioxidant levels than most Western fruits, suggesting potential for greater health benefits arising from their consumption. These beneficial effects, in turn, may be mediated by the inhibition of inflammatory pathways as well as oxidative stress via the regulation of reactive oxygen (ROS) and/or nitrogen (RNS) species levels. Unaccustomed or strenuous exercise causes muscle damage and soreness, that may be driven by increased ROS and inflammation. There is growing interest in the application of polyphenol-rich food supplementation for the alleviation of exercise-induced oxidative stress, for the reduction of exercise-induced inflammation and improvement of muscle recovery. Therefore, the aim of this review was to provide an overview of the phytochemical and bioactive composition of some Australian native plant foods and their potential use for functional food development in the management of muscle recovery and inflammation. Native plant foods and food products could be beneficial for reducing inflammation, though it is important to note that most of the research in this field has been conducted in animal models or in vitro, in addition to there being little data on skeletal muscle inflammation. Further studies, particularly in humans, would be needed to confirm these effects and to determine the appropriate dosages and forms of native foods and food products for consumption to reduce inflammation and enhance muscle recovery.
Collapse
Affiliation(s)
- Brittany Harriden
- Faculty of Health, University of Canberra, Canberra, ACT, 2601, Australia.
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Ngunnawal Country, ACT, 2617, Australia
- University of Canberra Research Institute for Sport and Exercise (UCRISE), Canberra, ACT, 2601, Australia
| | - Kathryn Speer
- Faculty of Health, University of Canberra, Canberra, ACT, 2601, Australia.
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Ngunnawal Country, ACT, 2617, Australia
- University of Canberra Research Institute for Sport and Exercise (UCRISE), Canberra, ACT, 2601, Australia
| | - Domenico Sergi
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Chris I R Gill
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, BT52 1SA, UK
| | - Jelena Popović-Djordjević
- University of Belgrade - Faculty of Agriculture, Department of Food Technology and Biochemistry, Nemanjina 6, 11080 Belgrade, Serbia
| | - Andrew McKune
- Faculty of Health, University of Canberra, Canberra, ACT, 2601, Australia.
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Ngunnawal Country, ACT, 2617, Australia
- University of Canberra Research Institute for Sport and Exercise (UCRISE), Canberra, ACT, 2601, Australia
- Discipline of Biokinetics, Exercise and Leisure Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, KwaZulu-Natal 4000, South Africa
| | - Nenad Naumovski
- Faculty of Health, University of Canberra, Canberra, ACT, 2601, Australia.
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Ngunnawal Country, ACT, 2617, Australia
- University of Canberra Research Institute for Sport and Exercise (UCRISE), Canberra, ACT, 2601, Australia
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 10431, Athens, Greece
| |
Collapse
|
19
|
Liu X, Guo Y, Pan J, Wu T, Zhao B, Wei S, Jiang W, Liu Y. Nanoparticles constructed from natural polyphenols are used in acute kidney injury. J Mater Chem B 2024; 12:8883-8896. [PMID: 39177039 DOI: 10.1039/d4tb00837e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Acute kidney injury (AKI) is a severe clinical syndrome characterized by rapid deterioration of renal function caused by a variety of pathogeneses. Natural polyphenols have been considered to have potential in the treatment of AKI due to their powerful antioxidant and anti-inflammatory activities, but their low bioavailability in vivo limits their efficacy. Polyphenol nanoparticles based on a nano-delivery system show good effects in reducing kidney injury, improving renal function and promoting renal tissue repair, and brings new hope and possibility for the treatment of AKI. This review provides an overview of the common characteristics, treatments, and associated adverse effects of AKI. The classification and bioavailability of polyphenols as well as their therapeutic role in AKI and potential possible effects are outlined. The potential therapeutic effects of polyphenol-based nanoparticles on AKI and the underlying mechanisms are discussed.
Collapse
Affiliation(s)
- Xiaohua Liu
- Henan Science and Technology Innovation Promotion Center, Zhengzhou 450046, China
| | - Yike Guo
- Department of Pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiangpeng Pan
- Department of Pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
| | - Tingting Wu
- Department of Pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
| | - Bing Zhao
- Henan Finance University, Zhengzhou 450046, China
| | - Shuyi Wei
- Plastic Surgery Department, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, China.
| | - Wei Jiang
- Department of Pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Liu
- Department of Pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
| |
Collapse
|
20
|
Iglesias-Carres L, Mas-Capdevila A, Bravo FI, Suárez M, Arola-Arnal A, Muguerza B. Sex Differences in the Absorption, Disposition, Metabolism, and Excretion of Grape Seed Proanthocyanidins in Prepubescent Rats. Mol Nutr Food Res 2024; 68:e2400399. [PMID: 39194387 DOI: 10.1002/mnfr.202400399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/25/2024] [Indexed: 08/29/2024]
Abstract
SCOPE The absorption, disposition, metabolism, and excretion (ADME) of phenolic compounds are key factors in determining their bioactivity. The group demonstrates that the ADME of a Grape Seed Proanthocyanidin Extract (GSPE) depends on sex in adult rats and specifically, methylated metabolites are only quantified in brain male adult rats. The aim of this study is to determine whether these differences exist before puberty. METHODS AND RESULTS Prepubescent 4-week-old male and female Wistar rats are administered GSPE at a dose of 1000 mg kg-1. Plasma, liver, mesenteric white adipose tissue (MWAT), brain, and kidneys are extracted excised 2 h after GSPE administration, and the PAs metabolite profile is studied by HPLC-ESI-MS/MS. Moreover, plasma estradiol and brain and liver catechol-O-methyltransferase (COMT) protein levels are also studied. Results showed that there are no differences in plasma and brain among sexes and only differences are observed in liver, MWAT, and kidney with individual metabolites. This agrees with the lack of differences in estradiol and COMT levels among sexes. However, the ADME of PAs metabolites is higher in male rats. CONCLUSIONS The results demonstrate lack of sex-dependence in metabolite profile in prepubescent rats, suggesting that sex differences in the metabolism of GSPE occur due to puberty.
Collapse
Affiliation(s)
- Lisard Iglesias-Carres
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, Tarragona, 43007, Spain
| | - Anna Mas-Capdevila
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, Tarragona, 43007, Spain
| | - Francisca I Bravo
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, Tarragona, 43007, Spain
- Nutrigenomics Research Group, Institut d'Investigació Sanitària Pere Virgili, C/ Marcel·lí Domingo s/n, Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), University Rovira i Virgili, C/ Marcel·lí Domingo s/n, Tarragona, 43007, Spain
| | - Manuel Suárez
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, Tarragona, 43007, Spain
- Nutrigenomics Research Group, Institut d'Investigació Sanitària Pere Virgili, C/ Marcel·lí Domingo s/n, Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), University Rovira i Virgili, C/ Marcel·lí Domingo s/n, Tarragona, 43007, Spain
| | - Anna Arola-Arnal
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, Tarragona, 43007, Spain
- Nutrigenomics Research Group, Institut d'Investigació Sanitària Pere Virgili, C/ Marcel·lí Domingo s/n, Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), University Rovira i Virgili, C/ Marcel·lí Domingo s/n, Tarragona, 43007, Spain
| | - Begoña Muguerza
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, Tarragona, 43007, Spain
- Nutrigenomics Research Group, Institut d'Investigació Sanitària Pere Virgili, C/ Marcel·lí Domingo s/n, Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), University Rovira i Virgili, C/ Marcel·lí Domingo s/n, Tarragona, 43007, Spain
| |
Collapse
|
21
|
Wang L, Huang Y, Ren Y, Wang H, Ding Y, Ren G, Wang T, Li Z, Qiu J. Effect of ethanol addition on the physicochemical, structural and in vitro digestive properties of Tartary buckwheat starch-quercetin/rutin complexes. Food Chem 2024; 451:139350. [PMID: 38663246 DOI: 10.1016/j.foodchem.2024.139350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/09/2024] [Accepted: 04/10/2024] [Indexed: 05/26/2024]
Abstract
The effects of ethanol on the physicochemical, structural and in vitro digestive properties of Tartary buckwheat starch-quercetin/rutin complexes (e-TBSQ and e-TBSR) were investigated. Ethanol restricted the gelatinization of Tartary buckwheat starch (TBS), which resulted an increase in ∆H, G' and G" as well as a decrease in apparent viscosity of e-TBSQ and e-TBSR. The particle size, scanning electron microscopy and X-ray diffraction results showed that ethanol influenced the morphological structure of TBS granules and the starch crystalline structure in e-TBSQ and e-TBSR changed from B-type to V-type when the ethanol concentration was 25%. Saturation transfer difference-nuclear magnetic resonance results revealed that ethanol weakened the binding ability of quercetin/rutin to TBS in e-TBSQ and e-TBSR, leading to a change in the binding site on the quercetin structural unit. The residual ungelatinized TBS granules in e-TBSQ and e-TBSR induced a high slowly digestible starch content, and thus displayed a "resistant-to-digestion".
Collapse
Affiliation(s)
- Libo Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China.
| | - Yilin Huang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China; School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Yanjuan Ren
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Haoran Wang
- College of Food Science and Engineering, Beijing University of Agriculture, Changping, Beijing 102206, China
| | - Yue Ding
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Guangyue Ren
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Tongtong Wang
- Institute of Quality Standard and Testing Technology for Agri-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Zaigui Li
- Department of Nutrition and Health, China Agricultural University, No.17 Qinghuadonglu, Haidian, Beijing 100083, China
| | - Ju Qiu
- Department of Nutrition and Health, China Agricultural University, No.17 Qinghuadonglu, Haidian, Beijing 100083, China.
| |
Collapse
|
22
|
Zheng Y, Ma Y, Xiong Q, Zhu K, Weng N, Zhu Q. The role of artificial intelligence in the development of anticancer therapeutics from natural polyphenols: Current advances and future prospects. Pharmacol Res 2024; 208:107381. [PMID: 39218422 DOI: 10.1016/j.phrs.2024.107381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/06/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Natural polyphenols, abundant in the human diet, are derived from a wide variety of sources. Numerous preclinical studies have demonstrated their significant anticancer properties against various malignancies, making them valuable resources for drug development. However, traditional experimental methods for developing anticancer therapies from natural polyphenols are time-consuming and labor-intensive. Recently, artificial intelligence has shown promising advancements in drug discovery. Integrating AI technologies into the development process for natural polyphenols can substantially reduce development time and enhance efficiency. In this study, we review the crucial roles of natural polyphenols in anticancer treatment and explore the potential of AI technologies to aid in drug development. Specifically, we discuss the application of AI in key stages such as drug structure prediction, virtual drug screening, prediction of biological activity, and drug-target protein interaction, highlighting the potential to revolutionize the development of natural polyphenol-based anticancer therapies.
Collapse
Affiliation(s)
- Ying Zheng
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Yifei Ma
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Qunli Xiong
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Kai Zhu
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian 350011, PR China
| | - Ningna Weng
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian 350011, PR China
| | - Qing Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, Sichuan 610041, China.
| |
Collapse
|
23
|
Yang Y, Du Y, Cui B. Polyphenols targeting multiple molecular targets and pathways for the treatment of vitiligo. Front Immunol 2024; 15:1387329. [PMID: 39119340 PMCID: PMC11306171 DOI: 10.3389/fimmu.2024.1387329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Vitiligo, a pigmentary autoimmune disorder, is marked by the selective loss of melanocytes in the skin, leading to the appearance of depigmented patches. The principal pathological mechanism is the melanocyte destruction mediated by CD8+ T cells, modulated by oxidative stress and immune dysregulation. Vitiligo affects both physical health and psychological well-being, diminishing the quality of life. Polyphenols, naturally occurring compounds with diverse pharmacological properties, including antioxidant and anti-inflammatory activities, have demonstrated efficacy in managing various dermatological conditions through multiple pathways. This review provides a comprehensive analysis of vitiligo and the therapeutic potential of natural polyphenolic compounds. We examine the roles of various polyphenols in vitiligo management through antioxidant and immunomodulatory effects, melanogenesis promotion, and apoptosis reduction. The review underscores the need for further investigation into the precise molecular mechanisms of these compounds in vitiligo treatment and the exploration of their combination with current therapies to augment therapeutic outcomes.
Collapse
Affiliation(s)
| | | | - Bingnan Cui
- Department of Dermatology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
24
|
da Costa KCM, Oliveira LDS, Silva JC, Santana TS, de Freitas RA, Bressan AFM, Gómez-Alonso S, Pérez-Navarro J, Pertuzatti PB, Giachini FR. Enhancing Vascular Health and Lowering Blood Pressure in Spontaneously Hypertensive Rats through Syrah Grape ( Vitis vinifera) Pomace: The Role of Phenolic Compounds. Nutrients 2024; 16:2312. [PMID: 39064756 PMCID: PMC11279649 DOI: 10.3390/nu16142312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND The beneficial properties of wine by-products include actions that help prevent and treat cardiovascular conditions such as hypertension, primarily due to their antioxidant effects. Novel pharmacotherapies are being developed to treat arterial hypertension, including investigations into natural products exhibiting biological activity, necessitating rigorous evaluation of their efficacy and safety. This study aimed to identify and quantify phenolic compounds in Syrah (Vitis vinifera) grapes grown in the Brazilian Cerrado and their presence in winemaking by-products. It also examined the effects of grape pomace on blood pressure. METHODS Fresh grapes, pomace, and lees, were subjected to spectrophotometric determination of total phenolic compounds, followed by identification and quantification using HPLC-DAD-ESI-MSn. Normotensive male rats (Wistar) and spontaneously hypertensive rats (SHR) received grape pomace-enriched (150 or 300 mg/kg/day, 14 days) or standard chow. Indirect arterial pressure was assessed, while vascular reactivity was evaluated in mesenteric resistance arteries. RESULTS Pomace samples exhibited higher total phenolic compound concentrations than grapes or lees. Seven derivatives of hydroxycinnamic acids and twenty-one flavonols were identified. Quercetin-3-glucoside and ethyl caffeate were the most abundant phenolic compounds. Grape pomace-enriched chow demonstrated a dose-dependent hypotensive effect in rats. CONCLUSION the abundance of flavonols and hydroxycinnamic acids, combined with their hypotensive effects, underscores the therapeutic potential of fine wine-making by-products produced in the Brazilian Cerrado.
Collapse
Affiliation(s)
- Kelly C. M. da Costa
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças 78060-900, Brazil
| | - Lorrayne de S. Oliveira
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças 78060-900, Brazil
| | - Júlia C. Silva
- Institute of Exact and Earth Sciences, Federal University of Mato Grosso, Barra do Garças 78060-900, Brazil
| | - Taynara S. Santana
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças 78060-900, Brazil
| | - Raiany A. de Freitas
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças 78060-900, Brazil
| | - Alecsander F. M. Bressan
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças 78060-900, Brazil
| | - Sérgio Gómez-Alonso
- Regional Institute of Applied Scientific Research, University of Castilla-La Mancha, 13071 Ciudad Real, Spain (J.P.-N.)
| | - José Pérez-Navarro
- Regional Institute of Applied Scientific Research, University of Castilla-La Mancha, 13071 Ciudad Real, Spain (J.P.-N.)
| | - Paula B. Pertuzatti
- Institute of Exact and Earth Sciences, Federal University of Mato Grosso, Barra do Garças 78060-900, Brazil
| | - Fernanda R. Giachini
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças 78060-900, Brazil
- Institute of Biological Sciences, Federal University of Goias, Goiania 74690-900, Brazil
| |
Collapse
|
25
|
Liu H, Guo X, Jiang K, Shi B, Liu L, Hou R, Chen G, Farag MA, Yan N, Liu L. Dietary polyphenols regulate appetite mechanism via gut-brain axis and gut homeostasis. Food Chem 2024; 446:138739. [PMID: 38412807 DOI: 10.1016/j.foodchem.2024.138739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/04/2024] [Accepted: 02/10/2024] [Indexed: 02/29/2024]
Abstract
Nowadays, due to the rise of fast-food consumption, the metabolic diseases are increasing as a result of high-sugar and high-fat diets. Therefore, there is an urgent need for natural, healthy and side-effect-free diets in daily life. Whole grain supplementation can enhance satiety and regulate energy metabolism, effects that have been attributed to polyphenol content. Dietary polyphenols interact with gut microbiota to produce intermediate metabolites that can regulate appetite while also enhancing prebiotic effects. This review considers how interactions between gut metabolites and dietary polyphenols might regulate appetite by acting on the gut-brain axis. In addition, further advances in the study of dietary polyphenols and gut microbial metabolites on energy metabolism and gut homeostasis are summarized. This review contributes to a better understanding of how dietary polyphenols regulate appetite via the gut-brain axis, thereby providing nutritional references for citizens' dietary preferences.
Collapse
Affiliation(s)
- Hongyan Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Xue Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Kexin Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Boshan Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, NE, USA
| | - Ruyan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Guijie Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Ning Yan
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, No. 11 Forth Longitudinal Keyuan Rd, Laoshan District, Qingdao 266101, China
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
26
|
Masiala A, Vingadassalon A, Aurore G. Polyphenols in edible plant leaves: an overview of their occurrence and health properties. Food Funct 2024; 15:6847-6882. [PMID: 38853513 DOI: 10.1039/d4fo00509k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Edible plant leaves (EPLs) constitute a major renewable functional plant biomass available all year round, providing an essential source of polyphenols in the global diet. Polyphenols form a large family of antioxidant molecules. They protect against the harmful effects of free radicals, strengthen immunity and stimulate the body's natural defenses thanks to their antibacterial and antiviral functions. This study refers to phenolic compounds from 50 edible plant leaves divided into four categories: green leafy vegetables, underutilized leafy vegetables, leafy spices and leafy drinks. It provides data on the identification, occurrence and pharmacological functions of polyphenols contained in EPLs, and provides a better understanding of trends and gaps in their consumption and study. Certain EPLs, such as moringa (Moringa oleifera Lam.), tea (Camellia sinensis L.) and several leafy spices of the Lamiaceae family, reveal important characteristics and therapeutic potential. The polyphenol composition of EPLs makes them functional plants that offer relevant solutions in the fight against obesity, the management of food insecurity and the prevention of chronic diseases.
Collapse
Affiliation(s)
- Anthony Masiala
- Université des Antilles, COVACHIM M2E (EA 3592), UFR SEN, Campus de Fouillole, F-97 110 Pointe-à-Pitre, France.
| | - Audrey Vingadassalon
- Université des Antilles, COVACHIM M2E (EA 3592), UFR SEN, Campus de Fouillole, F-97 110 Pointe-à-Pitre, France.
| | - Guylène Aurore
- Université des Antilles, COVACHIM M2E (EA 3592), UFR SEN, Campus de Fouillole, F-97 110 Pointe-à-Pitre, France.
| |
Collapse
|
27
|
Martemucci G, Khalil M, Di Luca A, Abdallah H, D’Alessandro AG. Comprehensive Strategies for Metabolic Syndrome: How Nutrition, Dietary Polyphenols, Physical Activity, and Lifestyle Modifications Address Diabesity, Cardiovascular Diseases, and Neurodegenerative Conditions. Metabolites 2024; 14:327. [PMID: 38921462 PMCID: PMC11206163 DOI: 10.3390/metabo14060327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Several hallmarks of metabolic syndrome, such as dysregulation in the glucose and lipid metabolism, endothelial dysfunction, insulin resistance, low-to-medium systemic inflammation, and intestinal microbiota dysbiosis, represent a pathological bridge between metabolic syndrome and diabesity, cardiovascular, and neurodegenerative disorders. This review aims to highlight some therapeutic strategies against metabolic syndrome involving integrative approaches to improve lifestyle and daily diet. The beneficial effects of foods containing antioxidant polyphenols, intestinal microbiota control, and physical activity were also considered. We comprehensively examined a large body of published articles involving basic, animal, and human studie, as well as recent guidelines. As a result, dietary polyphenols from natural plant-based antioxidants and adherence to the Mediterranean diet, along with physical exercise, are promising complementary therapies to delay or prevent the onset of metabolic syndrome and counteract diabesity and cardiovascular diseases, as well as to protect against neurodegenerative disorders and cognitive decline. Modulation of the intestinal microbiota reduces the risks associated with MS, improves diabetes and cardiovascular diseases (CVD), and exerts neuroprotective action. Despite several studies, the estimation of dietary polyphenol intake is inconclusive and requires further evidence. Lifestyle interventions involving physical activity and reduced calorie intake can improve metabolic outcomes.
Collapse
Affiliation(s)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70121 Bari, Italy;
| | - Alessio Di Luca
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (A.D.L.); (A.G.D.)
| | - Hala Abdallah
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70121 Bari, Italy;
| | | |
Collapse
|
28
|
Lv H, Qian D, Xu S, Fan G, Qian Q, Cha D, Qian X, Zhou G, Lu B. Modulation of long noncoding RNAs by polyphenols as a novel potential therapeutic approach in lung cancer: A comprehensive review. Phytother Res 2024; 38:3240-3267. [PMID: 38739454 DOI: 10.1002/ptr.8202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 05/16/2024]
Abstract
Lung cancer stands as a formidable global health challenge, necessitating innovative therapeutic strategies. Polyphenols, bioactive compounds synthesized by plants, have garnered attention for their diverse health benefits, particularly in combating various cancers, including lung cancer. The advent of whole-genome and transcriptome sequencing technologies has illuminated the pivotal roles of long noncoding RNAs (lncRNAs), operating at epigenetic, transcriptional, and posttranscriptional levels, in cancer progression. This review comprehensively explores the impact of polyphenols on both oncogenic and tumor-suppressive lncRNAs in lung cancer, elucidating on their intricate regulatory mechanisms. The comprehensive examination extends to the potential synergies when combining polyphenols with conventional treatments like chemotherapy, radiation, and immunotherapy. Recognizing the heterogeneity of lung cancer subtypes, the review emphasizes the need for the integration of nanotechnology for optimized polyphenol delivery and personalized therapeutic approaches. In conclusion, we collect the latest research, offering a holistic overview of the evolving landscape of polyphenol-mediated modulation of lncRNAs in lung cancer therapy. The integration of polyphenols and lncRNAs into multidimensional treatment strategies holds promise for enhancing therapeutic efficacy and navigating the challenges associated with lung cancer treatment.
Collapse
Affiliation(s)
- Hong Lv
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Dawei Qian
- Department of Thoracic Surgery, Tongling Yi'an District People's Hospital, Tongling, China
| | - Shuhua Xu
- Department of Cardiothoracic Surgery, Dongtai Hospital of Traditional Chinese Medicine, Dongtai, China
| | - Guiqin Fan
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Qiuhong Qian
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Dongsheng Cha
- Department of Thoracic Surgery, Tongling Yi'an District People's Hospital, Tongling, China
| | - Xingjia Qian
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Guoping Zhou
- Department of Cardiothoracic Surgery, Dongtai Hospital of Traditional Chinese Medicine, Dongtai, China
| | - Bing Lu
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| |
Collapse
|
29
|
Ding C, Zhu Y, Huo Z, Yang S, Zhou Y, Yiming A, Chen W, Liu S, Qian K, Huang L. Pt/NiFe-LDH hybrids for quantification and qualification of polyphenols. Mater Today Bio 2024; 26:101047. [PMID: 38638703 PMCID: PMC11025000 DOI: 10.1016/j.mtbio.2024.101047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024] Open
Abstract
Polyphenols with antioxidant properties are of significant interest in medical and pharmaceutical applications. Given the diverse range of activities of polyphenols in vivo, accurate detection of these compounds plays a crucial role in nutritional surveillance and pharmaceutical development. Yet, the efficient quantitation of polyphenol contents and qualification of monomer compositions present a notable challenge when studying polyphenol bioavailability. In this study, platinum-modified nickel-iron layered double hydroxide (Pt/NiFe-LDH hybrids) were designed to mimic peroxidases for colorimetric analysis and act as enhanced matrices for laser desorption/ionization mass spectrometry (LDI MS) to quantify and qualify polyphenols. The hybrids exhibited an enzymatic activity of 33.472 U/mg for colorimetric assays, facilitating the rapid and direct quantitation of total tea polyphenols within approximately 1 min. Additionally, the heterogeneous structure and exposed hydroxyl groups on the hybrid surface contributed to photoelectric enhancement and in-situ enrichment of polyphenols in LDI MS. This study introduces an innovative approach to detect polyphenols using advanced materials, potentially inspiring the future development and applications of other photoactive nanomaterials.
Collapse
Affiliation(s)
- Chunmeng Ding
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Shanghai Academy of Experimental Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Yuexing Zhu
- Second Military Medical University, Changhai Hospital, Department of Lab Diagnostics, Shanghai, 200433, P. R. China
| | - Zhiyuan Huo
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Shouzhi Yang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Shanghai Academy of Experimental Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Yan Zhou
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Ayizekeranmu Yiming
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Shanghai Academy of Experimental Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Wei Chen
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Shanghai Academy of Experimental Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Shanrong Liu
- Second Military Medical University, Changhai Hospital, Department of Lab Diagnostics, Shanghai, 200433, P. R. China
| | - Kun Qian
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Shanghai Academy of Experimental Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Lin Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| |
Collapse
|
30
|
El Oirdi M. Harnessing the Power of Polyphenols: A New Frontier in Disease Prevention and Therapy. Pharmaceuticals (Basel) 2024; 17:692. [PMID: 38931359 PMCID: PMC11206774 DOI: 10.3390/ph17060692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
There are a wide variety of phytochemicals collectively known as polyphenols. Their structural diversity results in a broad range of characteristics and biological effects. Polyphenols can be found in a variety of foods and drinks, including fruits, cereals, tea, and coffee. Studies both in vitro and in vivo, as well as clinical trials, have shown that they possess potent antioxidant activities, numerous therapeutic effects, and health advantages. Dietary polyphenols have demonstrated the potential to prevent many health problems, including obesity, atherosclerosis, high blood sugar, diabetes, hypertension, cancer, and neurological diseases. In this paper, the protective effects of polyphenols and the mechanisms behind them are investigated in detail, citing the most recent available literature. This review aims to provide a comprehensive overview of the current knowledge on the role of polyphenols in preventing and managing chronic diseases. The cited publications are derived from in vitro, in vivo, and human-based studies and clinical trials. A more complete understanding of these naturally occurring metabolites will pave the way for the development of novel polyphenol-rich diet and drug development programs. This, in turn, provides further evidence of their health benefits.
Collapse
Affiliation(s)
- Mohamed El Oirdi
- Department of Life Sciences, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia;
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|
31
|
Kantati YT, Kodjo MK, Lefranc B, Basille-Dugay M, Hupin S, Schmitz I, Leprince J, Gbeassor M, Vaudry D. Neuroprotective Effect of Sterculia setigera Leaves Hydroethanolic Extract. J Mol Neurosci 2024; 74:44. [PMID: 38630337 DOI: 10.1007/s12031-024-02222-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 04/06/2024] [Indexed: 04/19/2024]
Abstract
Plants are a valuable source of information for pharmacological research and new drug discovery. The present study aimed to evaluate the neuroprotective potential of the leaves of the medicinal plant Sterculia setigera. In vitro, the effect of Sterculia setigera leaves dry hydroethanolic extract (SSE) was tested on cultured cerebellar granule neurons (CGN) survival when exposed to hydrogen peroxide (H2O2) or 6-hydroxydopamine (6-OHDA), using the viability probe fluorescein diacetate (FDA), a lactate dehydrogenase (LDH) activity assay, an immunocytochemical staining against Gap 43, and the quantification of the expression of genes involved in apoptosis, necrosis, or oxidative stress. In vivo, the effect of intraperitoneal (ip) injection of SSE was assessed on the developing brain of 8-day-old Wistar rats exposed to ethanol neurotoxicity by measuring caspase-3 activity on cerebellum homogenates, the expression of some genes in tissue extracts, the thickness of cerebellar cortical layers and motor coordination. In vitro, SSE protected CGN against H2O2 and 6-OHDA-induced cell death at a dose of 10 µg/mL, inhibited the expression of genes Casp3 and Bad, and upregulated the expression of Cat and Gpx7. In vivo, SSE significantly blocked the deleterious effect of ethanol by reducing the activity of caspase-3, inhibiting the expression of Bax and Tp53, preventing the reduction of the thickness of the internal granule cell layer of the cerebellar cortex, and restoring motor functions. Sterculia setigera exerts neuroactive functions as claimed by traditional medicine and should be a good candidate for the development of a neuroprotective treatment against neurodegenerative diseases.
Collapse
Affiliation(s)
- Yendubé T Kantati
- Univ Rouen Normandie, Normandie Univ, NorDiC UMR 1239, 76000, Inserm, Rouen, France
- Laboratory of Physiology/Pharmacology, Physiopathology Bioactive Substances and Innocuity Research Unit (PBSI), Faculty of Sciences, of Lomé, Lomé, Togo, 01BP 1515
| | - Magloire K Kodjo
- Laboratory of Physiology/Pharmacology, Physiopathology Bioactive Substances and Innocuity Research Unit (PBSI), Faculty of Sciences, of Lomé, Lomé, Togo, 01BP 1515
| | - Benjamin Lefranc
- Univ Rouen Normandie, Normandie Univ, NorDiC UMR 1239, 76000, Inserm, Rouen, France
- Univ Rouen Normandie, CNRS, Normandie Univ, HeRacLeS US 51 UAR 2026, 76000, Inserm, Rouen, France
| | - Magali Basille-Dugay
- Univ Rouen Normandie, Normandie Univ, NorDiC UMR 1239, 76000, Inserm, Rouen, France
| | - Sébastien Hupin
- UMR 6014, Normandie Université, COBRA, Université de Rouen, INSA de Rouen-Normandie, CNRS, IRCOF, 3038, Mont Saint Aignan Cedex, FR, France
| | - Isabelle Schmitz
- UMR 6014, Normandie Université, COBRA, Université de Rouen, INSA de Rouen-Normandie, CNRS, IRCOF, 3038, Mont Saint Aignan Cedex, FR, France
- UMR 6270, Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, 76000, Rouen, France
| | - Jérôme Leprince
- Univ Rouen Normandie, Normandie Univ, NorDiC UMR 1239, 76000, Inserm, Rouen, France
- Univ Rouen Normandie, CNRS, Normandie Univ, HeRacLeS US 51 UAR 2026, 76000, Inserm, Rouen, France
| | - Messanvi Gbeassor
- Laboratory of Physiology/Pharmacology, Physiopathology Bioactive Substances and Innocuity Research Unit (PBSI), Faculty of Sciences, of Lomé, Lomé, Togo, 01BP 1515
| | - David Vaudry
- Univ Rouen Normandie, CNRS, Normandie Univ, HeRacLeS US 51 UAR 2026, 76000, Inserm, Rouen, France.
- UMR 1245, Laboratory of Cancer and Brain Genomics, Univ Rouen Normandie, Normandie Univ, 76000, Inserm, Rouen, France.
| |
Collapse
|
32
|
Žagar T, Frlan R, Kočevar Glavač N. Using Subcritical Water to Obtain Polyphenol-Rich Extracts with Antimicrobial Properties. Antibiotics (Basel) 2024; 13:334. [PMID: 38667010 PMCID: PMC11047479 DOI: 10.3390/antibiotics13040334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024] Open
Abstract
The use of green extraction methods that meet the criteria of sustainable and environmentally friendly technologies has been increasing in recent decades due to their many benefits. In this respect, extracts obtained using subcritical water are also gaining increased attention because of their potential antioxidant and antimicrobial properties. Their antimicrobial activity is mainly due to the presence of various polyphenolic compounds. Although the exact mechanism of the antibacterial action of polyphenolic compounds has not yet been fully investigated and described, polyphenols are known to affect the bacterial cell at several cellular levels; among other things, they cause changes and ruptures in the cell membranes of the bacterial cell, affect the inactivation of bacterial enzymes and damage bacterial DNA. The difference in the strength of the antimicrobial activity of the extracts is most likely a result of differences in their lipophilicity and in the number and position of hydroxyl groups and double bonds in the chemical structure of polyphenols. By changing the extraction conditions, especially the temperature, during subcritical water extraction, we affect the solubility of the compounds we want to extract. In general, as the temperature increases, the solubility of polyphenolic compounds also increases, and the reduction of the surface tension of subcritical water at higher temperatures also enables faster dissolution of polyphenolic compounds. Different bacterial strains have different sensitivity to different extracts. However, extracts obtained with subcritical water extraction demonstrate strong antimicrobial activity compared to extracts obtained with conventional methods.
Collapse
Affiliation(s)
- Tjaša Žagar
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| | - Rok Frlan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| | - Nina Kočevar Glavač
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| |
Collapse
|
33
|
Del Fabbro L, Sari MHM, Ferreira LM, Furian AF. Natural compounds mitigate mycotoxins-induced neurotoxicity by modulating oxidative tonus: in vitro and in vivo insights - a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:438-459. [PMID: 38408272 DOI: 10.1080/19440049.2024.2316750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/05/2024] [Indexed: 02/28/2024]
Abstract
This review explores the repercussions of mycotoxin contamination in food and feed, emphasising potential threats to agriculture, animal husbandry and public health. The primary objective is to make a comprehensive assessment of the neurotoxic consequences of mycotoxin exposure, an aspect less explored in current literature. Emphasis is placed on prominent mycotoxins, including aflatoxins, fumonisins, zearalenone (ZEA) and ochratoxins, known for inducing acute and chronic diseases such as liver damage, genetic mutation and cancer. To elucidate the effects, animal studies were conducted, revealing an association between mycotoxin exposure and neurological damage. This encompasses impairments in learning and memory, motor alterations, anxiety and depression. The underlying mechanisms involve oxidative stress, disrupting the balance between reactive oxygen species (ROS) and antioxidant capacity. This oxidative stress is linked to neuronal damage, brain inflammation, neurochemical imbalance, and subsequent behavioural changes. The review underscores the need for preventive measures against mycotoxin exposure. While complete avoidance is ideal, exploration into the potential use of antioxidants as a viable solution is discussed, given the widespread contamination of many food products. Specifically, the protective role of natural compounds, such as polyphenols, is highlighted, showcasing their efficacy in mitigating mycotoxicosis in the central nervous system (CNS), as evidenced by findings in various animal models. In summary, countering mycotoxin-induced neurotoxicity requires a multifaceted approach. The identified natural compounds show promise, but their practical use hinges on factors like bioavailability, toxicity and understanding their mechanisms of action. Extensive research is crucial, considering the diverse responses to different mycotoxins and neurological conditions. Successful implementation relies on factors such as the specific mycotoxin(s) involved and achievable effective concentrations. Further research and clinical trials are imperative to establish the safety and efficacy of these compounds in practical applications.
Collapse
Affiliation(s)
- Lucian Del Fabbro
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, Santa Maria, Brasil
| | | | - Luana Mota Ferreira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, Brasil
| | - Ana Flavia Furian
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos e Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Brasil
| |
Collapse
|
34
|
Liu Y, Deng J, Zhao T, Yang X, Zhang J, Yang H. Bioavailability and mechanisms of dietary polyphenols affected by non-thermal processing technology in fruits and vegetables. Curr Res Food Sci 2024; 8:100715. [PMID: 38511155 PMCID: PMC10951518 DOI: 10.1016/j.crfs.2024.100715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/19/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
Plant polyphenols play an essential role in human health. The bioactivity of polyphenols depends not only on their content but also on their bioavailability in food. The processing techniques, especially non-thermal processing, improve the retention and bioavailability of polyphenolic substances. However, there are limited studies summarizing the relationship between non-thermal processing, the bioavailability of polyphenols, and potential mechanisms. This review aims to summarize the effects of non-thermal processing techniques on the content and bioavailability of polyphenols in fruits and vegetables. Importantly, the disruption of cell walls and membranes, the inhibition of enzyme activities, free radical reactions, plant stress responses, and interactions of polyphenols with the food matrix caused by non-thermal processing are described. This study aims to enhance understanding of the significance of non-thermal processing technology in preserving the nutritional properties of dietary polyphenols in plant-based foods. It also offers theoretical support for the contribution of non-thermal processing technology in improving food nutrition.
Collapse
Affiliation(s)
- Yichen Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jianjun Deng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Tong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xiaojie Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Juntao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
35
|
Ramaiah P, Baljon KJ, Hjazi A, Qasim MT, Salih Al-Ani OA, Imad S, Hussien BM, Alsalamy A, Garousi N. Dietary polyphenols and the risk of metabolic syndrome: a systematic review and meta-analysis. BMC Endocr Disord 2024; 24:26. [PMID: 38429765 PMCID: PMC10905819 DOI: 10.1186/s12902-024-01556-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/12/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Accumulating evidence has suggested that dietary polyphenols may be protective against metabolic syndrome (MetS); however, the available evidence is contradictory. The aim of this meta-analysis was to assess the association between dietary intake of polyphenols and the odds of MetS. METHODS The PubMed and Scopus databases were systematically searched to obtain eligible studies. The risk of MetS for the highest versus the lowest intakes of total, subclasses and individual polyphenols were examined by pooling odds ratios (OR) and 95% confidence intervals (95%CI) using the random effects model. RESULTS A total of 14 studies (6 cohort and 8 cross-sectional studies) involving a total of 50,366 participants with 10,879 cases of MetS were included. When various polyphenol compounds were pooled, they were significantly related to a 22% decreased odds of MetS (([5 studies]; OR: 0.78; 95%CI: 0.72-0.85). Higher intakes of total flavonoids (([9 studies]; OR: 0.78; 95%CI: 0.72-0.85), flavan-3-ols (([2 studies]; OR: 0.64; 95%CI: 0.43-0.94), isoflavones (([3 studies]; OR: 0.84; 95%CI: 0.75-0.93), stilbenes (([4 studies]; OR: 0.86; 95%CI: 0.76-0.97), flavones (([2 studies]; OR: 0.79; 95%CI: 0.71-0.89), and quercetin (([2 studies]; OR: 0.63; 95%CI: 0.43-0.93) were also significantly associated with a decreased risk of MetS. The associations were not modified by the age of the participants. No association was found for total polyphenols, phenolic acids, lignans, anthocyanins, and flavonols. CONCLUSION The results of this meta-analysis supported that higher polyphenol intake can lower the risk of MetS.
Collapse
Affiliation(s)
| | | | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Maytham T Qasim
- Department of Anesthesia, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | | | - Shad Imad
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Ali Alsalamy
- College of medical technology, Imam Ja'afar Al-Sadiq University, Al-Muthanna, 66002, Iraq
| | - Nazila Garousi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
36
|
He T, Zhao L, Wang L, Liu L, Liu X, Dhital S, Hu Z, Wang K. Gallic acid forms V-amylose complex structure with starch through hydrophobic interaction. Int J Biol Macromol 2024; 260:129408. [PMID: 38228203 DOI: 10.1016/j.ijbiomac.2024.129408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/09/2023] [Accepted: 01/09/2024] [Indexed: 01/18/2024]
Abstract
This study aimed to investigate the role of amylose and amylopectin in the formation of starch-polyphenol complex and elucidate the interaction mechanisms. Gallic acid (GA) was used to complex with maize starch with various amylose contents. Results showed GA formed V-type crystals with normal maize starch (NMS) and high amylose maize starch (HAMS), while higher relative crystallinity was exhibited in HAMS-GA complexes than NMS counterparts. Molecular structure analysis revealed more amylose in GA-starch complexes than in treated starch counterparts without GA, and this was more apparent in HAMS than NMS, implying amylose is preferred to complex with GA than amylopectin. FTIR detected higher R1047/1022 value in starch-GA complexes than their starch counterparts without GA, suggesting increased short-range ordered structrure of complexes. Typical signatures of hydrophobic interactions were further revealed by isothermal titration calorimetry, indicating the complexation of GA to starch is mainly through hydrophobic bonds. More binding sites were observed for HAMS (72.50) than NMS (11.33), which proves the preferences of amylose to bind with GA. Molecular dynamics simulated the complexation of GA to amylose, and confirmed hydrophobic bond is the main interaction force. These findings would provide guidance for precise design and utilization of starch-polyphenol complexes in functional foods.
Collapse
Affiliation(s)
- Ting He
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton Campus, VIC 3800, Australia
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Liang Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Sushil Dhital
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton Campus, VIC 3800, Australia
| | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.
| |
Collapse
|
37
|
Osakabe N, Shimizu T, Fujii Y, Fushimi T, Calabrese V. Sensory Nutrition and Bitterness and Astringency of Polyphenols. Biomolecules 2024; 14:234. [PMID: 38397471 PMCID: PMC10887135 DOI: 10.3390/biom14020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Recent studies have demonstrated that the interaction of dietary constituents with taste and olfactory receptors and nociceptors expressed in the oral cavity, nasal cavity and gastrointestinal tract regulate homeostasis through activation of the neuroendocrine system. Polyphenols, of which 8000 have been identified to date, represent the greatest diversity of secondary metabolites in plants, most of which are bitter and some of them astringent. Epidemiological studies have shown that polyphenol intake contributes to maintaining and improving cardiovascular, cognitive and sensory health. However, because polyphenols have very low bioavailability, the mechanisms of their beneficial effects are unknown. In this review, we focused on the taste of polyphenols from the perspective of sensory nutrition, summarized the results of previous studies on their relationship with bioregulation and discussed their future potential.
Collapse
Affiliation(s)
- Naomi Osakabe
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, Tokyo 135-8548, Japan
- Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology, Tokyo 135-8548, Japan;
- Department of Bio-Science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, Tokyo 135-8548, Japan; (T.S.); (Y.F.)
| | - Takafumi Shimizu
- Department of Bio-Science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, Tokyo 135-8548, Japan; (T.S.); (Y.F.)
| | - Yasuyuki Fujii
- Department of Bio-Science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, Tokyo 135-8548, Japan; (T.S.); (Y.F.)
| | - Taiki Fushimi
- Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology, Tokyo 135-8548, Japan;
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy;
| |
Collapse
|
38
|
Ma M, Gu M, Zhang S, Yuan Y. Effect of tea polyphenols on chitosan packaging for food preservation: Physicochemical properties, bioactivity, and nutrition. Int J Biol Macromol 2024; 259:129267. [PMID: 38199547 DOI: 10.1016/j.ijbiomac.2024.129267] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Chitosan packaging has been widely studied for food preservation, the application of which is expanded by the incorporation of tea polyphenols. This paper reviews the influence of tea polyphenols incorporation on chitosan-based packaging from the perspectives of physicochemical properties, bioactivity used for food preservation, and nutritional value. The physicochemical properties included optical properties, mechanical properties, water solubility, moisture content, and water vapor barrier property, concluding that the addition of tea polyphenols improved the opacity, water solubility, and water vapor barrier property of chitosan packaging, and the mechanical properties and water content were decreased. The bioactivity used for food preservation, that is antioxidant and antimicrobial properties, is enhanced by tea polyphenols, improving the preservation of food like meat, fruits, and vegetables. In the future, efforts will be needed to improve the mechanical properties of composite film and adjust the formula of tea polyphenols/chitosan composite film to apply to different foods. Besides, the identification and development of high nutritional value tea polyphenol/chitosan composite film is a valuable but challenging task. This review is expected to scientifically guide the application of tea polyphenols in chitosan packaging.
Collapse
Affiliation(s)
- Mengjie Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mingfei Gu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuaizhong Zhang
- Marine Science Research Institute of Shandong Province, Qingdao 266104, China
| | - Yongkai Yuan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
39
|
Su Z, Yao B, Liu G, Fang J. Polyphenols as potential preventers of osteoporosis: A comprehensive review on antioxidant and anti-inflammatory effects, molecular mechanisms, and signal pathways in bone metabolism. J Nutr Biochem 2024; 123:109488. [PMID: 37865383 DOI: 10.1016/j.jnutbio.2023.109488] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
Osteoporosis (OP) is a skeletal disorder characterized by decreased bone density, alterations in bone microstructure, and increased damage to the bones. As the population ages and life expectancy increases, OP has become a global epidemic, drawing attention from scientists and doctors. Because of polyphenols have favorable antioxidant and anti-allergy effects, which are regarded as potential methods to prevent angiocardipathy and OP. Polyphenols offer a promising approach to preventing and treating OP by affecting bone metabolism, reducing bone resolution, maintaining bone density, and lowering the differentiation level of osteoclasts (OC). There are multiple ways in which polyphenols affect bone metabolism. This article provides an overview of how polyphenols inhibit oxidative stress, exert antibacterial effects, and prevent the occurrence of OP. Furthermore, we will explore the regulatory mechanisms and signaling pathways implicated in this process.
Collapse
Affiliation(s)
- Zhan Su
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan, China
| | - Bin Yao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan, China.
| |
Collapse
|
40
|
D'Angelo S. Diet and Aging: The Role of Polyphenol-Rich Diets in Slow Down the Shortening of Telomeres: A Review. Antioxidants (Basel) 2023; 12:2086. [PMID: 38136206 PMCID: PMC10740764 DOI: 10.3390/antiox12122086] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The ends of human chromosomes are defended by DNA-protein complexes named telomeres, which inhibit the chromosomes from fusing with each other and from being known as a double-strand break by DNA reparation proteins. Telomere length is a marker of biological aging, and disfunction of telomeres is related to age-related syndromes. Telomere attrition has been shown to be accelerated by oxidative stress and inflammation. Telomere length has been proven to be positively linked with nutritional status in human and animal scientific research as several nutrients influence it through mechanisms that imitate their function in cellular roles including oxidative stress and inflammation. Data reported in this article support the idea that following a low-in-fat and rich-plant polyphenols food diet seems to be able to slow down the shortening of telomeres.
Collapse
Affiliation(s)
- Stefania D'Angelo
- Department of Medical, Movement and Wellbeing Sciences, Parthenope University, 80133 Naples, Italy
| |
Collapse
|
41
|
Cruz-Molina AVDL, Gonçalves C, Neto MD, Pastrana L, Jauregi P, Amado IR. Whey-pectin microcapsules improve the stability of grape marc phenolics during digestion. J Food Sci 2023; 88:4892-4906. [PMID: 37905716 DOI: 10.1111/1750-3841.16806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023]
Abstract
Grape marc (GM) is an agri-food residue from the wine industry valuable for its high content of phenolic compounds. This study aimed to develop an encapsulation system for GM extract (GME) using food-grade biopolymers resistant to gastric conditions for its potential use as a nutraceutical. For this purpose, a hydroalcoholic GME was prepared with a total phenolics content of 219.62 ± 11.50 mg gallic acid equivalents (GAE)/g dry extract and 1389.71 ± 97.33 µmol Trolox equivalents/g dry extract antioxidant capacity, assessed through ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assay. Moreover, the extract effectively neutralized reactive oxygen species in Caco-2 cells, demonstrating an intracellular antioxidant capacity comparable to Trolox. The GME was encapsulated using whey protein isolate and pectin through nano spray drying (73% yield), resulting in spherical microparticles with an average size of 1 ± 0.5 µm and a polydispersity of 0.717. The encapsulation system protected the microcapsules from simulated gastrointestinal digestion (GID), where at the end of the intestinal phase, 82% of the initial phenolics were bioaccessible compared to 54% in the free GME. Besides, the encapsulated GME displayed a higher antioxidant activity by the ferric reducing antioxidant power assay than the free extract after GID. These results show the potential of this encapsulation system for applying GME as a nutraceutical with a high antioxidant capacity and protective effect against cellular oxidation.
Collapse
Affiliation(s)
| | | | - Mafalda D Neto
- INL-International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Lorenzo Pastrana
- INL-International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Paula Jauregi
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, UK
| | - Isabel R Amado
- INL-International Iberian Nanotechnology Laboratory, Braga, Portugal
| |
Collapse
|
42
|
Ma X, Luo L, Karrar E, Zhang L, Li J. Comparative Study on the Absorption and Metabolism of Pinoresinol and Pinoresinol-4-O-β-D-Glucopyranoside in Mice. Mol Nutr Food Res 2023; 67:e2300536. [PMID: 37891711 DOI: 10.1002/mnfr.202300536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/20/2023] [Indexed: 10/29/2023]
Abstract
SCOPE Lignans are a group of phenolic compounds commonly found in plants, often in the form of glycosides. This study investigates the differences in the digestion, absorption, and metabolism of lignans and their glucosides using pinoresinol (PIN) and pinoresinol-4-O-β-D-glucopyranoside (PMG). METHODS AND RESULTS After oral administration mice PIN and PMG with a dose of 0.1 µmol kg-1 . The results showed that the stomach and small intestine rapidly absorbe PIN and PMG in their prototype form. After oral administration of 0.25 h, serum levels of PIN and PMG reach peak values of 61.14 and 52.97 ng mL-1 , respectively. This indicates a faster PIN absorption rate than PMG, likely due to the glycosides attach to the parent compound, with concentrations of 1574.14 and 876.75 ng g-1 , respectively. Pharmacokinetic analysis reveals that PIN has a greater area under the curve and a longer half-life than PMG in serum and liver. Moreover, mice in the PIN group exhibit higher metabolite levels in the serum and liver compared to those in the PMG group. CONCLUSION The deglycosylation process that occurs during the pickling of white radish facilitates the absorption and metabolism of the lignans fraction in the body.
Collapse
Affiliation(s)
- Xiaoyang Ma
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Lianzhong Luo
- Engineering Research Center of Marine Biopharmaceutical Resource, Fujian Province University, Xiamen Medical College, Xiamen, 361021, China
| | - Emad Karrar
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Lingyu Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Jian Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| |
Collapse
|
43
|
Šudomová M, Hassan STS. Flavonoids with Anti-Herpes Simplex Virus Properties: Deciphering Their Mechanisms in Disrupting the Viral Life Cycle. Viruses 2023; 15:2340. [PMID: 38140581 PMCID: PMC10748012 DOI: 10.3390/v15122340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
The herpes simplex virus (HSV) is a double-stranded DNA human virus that causes persistent infections with recurrent outbreaks. HSV exists in two forms: HSV-1, responsible for oral herpes, and HSV-2, primarily causing genital herpes. Both types can lead to significant complications, including neurological issues. Conventional treatment, involving acyclovir and its derivatives, faces challenges due to drug resistance. This underscores the imperative for continual research and development of new drugs, with a particular emphasis on exploring the potential of natural antivirals. Flavonoids have demonstrated promise in combating various viruses, including those within the herpesvirus family. This review, delving into recent studies, reveals the intricate mechanisms by which flavonoids decode their antiviral capabilities against HSV. By disrupting key stages of the viral life cycle, such as attachment to host cells, entry, DNA replication, latency, and reactivation, flavonoids emerge as formidable contenders in the ongoing battle against HSV infections.
Collapse
Affiliation(s)
- Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 664 61 Rajhrad, Czech Republic;
| | - Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| |
Collapse
|
44
|
Song Y, Jung YS, Park S, Park HS, Lee SJ, Maeng S, Kim H, Kim DO, Park KW, Kang H. Anti-Inflammatory Effects and Macrophage Activation Induced by Bioavailable Cinnamon Polyphenols in Mice. Mol Nutr Food Res 2023; 67:e2200768. [PMID: 37658489 DOI: 10.1002/mnfr.202200768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 06/02/2023] [Indexed: 09/03/2023]
Abstract
SCOPE Cinnamon is a commonly used spice and herb that is rich in polyphenols. Due to the limited bioavailability of oral polyphenols, it remains unclear to which extent they can reach cells and exert a biological effect. This study aims to investigate the impact of bioavailable cinnamon polyphenols on lipopolysaccharide (LPS)-stimulated macrophages. METHODS AND RESULTS A polyphenol fraction is prepared from cinnamon (Cinnamomi ramulus) (CRPF) by boiling cinnamon in water and adsorbing the extract onto a hydrophobic resin. Mice are orally administered CRPF for 7 days and then subjected to three independent experiments: endotoxemia, serum collection, and macrophage isolation. Upon intraperitoneal lipopolysaccharide challenge, CRPF decreases serum levels of inflammatory cytokines, involving suppression of liver and spleen macrophages. When normal macrophages are cultured in serum obtained from CRPF-treated mice, they exhibit an anti-inflammatory phenotype. However, macrophages from CRPF-treated mice show an increased production of inflammatory cytokines when cultured in fetal bovine serum and stimulated with LPS. CONCLUSION The study provides evidence for the presence of bioavailable cinnamon polyphenols with anti-inflammatory properties and macrophage activation. These findings suggest that cinnamon polyphenols have the potential to modulate macrophage function, which could have implications for reducing inflammation and improving immune function.
Collapse
Affiliation(s)
- Youngju Song
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Young Sung Jung
- Department of Food Science and Biotechnology, Kyung Hee University, 1732 Deogyeongdae-ro, Yongin, 17104, Republic of Korea
| | - Sunghyun Park
- Graduate School of East-West Medical Science, Kyung Hee University, 1732 Deogyeongdae-ro, Yongin, 17104, Republic of Korea
| | - Hong Shik Park
- Department of Physical Education, Kyung Hee University, 1732 Deogyeongdae-ro, Yongin, 17104, Republic of Korea
| | - Se Jung Lee
- Department of Genetic Engineering, Kyung Hee University, 1732 Deogyeongdae-ro, Yongin, 17104, Republic of Korea
| | - Sungho Maeng
- Graduate School of East-West Medical Science, Kyung Hee University, 1732 Deogyeongdae-ro, Yongin, 17104, Republic of Korea
| | - Hocheol Kim
- Department of Herbal Pharmacology, Kyung Hee University, 26, Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Dae-Ok Kim
- Department of Food Science and Biotechnology, Kyung Hee University, 1732 Deogyeongdae-ro, Yongin, 17104, Republic of Korea
| | - Kye Won Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon, 16419, Republic of Korea
| | - Hee Kang
- Humanitas College, Kyung Hee University, 1732 Deogyeongdae-ro, Yongin, 17104, Republic of Korea
| |
Collapse
|
45
|
Hong SY, Qin BL. The Protective Role of Dietary Polyphenols in Urolithiasis: Insights into Antioxidant Effects and Mechanisms of Action. Nutrients 2023; 15:3753. [PMID: 37686790 PMCID: PMC10490426 DOI: 10.3390/nu15173753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/15/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Urolithiasis is a common urological disease with increasing prevalence and high recurrence rates around the world. Numerous studies have indicated reactive oxygen species (ROS) and oxidative stress (OS) were crucial pathogenic factors in stone formation. Dietary polyphenols are a large group of natural antioxidant compounds widely distributed in plant-based foods and beverages. Their diverse health benefits have attracted growing scientific attention in recent decades. Many literatures have reported the effectiveness of dietary polyphenols against stone formation. The antiurolithiatic mechanisms of polyphenols have been explained by their antioxidant potential to scavenge free radicals and ROS, modulate the expression and the activity of endogenous antioxidant and prooxidant enzymes, regulate signaling pathways associated with OS, and maintain cell morphology and function. In this review, we first describe OS and its pathogenic effects in urolithiasis and summarize the classification and sources of dietary polyphenols. Then, we focus on the current evidence defining their antioxidant potential against stone formation and put forward challenges and future perspectives of dietary polyphenols. To conclude, dietary polyphenols offer potential applications in the treatment and prevention of urolithiasis.
Collapse
Affiliation(s)
| | - Bao-Long Qin
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
46
|
Chen F, Qin J, Wu P, Gao W, Sun G. Glucose-Responsive Antioxidant Hydrogel Accelerates Diabetic Wound Healing. Adv Healthc Mater 2023; 12:e2300074. [PMID: 37021750 DOI: 10.1002/adhm.202300074] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/23/2023] [Indexed: 04/07/2023]
Abstract
Diabetic complications can be ameliorated by inhibiting excessive oxidative stress with antioxidants. To enhance therapeutic intervention, it is crucial to develop intelligent scaffolds for efficient delivery of antioxidants to diabetic wounds. This study introduces reversible boronic bonds to create an intelligent antioxidant hydrogel scaffold. This study modifies gelatin methacryloyl (GelMA) with 4-carboxyphenyboronic acid (CPBA) to synthesize a derivative of GelMA (GelMA-CPBA), and then photo cross-links GelMA-CPBA with (-)-epigallocatechin-3-gallate (EGCG) to form GelMA-CPBA/EGCG (GMPE) hydrogel. The GMPE hydrogel responds to changes in glucose levels, and more EGCG is released as glucose level increases due to the dissociation of boronic ester bonds. The GMPE hydrogel shows good biocompatibility and biodegradability, and its mechanical property is similar to that of the skin tissue. Both in vitro and in vivo results demonstrate that the GMPE hydrogel scaffolds effectively eliminate reactive oxygen species (ROS), reduce the inflammation, and promote angiogenesis, thereby improve collagen deposition and tissue remodeling during diabetic wound healing. This strategy offers new insight into glucose-responsive scaffolds, and this responsive antioxidan hydrogel scaffold holds great potential for the treatment of chronic diabetic wounds.
Collapse
Affiliation(s)
- Fang Chen
- Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Central Laboratory, Affiliated Hospital of Hebei University, College of Clinical Medicine, Hebei University, Baoding, 071000, China
| | - Jianghui Qin
- College of Chemistry and Materials Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Pingli Wu
- College of Chemistry and Materials Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Wenshan Gao
- Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Central Laboratory, Affiliated Hospital of Hebei University, College of Clinical Medicine, Hebei University, Baoding, 071000, China
| | - Guoming Sun
- College of Chemistry and Materials Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| |
Collapse
|
47
|
Liu C, Dong S, Wang X, Xu H, Liu C, Yang X, Wu S, Jiang X, Kan M, Xu C. Research progress of polyphenols in nanoformulations for antibacterial application. Mater Today Bio 2023; 21:100729. [PMID: 37529216 PMCID: PMC10387615 DOI: 10.1016/j.mtbio.2023.100729] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 08/03/2023] Open
Abstract
Infectious disease is one of the top 10 causes of death worldwide, especially in low-income countries. The extensive use of antibiotics has led to an increase in antibiotic resistance, which poses a critical threat to human health globally. Natural products such as polyphenolic compounds and their derivatives have been shown the positive therapeutic effects in antibacterial therapy. However, the inherent physicochemical properties of polyphenolic compounds and their derivatives limit their pharmaceutical effects, such as short half-lives, chemical instability, low bioavailability, and poor water solubility. Nanoformulations have shown promising advantages in improving antibacterial activity by controlling the release of drugs and enhancing the bioavailability of polyphenols. In this review, we listed the classification and antibacterial mechanisms of the polyphenolic compounds. More importantly, the nanoformulations for the delivery of polyphenols as the antibacterial agent were summarized, including different types of nanoparticles (NPs) such as polymer-based NPs, metal-based NPs, lipid-based NPs, and nanoscaffolds such as nanogels, nanofibers, and nanoemulsions. At the same time, we also presented the potential biological applications of the nano-system to enhance the antibacterial ability of polyphenols, aiming to provide a new therapeutic perspective for the antibiotic-free treatment of infectious diseases.
Collapse
Affiliation(s)
- Chang Liu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, 130021, China
| | - Shuhan Dong
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, 130021, China
| | - Xue Wang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Huiqing Xu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Chang Liu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xi Yang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Shanli Wu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xin Jiang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Mujie Kan
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Caina Xu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| |
Collapse
|
48
|
Arias-Sánchez RA, Torner L, Fenton Navarro B. Polyphenols and Neurodegenerative Diseases: Potential Effects and Mechanisms of Neuroprotection. Molecules 2023; 28:5415. [PMID: 37513286 PMCID: PMC10385962 DOI: 10.3390/molecules28145415] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The increase in people's longevity has, consequently, led to more brain involvement and neurodegenerative diseases, which can become complicated and lead to chronic degenerative diseases, thereby presenting greater public health problems. Medicinal plants have been used since ancient times and contain high concentrations of molecules, including polyphenols. It has been proven that polyphenols, which are present in various natural sources can provide curative effects against various diseases and brain disorders through neuroprotective effects. These neuroprotective effects are mainly attributed to their ability to cross the blood-brain barrier, eliminate reactive oxygen species, and cause the chelation of metal ions. Polyphenols increase the concentration of neurotrophic factors and bind directly to the membrane receptors of these neurotrophic factors, to modulate and activate the signaling cascades that allow the plasticity, survival, proliferation, and growth of neuronal cells, thereby allowing for better learning, memory, and cognition. Moreover, polyphenols have no serious adverse side effects resulting from their consumption.
Collapse
Affiliation(s)
- Raziel Alejandro Arias-Sánchez
- Laboratorio de Glicobiología y Farmacognosia, División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58020, Mexico
| | - Luz Torner
- Centro de Investigaciones Biomédicas de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58341, Mexico
| | - Bertha Fenton Navarro
- Laboratorio de Glicobiología y Farmacognosia, División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58020, Mexico
| |
Collapse
|
49
|
Zhang J, Wang H, Ai C, Lu R, Chen L, Xiao J, Teng H. Food matrix-flavonoid interactions and their effect on bioavailability. Crit Rev Food Sci Nutr 2023; 64:11124-11145. [PMID: 37427580 DOI: 10.1080/10408398.2023.2232880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Flavonoid compounds exhibit a wide range of health benefits as plant-derived dietary components. Typically, co-consumed with the food matrix,they must be released from the matrix and converted into an absorbable form (bioaccessibility) before reaching the small intestine, where they are eventually absorbed and transferred into the bloodstream (bioavailability) to exert their biological activity. However, a large number of studies have revealed the biological functions of individual flavonoid compounds in different experimental models, ignoring the more complex but common relationships established in the diet. Besides, it has been appreciated that the gut microbiome plays a crucial role in the metabolism of flavonoids and food substrates, thereby having a significant impact on their interactions, but much progress still needs to be made in this area. Therefore, this review intends to comprehensively investigate the interactions between flavonoids and food matrices, including lipids, proteins, carbohydrates and minerals, and their effects on the nutritional properties of food matrices and the bioaccessibility and bioavailability of flavonoid compounds. Furthermore, the health effects of the interaction of flavonoid compounds with the gut microbiome have also been discussed.HIGHLIGHTSFlavonoids are able to bind to nutrients in the food matrix through covalent or non-covalent bonds.Flavonoids affect the digestion and absorption of lipids, proteins, carbohydrates and minerals in the food matrix (bioaccessibility).Lipids, proteins and carbohydrates may favorably affect the bioavailability of flavonoids.Improved intestinal flora may improve flavonoid bioavailability.
Collapse
Affiliation(s)
- Jingjing Zhang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
- Department of Analytical and Food Chemistry, Faculty of Sciences, Nutrition and Bromatology Group, Universidade de Vigo Ourense, Spain
| | - Hui Wang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| | - Chao Ai
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| | - Rui Lu
- Department of Analytical and Food Chemistry, Faculty of Sciences, Nutrition and Bromatology Group, Universidade de Vigo Ourense, Spain
| | - Lei Chen
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| | - Jianbo Xiao
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
- Department of Analytical and Food Chemistry, Faculty of Sciences, Nutrition and Bromatology Group, Universidade de Vigo Ourense, Spain
| | - Hui Teng
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| |
Collapse
|
50
|
Lan H, Wang H, Chen C, Hu W, Ai C, Chen L, Teng H. Flavonoids and gastrointestinal health: single molecule for multiple roles. Crit Rev Food Sci Nutr 2023; 64:10987-11005. [PMID: 37409462 DOI: 10.1080/10408398.2023.2230501] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Diet can be considered as one of the pivotal factors in regulating gastrointestinal health, and polyphenols widely distributed in human daily diet. The polyphenols and their metabolites playing a series of beneficial effects in human gastrointestinal tract that can regulate of the gut microbiota, increase intestinal barrier function, repair gastrointestinal mucosa, reduce oxidative stress, inhibit the secretion of inflammatory factors and regulating immune function, and their absorption and biotransformation mainly depend on the activity of intestinal microflora. However, little is known about the two-way interaction between polyphenols and intestinal microbiota. The objective of this review is to highlight the structure optimization and effect of flavonoids on intestinal flora, and discusses the mechanisms of dietary flavonoids regulating intestinal flora. The multiple effects of single molecule of flavonoids, and inter-dependence between the gut microbiota and polyphenol metabolites. Moreover, the protective effects of polyphenols on intestinal barrier function, and effects of interaction between plant polyphenols and macromolecules on gastrointestinal health. This review provided valuable insight that may be useful for better understanding the mechanism of the gastrointestinal health effects of polyphenols, and provide a scientific basis for their application as functional food.
Collapse
Affiliation(s)
- Haijing Lan
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Hui Wang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Chong Chen
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Wenlu Hu
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Chao Ai
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Lei Chen
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Hui Teng
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|