1
|
Chen J, Ma H, Guo A, Lv M, Pan Q, Ya S, Wang H, Pan C, Jiang L. Influence of (ultra-)processing methods on aquatic proteins and product quality. J Food Sci 2024; 89:10239-10251. [PMID: 39503310 DOI: 10.1111/1750-3841.17437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/31/2024] [Accepted: 09/16/2024] [Indexed: 12/28/2024]
Abstract
Aquatic products are a high-quality source of protein for humans, and the changes in protein during aquatic product processing are crucial for nutritional value, product performance, and consumer health. With the advancement of science and technology, aquatic product processing methods have become increasingly diverse. In addition to traditional methods such as thermal processing (steaming, roasting, and frying) and pickling, emerging non-thermal processing technologies, such as high pressure, ultrasound, and irradiation, are also being applied. During (ultra-)processing, aquatic products undergo complex biochemical reactions, among which protein oxidation significantly affects the quality of aquatic products. Protein oxidation can alter the molecular structure of proteins, thereby changing their functional properties and ultimately impacting product quality. This paper primarily explored the effects of protein changes under different processing methods on aquatic product quality and human health, as well as techniques for controlling protein oxidation. It aims to provide a theoretical basis for selecting appropriate processing methods, improving aquatic product quality, and controlling protein oxidation in aquatic products, and to offer scientific guidance for practical production.
Collapse
Affiliation(s)
- Jingjing Chen
- Tourism and Health Vocational College, Zhoushan Islands New Area, Zhoushan, China
| | - Huawei Ma
- Engineering Research Center of Processing & Storage of Characteristic and Advantage Aquatic Products from Guangxi, Guangxi Academy of Fishery Science, Nanning, China
| | - Ailing Guo
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, China
| | - Min Lv
- Engineering Research Center of Processing & Storage of Characteristic and Advantage Aquatic Products from Guangxi, Guangxi Academy of Fishery Science, Nanning, China
| | - Qingyan Pan
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, China
| | - Shiya Ya
- Engineering Research Center of Processing & Storage of Characteristic and Advantage Aquatic Products from Guangxi, Guangxi Academy of Fishery Science, Nanning, China
| | - Hui Wang
- Engineering Research Center of Processing & Storage of Characteristic and Advantage Aquatic Products from Guangxi, Guangxi Academy of Fishery Science, Nanning, China
| | - Chuanyan Pan
- Engineering Research Center of Processing & Storage of Characteristic and Advantage Aquatic Products from Guangxi, Guangxi Academy of Fishery Science, Nanning, China
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, China
| | - Linyuan Jiang
- Engineering Research Center of Processing & Storage of Characteristic and Advantage Aquatic Products from Guangxi, Guangxi Academy of Fishery Science, Nanning, China
| |
Collapse
|
2
|
Wu P, Yang J, Meng X, Weng Y, Lin Y, Li R, Lv X, Ni L, Han JZ, Fu C. The inhibitory action of lactocin 63 on deterioration of seabass (Lateolabrax japonicus) during chilled storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4015-4027. [PMID: 38294304 DOI: 10.1002/jsfa.13284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND The bacteriocins, particularly derived from lactic acid bacteria, currently exhibit potential as a promising food preservative owing to their low toxicity and potent antimicrobial activity. This study aimed to evaluate the efficacy of lactocin 63, produced by Lactobacillus coryniformis, in inhibiting the deterioration of Lateolabrax japonicas during chilled storage, while also investigating its underlying inhibitory mechanism. The measurement of total viable count, biogenic amines, and volatile organic compounds were conducted, along with high-throughput sequencing and sensory evaluation. RESULTS The findings demonstrated that treatment with lactocin 63 resulted in a notable retardation of bacterial growth in L. japonicas fish fillet during refrigerated storage compared with the water-treated and nisin-treated groups. Moreover, lactocin 63 effectively maintained the microbial flora balance in the fish fillet and inhibited the proliferation and metabolic activity of specific spoilage microorganisms, particularly Shewanella, Pseudomonas, and Acinetobacter. Furthermore, the production of unacceptable volatile organic compounds (e.g. 1-octen-3-ol, hexanal, nonanal), as well as the biogenic amines derived from the bacterial metabolism, could be hindered, thus preventing the degradation in the quality of fish fillets and sustaining relatively high sensory quality. CONCLUSION The results of this study provide valuable theoretical support for the development and application of lactocin 63, or other bacteriocins derived from lactic acid bacteria, as potential bio-preservatives in aquatic food. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Peifen Wu
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Jie Yang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Xiaojie Meng
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Yanlin Weng
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Yayi Lin
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Ruili Li
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Xucong Lv
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Li Ni
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Jin-Zhi Han
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Caili Fu
- Fujian Key Laboratory of Inspection and Quarantine Technology Research, Fuzhou, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
3
|
Sheng X, Yan L, Peng L, Zhao L, Dai F, Chen F, Wang L, Chen Y, Ye M, Wang J, Zhang J, Raghavan V. Effect of plasma-activated lactic acid on microbiota composition and quality of puffer fish ( Takifugu obscurus) fillets during chilled storage. Food Chem X 2024; 21:101129. [PMID: 38298353 PMCID: PMC10828650 DOI: 10.1016/j.fochx.2024.101129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
Fresh puffer fish (Takifugu obscurus) are susceptible to microbial contamination and have a very short shelf-life of chilled storage. Hence, this study aimed to evaluate the effects of plasma-activated lactic acid (PALA) on microbiota composition and quality attributes of puffer fish fillets during chilled storage. The results showed that PALA treatment effectively reduced the growth of bacteria and attenuated changes in physicochemical indicators (total volatile basic nitrogen, pH value, K value, and biogenic amines) of puffer fish fillets. Additionally, insignificant changes were observed in lipid oxidation during the first 8 days (p > 0.05). Illumina-MiSeq high-throughput sequencing revealed that PALA effectively inhibited the growth of Pseudomonas in puffer fish fillets and maintained the diverse characteristics of the microbial community. In combination with sensory analysis, PALA extended the shelf life of puffer fish fillets for 4 days, suggesting that PALA could be considered a potential fish fillet preservation method.
Collapse
Affiliation(s)
- Xiaowei Sheng
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Longfei Yan
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Sericulture & Agri-Food Research Institute Guangdong Academy of Agriculture Science, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Lanqing Peng
- Guangdong Supply and Marketing Green Agricultural Products Production and Supply Base Operation Co., Ltd, Huizhou 516100, China
| | - Luling Zhao
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fanwei Dai
- Sericulture & Agri-Food Research Institute Guangdong Academy of Agriculture Science, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Feiping Chen
- Sericulture & Agri-Food Research Institute Guangdong Academy of Agriculture Science, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Ling Wang
- Sericulture & Agri-Food Research Institute Guangdong Academy of Agriculture Science, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Yulong Chen
- Sericulture & Agri-Food Research Institute Guangdong Academy of Agriculture Science, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Mingqiang Ye
- Sericulture & Agri-Food Research Institute Guangdong Academy of Agriculture Science, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Jin Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jianhao Zhang
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, H9X3V9, Canada
| |
Collapse
|
4
|
Wang Y, Sang X, Cai Z, Zeng L, Deng W, Zhang J, Jiang Z, Wang J. Optimization of cold plasma combined treatment process and its effect on the quality of Asian sea bass (Lates calcarifer) during refrigerated storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2750-2760. [PMID: 37994167 DOI: 10.1002/jsfa.13159] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Cold plasma exhibits broad applicability in the realm of fish sterilization and preservation. The combination process of plasma-activated water and dielectric barrier discharge (PAW-DBD) was optimized, and its disinfection effects on bass fillets were studied. RESULTS The best conditions for disinfection of PAW-DBD were as follows. Bass fillets were soaked in PAW for 150 s, and then treated by DBD system at 160 kV for 180 s. The total viable count (TVC) reduced by 1.68 log CFU g-1 . On the 15th day of refrigerated storage, TVC of PAW-DBD group was 7.01 log CFU g-1 , while the PAW and DBD group exhibited a TVC of 7.02 and 7.01 log CFU g-1 on day 12; the TVC of the control group was 7.13 log CFU g-1 on day 6. The sensory score, water-holding capacity, and 2-thiobarbituric acid reactive substance values of the PAW-DBD group were significantly higher than those of PAW and DBD group (P < 0.05), whereas the TVC, Pseudomonas spp. count, and pH of the group were significantly lower (P < 0.05) during refrigerated storage. CONCLUSION PAW-DBD treatment can enhance the disinfection effect, maintain good quality, and extend the storage period of bass fillets. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood, Hainan University, Haikou, China
| | - Xiaohan Sang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood, Hainan University, Haikou, China
| | - Zhicheng Cai
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood, Hainan University, Haikou, China
| | - Lixian Zeng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood, Hainan University, Haikou, China
| | - Wentao Deng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood, Hainan University, Haikou, China
| | - Jianhao Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhumao Jiang
- College of Life Sciences, Yantai University, Yantai, China
| | - Jiamei Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood, Hainan University, Haikou, China
| |
Collapse
|
5
|
Pandiscia A, Lorusso P, Manfredi A, Sánchez G, Terio V, Randazzo W. Leveraging Plasma-Activated Seawater for the Control of Human Norovirus and Bacterial Pathogens in Shellfish Depuration. Foods 2024; 13:850. [PMID: 38540842 PMCID: PMC10969863 DOI: 10.3390/foods13060850] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 01/31/2025] Open
Abstract
Cold plasma is a promising alternative for water treatment owing to pathogen control and a plethora of issues in the agriculture and food sectors. Shellfish pose a serious risk to public health and are linked to large viral and bacterial outbreaks. Hence, current European regulations mandate a depuration step for shellfish on the basis of their geographical growth area. This study investigated the inactivation of relevant viral and bacterial pathogens of three plasma-activated seawaters (PASWs), and their reactive oxygen and nitrogen species (RONS) composition, as being primarily responsible for microbial inactivation. Specifically, F-specific (MS2) and somatic (φ174) bacteriophage, cultivable surrogate (murine norovirus, MNV, and Tulane virus, TV), and human norovirus (HuNoV GII.4) inactivation was determined using plaque counts and infectivity assays, including the novel human intestinal enteroid (HIE) model for HuNoV. Moreover, the kinetic decay of Escherichia coli, Salmonella spp., and Vibrio parahaemolyticus was characterized. The results showed the complete inactivation of phages (6-8 log), surrogates (5-6 log), HuNoV (6 log), and bacterial (6-7 log) pathogens within 24 h while preventing cytotoxicity effects and preserving mussel viability. Nitrites (NO2-) were found to be mostly correlated with microbial decay. This research shows that PASWs are a suitable option to depurate bivalve mollusks and control the biohazard risk linked to their microbiological contamination, either viral or bacterial.
Collapse
Affiliation(s)
- Annamaria Pandiscia
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustín Escardino 7, Paterna, 46980 Valencia, Spain
- Department of Veterinary Medicine, University of Bari, Provincial Road to Casamassima Km 3, 70010 Valenzano, Italy
| | - Patrizio Lorusso
- Department of Veterinary Medicine, University of Bari, Provincial Road to Casamassima Km 3, 70010 Valenzano, Italy
| | - Alessio Manfredi
- Department of Veterinary Medicine, University of Bari, Provincial Road to Casamassima Km 3, 70010 Valenzano, Italy
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustín Escardino 7, Paterna, 46980 Valencia, Spain
| | - Valentina Terio
- Department of Veterinary Medicine, University of Bari, Provincial Road to Casamassima Km 3, 70010 Valenzano, Italy
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustín Escardino 7, Paterna, 46980 Valencia, Spain
| |
Collapse
|
6
|
Usman I, Afzaal M, Imran A, Saeed F, Afzal A, Ashfaq I, Shah YA, Islam F, Azam I, Tariq I, Ateeq H, Asghar A, Farooq R, Rasheed A, Asif Shah M. Recent updates and perspectives of plasma in food processing: a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2023.2171052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Ifrah Usman
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ali Imran
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Atka Afzal
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Iqra Ashfaq
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Yasir Abbas Shah
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Fakhar Islam
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Iqra Azam
- Department of Food Sciences, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Ifra Tariq
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Huda Ateeq
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Aasma Asghar
- Department of Home Economics, Government College University Faisalabad, Faisalabad, Pakistan
| | - Rimsha Farooq
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Amara Rasheed
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mohd Asif Shah
- Department of Economics, College of Business and Economics, Kebri Dehar, University, Kebri Dehar, Ethiopia
- Adjunct Faculty, University Centre for Research & Development, Chandigarh University, Mohali, India
| |
Collapse
|
7
|
Liu D, Van Paepeghem C, Sierens J, Narimisa M, Nikiforov A, De Geyter N, Demeestere K, De Meulenaer B. Impact of Nonthermal Plasma on Lipid Oxidation from the Perspective of Plasma Treatment Parameters and Plasma Species: Identification of Key Reactive Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14057-14067. [PMID: 37723886 DOI: 10.1021/acs.jafc.3c03706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Nonthermal plasma is a mild processing technology for food preservation. Its impact on lipid oxidation was investigated in this study. Stripped methylesters were considered as a basic lipid model system and were treated by a multihollow surface dielectric barrier discharge. In dry air plasma, O3, ·NO2, ·NO3, and 1O2 were identified as the main reactive species reaching the sample surface. Treatment time was the most prominent parameter affecting lipid oxidation, followed by the (specific) power input and the plasma-sample distance. In humid air plasma, less O3 was detected, but ONOOH and O2NOOH were generated and presumed to play a role in lipid oxidation. Ozone mainly resulted in the formation of carbonyl substances via the trioxolane pathway, while reactive nitrogen species (i.e., ·NO2, ·NO3, ONOOH, and O2NOOH) led to the formation of hydroperoxides. The impact of short-living radicals (e.g., ·O, ·N, ·OH, and ·OOH) was restricted in general, since they dissipated too fast to reach the sample.·NO, HNO3, H2O2, and UV radiation did not induce lipid oxidation. All the reactive species identified in this study were associated with the presence of O2 in the input gas.
Collapse
Affiliation(s)
- Danyang Liu
- Research Group NutriFOODchem, Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Charlie Van Paepeghem
- Research Group NutriFOODchem, Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Joke Sierens
- Research Group NutriFOODchem, Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Mehrnoush Narimisa
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium
| | - Anton Nikiforov
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium
| | - Nathalie De Geyter
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium
| | - Kristof Demeestere
- Research Group EnVOC, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Bruno De Meulenaer
- Research Group NutriFOODchem, Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
8
|
Heydari M, Carbone K, Gervasi F, Parandi E, Rouhi M, Rostami O, Abedi-Firoozjah R, Kolahdouz-Nasiri A, Garavand F, Mohammadi R. Cold Plasma-Assisted Extraction of Phytochemicals: A Review. Foods 2023; 12:3181. [PMID: 37685115 PMCID: PMC10486403 DOI: 10.3390/foods12173181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
In recent years, there has been growing interest in bioactive plant compounds for their beneficial effects on health and for their potential in reducing the risk of developing certain diseases such as cancer, cardiovascular diseases, and neurodegenerative disorders. The extraction techniques conventionally used to obtain these phytocompounds, however, due to the use of toxic solvents and high temperatures, tend to be supplanted by innovative and unconventional techniques, in line with the demand for environmental and economic sustainability of new chemical processes. Among non-thermal technologies, cold plasma (CP), which has been successfully used for some years in the food industry as a treatment to improve food shelf life, seems to be one of the most promising solutions in green extraction processes. CP is characterized by its low environmental impact, low cost, and better extraction yield of phytochemicals, saving time, energy, and solvents compared with other classical extraction processes. In light of these considerations, this review aims to provide an overview of the potential and critical issues related to the use of CP in the extraction of phytochemicals, particularly polyphenols and essential oils. To review the current knowledge status and future insights of CP in this sector, a bibliometric study, providing quantitative information on the research activity based on the available published scientific literature, was carried out by the VOSviewer software (v. 1.6.18). Scientometric analysis has seen an increase in scientific studies over the past two years, underlining the growing interest of the scientific community in this natural substance extraction technique. The literature studies analyzed have shown that, in general, the use of CP was able to increase the yield of essential oil and polyphenols. Furthermore, the composition of the phytoextract obtained with CP would appear to be influenced by process parameters such as intensity (power and voltage), treatment time, and the working gas used. In general, the studies analyzed showed that the best yields in terms of total polyphenols and the antioxidant and antimicrobial properties of the phytoextracts were obtained using mild process conditions and nitrogen as the working gas. The use of CP as a non-conventional extraction technique is very recent, and further studies are needed to better understand the optimal process conditions to be adopted, and above all, in-depth studies are needed to better understand the mechanisms of plasma-plant matrix interaction to verify the possibility of any side reactions that could generate, in a highly oxidative environment, potentially hazardous substances, which would limit the exploitation of this technique at the industrial level.
Collapse
Affiliation(s)
- Mahshid Heydari
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran; (M.H.)
| | - Katya Carbone
- CREA Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy;
| | - Fabio Gervasi
- CREA Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy;
| | - Ehsan Parandi
- Department of Food Science & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj 3158777871, Iran
| | - Milad Rouhi
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran
| | - Omid Rostami
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran 1981619573, Iran
| | - Reza Abedi-Firoozjah
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran; (M.H.)
| | - Azin Kolahdouz-Nasiri
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran; (M.H.)
| | - Farhad Garavand
- Department of Food Chemistry & Technology, Teagasc Moorepark Food Research Centre, Fermoy, Co., P61 C996 Cork, Ireland
| | - Reza Mohammadi
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran
| |
Collapse
|
9
|
Toyokuni S, Zheng H, Kong Y, Sato K, Nakamura K, Tanaka H, Okazaki Y. Low-temperature plasma as magic wand to differentiate between the good and the evil. Free Radic Res 2023; 57:38-46. [PMID: 36919449 DOI: 10.1080/10715762.2023.2190860] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Plasma is the fourth physical state of matter, characterized by an ionized gaseous mixture, after solid, liquid, and gas phases, and contains a wide array of components such as ions, electrons, radicals, and ultraviolet ray. Whereas the sun and thunder are typical natural plasma, recent progress in the electronics enabled the generation of body-temperature plasma, designated as low-temperature plasma (LTP) or non-thermal plasma since the 1990s. LTP has attracted the attention of researchers for possible biological and medical applications. All the living species on earth utilize water as essential media for solvents and molecular transport. Thus, biological application of LTP naturally intervenes water whether LTP is exposed directly or indirectly, where plasma-activated lactate (PAL) is a standard, containing H2O2, NO2- and other identified molecules. Electron spin resonance and immunohistochemical studies demonstrated that LTP exposure is a handy method to load local oxidative stress. Cancer cells are characterized by persistent self-replication and high cytosolic catalytic Fe(II). Therefore, both direct exposure of LTP and PAL can provide higher damage to cancer cells in comparison to non-tumorous cells, which has been demonstrated in a variety of cancer types. The cell death mode is either apoptosis or ferroptosis, depending on the cancer-type. Thus, LTP and PAL are expected to work as an additional cancer therapy to the established guideline protocols, especially for use in somatic cavities or surgical margins.
Collapse
Affiliation(s)
- Shinya Toyokuni
- Department of Pathology and Biological Response, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Hao Zheng
- Department of Pathology and Biological Response, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yingyi Kong
- Department of Pathology and Biological Response, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kotaro Sato
- Department of Pathology and Biological Response, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kae Nakamura
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Hiromasa Tanaka
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Yasumasa Okazaki
- Department of Pathology and Biological Response, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
10
|
Zorzi V, Berardinelli A, Gozzi G, Ragni L, Vannini L, Ceccato R, Parrino F. Combined effect of atmospheric gas plasma and UVA light: A sustainable and green alternative for chemical decontamination and microbial inactivation of fish processing water. CHEMOSPHERE 2023; 317:137792. [PMID: 36640987 DOI: 10.1016/j.chemosphere.2023.137792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The simultaneous use of UVA light irradiation coupled with low energy cold plasma generated by a dielectric barrier discharge prototype, results in significant enhancement of efficiency of the integrated process with respect to the sole plasma treatment. This effect has been demonstrated both on microbial inactivation of a food-borne pathogen, i.e. Listeria monocytogenes, and on the degradation of a compound of biological origin such as phenylalanine. In the latter case, the analysis of its reaction intermediates and the spectroscopic identification and quantification of peroxynitrites, allowed to propose mechanistic hypotheses on the nature of the observed synergistic effects. Moreover, it has been demonstrated that the process does not affect the quality of trout fillets, indicating its suitability as a chlorine-free, green, and sustainable tool for the decontamination of fish processing water.
Collapse
Affiliation(s)
- Vittorio Zorzi
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Annachiara Berardinelli
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123, Trento, Italy; Center Agriculture Food Environment - C3A, University of Trento, Via E. Mach 1, 38010 S, Michele All'Adige (TN), Italy
| | - Giorgia Gozzi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, P.zza Goidanich 60, Cesena (FC), Italy
| | - Luigi Ragni
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, P.zza Goidanich 60, Cesena (FC), Italy; Inter-Departmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum, University of Bologna, Via Q. Bucci 336, Cesena (FC), Italy
| | - Lucia Vannini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, P.zza Goidanich 60, Cesena (FC), Italy; Inter-Departmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum, University of Bologna, Via Q. Bucci 336, Cesena (FC), Italy
| | - Riccardo Ceccato
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Francesco Parrino
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123, Trento, Italy.
| |
Collapse
|
11
|
Doshi P, Šerá B. Role of Non-Thermal Plasma in Fusarium Inactivation and Mycotoxin Decontamination. PLANTS (BASEL, SWITZERLAND) 2023; 12:627. [PMID: 36771708 PMCID: PMC9921801 DOI: 10.3390/plants12030627] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Fusarium spp. is a well-studied pathogen with the potential to infect cereals and reduce the yield to maximum if left unchecked. For decades, different control treatments have been tested against different Fusarium spp. and for reducing the mycotoxins they produce and are well documented. Some treatments also involved integrated pest management (IPM) strategies against Fusarium spp. control and mycotoxin degradation produced by them. In this review article, we compiled different control strategies against different Fusarium spp. In addition, special focus is given to the non-thermal plasma (NTP) technique used against Fusarium spp. inactivation. In a separate group, we compiled the literature about the use of NTP in the decontamination of mycotoxins produced by Fusarium spp., and highlighted the possible mechanisms of mycotoxin degradation by NTP. In this review, we concluded that although NTP is an effective treatment, it is a nice area and needs further research. The possibility of a prospective novel IPM strategy against Fusarium spp. is also proposed.
Collapse
|
12
|
Paulsen P, Csadek I, Bauer A, Bak KH, Weidinger P, Schwaiger K, Nowotny N, Walsh J, Martines E, Smulders FJM. Treatment of Fresh Meat, Fish and Products Thereof with Cold Atmospheric Plasma to Inactivate Microbial Pathogens and Extend Shelf Life. Foods 2022; 11:3865. [PMID: 36496672 PMCID: PMC9740106 DOI: 10.3390/foods11233865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Assuring the safety of muscle foods and seafood is based on prerequisites and specific measures targeted against defined hazards. This concept is augmented by 'interventions', which are chemical or physical treatments, not genuinely part of the production process, but rather implemented in the framework of a safety assurance system. The present paper focuses on 'Cold Atmospheric pressure Plasma' (CAP) as an emerging non-thermal intervention for microbial decontamination. Over the past decade, a vast number of studies have explored the antimicrobial potential of different CAP systems against a plethora of different foodborne microorganisms. This contribution aims at providing a comprehensive reference and appraisal of the latest literature in the area, with a specific focus on the use of CAP for the treatment of fresh meat, fish and associated products to inactivate microbial pathogens and extend shelf life. Aspects such as changes to organoleptic and nutritional value alongside other matrix effects are considered, so as to provide the reader with a clear insight into the advantages and disadvantages of CAP-based decontamination strategies.
Collapse
Affiliation(s)
- Peter Paulsen
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Isabella Csadek
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | | | - Kathrine H. Bak
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Pia Weidinger
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Karin Schwaiger
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Norbert Nowotny
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - James Walsh
- Centre for Plasma Microbiology, University of Liverpool, Liverpool L69 3BX, UK
| | - Emilio Martines
- Department of Physics “G. Occhialini”, University of Milano—Bicocca, Piazza della Scienza 3, 20126 Milano, Italy
| | - Frans J. M. Smulders
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
13
|
Mol S, Akan T, Kartal S, Coşansu S, Tosun ŞY, Alakavuk DÜ, Ulusoy Ş, Doğruyol H, Bostan K. Effects of Air and Helium Cold Plasma on Sensory Acceptability and Quality of Fresh Sea Bass (Dicentrarchus labrax). FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02950-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Characteristics of myoglobin degradation by cold plasma and its pro-oxidative activity on lipid in washed fish muscle. Food Chem 2022; 389:132972. [DOI: 10.1016/j.foodchem.2022.132972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/27/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022]
|
15
|
Wang J, Fu T, Sang X, Liu Y. Effects of high voltage atmospheric cold plasma treatment on microbial diversity of tilapia (Oreochromis mossambicus) fillets treated during refrigeration. Int J Food Microbiol 2022; 375:109738. [DOI: 10.1016/j.ijfoodmicro.2022.109738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 12/16/2022]
|
16
|
Decomposition of Naphthalene by Dielectric Barrier Discharge in Conjunction with a Catalyst at Atmospheric Pressure. Catalysts 2022. [DOI: 10.3390/catal12070740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In this study, coaxial dielectric barrier discharge (DBD) plasma, in conjunction with a metal oxide catalyst, was used to degrade naphthalene. The characteristics of plasma discharge were studied by measuring voltage and current waveforms and the Lissajous figure. The effects of different parameters of the process on naphthalene decomposition in air were investigated. XRD, BET, and SEM data were used to investigate the nature, specific surface area, and surface morphology of the catalyst. The results show that the mineralization of naphthalene reached 82.2% when the initial naphthalene concentration was 21 ppm and the total gas flow rate was 1 L/min in the DBD reactor filled with Al2O3. The mineralization of naphthalene first increased and then became stable with the increase in treatment time and discharge power. The TiO2 catalyst has more apparent advantages than the two other studied catalysts in terms of the removal efficiency and mineralization of naphthalene due to this catalyst’s large specific surface area, porous structure, and photocatalytic properties. In addition, the introduction of a small amount of water vapor can promote the mineralization and CO2 selectivity of naphthalene. With further increases in the water vapor, Fe2O3 has a negative effect on the naphthalene oxidation due to its small pore size. The TiO2 catalyst can overcome the adverse effects of water molecule attachment due to its photocatalytic properties.
Collapse
|
17
|
Kulawik P, Rathod NB, Ozogul Y, Ozogul F, Zhang W. Recent developments in the use of cold plasma, high hydrostatic pressure, and pulsed electric fields on microorganisms and viruses in seafood. Crit Rev Food Sci Nutr 2022; 63:9716-9730. [PMID: 35603708 DOI: 10.1080/10408398.2022.2077298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Non-thermal processing methods, such as cold plasma (CP), high pressure processing (HPP) and pulsed electric fields (PEF), have been proposed for natural and fresh-like foods to inactivate microorganisms at nearly-ambient or moderate temperature. Since natural, safe, and healthy foods with longer shelf-life are increasingly demanded, these requests are challenging to fulfill by using current thermal processing technologies. Thus, novel preservation technologies based on non-thermal processing methods are required. The aim of this article is to provide recent developments in maintaining seafood safety via CP, HHP, and PEF technologies, as well as their mechanisms of action regarding contamination with food-borne microorganisms. Their application to control parasites, spores and the possibility to eradicate the hazard of SARS-CoV-2 transmission through seafood products are also discussed. CP, HHP, and PEF have been applied to inactivate food-borne microorganisms in the seafood industry. However, the drawbacks for each emerging technology have also been reported. To ensure safety and maintain quality of seafood products, the combination of these processing techniques with natural antimicrobial agents or existing thermal methods may be more applicable in the case of the seafood industry. Further studies are required to examine the effects of these methods on viruses, parasites, and SARS-CoV-2 in seafood.
Collapse
Affiliation(s)
- Piotr Kulawik
- Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture, Kraków, Poland
| | - Nikheel Bhojraj Rathod
- Department of Post-Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post-Harvest Management, Raigad, Maharashtra, India
| | - Yesim Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Wangang Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
18
|
Inhibition of Several Bacterial Species Isolated from Squid and Shrimp Skewers by Different Natural Edible Compounds. Foods 2022; 11:foods11050757. [PMID: 35267390 PMCID: PMC8909736 DOI: 10.3390/foods11050757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/10/2022] Open
Abstract
Seafood is an excellent source of nutrients, essential for a healthy diet, ranging from proteins and fatty acids to vitamins and minerals. Seafood products are highly perishable foods due to their nutritional characteristics and composition. The application of nontoxic, natural, and edible preservatives to extend the shelf-life and inhibit bacterial proliferation of several foods has been a hot topic. Consequently, this work aimed to perform the microbiological characterization of squid and shrimp skewers during their shelf-life (five days) and evaluate the susceptibility of randomly isolated microorganisms to several natural edible compounds so that their application for the preservation and shelf-life extension of the product might be analyzed in the future. The product had considerably high total microorganisms loads of about 5 log CFU/g at day zero and 9 log CFU/g at day five. In addition, high bacterial counts of Pseudomonas spp., Enterobacterales, and lactic acid bacteria (LAB) were found, especially on the last day of storage, being Pseudomonas the dominant genus. However, no Escherichia coli or Listeria monocytogenes were detected on the analyzed samples. One hundred bacterial isolates were randomly selected and identified through 16s rRNA sequencing, resulting in the detection of several Enterobacterales, Pseudomonas spp., and LAB. The antibacterial activity of carvacrol, olive leaf extract, limonene, Citrox®, different chitosans, and ethanolic propolis extracts was evaluated by the agar diffusion method, and the minimum inhibitory concentration was determined only for Citrox® since only this solution could inhibit all the identified isolates. At concentrations higher than or equal to 1.69% (v/v), Citrox® demonstrated bacteriostatic and bactericidal activity to 97% and 3% of the isolates, respectively. To our knowledge, there are no available data about the effectiveness of this commercial product on seafood isolates. Although preliminary, this study showed evidence that Citrox® has the potential to be used as a natural preservative in these seafood products, improving food safety and quality while reducing waste. However, further studies are required, such as developing a Citrox®-based coating and its application on this matrix to validate its antimicrobial effect.
Collapse
|
19
|
Application of Water Treated with Low-Temperature Low-Pressure Glow Plasma (LPGP) in Various Industries. BEVERAGES 2022. [DOI: 10.3390/beverages8010008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Plasma processing is now a key technology across the world, and nonthermal low-temperature plasmas are being increasingly used. This situation can be explained by a rapidly growing interest in the optimization of existing methods, as well as the development of new ones. Over the last few years, the production of plasma-treated water (PTW) by low-temperature low-pressure glow plasma (LPGP) under an atmosphere of various gases has been increasingly gaining in popularity. Research has been conducted on producing plasma-treated water in the presence of air, nitrogen, ammonia, carbon dioxide, and methane. All the obtained results show that the changed physicochemical properties of the water depend on the type of gas used and the duration of the plasma treatment. New research is emerging on the possibility of using this water in plant breeding, animal husbandry, cosmetology, medicine, and food. For the first time, plasma-treated water has also been tested for use in the brewing industry at the raw material preparation stage. The results obtained in all branches of science are very promising, contributing to the growing interest in plasma-treated water within the scientific community.
Collapse
|
20
|
Abel N, Rotabakk BT, Lerfall J. Mild processing of seafood-A review. Compr Rev Food Sci Food Saf 2021; 21:340-370. [PMID: 34913247 DOI: 10.1111/1541-4337.12876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022]
Abstract
Recent years have shown a tremendous increase in consumer demands for healthy, natural, high-quality convenience foods, especially within the fish and seafood sector. Traditional processing technologies such as drying or extensive heating can cause deterioration of nutrients and sensory quality uncompilable with these demands. This has led to development of many novel processing technologies, which include several mild technologies. The present review highlights the potential of mild thermal, and nonthermal physical, and chemical technologies, either used alone or in combination, to obtain safe seafood products with good shelf life and preference among consumers. Moreover, applications and limitations are discussed to provide a clear view of the potential for future development and applications. Some of the reviewed technologies, or combinations thereof, have shown great potential for non-seafood products, yet data are missing for fish and seafood in general. The present paper visualizes these knowledge gaps and the potential for new technology developments in the seafood sector. Among identified gaps, the combination of mild heating (e.g., sous vide or microwave) with more novel technologies such as pulsed electric field, pulsed light, soluble gas stabilization, cold plasma, or Ohmic heat must be highlighted. However, before industrial applications are available, more research is needed.
Collapse
Affiliation(s)
- Nanna Abel
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Jørgen Lerfall
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
21
|
Rathod NB, Kulawik P, Ozogul Y, Ozogul F, Bekhit AEA. Recent developments in non‐thermal processing for seafood and seafood products: cold plasma, pulsed electric field and high hydrostatic pressure. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nikheel Bhojraj Rathod
- Department of Post Harvest management of Meat, Poultry and Fish Post Graduate Institute of Post‐Harvest Management Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth Roha, Raigad Maharashtra State 402116 India
| | - Piotr Kulawik
- Department of Animal Products Technology Faculty of Food Technology University of Agriculture Karakow Poland
| | - Yesim Ozogul
- Department of Seafood Processing Technology Faculty of Fisheries Cukurova University Adana 01330 Turkey
| | - Fatih Ozogul
- Department of Seafood Processing Technology Faculty of Fisheries Cukurova University Adana 01330 Turkey
| | | |
Collapse
|
22
|
Application of cold plasma technology in the food industry and its combination with other emerging technologies. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Trevisani M, Cevoli C, Ragni L, Cecchini M, Berardinelli A. Effect of Non-thermal Atmospheric Plasma on Viability and Histamine-Producing Activity of Psychotrophic Bacteria in Mackerel Fillets. Front Microbiol 2021; 12:653597. [PMID: 34385982 PMCID: PMC8353460 DOI: 10.3389/fmicb.2021.653597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/01/2021] [Indexed: 11/25/2022] Open
Abstract
Non-thermal atmospheric plasma (NTAP) has gained attention as a decontamination and shelf-life extension technology. In this study its effect on psychrotrophic histamine-producing bacteria (HPB) and histamine formation in fish stored at 0–5°C was evaluated. Mackerel filets were artificially inoculated with Morganella psychrotolerans and Photobacterium phosphoreum and exposed to NTAP to evaluate its effect on their viability and the histidine decarboxylase (HDC) activity in broth cultures and the accumulation of histamine in fish samples, stored on melting ice or at fridge temperature (5°C). NTAP treatment was made under wet conditions for 30 min, using a dielectric barrier discharge (DBD) reactor. The voltage output was characterized by a peak-to-peak value of 13.8 kV (fundamental frequency around 12.7 KHz). This treatment resulted in a significant reduction of the number of M. psychrotolerans and P. phosphoreum (≈3 log cfu/cm2) on skin samples that have been prewashed with surfactant (SDS) or SDS and lactic acid. A marked reduction of their histamine-producing potential was also observed in HDC broth incubated at either 20 or 5°C. Lower accumulation of histamine was observed in NTAP-treated mackerel filets that have been inoculated with M. psychrotolerans or P. phosphoreum and pre-washed with either normal saline or SDS solution (0.05% w/v) and stored at 5°C for 10 days. Mean histamine level in treated and control groups for the samples inoculated with either M. psychrotolerans or P. phosphoreum (≈5 log cfu/g) varied from 7 to 32 and from 49 to 66 μg/g, respectively. No synergistic effect of SDS was observed in the challenge test on meat samples. Any detectable amount of histamine was produced in the meat samples held at melting ice temperature (0–2°C) for 7 days. The effects of NTAP on the quality properties of mackerel’s filets were negligible, whereas its effect on the psychrotrophic HPB might be useful when time and environmental conditions are challenging for the cool-keeping capacity throughout the transport/storage period.
Collapse
Affiliation(s)
- Marcello Trevisani
- Department of Veterinary Medical Science, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Chiara Cevoli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Luigi Ragni
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Matilde Cecchini
- Department of Veterinary Medical Science, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Annachiara Berardinelli
- Department of Industrial Engineering, University of Trento, Trento, Italy.,Centre Agriculture Food Environment, University of Trento, Trento, Italy
| |
Collapse
|
24
|
Andoni E, Ozuni E, Bijo B, Shehu F, Branciari R, Miraglia D, Ranucci D. Efficacy of Non-thermal Processing Methods to Prevent Fish Spoilage. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2020.1866131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Egon Andoni
- Veterinary Faculty of Tirana, Department of Public Health, Rr “Pajsi Vodica”, Koder-Kamez, Tirana, Albania
| | - Enkeleda Ozuni
- Veterinary Faculty of Tirana, Department of Public Health, Rr “Pajsi Vodica”, Koder-Kamez, Tirana, Albania
| | - Bizena Bijo
- Veterinary Faculty of Tirana, Department of Public Health, Rr “Pajsi Vodica”, Koder-Kamez, Tirana, Albania
| | - Fatmira Shehu
- Veterinary Faculty of Tirana, Department of Public Health, Rr “Pajsi Vodica”, Koder-Kamez, Tirana, Albania
| | | | - Dino Miraglia
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - David Ranucci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
25
|
Non-Thermal Methods for Ensuring the Microbiological Quality and Safety of Seafood. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020833] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A literature search and systematic review were conducted to present and discuss the most recent research studies for the past twenty years on the application of non-thermal methods for ensuring the microbiological safety and quality of fish and seafood. This review presents the principles and reveals the potential benefits of high hydrostatic pressure processing (HHP), ultrasounds (US), non-thermal atmospheric plasma (NTAP), pulsed electric fields (PEF), and electrolyzed water (EW) as alternative methods to conventional heat treatments. Some of these methods have already been adopted by the seafood industry, while others show promising results in inactivating microbial contaminants or spoilage bacteria from solid or liquid seafood products without affecting the biochemical or sensory quality. The main applications and mechanisms of action for each emerging technology are being discussed. Each of these technologies has a specific mode of microbial inactivation and a specific range of use. Thus, their knowledge is important to design a practical application plan focusing on producing safer, qualitative seafood products with added value following today’s consumers’ needs.
Collapse
|
26
|
Xiang Q, Fan L, Li Y, Dong S, Li K, Bai Y. A review on recent advances in plasma-activated water for food safety: current applications and future trends. Crit Rev Food Sci Nutr 2020; 62:2250-2268. [PMID: 33261517 DOI: 10.1080/10408398.2020.1852173] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Plasma-activated water (PAW), the water or solutions treated with atmospheric cold plasma, is an eco-friendly technique with minimal changes in food products, making it a befitting alternative to traditional disinfection methods. Due to its potential microbicidal properties, PAW has been receiving increasing attention for applications in the food, agricultural, and biomedical fields. In this article, we aimed at presenting an overview of recent studies on the generation methods, physicochemical properties, and antimicrobial activity of PAW, as well as its application in the food industry. Specific areas were well discussed including microbial decontamination of food products, reduction of pesticide residues, meat curing, sprouts production, and disinfection of food contact materials. In addition, the factors influencing PAW efficiency were also well illustrated in detail, such as discharge parameters, types and amounts of microorganisms, characteristics of the liquid solution and food products, and treatment time. Moreover, the strategies to improve the efficacy of PAW were also presented in combination with other technologies. Furthermore, the salient drawbacks of this technology were discussed and the important areas for future research were also highlighted. Overall, the present review provides important insights for the application of PAW in the food industry.
Collapse
Affiliation(s)
- Qisen Xiang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zheng, PR China
| | - Liumin Fan
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zheng, PR China
| | - Yunfei Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zheng, PR China
| | - Shanshan Dong
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zheng, PR China
| | - Ke Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zheng, PR China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zheng, PR China
| |
Collapse
|
27
|
Kulawik P, Dordević D. Sushi processing: microbiological hazards and the use of emerging technologies. Crit Rev Food Sci Nutr 2020; 62:1270-1283. [PMID: 33124887 DOI: 10.1080/10408398.2020.1840332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sushi meal has been adapting to different countries and traditions ever since it was invented. Recently there is a growing popularity of ready-to-eat sushi meals, with new sushi production plants emerging in many countries. This relatively new sushi industry is facing many challenges, one of which is the microbiological hazard related to sushi consumption. The aim of this review was to summarize the most significant aspects with regard to microbiological quality of sushi, reported cases of sushi-related poisoning, as well as the potential of modern innovative and emerging technologies to inhibit microbiological growth. Although there is a limited amount of studies in relation to sushi shelf-life extension, the existing data shows potential of using novel minimal processing technologies to improve the shelf-life and quality of sushi meals. Those technologies include the use of cold plasma, plasma activated water and electrolyzed water, as well as the use of innovative packaging and edible coatings. Based on the collected data, the possible microbiological hazards in the production process of sushi, with possible use of emerging technologies to reduce or eliminate those risks, are also emphasized.
Collapse
Affiliation(s)
- Piotr Kulawik
- Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture in Cracow, Kraków, Poland
| | - Dani Dordević
- Department of Vegetable Foodstuffs Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences in Brno, Brno, Czech Republic.,Department of Technology and Organization of Public Catering, South Ural State University, Chelyabinsk, Russia
| |
Collapse
|
28
|
Monitoring Thermal and Non-Thermal Treatments during Processing of Muscle Foods: A Comprehensive Review of Recent Technological Advances. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196802] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Muscle food products play a vital role in human nutrition due to their sensory quality and high nutritional value. One well-known challenge of such products is the high perishability and limited shelf life unless suitable preservation or processing techniques are applied. Thermal processing is one of the well-established treatments that has been most commonly used in order to prepare food and ensure its safety. However, the application of inappropriate or severe thermal treatments may lead to undesirable changes in the sensory and nutritional quality of heat-processed products, and especially so for foods that are sensitive to thermal treatments, such as fish and meat and their products. In recent years, novel thermal treatments (e.g., ohmic heating, microwave) and non-thermal processing (e.g., high pressure, cold plasma) have emerged and proved to cause less damage to the quality of treated products than do conventional techniques. Several traditional assessment approaches have been extensively applied in order to evaluate and monitor changes in quality resulting from the use of thermal and non-thermal processing methods. Recent advances, nonetheless, have shown tremendous potential of various emerging analytical methods. Among these, spectroscopic techniques have received considerable attention due to many favorable features compared to conventional analysis methods. This review paper will provide an updated overview of both processing (thermal and non-thermal) and analytical techniques (traditional methods and spectroscopic ones). The opportunities and limitations will be discussed and possible directions for future research studies and applications will be suggested.
Collapse
|