1
|
Ejtahed HS, Hasani-Ranjbar S, Soroush AR, Larijani B. Multidimensional perspective of obesity; prevention to treatment. J Diabetes Metab Disord 2024; 23:1485-1489. [PMID: 39610545 PMCID: PMC11599485 DOI: 10.1007/s40200-020-00705-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/27/2020] [Accepted: 12/07/2020] [Indexed: 11/30/2022]
Abstract
Objective An increasing prevalence of overweight and obesity across the world can lead to serious health complications. The present narrative review highlighted the results of research on obesity management affiliated to the Endocrinology and Metabolism Research Institute (EMRI), Tehran University of Medical Sciences. Methods All documents from the EMRI focused on obesity topics were searched using PubMed and Scopus databases up to December 2019. Results EMRI research projects conducted in obesity field cover several topics including childhood obesity, epidemiology of obesity, roles of genetic factors and gut microbiota in excess weight, as well as weight management by medicinal herbs and nutritional interventions. The increasing prevalence of excess-weight in children and adults indicates that conventional weight management strategies alone are not successful in obesity control and complementary therapies including herbal medicine could be helpful. Moreover, clarifying the role of the human genome and microbiome in different responses of individuals to dietary recommendations could be effective in achieving personalized nutrition. Conclusion Further population-based studies focusing on national and international collaborations are needed to progress more practical strategies to face with obesity challenge in different age ranges.
Collapse
Affiliation(s)
- Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Hasani-Ranjbar
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad-Reza Soroush
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Gebereyowhans S. Potential strategies to enhance conjugated linoleic acid content of milk and dairy products: A review. Heliyon 2024; 10:e38844. [PMID: 39435105 PMCID: PMC11492441 DOI: 10.1016/j.heliyon.2024.e38844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 08/18/2024] [Accepted: 09/29/2024] [Indexed: 10/23/2024] Open
Abstract
Conjugated linoleic acid (CLA) is a general term for all the geometric and positional isomers of linoleic acid. The cis-9, trans-11 CLA and trans-10 cis-12 CLA are considered to be the most abundant and essential isomers associated with health benefits. Though milk and dairy products are considered to be the major sources of CLA, the CLA content found in regular milk and dairy products is relatively low for effective health benefits in human beings. Thus, for effective health benefits, increasing the concentration of CLA in milk and dairy products is beneficial. Dietary supplementation with PUFA-rich lipid sources such as oilseeds and/or vegetable oils, fish meal, fish oil and microalgae and grass-based feeding can enhance the content of CLA in milk and dairy products. Application of CLA-producing bacterial strains during the fermentation process and ripening/storage are considered as potential strategies for enhancing the CLA content of fermented dairy products. Alternatively, the CLA content of milk and dairy products can be improved using genetic factor. In this paper, the latest scientific studies regarding CLA enrichment in milk and dairy products are reviewed, giving an overview of the effectiveness of the different CLA enrichment strategies and their combinations.
Collapse
|
3
|
Jamka M, Popek J, Bukowska-Posadzy A, Mądry E, Lisowska A, Jończyk-Potoczna K, Cielecka-Piontek J, Bogdański P, Walkowiak J. Psychological determinants of the effectiveness of conjugated linoleic acid supplementation in overweight and obese women-a randomized controlled trial. Front Nutr 2024; 11:1342452. [PMID: 39101007 PMCID: PMC11294210 DOI: 10.3389/fnut.2024.1342452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/09/2024] [Indexed: 08/06/2024] Open
Abstract
Introduction Previous studies investigating the effectiveness of conjugated linoleic acid (CLA) supplementation in body weight reduction provided unequivocal results. We hypothesized that psychological factors such as self-efficacy, locus of control or dispositional optimism can affect the success of the intervention. Therefore, this study aimed to determine the psychological factors that modulate the effectiveness of CLA supplementation in overweight or obese women and affect the ability to successfully complete the study. Methods In total, 74 subjects were recruited into this three-month randomized trial and divided into intervention and control groups receiving, respectively, capsules containing 3 g 80% CLA per day and capsules containing 3 g of sunflower oil. The following psychological tests were performed before the intervention: Multidimensional Health Locus of Control scale, Acceptance of Illness Scale, Satisfaction with Life Scale (SWLS), General Self Efficacy Scale (GSES), Health Behavior Inventory scale and Life Orientation Test (LOT-R). Results A total of 60 women completed the study and the subjects who dropped out obtained higher scores in the GSES (p = 0.0490) and the LOT-R (p = 0.0087) tests than subjects who completed the trial. Besides, multivariate linear regression demonstrated that the SWLS test (p = 0.0345) results were independent predictors of body weight changes. Conclusion In conclusion, psychological factors like self-efficacy and optimism may be associated with a higher risk of withdrawal from the study, while satisfaction with life may have an impact on the effectiveness of body weight reduction.Clinical trial registration: [https://drks.de/search/en], identifier [DRKS00010462].
Collapse
Affiliation(s)
- Małgorzata Jamka
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Popek
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Bukowska-Posadzy
- Department of Clinical Psychology, Poznan University of Medical Sciences, Poznan, Poland
| | - Edyta Mądry
- Department of Physiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Aleksandra Lisowska
- Department of Pediatric Diabetes, Auxology and Obesity, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Poznan, Poland
| | - Paweł Bogdański
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
4
|
Asbaghi O, Shimi G, Hosseini Oskouie F, Naseri K, Bagheri R, Ashtary-Larky D, Nordvall M, Rastgoo S, Zamani M, Wong A. The effects of conjugated linoleic acid supplementation on anthropometrics and body composition indices in adults: a systematic review and dose-response meta-analysis. Br J Nutr 2024; 131:406-428. [PMID: 37671495 DOI: 10.1017/s0007114523001861] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Prior meta-analytic investigations over a decade ago rather inconclusively indicated that conjugated linoleic acid (CLA) supplementation could improve anthropometric and body composition indices in the general adult population. More recent investigations have emerged, and an up-to-date systematic review and meta-analysis on this topic must be improved. Therefore, this investigation provides a comprehensive systematic review and meta-analysis of randomised controlled trials (RCT) on the impact of CLA supplementation on anthropometric and body composition (body mass (BM), BMI, waist circumference (WC), fat mass (FM), body fat percentage (BFP) and fat-free mass (FFM)) markers in adults. Online databases search, including PubMed, Scopus, the Cochrane Library and Web of Science up to March 2022, were utilised to retrieve RCT examining the effect of CLA supplementation on anthropometric and body composition markers in adults. Meta-analysis was carried out using a random-effects model. The I2 index was used as an index of statistical heterogeneity of RCT. Among the initial 8351 studies identified from electronic databases search, seventy RCT with ninety-six effect sizes involving 4159 participants were included for data analyses. The results of random-effects modelling demonstrated that CLA supplementation significantly reduced BM (weighted mean difference (WMD): -0·35, 95 % CI (-0·54, -0·15), P < 0·001), BMI (WMD: -0·15, 95 % CI (-0·24, -0·06), P = 0·001), WC (WMD: -0·62, 95% CI (-1·04, -0·20), P = 0·004), FM (WMD: -0·44, 95 % CI (-0·66, -0·23), P < 0·001), BFP (WMD: -0·77 %, 95 % CI (-1·09, -0·45), P < 0·001) and increased FFM (WMD: 0·27, 95 % CI (0·09, 0·45), P = 0·003). The high-quality subgroup showed that CLA supplementation fails to change FM and BFP. However, according to high-quality studies, CLA intake resulted in small but significant increases in FFM and decreases in BM and BMI. This meta-analysis study suggests that CLA supplementation may result in a small but significant improvement in anthropometric and body composition markers in an adult population. However, data from high-quality studies failed to show CLA's body fat-lowering properties. Moreover, it should be noted that the weight-loss properties of CLA were small and may not reach clinical importance.
Collapse
Affiliation(s)
- Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Shimi
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Hosseini Oskouie
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Naseri
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan, Iran
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Michael Nordvall
- Department of Health and Human Performance, Marymount University, Arlington, VA, USA
| | - Samira Rastgoo
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Zamani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, VA, USA
| |
Collapse
|
5
|
Bawane P, Deshpande S, Yele S. Industrial and Pharmaceutical Applications of Microbial Diversity of Hypersaline Ecology from Lonar Soda Crater. Curr Pharm Biotechnol 2024; 25:1564-1584. [PMID: 38258768 DOI: 10.2174/0113892010265978231109085224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/16/2023] [Accepted: 10/04/2023] [Indexed: 01/24/2024]
Abstract
The unidentified geochemical and physiochemical characteristics of Soda Lakes across the globe make it a novel reservoir and bring attention to scientific civic for its conceivable industrial and pharmaceutical applications. In India, in the Maharashtra state, Lonar Lake is a naturally created Soda Lake by a meteorite impact. Phylogenetic data from this lake explored a diverse array of microorganisms like haloalkaliphilic bacteria and Archaea. Previously reported studies postulated the major microbial communities present in this lake ecosystem are Proteobacteria, Actinobacteria, Firmicutes, and Cyanobacteria. Furthermore, it also contains Bacteroidetes, Nitrospirae, and Verrucomicrobia. This lake is also rich in phytoplankton, with the predominant presence of the Spirulina plantensis. Unique microbial strains from Lonar Lake ecosystems have fascinated consideration as a source of biological molecules with medicinal, industrial, and biotechnological potential. Recent literature revealed the isolation of antibioticproducing bacteria and alkaline proteases-producing alkaliphilic bacterium, as well as novel species of rare methylotrophs, other bacterial strains involved in producing vital enzymes, and unique actinomycetes are also reported. It indicates that the novel bacterial assemblage not reached hitherto may exist in this modified and unique ecology. This comprehensive review provides information about microbial diversity and its industrial and pharmaceutical interests that exist in Lonar Lake, which could be the future source of bioactive enzymes, biosurfactants, and biofuel and also useful in bioremediation. Furthermore, the novel species of microorganisms isolated from Lonar Lake have applications in the biosynthesis of medicines like antibiotics, antivirals, antifungals, anti-inflammatory agents, and precursors for synthesising valuable products. Data consolidated in the present review will cater to the needs of emerging industrial sectors for their commercial and therapeutic applications.
Collapse
Affiliation(s)
- Pradip Bawane
- Department of Pharmacognosy, SVKM's NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Mumbai, 400056, India
- Department of Pharmacognosy, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, India
| | - Shirish Deshpande
- Department of Pharmaceutical Chemistry, SVKM's NMIMS, School of Pharmacy & Technology Management, Telangana Hyderabad, 509301, India
| | - Santosh Yele
- Department of Pharmacognosy, SVKM's NMIMS, School of Pharmacy & Technology Management, Telangana Hyderabad, 509301, India
| |
Collapse
|
6
|
Poulios E, Koukounari S, Psara E, Vasios GK, Sakarikou C, Giaginis C. Anti-obesity Properties of Phytochemicals: Highlighting their Molecular Mechanisms against Obesity. Curr Med Chem 2024; 31:25-61. [PMID: 37198988 DOI: 10.2174/0929867330666230517124033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/19/2023]
Abstract
Obesity is a complex, chronic and inflammatory disease that affects more than one-third of the world's population, leading to a higher incidence of diabetes, dyslipidemia, metabolic syndrome, cardiovascular diseases, and some types of cancer. Several phytochemicals are used as flavoring and aromatic compounds, also exerting many benefits for public health. This study aims to summarize and scrutinize the beneficial effects of the most important phytochemicals against obesity. Systematic research of the current international literature was carried out in the most accurate scientific databases, e.g., Pubmed, Scopus, Web of Science and Google Scholar, using a set of critical and representative keywords, such as phytochemicals, obesity, metabolism, metabolic syndrome, etc. Several studies unraveled the potential positive effects of phytochemicals such as berberine, carvacrol, curcumin, quercetin, resveratrol, thymol, etc., against obesity and metabolic disorders. Mechanisms of action include inhibition of adipocyte differentiation, browning of the white adipose tissue, inhibition of enzymes such as lipase and amylase, suppression of inflammation, improvement of the gut microbiota, and downregulation of obesity-inducing genes. In conclusion, multiple bioactive compounds-phytochemicals exert many beneficial effects against obesity. Future molecular and clinical studies must be performed to unravel the multiple molecular mechanisms and anti-obesity activities of these naturally occurring bioactive compounds.
Collapse
Affiliation(s)
- Efthymios Poulios
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Stergia Koukounari
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Evmorfia Psara
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Georgios K Vasios
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Christina Sakarikou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| |
Collapse
|
7
|
Badawy S, Liu Y, Guo M, Liu Z, Xie C, Marawan MA, Ares I, Lopez-Torres B, Martínez M, Maximiliano JE, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Conjugated linoleic acid (CLA) as a functional food: Is it beneficial or not? Food Res Int 2023; 172:113158. [PMID: 37689911 DOI: 10.1016/j.foodres.2023.113158] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 09/11/2023]
Abstract
Conjugated linoleic acid (CLA) has attracted great attention in recent years as a popular class of functional food that is broadly used. It refers to a group of geometric and positional isomers of linoleic acid (LA) with a conjugated double bond. The main natural sources of CLA are dairy products, beef and lamb, whereas only trace amounts occur naturally in plant lipids. CLA has been shown to improve various health issues, having effects on obesity, inflammatory, anti-carcinogenicity, atherogenicity, immunomodulation, and osteosynthesis. Also, compared to studies on humans, many animal researches reveal more positive benefits on health. CLA represents a nutritional avenue to improve lifestyle diseases and metabolic syndrome. Most of these effects are attributed to the two major CLA isomers [conjugated linoleic acid cis-9,trans-11 isomer (c9,t11), and conjugated linoleic acid trans-10,cis-12 isomer (t10,c12)], and their mixture (CLA mix). In contrast, adverse effects of CLA have been also reported, such as glucose homeostasis, insulin resistance, hepatic steatosis and induction of colon carcinogenesis in humans, as well as milk fat inhibition in ruminants, lowering chicken productivity, influencing egg quality and altering growth performance in fish. This review article aims to discuss the health benefits of CLA as a nutraceutical supplement and highlight the possible mechanisms of action that may contribute to its outcome. It also outlines the feasible adverse effects of CLA besides summarizing the recent peer-reviewed publications on CLA to ensure its efficacy and safety for proper application in humans.
Collapse
Affiliation(s)
- Sara Badawy
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Pathology Department of Animal Medicine, Faculty of Veterinary Medicine, Benha University, Egypt
| | - Yanan Liu
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mingyue Guo
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhenli Liu
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Changqing Xie
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Marawan A Marawan
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Infectious Diseases, Animal Medicine Department, Faculty of Veterinary Medicine, Benha University, Egypt
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Jorge-Enrique Maximiliano
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain.
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| |
Collapse
|
8
|
Putera HD, Doewes RI, Shalaby MN, Ramírez-Coronel AA, Clayton ZS, Abdelbasset WK, Murtazaev SS, Jalil AT, Rahimi P, Nattagh-Eshtivani E, Malekahmadi M, Pahlavani N. The effect of conjugated linoleic acids on inflammation, oxidative stress, body composition and physical performance: a comprehensive review of putative molecular mechanisms. Nutr Metab (Lond) 2023; 20:35. [PMID: 37644566 PMCID: PMC10466845 DOI: 10.1186/s12986-023-00758-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023] Open
Abstract
Conjugated linoleic acids (CLAs) are polyunsaturated fatty acids primarily found in dairy products and ruminant animal products such as beef, lamb, and butter. Supplementation of CLAs has recently become popular among athletes due to the variety of health-promoting effects, including improvements in physical performance. Preclinical and some clinical studies have shown that CLAs can reduce inflammation and oxidative stress and favorably modulate body composition and physical performance; however, the results of previously published clinical trials are mixed. Here, we performed a comprehensive review of previously published clinical trials that assessed the role of CLAs in modulating inflammation, oxidative stress, body composition, and select indices of physical performance, emphasizing the molecular mechanisms governing these changes. The findings of our review demonstrate that the effect of supplementation with CLAs on inflammation and oxidative stress is controversial, but this supplement can decrease body fat mass and increase physical performance. Future well-designed randomized clinical trials are warranted to determine the effectiveness of (1) specific doses of CLAs; (2) different dosing durations of CLAs; (3) various CLA isomers, and the exact molecular mechanisms by which CLAs positively influence oxidative stress, inflammation, body composition, and physical performance.
Collapse
Affiliation(s)
- Husna Dharma Putera
- Department of Surgery, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia
| | - Rumi Iqbal Doewes
- Faculty of Sport, Universitas Sebelas Maret, Jl. Ir. Sutami, 36A, Kentingan, Surakarta, Indonesia
| | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Ismailia, Egypt
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Azogues, Ecuador
| | - Zachary S Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Saidmurodkhon S Murtazaev
- Department of Therapeutic Pediatric Dentistry, Dean of the Faculty of International Education, Tashkent State Dental Institute, Tashkent, Uzbekistan
- Department of Scientific Affairs, Samarkand State Medical University, Amir Temur Street 18, Samarkand, Uzbekistan
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Hilla, Babylon, 51001, Iraq
| | - Pegah Rahimi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Elyas Nattagh-Eshtivani
- Social Development and Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mahsa Malekahmadi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Naseh Pahlavani
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat-e Heydariyeh, Iran.
| |
Collapse
|
9
|
Liu L, Lei S, Lin X, Ji J, Wang Y, Zheng B, Zhang Y, Zeng H. Lotus seed resistant starch and sodium lactate regulate small intestinal microflora and metabolite to reduce blood lipid. Int J Biol Macromol 2023; 233:123553. [PMID: 36740125 DOI: 10.1016/j.ijbiomac.2023.123553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/07/2023]
Affiliation(s)
- Lu Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Suzhen Lei
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoli Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junfu Ji
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yanbo Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
10
|
Liang CW, Cheng HY, Lee YH, Liou TH, Liao CD, Huang SW. Effects of conjugated linoleic acid and exercise on body composition and obesity: a systematic review and meta-analysis. Nutr Rev 2023; 81:397-415. [PMID: 36048508 DOI: 10.1093/nutrit/nuac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CONTEXT Conjugated linoleic acid (CLA) has been reported to have anti-obesity and antidiabetic effects. However, the benefits of CLA combined with exercise remain unclear, and studies report conflicting results. OBJECTIVE A systematic review and meta-analysis were performed to investigate the synergistic effect of CLA and exercise on body composition, exercise-related indices, insulin resistance, and lipid profiles; and of the safety of CLA supplements. DATA SOURCES In October 2021, the PubMed, Embase, and Cochrane Library databases were searched for reports on clinical trials of the combined intervention of CLA and exercise. DATA EXTRACTION A total of 18 randomized controlled trials and 2 crossover trials were included. The methodological quality assessment was performed using the revised Cochrane risk-of-bias tool. Pooled effect sizes were reported as standardized mean difference (SMD) for continuous data and risk ratio for dichotomous data with their corresponding 95% confidence intervals (CIs). Heterogeneity was tested using the I2 statistic. DATA ANALYSIS The combination of CLA and exercise resulted in significantly decreased body fat (SMD, -0.42 [95%CI, -0.70, -0.14]; P = 0.003; I2 = 65) and insulin resistance (SMD, -0.25 [95%CI, -0.44, -0.06]; P = 0.01; I2 = 0) than did exercise alone. In subgroup analysis, the following factors were associated with significant outcomes: (1) body mass index ≥25 kg/m2; (2) female sex; (3) follow-up time >4 weeks; and (4) intervention duration >4 weeks. Nevertheless, supplementation with CLA during exercise programs was not effective for body-weight control, exercise performance enhancement, or lipid-profile improvement. CLA in combination with exercise did not result in a higher risk of adverse events (risk ratio, 1.32 [95%CI, 0.94-1.84]; P > 0.05; I2 = 0). CONCLUSION CLA combined with exercise is generally safe and can lower body fat and insulin resistance but does not reduce body weight, enhance exercise performance, or improve lipid profiles.
Collapse
Affiliation(s)
- Chun-Wei Liang
- are with the School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Yi Cheng
- are with the School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hao Lee
- are with the Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,are with the Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsan-Hon Liou
- are with the Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,are with the Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-De Liao
- are with the Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,is with the Master Program in Long-Term Care, College of Nursing, Taipei Medical University, Taipei, Taiwan
| | - Shih-Wei Huang
- are with the Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,are with the Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
11
|
Valles-Colomer M, Menni C, Berry SE, Valdes AM, Spector TD, Segata N. Cardiometabolic health, diet and the gut microbiome: a meta-omics perspective. Nat Med 2023; 29:551-561. [PMID: 36932240 PMCID: PMC11258867 DOI: 10.1038/s41591-023-02260-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/16/2023] [Indexed: 03/19/2023]
Abstract
Cardiometabolic diseases have become a leading cause of morbidity and mortality globally. They have been tightly linked to microbiome taxonomic and functional composition, with diet possibly mediating some of the associations described. Both the microbiome and diet are modifiable, which opens the way for novel therapeutic strategies. High-throughput omics techniques applied on microbiome samples (meta-omics) hold the unprecedented potential to shed light on the intricate links between diet, the microbiome, the metabolome and cardiometabolic health, with a top-down approach. However, effective integration of complementary meta-omic techniques is an open challenge and their application on large cohorts is still limited. Here we review meta-omics techniques and discuss their potential in this context, highlighting recent large-scale efforts and the novel insights they provided. Finally, we look to the next decade of meta-omics research and discuss various translational and clinical pathways to improving cardiometabolic health.
Collapse
Affiliation(s)
- Mireia Valles-Colomer
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Cristina Menni
- Department of Twin Research, King's College London, London, UK
| | - Sarah E Berry
- Department of Nutritional Sciences, King's College London, London, UK
| | - Ana M Valdes
- School of Medicine, University of Nottingham, Nottingham, UK
- Nottingham National Institute for Health Research Biomedical Research Centre, Nottingham, UK
| | - Tim D Spector
- Department of Twin Research, King's College London, London, UK
| | - Nicola Segata
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.
- European Institute of Oncology, Scientific Institute for Research, Hospitalization and Healthcare, Milan, Italy.
| |
Collapse
|
12
|
He Y, Xu K, Li Y, Chang H, Liao X, Yu H, Tian T, Li C, Shen Y, Wu Q, Liu X, Shi L. Metabolomic Changes Upon Conjugated Linoleic Acid Supplementation and Predictions of Body Composition Responsiveness. J Clin Endocrinol Metab 2022; 107:2606-2615. [PMID: 35704027 DOI: 10.1210/clinem/dgac367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Conjugated linoleic acid (CLA) may optimize body composition, yet mechanisms underlining its benefits are not clear in humans. OBJECTIVE We aimed to reveal the CLA-induced changes in the plasma metabolome associated with body composition improvement and the predictive performance of baseline metabolome on intervention responsiveness. METHODS Plasma metabolome from overnight fasted samples at pre- and post-intervention of 65 participants in a 12-week randomized, placebo-controlled trial (3.2 g/day CLA vs 3.2 g/day sunflower oil) were analyzed using untargeted LC-MS metabolomics. Mixed linear model and machine learning were applied to assess differential metabolites between treatments, and to identify optimal panel (based on baseline conventional variables vs metabolites) predicting responders of CLA-derived body composition improvement (increased muscle variables or decreased adiposity variables) based on dual-energy x-ray absorptiometry. RESULTS Compared with placebo, CLA altered 57 metabolites (P < 0.10) enriched in lipids/lipid-like molecules including glycerophospholipids (n = 7), fatty acyls (n = 6), and sphingolipids (n = 3). CLA-upregulated cholic acid (or downregulated aminopyrrolnitrin) was inversely correlated with changes in muscle and adiposity variables. Inter-individual variability in response to CLA-derived body composition change. The areas under the curves of optimal metabolite panels were higher than those of optimal conventional panels in predicting favorable response of waist circumference (0.93 [0.82-1.00] vs 0.64 [0.43-0.85]), visceral adiposity index (0.95 [0.88-1.00] vs 0.58 [0.35-0.80]), total fat mass (0.94 [0.86-1.00] vs 0.69 [0.51-0.88]) and appendicular fat mass (0.97 [0.92-1.00] vs 0.73 [0.55-0.91]) upon CLA supplementation (all FDR P < 0.05). CONCLUSION Post-intervention metabolite alterations were identified, involving in lipid/energy metabolism, associated with body composition changes. Baseline metabolite profiling enhanced the prediction accuracy for responsiveness of CLA-induced body composition benefits.
Collapse
Affiliation(s)
- Yafang He
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Department of Epidemiology and Biostatistics, School of Public Health, Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Kun Xu
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Department of Epidemiology and Biostatistics, School of Public Health, Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yunfeng Li
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Department of Epidemiology and Biostatistics, School of Public Health, Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Huan Chang
- Department of Clinical Nutrition, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, 710032China
| | - Xia Liao
- Department of Nutrition, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hang Yu
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tian Tian
- Department of Nutrition, Xi'an Daxing Hospital, Xi'an, 710016, China
| | - Chao Li
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Department of Epidemiology and Biostatistics, School of Public Health, Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yuan Shen
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Department of Epidemiology and Biostatistics, School of Public Health, Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Qian Wu
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Department of Epidemiology and Biostatistics, School of Public Health, Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xin Liu
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Department of Epidemiology and Biostatistics, School of Public Health, Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Lin Shi
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden
| |
Collapse
|
13
|
Zhou X, Li S, Zhou Y, Zhang H, Yan B, Wang H, Xiao Y. A metabolomics study of the intervention effect of Tartary buckwheat on hyperlipidemia mice. J Food Biochem 2022; 46:e14359. [DOI: 10.1111/jfbc.14359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/06/2022] [Accepted: 07/18/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Xiaoli Zhou
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
- Institute of Beautiful China and Ecological Civilization University Think Tank of Shanghai Municipality Shanghai China
| | - Senjie Li
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| | - Yiming Zhou
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
- Department of Food Science and Engineering Shanghai Institute of Technology Shanghai P. R. China
| | - Huan Zhang
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| | - Beibei Yan
- Institute of Beautiful China and Ecological Civilization University Think Tank of Shanghai Municipality Shanghai China
| | - Hong Wang
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| | - Ying Xiao
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| |
Collapse
|
14
|
Tondt J, Bays HE. Concomitant medications, functional foods, and supplements: An Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) 2022. OBESITY PILLARS 2022; 2:100017. [PMID: 37990714 PMCID: PMC10661915 DOI: 10.1016/j.obpill.2022.100017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/03/2022] [Indexed: 11/23/2023]
Abstract
Background This Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) is intended to provide clinicians an overview of the body weight effects of concomitant medications (i.e., pharmacotherapies not specifically for the treatment of obesity) and functional foods, as well as adverse side effects of supplements sometimes used by patients with pre-obesity/obesity. Methods The scientific information for this CPS is based upon published scientific citations, clinical perspectives of OMA authors, and peer review by the Obesity Medicine Association leadership. Results This CPS outlines clinically relevant aspects of concomitant medications, functional foods, and many of the more common supplements as they relate to pre-obesity and obesity. Topics include a discussion of medications that may be associated with weight gain or loss, functional foods as they relate to obesity, and side effects of supplements (i.e., with a focus on supplements taken for weight loss). Special attention is given to the warnings and lack of regulation surrounding weight loss supplements. Conclusions This Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) on concomitant medications, functional foods, and supplements is one of a series of OMA CPSs designed to assist clinicians in the care of patients with the disease of pre-obesity/obesity. Implementation of appropriate practices in these areas may improve the health of patients, especially those with adverse fat mass and adiposopathic metabolic consequences.
Collapse
Affiliation(s)
- Justin Tondt
- Department of Family and Community Medicine, Eastern Virginia Medical School, P.O. Box 1980, Norfolk, VA, 23501, USA
| | - Harold Edward Bays
- Louisville Metabolic and Atherosclerosis Research Center, 3288 Illinois Avenue, University of Louisville School of Medicine, Louisville, KY, 40213, USA
| |
Collapse
|
15
|
Bussicott J, Patel R, Pellow J, Razlog RK. Use and perceived effectiveness of complementary medicines for weight loss in adult women. SOUTH AFRICAN JOURNAL OF CLINICAL NUTRITION 2022. [DOI: 10.1080/16070658.2022.2042923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- J Bussicott
- Department of Complementary Medicine, University of Johannesburg, Doornfontein, South Africa
| | - R Patel
- Department of Complementary Medicine, University of Johannesburg, Doornfontein, South Africa
| | - J Pellow
- Department of Complementary Medicine, University of Johannesburg, Doornfontein, South Africa
| | - RK Razlog
- Department of Complementary Medicine, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
16
|
Suksatan W, Putera HD, Abdulkadhim AH, Hammid AT, Ismailov JA, Jannat B, Rezayat P, Izadi F. The effect of conjugated linoleic acid supplementation on oxidative stress markers: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr ESPEN 2022; 49:121-128. [DOI: 10.1016/j.clnesp.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/16/2022] [Accepted: 04/03/2022] [Indexed: 11/29/2022]
|
17
|
Dietary conjugated linoleic acid and medium-chain triglycerides for obesity management. J Biosci 2021. [DOI: 10.1007/s12038-020-00133-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Bessell E, Maunder A, Lauche R, Adams J, Sainsbury A, Fuller NR. Efficacy of dietary supplements containing isolated organic compounds for weight loss: a systematic review and meta-analysis of randomised placebo-controlled trials. Int J Obes (Lond) 2021; 45:1631-1643. [PMID: 33976376 DOI: 10.1038/s41366-021-00839-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/07/2021] [Accepted: 04/26/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND/OBJECTIVES A systematic review with meta-analysis was conducted to synthesise evidence on the efficacy of dietary supplements containing isolated organic compounds for weight loss. SUBJECTS/METHODS Four electronic databases (Medline, Embase, Web of Science, Cinahl) were searched until December 2019. Sixty-seven randomised placebo-controlled trials of dietary supplements containing isolated organic compounds for weight loss were included. Meta-analyses were conducted for chitosan, glucomannan, conjugated linoleic acid and fructans, comparing mean weight difference post-intervention between participants receiving the dietary supplement or placebo. RESULTS Statistically significant weight differences compared to placebo were observed for chitosan (-1.84 kg; 95% confidence interval [CI] -2.79, -0.88; p < 0.01), glucomannan (-1.27 kg; 95%CI -2.45, -0.09; p = 0.04), and conjugated linoleic acid (-1.08 kg; 95%CI -1.61, -0.55; p < 0.01). None met our threshold for clinical significance (≥2.5 kg). There was no statistically significant effect on weight for fructans compared to placebo (p = 0.24). For dietary supplements with an inadequate number of trials for meta-analysis, a statistically and borderline clinically significant weight difference compared to placebo was found for modified cellulose, manno-oligosaccharides (in males), blood orange juice extract, and three multiple-ingredient dietary supplements. These were only reported in one trial of each. Thus, more evidence is needed before recommending them for weight loss. CONCLUSIONS While some dietary supplements containing isolated organic compounds warrant further investigation to determine efficacy and safety, there is currently insufficient evidence to recommend any of these dietary supplements for weight loss.
Collapse
Affiliation(s)
- Erica Bessell
- The University of Sydney, The Boden Collaboration for Obesity, Nutrition, Exercise & Eating Disorders, Charles Perkins Centre, Faculty of Medicine and Health, Sydney, NSW, Australia.
| | - Alison Maunder
- The University of Sydney, The Boden Collaboration for Obesity, Nutrition, Exercise & Eating Disorders, Charles Perkins Centre, Faculty of Medicine and Health, Sydney, NSW, Australia.,Western Sydney University, NICM Health Research Institute, Penrith, NSW, Australia
| | - Romy Lauche
- Southern Cross University, National Centre for Naturopathic Medicine, Lismore, NSW, Australia.,University of Technology Sydney, Australian Research Centre in Complementary and Integrative Medicine (ARCCIM), School of Public Health, Faculty of Health, Sydney, NSW, Australia
| | - Jon Adams
- University of Technology Sydney, Australian Research Centre in Complementary and Integrative Medicine (ARCCIM), School of Public Health, Faculty of Health, Sydney, NSW, Australia
| | - Amanda Sainsbury
- The University of Western Australia, School of Human Sciences, Faculty of Science, Perth, WA, Australia
| | - Nicholas R Fuller
- The University of Sydney, The Boden Collaboration for Obesity, Nutrition, Exercise & Eating Disorders, Charles Perkins Centre, Faculty of Medicine and Health, Sydney, NSW, Australia
| |
Collapse
|
19
|
Monnard CR, Dulloo AG. Polyunsaturated fatty acids as modulators of fat mass and lean mass in human body composition regulation and cardiometabolic health. Obes Rev 2021; 22 Suppl 2:e13197. [PMID: 33471425 DOI: 10.1111/obr.13197] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022]
Abstract
It is now recognized that the amount and type of dietary fat consumed play an important role in metabolic health. In humans, high intake of polyunsaturated fatty acids (PUFAs) has been associated with reductions in cardiovascular disease risk, improvements in glucose homeostasis, and changes in body composition that involve reductions in central adiposity and, more recently, increases in lean body mass. There is also emerging evidence, which suggests that high intakes of the plant-based essential fatty acids (ePUFAs)-n-6 linoleic acid (LA) and n-3 α-linolenic acid (ALA)-have a greater impact on body composition (fat mass and lean mass) and on glucose homeostasis than the marine-derived long-chain n-3 PUFA-eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). In addition, high intake of both ePUFAs (LA and ALA) may also have anti-inflammatory effects in humans. The purpose of this review is to highlight the emerging evidence, from both epidemiological prospective studies and clinical intervention trials, of a role for PUFA, in particular ePUFA, in the long-term regulation of body weight and body composition, and their impact on cardiometabolic health. It also discusses current notions about the mechanisms by which PUFAs modulate fat mass and lean mass through altered control of energy intake, thermogenesis, or lean-fat partitioning.
Collapse
Affiliation(s)
- Cathriona R Monnard
- Faculty of Science and Medicine, Department of Endocrinology, Metabolism and Cardiovascular System, University of Fribourg, Fribourg, Switzerland
| | - Abdul G Dulloo
- Faculty of Science and Medicine, Department of Endocrinology, Metabolism and Cardiovascular System, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
20
|
Namazi N, Atlasi R, Aletaha A, Asadi M, Larijani B. Trend of nutrition research in endocrine disorders, gaps, and future plans: a collection of experiences of an endocrinology research institute. J Diabetes Metab Disord 2021:1-8. [PMID: 33500881 PMCID: PMC7821177 DOI: 10.1007/s40200-020-00707-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/08/2020] [Indexed: 01/31/2023]
Abstract
BACKGROUND Nutrition plays a pivotal role in the prevention and treatment of endocrine disorders. The aim of this study was to provide a window in order to display the 25-year activities of Endocrinology & Metabolism Research Institute (EMRI), and the gaps and future plans in the field of nutrition and endocrine disorders. METHODS To collect papers affiliated to the EMRI in field of nutrition from the inception to December 1st 2019, the electronic databases including PubMed/Medline, Web of Science, and Scopus were searched. Publications in English and Persian languages were included. Scientific Landscapes (VOS viewer) software version 1.6.13 was used to provide bibliometric maps. RESULTS Of 4082 studies identified in the initial search, 319 relevant papers were included. They contributed systematic review and meta-analysis/review (n = 76), clinical trials (n = 58), cross-sectional (n = 171), case-control studies (n = 11), and animal studies (n = 3). Accordingly, most nutrition studies were dedicated to the level of evidence III (cross-sectional studies: 53.60%) followed by systematic review studies (23.82%) with the level of evidence I. There was also an increasing trend in the nutrition studies through years, with a peak in 2019. CONCLUSION An increasing trend in the publications related to nutrition science is observed at EMRI. However, nutrition research and publications can grow further through expanding collaborations with other fields related to endocrine. Given nutritional assessments in national projects and focusing on the identification of preventive nutritional strategies, considering the situations of our society can be helpful to make nutritional findings more practical.
Collapse
Affiliation(s)
- Nazli Namazi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasha Atlasi
- Evidence Based Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Aletaha
- Evidence Based Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Asadi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Bandarian F, Namazi N, Amini MR, Pajouhi M, Mehrdad N, Larijani B. Endocrinology and Metabolism Research Institute from inception to maturity: an overview of 25-year activity. J Diabetes Metab Disord 2020:1-7. [PMID: 33042897 PMCID: PMC7532120 DOI: 10.1007/s40200-020-00645-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022]
Abstract
Endocrinology and Metabolism Research Institute (EMRI) was founded in 1993. EMRI progressed step by step from inception and reached to its maturation during the past 25 years. EMRI has expanded and progressed in different aspects including human resources and infrastructures (laboratories and new technologies) and has obtained the first rank in the country in endocrinology research. It has also collaborated with regional and international organizations such as World Health Organization (WHO), International Osteoporosis Foundation (IOF), and American Association of Clinical Endocrinologists (AACE). This article provides an overview of EMRI activities during a quarter of a century.
Collapse
Affiliation(s)
- Fatemeh Bandarian
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazli Namazi
- Evidence Based Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Amini
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Pajouhi
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular- Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Mehrdad
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Beneath Dr. Shariati Hospital, Gomnam Highway, Tehran, Iran
| |
Collapse
|
22
|
Chang H, Gan W, Liao X, Wei J, Lu M, Chen H, Wang S, Ma Y, Wu Q, Yu Y, Liu X. Conjugated linoleic acid supplements preserve muscle in high-body-fat adults: A double-blind, randomized, placebo trial. Nutr Metab Cardiovasc Dis 2020; 30:1777-1784. [PMID: 32684362 DOI: 10.1016/j.numecd.2020.05.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND AIMS Conjugated linoleic acid (CLA) has been used to improve body composition in weight management. However, clinical trial results are inconsistent and limited among Asians. We aimed to investigate the effect of CLA on body composition of Chinese adults with elevated body fat percentage. METHODS AND RESULTS In this double-blind, randomized, placebo-controlled trial, 66 Chinese adults (aged 18-45 years old, 37.9% male) with elevated body fat percentage were provided with 3.2 g/day CLA (n = 33) or 3.2 g/day placebo (sunflower oil; n = 33) for 12 weeks. Both groups received lifestyle counseling, featured with low fat and low sugar diet, and moderate physical activity. Body composition was measured using dual-energy X-ray absorptiometry at the baseline and end of the trial. Sixty-four participants finished this study. Compared with the placebo group, the CLA group showed increased trunk muscle mass (MM) (0.6 ± 1.7 vs. -0.3 ± 1.2 kg, P = 0.019). Among those with an adherence score higher than 0.80 (n = 56, 87.5%), a greater increase in both total and trunk MM was observed in the CLA group (both P < 0.05). Moreover, the effect on MM appeared to be more evident in men, those with a body mass index <25 kg/m2, or those with higher self-rated physical activity. CONCLUSIONS In Chinese adults with elevated body fat percentage, 3.2 g/day CLA supplementation may be effective in preserving MM, especially in the trunk region. REGISTRATION This study was registered at ClinicalTrials.gov as NCT03915808 on April 9, 2019.
Collapse
Affiliation(s)
- Huan Chang
- Department of Nutrition and Food Safety, School of Public Health, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, 710061, Xi'an, Shaanxi, China
| | - Wei Gan
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, OX3 7LF, UK; Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Xia Liao
- Department of Nutrition, The First Affiliated Hospital, Xi'an Jiaotong University Health Science Center, 277 West Yanta Road, 710061, Xi'an, Shaanxi, China
| | - Junxiang Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, 710061, Xi'an, Shaanxi, China
| | - Mengnan Lu
- Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, 710061, Xi'an, Shaanxi, China
| | - Huangtao Chen
- Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, 710061, Xi'an, Shaanxi, China
| | - Shenglong Wang
- Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, 710061, Xi'an, Shaanxi, China
| | - Yan Ma
- School of Sports and Health Sciences, Xi'an Physical Education University, 65 North Hanguang Road, 710068, Xi'an, Shaanxi, China
| | - Qian Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, 710061, Xi'an, Shaanxi, China
| | - Yan Yu
- Department of Nutrition and Food Safety, School of Public Health, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, 710061, Xi'an, Shaanxi, China.
| | - Xin Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, 710061, Xi'an, Shaanxi, China.
| |
Collapse
|
23
|
Watanabe M, Risi R, Masi D, Caputi A, Balena A, Rossini G, Tuccinardi D, Mariani S, Basciani S, Manfrini S, Gnessi L, Lubrano C. Current Evidence to Propose Different Food Supplements for Weight Loss: A Comprehensive Review. Nutrients 2020; 12:E2873. [PMID: 32962190 PMCID: PMC7551574 DOI: 10.3390/nu12092873] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
The use of food supplements for weight loss purposes has rapidly gained popularity as the prevalence of obesity increases. Navigating through the vast, often low quality, literature available is challenging, as is providing informed advice to those asking for it. Herein, we provide a comprehensive literature revision focusing on most currently marketed dietary supplements claimed to favor weight loss, classifying them by their purported mechanism of action. We conclude by proposing a combination of supplements most supported by current evidence, that leverages all mechanisms of action possibly leading to a synergistic effect and greater weight loss in the foreseen absence of adverse events. Further studies will be needed to confirm the weight loss and metabolic improvement that may be obtained through the use of the proposed combination.
Collapse
Affiliation(s)
- Mikiko Watanabe
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Renata Risi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Davide Masi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Alessandra Caputi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Angela Balena
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Giovanni Rossini
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (G.R.); (D.T.); (S.M.)
| | - Dario Tuccinardi
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (G.R.); (D.T.); (S.M.)
| | - Stefania Mariani
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Sabrina Basciani
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Silvia Manfrini
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (G.R.); (D.T.); (S.M.)
| | - Lucio Gnessi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Carla Lubrano
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| |
Collapse
|
24
|
Golzarand M, Omidian M, Toolabi K. Effect of Garcinia cambogia supplement on obesity indices: A systematic review and dose-response meta-analysis. Complement Ther Med 2020; 52:102451. [DOI: 10.1016/j.ctim.2020.102451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/29/2020] [Accepted: 05/19/2020] [Indexed: 02/06/2023] Open
|
25
|
Bardanzellu F, Puddu M, Peroni DG, Fanos V. The Human Breast Milk Metabolome in Overweight and Obese Mothers. Front Immunol 2020; 11:1533. [PMID: 32793208 PMCID: PMC7385070 DOI: 10.3389/fimmu.2020.01533] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022] Open
Abstract
Pre-pregnancy body mass index (BMI) is a major relevance factor, since maternal overweight and obesity can impair the pregnancy outcome and represent risk factors for several neonatal, childhood, and adult conditions, including excessive weight gain, cardiovascular disease, diabetes mellitus, and even behavioral disorders. Currently, breast milk (BM) composition in such category of mothers was not completely defined. In this field, metabolomics represents the ideal technology, able to detect the whole profile of low molecular weight molecules in BM. Limited information is available on human BM metabolites differences in overweight or obese compared to lean mothers. Analyzing all the metabolomics studies published on Medline in English language, this review evaluated the effects that 8 specific types of metabolites found altered by maternal overweight and obesity (nucleotide derivatives, 5-methylthioadenosine, sugar-alcohols, acylcarnitine and amino acids, polyamines, mono-and oligosaccharides, lipids) can exert on the risk of offspring obesity development and other potentially associated health outcomes and complications. However, metabolites variations in samples collected from overweight and obese mothers and the potentially correlated effects highlighted below still need further investigations and should be confirmed in future metabolomics studies on larger samples. Finally, the positive or negative influence of maternal overweight and obesity on the offspring, potentially exerted by breastfeeding, should be analyzed in close correlation with maternal age, genetic and environmental factors, including diet, and taking into account the interactions occurring between BM metabolites and lactobiome. The evaluation of all the factors affecting BM metabolites in overweight and obese mothers can lead to the comprehensive description of such biofluid and the related effects on breastfed subjects, potentially highlighting personalized needs of BM supplementation or short- and long-term prevention strategies to optimize offspring health.
Collapse
Affiliation(s)
- Flaminia Bardanzellu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari, Monserrato, Italy
| | - Melania Puddu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari, Monserrato, Italy
| | - Diego Giampietro Peroni
- Clinical and Experimental Medicine Department, Section of Pediatrics, University of Pisa, Pisa, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari, Monserrato, Italy
| |
Collapse
|