1
|
DePaula J, Partelli FL, Batista AM, Calado V, Farah A. Major Bioactive Compounds in Seeds, Husks, and Leaves of Selected Genotypes of Coffea canephora cv. Conilon from Three Consecutive Crops. PLANTS (BASEL, SWITZERLAND) 2025; 14:1040. [PMID: 40219109 PMCID: PMC11990690 DOI: 10.3390/plants14071040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025]
Abstract
This study aimed to investigate: (1) the bioactive profile of seeds, husks, and leaves of selected conilon coffee genotypes (n = 42) from three consecutive crops for the selection of plants to meet health interests, (2) the variability in the content of these bioactive compounds over the crops, and (3) possible correlations among the contents of the evaluated compounds in the different parts of the plant. Selected conilon plants were reproduced by clonal propagation. Bioactive compounds were analyzed using HPLC-DAD. Eight chlorogenic acids (CGA), caffeine, trigonelline, and minor phenolic compounds were quantified (dry basis) in all extracts. CGA contents in seeds, husks, and leaves ranged between 3.71 and 9.71 g/100 g, 0.43 and 1.65 g/100 g, and 0.80 and 2.22 g/100 g, respectively. Caffeine contents ranged between 1.21 and 2.63 g/100 g, 0.13 and 0.84 g/100 g, and 0.33 and 2.01 g/100 g in seeds, husks, and leaves, respectively. Trigonelline contents ranged between 0.83 and 1.12 g/100 g, 0.59 and 1.24 g/100 g, and 0.74 and 1.84 g/100 g, respectively. Variation among the three crops was observed to be higher for CGA. A discrete correlation between CGA and caffeine was observed in the seeds (r: 0.72, p = 0.003). Some of the genotypes showed consistently higher contents of these bioactive compounds than others (not only in the seeds but also in the husks and leaves), being good candidates for cultivar registration to meet various market demands in the food and pharmaceutical industries. Studies that evaluate the potential use of new genotypes and byproducts are important for diversification and maximum use of coffee plants, promoting sustainability and financial return to the farmers and the producing country.
Collapse
Affiliation(s)
- Juliana DePaula
- Food Chemistry and Bioactivity Laboratory & Coffee Research Core—NUPECAFÉ, Nutrition Institute, Federal University of Rio de Janeiro (UFRJ), Ilha do Fundão, CCS Bloco J, Rio de Janeiro 21941-902, RJ, Brazil; (J.D.); (A.M.B.)
| | - Fábio Luiz Partelli
- Departamento de Ciências Agrárias e Biológicas, Centro Universitário do Norte do Espírito Santo, Universidade Federal do Espírito Santo, São Mateus 29932-900, ES, Brazil;
| | - Alessandro M. Batista
- Food Chemistry and Bioactivity Laboratory & Coffee Research Core—NUPECAFÉ, Nutrition Institute, Federal University of Rio de Janeiro (UFRJ), Ilha do Fundão, CCS Bloco J, Rio de Janeiro 21941-902, RJ, Brazil; (J.D.); (A.M.B.)
| | - Veronica Calado
- Thermo Analysis and Rheology Laboratory, Chemistry School, Federal University of Rio de Janeiro (UFRJ), Ilha do Fundão, CT Bloco K, Rio de Janeiro 21941-972, RJ, Brazil;
| | - Adriana Farah
- Food Chemistry and Bioactivity Laboratory & Coffee Research Core—NUPECAFÉ, Nutrition Institute, Federal University of Rio de Janeiro (UFRJ), Ilha do Fundão, CCS Bloco J, Rio de Janeiro 21941-902, RJ, Brazil; (J.D.); (A.M.B.)
| |
Collapse
|
2
|
Ruse G, Jîjie AR, Moacă EA, Pătrașcu D, Ardelean F, Jojic AA, Ardelean S, Tchiakpe-Antal DS. Coffea arabica: An Emerging Active Ingredient in Dermato-Cosmetic Applications. Pharmaceuticals (Basel) 2025; 18:171. [PMID: 40005985 PMCID: PMC11858793 DOI: 10.3390/ph18020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Coffea arabica, commonly known as Arabica coffee, has garnered attention in recent years for its potential applications in dermato-cosmetic formulations. This review aims to critically evaluate the emerging role of Coffea arabica as an active ingredient in skin care products, focusing on its bioactive compounds derived from both the leaves and beans, mechanisms of action, and efficacy in dermatological applications. A comparative analysis between the bioactive profiles of the leaves and beans is also presented to elucidate their respective contributions to dermato-cosmetic efficacy. Results: This review synthesizes findings from various studies that highlight the presence of key bioactive compounds in Coffea arabica, including caffeine, chlorogenic acids, and flavonoids. Notably, the leaves exhibit a higher concentration of certain phenolic compounds compared to the beans, suggesting unique properties that may enhance skin health. These compounds have demonstrated significant anticellulite, anti-inflammatory, antioxidant, photoprotective, anti-aging, antibacterial, and moisturizing properties. Discussion: This article delves into the biochemical pathways through which bioactive compounds derived from both the leaves and beans of Coffea arabica exert their beneficial effects on skin and hair health. Furthermore, this review highlights the growing trend of incorporating natural ingredients in cosmetic formulations and the consumer demand for products with scientifically substantiated benefits. Conclusions: The findings of this review underscore the potential of Coffea arabica as a valuable active ingredient in dermato-cosmetic applications. Its multifaceted bioactivity suggests that it can contribute significantly to skin health and cosmetic efficacy. Future research should focus on clinical trials to further validate these benefits and explore optimal formulation strategies for enhanced delivery and stability in cosmetic products.
Collapse
Affiliation(s)
- Grațiana Ruse
- Discipline of Pharmaceutical Botany, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (G.R.); (F.A.); (A.-A.J.); (D.-S.T.-A.)
| | - Alex-Robert Jîjie
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-R.J.); (E.-A.M.); (D.P.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Elena-Alina Moacă
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-R.J.); (E.-A.M.); (D.P.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Dalia Pătrașcu
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-R.J.); (E.-A.M.); (D.P.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Florina Ardelean
- Discipline of Pharmaceutical Botany, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (G.R.); (F.A.); (A.-A.J.); (D.-S.T.-A.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Alina-Arabela Jojic
- Discipline of Pharmaceutical Botany, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (G.R.); (F.A.); (A.-A.J.); (D.-S.T.-A.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Simona Ardelean
- Faculty of Pharmacy, Vasile Goldis Western University of Arad, Revolutiei Bvd 94, 310130 Arad, Romania
| | - Diana-Simona Tchiakpe-Antal
- Discipline of Pharmaceutical Botany, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (G.R.); (F.A.); (A.-A.J.); (D.-S.T.-A.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| |
Collapse
|
3
|
Du R, Liang Y, Si B, Chang C, Lu Y, Lv L. Capture of single or multiple reactive carbonyl species by mangiferin under high temperatures. Food Chem 2024; 460:140712. [PMID: 39121767 DOI: 10.1016/j.foodchem.2024.140712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/04/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024]
Abstract
Reactive carbonyl species (RCS), including acrolein (ACR), methylglyoxal (MGO), and glyoxal (GO), are typically generated in food processing and accumulate in the body for ages, triggering various chronic diseases. Here, we investigated the capture capability and reaction pathways of mangiferin one-to-one and one-to-many on RCS in high temperatures using UPLC-MS/MS. We found that mangiferin can capture ACR/MGO/GO to form their adducts, yet, the ability to capture RCS is arranged in different orders, with ACR > MGO > GO for a single RCS and MGO > ACR > GO for multiple RCS. After synthesizing and identifying the structures of the ACR- and MGO-adducts of MGF, our results indicated that MGF-ACR-MGO produced in the multiple-RCS-MGF system was formed by capturing MGO through MGF-ACR rather than through MGF-MGO capturing ACR, which resulting in higher inhibitory activity of MGF against MGO than against ACR. Then, the capture ability and path of MGF on RCS were verified in the coffee-leaves tea and cake.
Collapse
Affiliation(s)
- Ruoying Du
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2(#) Xuelin Road, Nanjing, 210023, PR China
| | - Yu Liang
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2(#) Xuelin Road, Nanjing, 210023, PR China
| | - Bo Si
- National Liquor Product Quality Supervision and Inspection Center, Suqian Product Quality Supervision & Inspection Institute, 889(#) Fazhan Road, Suqian, 223,800, PR China
| | - Chun Chang
- National Liquor Product Quality Supervision and Inspection Center, Suqian Product Quality Supervision & Inspection Institute, 889(#) Fazhan Road, Suqian, 223,800, PR China
| | - Yonglin Lu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2(#) Xuelin Road, Nanjing, 210023, PR China
| | - Lishuang Lv
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2(#) Xuelin Road, Nanjing, 210023, PR China..
| |
Collapse
|
4
|
Latunra AI, Heryanto H, Tahir D, Ardiansa A. Analytical insight into caffeine extraction from typica coffee leaves based on crystallinity enhancement, optical phonon vibration upshift, and morphological evolution. J Food Sci 2024; 89:9420-9432. [PMID: 39437161 DOI: 10.1111/1750-3841.17443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/01/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024]
Abstract
Caffeine extracted from callus cultures by in vitro technique induced from typica coffee (Coffea arabica L. var. typica) leaves was successfully carried out by a simple Soxhlet method. Analysis of X-ray diffraction patterns showed an increase in crystallinity fraction from leaves (13.56%) to callus (14.46%) and then to caffeine (39.18%). Crystallite size also varied, with average sizes of 18 ± 6, 69 ± 51, and 32.5 ± 17 nm for leaves, callus, and caffeine, respectively. Fourier transmission infrared absorption data confirmed the presence of hydroxyl (OH) groups bound to carbon (C─COH), indicating caffeine content. The high stability of the C─COH is indicated by the broad optical phonon vibrationsΔ ( L O - T O ) $\Delta ( {LO - TO} )$ of the leaves: 247 cm-1 to caffeine: 963 cm-1. Quantitative analysis of dielectric function and electron loss function intensity peaks of each sample showed that leaves efficiently capture and store light energy while caffeine has less potency. Scanning electron microscopy analysis showed irregular shapes of leaves, oval round shapes for callus, and rectangular crystals for caffeine due to crystal orientation during transformation and had a strong correlation with crystallinity fraction. Finally, the structure-based identification, chemistry, optical-dielectric function, and micro-surface properties have been fully studied, thus unmasking the phenomenon of slow transformation from leaves to caffeine form. PRACTICAL APPLICATION: The result of this study can be applied to uncover new methodologies related to the classification, and biotechnological utilization of callus culture based on structural properties, optical-dielectric function, and micro-surface analysis. Methodologically, the resulting callus culture provides a sustainable and controllable supply of plant material for caffeine extraction, thereby reducing traditional methods involving field-grown plants and avoiding the use of pesticides.
Collapse
Affiliation(s)
| | | | - Dahlang Tahir
- Physics Department, Hasanuddin University, Makassar, Indonesia
| | | |
Collapse
|
5
|
Jeon YA, Natraj P, Kim SC, Moon JK, Lee YJ. Comparative Analysis of Phytochemical and Functional Profiles of Arabica Coffee Leaves and Green Beans Across Different Cultivars. Foods 2024; 13:3744. [PMID: 39682816 DOI: 10.3390/foods13233744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
This study analyzed the phytochemical composition and functional properties of leaves and green beans from seven Arabica coffee cultivars. The total phenolic and flavonoid contents were measured using spectrophotometric methods, while caffeine, chlorogenic acid (CGA), and mangiferin levels were quantified via High-Performance Liquid Chromatography (HPLC). Volatile compounds were identified using Gas Chromatography-Mass Spectrometry (GC-MS). Antioxidant activity was assessed using 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging assays, and anti-inflammatory effects were evaluated by measuring reactive oxygen species (ROS), nitric oxide (NO) levels, and nuclear factor kappa B (NF-κB) activation in lipopolysaccharide (LPS)-stimulated macrophages. The results revealed that coffee leaves had significantly higher levels of total phenols, flavonoids, and CGAs, and exhibited stronger antioxidant activities compared to green beans. Notably, Geisha leaves exhibited the highest concentrations of phenolics and flavonoids, along with potent anti-inflammatory properties. Among green beans, the Marsellesa cultivar exhibited a significant flavonoid content and strong ABTS scavenging and anti-inflammatory effects. GC-MS analysis highlighted distinct volatile compound profiles between leaves and green beans, underscoring the phytochemical diversity among cultivars. Multivariate 3D principal component analysis (PCA) demonstrated clear chemical differentiation between coffee leaves and beans across cultivars, driven by key compounds such as caffeine, CGAs, and pentadecanoic acid. Hierarchical clustering further supported these findings, with dendrograms revealing distinct grouping patterns for leaves and beans, indicating cultivar-specific chemical profiles. These results underscore the significant chemical and functional diversity across Arabica cultivars, positioning coffee leaves as a promising functional alternative to green beans due to their rich phytochemical content and bioactive properties.
Collapse
Affiliation(s)
- Yoon A Jeon
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Premkumar Natraj
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Seong Cheol Kim
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeju 63240, Republic of Korea
| | - Joon-Kwan Moon
- Department of Plant Life and Environmental Sciences, Hankyong National University, Anseong 17579, Republic of Korea
| | - Young Jae Lee
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
- Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
6
|
Hernández-Ayala LF, Guzmán-López EG, Pérez-González A, Reina M, Galano A. Molecular Insights on Coffee Components as Chemical Antioxidants. J MEX CHEM SOC 2024; 68:888-969. [DOI: 10.29356/jmcs.v68i4.2238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Coffee is not only a delicious beverage but also an important dietary source of natural antioxidants. We live in a world where it is impossible to avoid pollution, stress, food additives, radiation, and other sources of oxidants that eventually lead to severe health disorders. Fortunately, there are chemicals in our diet that counteract the hazards posed by the reactive species that trigger oxidative stress. They are usually referred to as antioxidants; some of them can be versatile compounds that exert such a role in many ways. This review summarizes, from a chemical point of view, the antioxidant effects of relevant molecules found in coffee. Their mechanisms of action, trends in activity, and the influence of media and pH in aqueous solutions, are analyzed. Structure-activity relationships are discussed, and the protective roles of these compounds are examined. A particular section is devoted to derivatives of some coffee components, and another one to their bioactivity. The data used in the analysis come from theoretical and computational protocols, which have been proven to be very useful in this context. Hopefully, the information provided here will pro-mote further investigations into the amazing chemistry contained in our morning coffee cup.
Resumen. El café no solo es una bebida deliciosa, sino también una importante fuente dietética de antioxidantes naturales. Vivimos en un mundo donde es imposible evitar la contaminación, el estrés, los aditivos alimentarios, la radiación y otras fuentes de oxidantes que eventualmente conducen a trastornos de salud graves. Afortunadamente, existen sustancias químicas en nuestra dieta que contrarrestan los peligros planteados por las especies reactivas que desencadenan el estrés oxidativo. Por lo general, se les denomina antioxidantes; algunos de ellos pueden ser compuestos versátiles que ejercen dicho papel de muchas maneras. Este artículo de revisión resume, desde un punto de vista químico, los efectos antioxidantes de moléculas relevantes encontradas en el café. Se analizan sus mecanismos de acción, tendencias en la actividad y la influencia del medio y el pH en soluciones acuosas. Se discuten las relaciones estructura-actividad, y se examinan los roles protectores de estos compuestos. Se dedica una sección particular a los derivados de algunos componentes del café, y otra a su bioactividad. Los datos utilizados en el análisis provienen de protocolos teóricos y computacionales, que han demostrado ser muy útiles en este contexto. Se espera que la información proporcionada aquí promueva investigaciones futuras sobre la química contenida en nuestra taza de café matutina.
Collapse
|
7
|
Fikadu T, Tamiru D, Ademe BW. Determinants of breakfast skipping among pregnant women from South Ethiopia Gamo Zone: a case-control study. Sci Rep 2024; 14:22127. [PMID: 39333702 PMCID: PMC11437237 DOI: 10.1038/s41598-024-73467-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Skipping breakfast during pregnancy presents several challenges and potential health risks for both the mother and her baby. Breakfast plays a crucial role in providing essential nutrients and energy after an overnight fast. Skipping breakfast during pregnancy creates an unhealthy environment for the fetus. Thus, this study aimed to identify the determinants of breakfast skipping among pregnant women. An unmatched, community-based case-control study was conducted among 116 randomly selected cases (breakfast skippers) and 232 neighboring controls (regular breakfast consumers). Data was collected using pre-tested interviewer-administered structured questionnaire. Binary logistic regression analysis was employed to determine predictors of breakfast skipping using STATA version 16. The odds of non-formal education (AOR = 3.92; 95% CI: 1.75, 8.78), low socioeconomic status (AOR = 2.93; 95% CI: 1.12, 7.68), poor dietary knowledge (AOR = 2.89; 95% CI: 1.29, 6.47), and experiencing morning sickness (AOR = 2.57; 95% CI: 1.13, 5.84) were higher among cases than controls. The odds of breakfast skipping were higher for every increase in family size (AOR = 1.65; 95% CI: 1.25, 2.18), but decrease with every unit increase in mid-upper arm circumference (AOR = 0.58; 95% CI: 0.46, 0.72) and weekly frequency of drinking coffee leaf tea beverage (AOR = 0.84; 95% CI: 0.78, 0.89). Findings of this study showed that poor economic status, lack of formal education, poor dietary knowledge, having morning sickness, having large family size, maternal nutritional status, and frequent consumption of coffee leaf tea beverage were significantly associated with breakfast skipping among pregnant women. Thus, efforts should focus on improving dietary awareness during pregnancy, strengthening dietary counseling during antenatal care, enhancing access to contraceptive services, and ensuring timely management of morning sickness.
Collapse
Affiliation(s)
- Teshale Fikadu
- School of Public Health, College of Medicine and Health Science, Arba Minch University, Arba Minch, Ethiopia.
- Department of Nutrition and Dietetics, Institute of Health, Jimma University, Jimma, Ethiopia.
| | - Dessalegn Tamiru
- Department of Nutrition and Dietetics, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Beyene Wondafrash Ademe
- Department of Nutrition and Dietetics, Institute of Health, Jimma University, Jimma, Ethiopia
| |
Collapse
|
8
|
Fikadu T, Tamiru D, Ademe BW. Factors associated with dietary patterns (DPS) and nutritional status among pregnant women in AM-HDSS, South Ethiopia. Front Nutr 2024; 11:1443227. [PMID: 39346644 PMCID: PMC11428162 DOI: 10.3389/fnut.2024.1443227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Background Malnutrition during pregnancy increases the risk of chronic illness later in life and adverse birth outcomes in subsequent generations. In this regard, consumption of diets rich in adequate energy, protein, vitamins, and minerals from a variety of foods is essential. Evidence on the status of maternal dietary pattern is very crucial. Hence, the aim of this study was to assess factors associated with dietary patterns and nutritional status of pregnant women in South Ethiopia. Methods A community-based cross-sectional study was conducted among 638 randomly selected pregnant women using a validated, a pre-tested, contextualized food frequency questionnaire using interviewer-administered structured questionnaire by digital open-source toolkit. Principal component factor analysis was employed to determine dietary patterns. Bivariable and multivariable ordinal logistic regression analyses were used to identify factors associated with dietary patterns and nutritional status, using STATA version 16. Result The dietary habits of pregnant women were best explained by three distinct dietary patterns. Urban dwellers (AOR = 2.18; 95% CI: 1.33, 3.59), from high socio-economic status (AOR = 2.43; 95% CI: 1.68, 3.51), from middle socio-economic status (AOR = 1.72; 95% CI: 1.19, 2.48), primigravida mothers (AOR = 1.72; 95% CI: 1.07, 2.78), and multigravida mothers (AOR = 2.08; 95% CI: 1.39, 3.10) were high likelihood to consume the highest tercile of "Cereals-Pulses and Dairy" compared to rural dwellers, from low socio-economic status and grand multigravida, respectively. Attending formal education (AOR = 1.60; 95% CI: 1.02, 2.51), from higher socioeconomic status (AOR = 1.56; 95% CI: 1.02, 2.38), not having food aversion (AOR = 1.98; 95% CI: 1.16, 3.39), and had good dietary knowledge (AOR = 2.16; 95% CI: 1.08, 4.32) were associated with a higher tercile consumption of "Nutrient-Dense" food compared to those without formal education, having food aversion and had poor dietary knowledge, respectively. Not attending formal education (AOR = 2.22; 95% CI: 1.48, 3.36), had decision-making autonomy (AOR = 1.91; 95% CI: 1.26, 2.90), and had good dietary knowledge (AOR = 1.86; 95% CI: 1.13, 3.08) were found to consume the highest tercile of "Leafy local food" compared to their counterpart. Consumption of lower terciles "Nutrient-Dense" food (AOR = 1.63; 95% CI: 1.07, 2.47) and "Leafy local food" (AOR = 2.32; 95% CI: 1.54, 3.51) were found to be factors associated with under nutrition during pregnancy. Conclusion Three distinct dietary patterns were identified. Factors associated with these major dietary patterns included place of residence, socio-economic status, educational level, dietary knowledge, food aversion, number of pregnancies, and maternal decision-making autonomy. Under nutrition among pregnant women was found to be high and associated with the consumption of 'Nutrient-Dense' and 'Leafy local' foods. Therefore, concerned health authorities should strengthen dietary counseling during pregnancy, provide family planning services, and promote women's education.
Collapse
Affiliation(s)
- Teshale Fikadu
- School of Public Health, College of Medicine and Health Science, Arba Minch University, Arba Minch, Ethiopia
- Department of Nutrition and Dietetics, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Dessalegn Tamiru
- Department of Nutrition and Dietetics, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Beyene Wondafrash Ademe
- Department of Nutrition and Dietetics, Institute of Health, Jimma University, Jimma, Ethiopia
| |
Collapse
|
9
|
Montis A, Delporte C, Noda Y, Stoffelen P, Stévigny C, Hermans C, Van Antwerpen P, Souard F. Targeted metabolomics and transcript profiling of methyltransferases in three coffee species. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 345:112117. [PMID: 38750798 DOI: 10.1016/j.plantsci.2024.112117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/08/2024] [Accepted: 05/11/2024] [Indexed: 05/23/2024]
Abstract
Coffee plants contain well-known xanthines as caffeine. Three Coffea species grown in a controlled greenhouse environment were the focus of this research. Coffea arabica and C. canephora are two first principal commercial species and commonly known as arabica and robusta, respectively. Originating in Central Africa, C. anthonyi is a novel species with small leaves. The xanthine metabolites in flower, fruit and leaf extracts were compared using both targeted and untargeted metabolomics approaches. We evaluated how the xanthine derivatives and FQA isomers relate to the expression of biosynthetic genes encoding N- and O-methyltransferases. Theobromine built up in leaves of C. anthonyi because caffeine biosynthesis was hindered in the absence of synthase gene expression. Despite this, green fruits expressed these genes and they produced caffeine. Given that C. anthonyi evolved successfully over time, these findings put into question the defensive role of caffeine in leaves. An overview of the histolocalisation of xanthines in the different flower parts of Coffea arabica was also provided. The gynoecium contained more theobromine than the flower buds or petals. This could be attributed to increased caffeine biosynthesis before fructification. The presence of theophylline and the absence of theobromine in the petals indicate that caffeine is catabolized more in the petals than in the gynoecium.
Collapse
Affiliation(s)
- Andrea Montis
- RD3 Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université libre de Bruxelles, Campus Plaine, CP 205/05, Brussels 1050, Belgium; APFP Analytical platform of the Faculty of Pharmacy, Faculty of Pharmacy, Université libre de Bruxelles, Campus Plaine, CP 205/5, Brussels 1050, Belgium
| | - Cédric Delporte
- RD3 Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université libre de Bruxelles, Campus Plaine, CP 205/05, Brussels 1050, Belgium; APFP Analytical platform of the Faculty of Pharmacy, Faculty of Pharmacy, Université libre de Bruxelles, Campus Plaine, CP 205/5, Brussels 1050, Belgium
| | - Yusaku Noda
- The National Institutes for Quantum Science and Technology (QST), Takasaki Institute for Advanced Quantum Science, Gunma, 370-1292, Japan
| | - Piet Stoffelen
- Meise Botanic Garden, Domein van Bouchout, Nieuwe laan 38, Meise 1860, Belgium
| | - Caroline Stévigny
- RD3 Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université libre de Bruxelles, Campus Plaine, CP 205/05, Brussels 1050, Belgium
| | - Christian Hermans
- Crop Production and Biostimulation Laboratory, Brussels Bioengineering School, Université libre de Bruxelles, Campus Plaine, CP 245, Brussels 1050, Belgium
| | - Pierre Van Antwerpen
- RD3 Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université libre de Bruxelles, Campus Plaine, CP 205/05, Brussels 1050, Belgium; APFP Analytical platform of the Faculty of Pharmacy, Faculty of Pharmacy, Université libre de Bruxelles, Campus Plaine, CP 205/5, Brussels 1050, Belgium.
| | - Florence Souard
- Département de Pharmacochimie Moléculaire, UMR 5063 CNRS, Université Grenoble Alpes, 470 rue de la chimie, Saint-Martin d'Hères 38400, France; DPP Department - Unit of Pharmacology, Pharmacotherapy and Pharmaceutical care, Faculty of Pharmacy, Université libre de Bruxelles, Campus Plaine, CP 205/07, Brussels 1050, Belgium
| |
Collapse
|
10
|
Abu-Hashem AA, Hakami O, El-Shazly M, El-Nashar HAS, Yousif MNM. Caffeine and Purine Derivatives: A Comprehensive Review on the Chemistry, Biosynthetic Pathways, Synthesis-Related Reactions, Biomedical Prospectives and Clinical Applications. Chem Biodivers 2024; 21:e202400050. [PMID: 38719741 DOI: 10.1002/cbdv.202400050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024]
Abstract
Caffeine and purine derivatives represent interesting chemical moieties, which show various biological activities. Caffeine is an alkaloid that belongs to the family of methylxanthine alkaloids and it is present in food, beverages, and drugs. Coffee, tea, and some other beverages are a major source of caffeine in the human diet. Caffeine can be extracted from tea or coffee using hot water with dichloromethane or chloroform and the leftover is known as decaffeinated coffee or tea. Caffeine and its derivatives were synthesized via different procedures on small and large scales. It competitively antagonizes the adenosine receptors (ARs), which are G protein-coupled receptors largely distributed in the human body, including the heart, vessels, brain, and kidneys. Recently, many reports showed the effect of caffeine derivatives in the treatment of many diseases such as Alzheimer's, asthma, parkinsonism, and cancer. Also, it is used as an antioxidant, anti-inflammatory, analgesic, and hypocholesterolemic agent. The present review article discusses the synthesis, reactivity, and biological and pharmacological properties of caffeine and its derivatives. The biosynthesis and biotransformation of caffeine in coffee and tea leaves and the human body were summarized in the review.
Collapse
Affiliation(s)
- Ameen A Abu-Hashem
- Photochemistry Department, National Research Centre, 12622, Dokki, Giza, Egypt
- Chemistry Department, Faculty of Science, Jazan University, 45142 and 2097, Jazan, KSA, Saudi Arabia
| | - Othman Hakami
- Chemistry Department, Faculty of Science, Jazan University, 45142 and 2097, Jazan, KSA, Saudi Arabia
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Mahmoud N M Yousif
- Photochemistry Department, National Research Centre, 12622, Dokki, Giza, Egypt
| |
Collapse
|
11
|
Cao Q, Mei S, Mehmood A, Sun Y, Chen X. Inhibition of pancreatic lipase by coffee leaves-derived polyphenols: A mechanistic study. Food Chem 2024; 444:138514. [PMID: 38310782 DOI: 10.1016/j.foodchem.2024.138514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/06/2024]
Abstract
The suppression of pancreatic lipase has been employed to mitigate obesity. This study explored the mechanism of coffee leaf extracts to inhibit pancreatic lipase. The ethyl acetate fraction derived from coffee leaves (EAC) exhibited the highest inhibitory capacity with a half-maximal inhibitory concentration (IC50) of 0.469 mg/mL and an inhibitor constant (Ki) of 0.185 mg/mL. This fraction was enriched with 3,5-dicaffeoylquinic acid (3,5-diCQA, 146.50 mg/g), epicatechin (87.51 mg/g), and isoquercetin (48.29 mg/g). EAC inhibited lipase in a reversible and competitive manner, and quenched its intrinsic fluorescence through a static mechanism. Molecular docking revealed that bioactive compounds in EAC bind to key amino acid residues (HIS-263, PHE-77, and SER-152) located within the active cavity of lipase. Catechin derivatives play a key role in the lipase inhibitory activity within EAC. Overall, our findings highlight the promising potential of coffee leaf extract as a functional ingredient for alleviating obesity through inhibition of lipase.
Collapse
Affiliation(s)
- Qingwei Cao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China.
| | - Suhuan Mei
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China
| | - Arshad Mehmood
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China
| | - Yu Sun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
12
|
Patil SS, Vedashree M, Sakhare SD, Murthy PS. Coffee leaf valorisation into functional wheat flour rusk: their nutritional, physicochemical, and sensory properties. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1117-1125. [PMID: 38562602 PMCID: PMC10981639 DOI: 10.1007/s13197-024-05927-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/29/2023] [Accepted: 12/24/2023] [Indexed: 04/04/2024]
Abstract
Coffee leaves are currently emerging as a promising agri-food resource rich in phenolics. This study aims to valorise coffee leaf powder (CLP) by incorporating it in refined wheat flour rusk formulations and analyse its physio-chemical, rheological, functional and sensory characteristics. The progressive replacement of CLP improved the dietary fibre (2.51 ± 0.2%), ash (1.09 ± 0.11%), and water absorption capacity (59.7 ± 0.1%) of the flours. It considerably enhanced the falling number and sedimentation values of the flour blends while decreased the loaf volume. Progressive increase in the dietary phenolics (232.21-435.19 mg/100 g), chlorogenic acid (6.0-7.5 mg/100 g), and ABTS antioxidant activity (963.89-1607.25 µMTEAC/g) of the rusks was observed upon CLP addition. Rusks with 3% CLP were found to have significantly acceptable physical and sensory characteristics. Thus, supplementation of CLP in rusk helps in valorising coffee leaves besides providing a functional bakery product to the coffee industry. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-05927-z.
Collapse
Affiliation(s)
- Siddhi S. Patil
- Department of Plantation Products, Spices and Flavour Science Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570020 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - M. Vedashree
- Department of Plantation Products, Spices and Flavour Science Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570020 India
| | - Suresh D. Sakhare
- Department of Flour Milling Baking and Confectionery Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570020 India
| | - Pushpa S. Murthy
- Department of Plantation Products, Spices and Flavour Science Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570020 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
13
|
Huang G, Huang Y, Sun Y, Lu T, Cao Q, Chen X. Characterization of kombucha prepared from black tea and coffee leaves: A comparative analysis of physiochemical properties, bioactive components, and bioactivities. J Food Sci 2024; 89:3430-3444. [PMID: 38638068 DOI: 10.1111/1750-3841.17027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/08/2024] [Accepted: 02/24/2024] [Indexed: 04/20/2024]
Abstract
The utilization of coffee leaves in kombucha production has intrigued researchers; however, the lack of understanding regarding the characteristics of coffee leaf kombucha (CK) and its differentiation from black tea kombucha (BK) has impeded its application in the beverage industry. Therefore, this study aimed to characterize and compare the physiochemical properties, phytochemical compositions, antioxidant activity, and α-glucosidase inhibitory ability of kombucha prepared from the leaves of Coffea arabica (CK) and black tea (Camellia sinensis, BK) and their extracts (CT and BT). After fermentation, pH and the contents of total sugars, reducing sugars, and free amino acids of BK and CK were decreased, whereas the levels of total acids and organic acids, such as gluconic, lactic, and acetic acid were increased. Notably, the concentration of vitamin C in CK was 48.9% higher than that in BK. HPLC analysis exhibited that 5-caffeoylquinic acid in CT was significantly decreased by 48.0% in CK, whereas the levels of 3-caffeoylquinic acid and 4-caffeoylquinic acid were significantly increased after fermentation. The content of caffeine was significantly (p < 0.05) reduced by 9.5% and 22.0% in BK and CK, respectively, whereas the theobromine level was significantly increased in CK. Notably, CK has superior total phenolic and flavonoid contents and antioxidant activity than BK, whereas BK possesses higher α-glucosidase inhibitory capacity. Electronic nose analysis demonstrated that sulfur-containing organics were the main volatiles in both kombuchas, and fermentation significantly increased their levels. Our study indicates that coffee leaves are a promising resource for preparing kombucha. PRACTICAL APPLICATION: This article investigates the differences in physicochemical properties, bioactive constituents, antioxidant activity, and α-glucosidase inhibitory activity of kombucha preparation from black tea and coffee leaves. We have found that after fermentation BK had brighter soup color and higher α-glucosidase inhibitory capacity, whereas CK had higher levels of total phenols, flavonoids, vitamin C, and antioxidants and lower contents of sugars. This study provides valuable information for the preparation of CK with high-quality attributes and antioxidant activity.
Collapse
Affiliation(s)
- Gongping Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| | - Yuanyuan Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| | - Yu Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| | - Tingting Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| | - Qingwei Cao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P. R. China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, P. R. China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| |
Collapse
|
14
|
Sun Y, Xie W, Huang Y, Chen X. Coffee leaf extract inhibits advanced glycation end products and their precursors: A mechanistic study. J Food Sci 2024; 89:3455-3468. [PMID: 38700315 DOI: 10.1111/1750-3841.17088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/09/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024]
Abstract
Excessive accumulation of advanced glycation end products (AGEs) in the body is associated with diabetes and its complications. In this study, we aimed to explore the potential and mechanism of coffee leaf extract (CLE) in inhibiting the generation of AGEs and their precursors in an in vitro glycation model using bovine serum albumin and glucose (BSA-Glu) for the first time. High-performance liquid chromatography analysis revealed that CLE prepared with ultrasound pretreatment (CLE-U) contained higher levels of trigonelline, mangiferin, 3,5-dicaffeoylquinic acid, and γ-aminobutyric acid than CLE without ultrasound pretreatment (CLE-NU). The concentrations of these components, along with caffeine and rutin, were dramatically decreased when CLE-U or CLE-NU was incubated with BSA-Glu reaction mixture. Both CLE-U and CLE-NU exhibited a dose-dependent inhibition of fluorescent AGEs, carboxymethyllysine, fructosamine, 5-hydroxymethylfurfural, 3-deoxyglucosone, glyoxal, as well as protein oxidation products. Notably, CLE-U exhibited a higher inhibitory capacity compared to CLE-NU. CLE-U effectively quenched fluorescence intensity and increased the α-helix structure of the BSA-Glu complex. Molecular docking results suggested that the key bioactive compounds present in CLE-U interacted with the arginine residues of BSA, thereby preventing its glycation. Overall, this research sheds light on the possible application of CLE as a functional ingredient in combating diabetes by inhibiting the generation of AGEs.
Collapse
Affiliation(s)
- Yu Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Wenwen Xie
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Yuanyuan Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| |
Collapse
|
15
|
Sun F, Shan P, Liu B, Li Y, Wang K, Zhuang Y, Ning D, Li H. Gelatin-based multifunctional composite films integrated with dialdehyde carboxymethyl cellulose and coffee leaf extract for active food packaging. Int J Biol Macromol 2024; 263:130302. [PMID: 38382794 DOI: 10.1016/j.ijbiomac.2024.130302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/09/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
In this study, dialdehyde carboxymethyl cellulose (DCMC, 10 wt% based on gelatin) and varying contents of coffee leaf extract (CLE, 1, 3, 5 and 7 wt% based on gelatin) were incorporated into gelatin (GEL) matrix to develop multifunctional food packaging films. DCMC acted as a physical reinforcing filler through crosslinking with GEL matrix by Schiff-base reaction, CLE served as an active filler to confer film functional properties. The micro-morphology, micro-structure, physicochemical and functional properties of the GEL/DCMC/CLE composite film were investigated. The results demonstrated that mechanical, barrier properties and thermal stability of films were significantly improved by incorporation of CLE. Compared with pure GEL film, the GEL/DCMC/5%CLE film exhibited excellent UV light blocking while kept enough transparency, the best mechanical property, water resistance, water vapor and oxygen barrier, as well as thermal stability. GEL/DCMC/5%CLE film also possessed strong antioxidant activity and some antibacterial activity against E. coli and S. aureus. Packaging application testing demonstrated that the resultant GEL/DCMC/5%CLE film effectively delayed the lipid oxidation of walnut oil and preserved the postharvest freshness of fresh walnut kernels under ambient conditions.
Collapse
Affiliation(s)
- Fangfei Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Peng Shan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bingzhen Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongshi Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Kun Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Delu Ning
- Yunnan Academy of Forestry and Grassland, Kunming 650201, China
| | - Hui Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
16
|
Sun Y, Cao Q, Huang Y, Lu T, Ma H, Chen X. Mechanistic study on the inhibition of α-amylase and α-glucosidase using the extract of ultrasound-treated coffee leaves. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:63-74. [PMID: 37515816 DOI: 10.1002/jsfa.12890] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND Our previous studies have shown that ultrasound-treated γ-aminobutyric acid (GABA)-rich coffee leaves have higher angiotensin-I-converting enzyme inhibitory activity than their untreated counterpart. However, whether they have antidiabetic activity remains unknown. In this study, we aimed to investigate the inhibitory activities of coffee leaf extracts (CLEs) prepared with ultrasound (CLE-U) or without ultrasound (CLE-NU) pretreatment on α-amylase and α-glucosidase. Subsequently, we evaluated the binding interaction between CLE-U and both enzymes using multi-spectroscopic and in silico analyses. RESULTS Ultrasound pretreatment increased the inhibitory activities of CLE-U against α-amylase and α-glucosidase by 21.78% and 25.13%, respectively. CLE-U reversibly inhibits both enzymes, with competitive inhibition observed for α-amylase and non-competitive inhibition for α-glucosidase. The static quenching of CLE-U against both enzymes was primarily driven by hydrogen bond and van der Waals interactions. The α-helices of α-amylase and α-glucosidase were increased by 1.8% and 21.3%, respectively. Molecular docking results showed that the key differential compounds, including mangiferin, 5-caffeoylquinic acid, rutin, trigonelline, GABA, caffeine, glutamate, and others, present in coffee leaves interacted with specific amino acid residues located at the active site of α-amylase (ASP197, GLU233, and ASP300). The binding of α-glucosidase and these bioactive components involved amino acid residues, such as PHE1289, PRO1329, and GLU1397, located outside the active site. CONCLUSION Ultrasound-treated coffee leaves are potential anti-diabetic substances, capable of preventing diabetes by inhibiting the activities of α-amylase and α-glucosidase, thus delaying starch digestion. Our study provides valuable information to elucidate the possible antidiabetic capacity of coffee leaves through the inhibition of α-amylase and α-glucosidase activities. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, People's Republic of China
| | - Qingwei Cao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, People's Republic of China
| | - Yuanyuan Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, People's Republic of China
| | - Tingting Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, People's Republic of China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, People's Republic of China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, People's Republic of China
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, People's Republic of China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, People's Republic of China
| |
Collapse
|
17
|
de Souza Wuillda ACJ, das Neves Costa F, Garrett R, Dos Santos de Carvalho M, Borges RM. High-speed countercurrent chromatography with offline detection by electrospray mass spectrometry and nuclear magnetic resonance detection as a tool to resolve complex mixtures: A practical approach using Coffea arabica leaf extract. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:40-52. [PMID: 37527932 DOI: 10.1002/pca.3271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 08/03/2023]
Abstract
INTRODUCTION Many secondary metabolites isolated from plants have been described in the literature owing to their important biological properties and possible pharmacological applications. However, the identification of compounds present in complex plant extracts has remained a great scientific challenge, is often laborious, and requires a long research time with high financial cost. OBJECTIVES The aim of this study was to develop a method that allows the identification of secondary metabolites in plant extracts with a high degree of confidence in a short period of time. MATERIAL AND METHODS In this study, an ethanolic extract of Coffea arabica leaves was used to validate the proposed method. Countercurrent chromatography was chosen as the initial step for extraction fractionation using gradient elution. Resulting fractions presented a variation of compounds concentrations, allowing for statistical total correlation spectroscopy (STOCSY) calculations between liquid chromatography coupled with high-resolution tandem mass spectrometry (LC-HRMS/MS) and NMR across fractions. RESULTS The proposed method allowed the identification of 57 compounds. Of the annotated compounds, 20 were previously described in the literature for the species and 37 were reported for the first time. Among the inedited compounds, we identified flavonoids, alkaloids, phenolic acids, coumarins, and terpenes. CONCLUSION The proposed method presents itself as a valid alternative for the study of complex extracts in an effective, fast, and reliable way that can be reproduced in the study of other extracts.
Collapse
Affiliation(s)
| | - Fernanda das Neves Costa
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Garrett
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Ricardo Moreira Borges
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
DePaula J, Cunha SC, Ferreira IMPLVO, Porto ACV, G Cruz A, Petrarca M, Tereza Trevisan M, Revi I, Farah A. Volatile fingerprinting, sensory characterization, and consumer acceptance of pure and blended arabica coffee leaf teas. Food Res Int 2023; 173:113361. [PMID: 37803702 DOI: 10.1016/j.foodres.2023.113361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 10/08/2023]
Abstract
Coffee leaves contain several bioactive compounds and have been traditionally consumed as a medicinal infusion in the East for centuries. Coffee production generates large amounts of leaves as by-products, which are often wasted in most producing countries because of the low acceptability in the West. Nevertheless, processing and blending coffee leaves may increase aroma and flavor complexity. This study evaluated the volatile and sensory profiles and consumer acceptance of coffee leaf teas compared to two among the most consumed teas (black and maté teas) in Rio de Janeiro. Infusions were made with one experimental and one commercial coffee leaf tea (CLT), two black teas (BT), and one toasted maté tea (TMT) for volatile (GC-MS/MS) and sensory profiles. As an attempt to improve coffee leaf tea acceptance, CLT were also blended (50%) with BT or TMT. Acceptance, Check All That Apply (CATA), and Projective Mapping sensory tests were performed with untrained assessors aged 18-49 (n = 100). Volatile data were standardized by centering and normalization. Sensory data were treated by ANOVA/Fisher test, PCA, and AHCMFA, considering differences at p < 0.05. Ninety-two volatile compounds distributed in 12 classes were identified in different samples. CLT, BT, and TMT infusions shared 19 compounds, including 9 potential impact compounds for aroma and flavor: α-ionone, β-ionone, hexanal, nonanal, decanal, benzaldehyde, trans-linalool oxide, linalool, and dihydroactinidiolide. The most cited flavor attributes for CLT infusions were herbs/green leaf, woody and refreshing. For TMT and BT, herbs/green leaf, woody, burnt, and fermented were the most cited. These attributes agreed with the volatile profiles. CLT shared 22 compounds with TMT and 28 with BT. Considering pure infusions, TMT presented the highest mean acceptance scores (6.7), followed by Com. and Exp. CLT (6.1 and 5.8, on a 9-point-hedonic scale, respectively). Blending with TMT increased mean acceptance of Exp. CLT (6.4), while blending with BT, downgraded the mean acceptance of Com. CLT (5.3). In Projective Mapping, CLT was considered to have a higher sensory resemblance with TMT than BT. If produced adequately, CLT was shown to have good market potential to support sustainable coffee production and promote health.
Collapse
Affiliation(s)
- Juliana DePaula
- Laboratório de Química e Bioatividade de Alimentos & Núcleo de Pesquisa em Café Professor Luiz Carlos Trugo - NuPeCafé, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, ZC 21941-902, Brazil.
| | - Sara C Cunha
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Químicas, Faculdade de Farmácia da Universidade do Porto, 4099-030 Porto, Portugal.
| | - Isabel M P L V O Ferreira
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Químicas, Faculdade de Farmácia da Universidade do Porto, 4099-030 Porto, Portugal.
| | - Ana Carolina V Porto
- Laboratório de Química e Bioatividade de Alimentos & Núcleo de Pesquisa em Café Professor Luiz Carlos Trugo - NuPeCafé, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, ZC 21941-902, Brazil.
| | - Adriano G Cruz
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Departamento de Alimentos, 20270-021, Rio de Janeiro, Brazil.
| | - Mateus Petrarca
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Químicas, Faculdade de Farmácia da Universidade do Porto, 4099-030 Porto, Portugal.
| | - Maria Tereza Trevisan
- Laboratório de Produtos Naturais e Biotecnologia - Departamento de Química, Universidade Federal do ZC 60.455-760 Ceará, Fortaleza, Brazil.
| | - Ildi Revi
- Purity Coffee - Greenville, South Carolina, USA.
| | - Adriana Farah
- Laboratório de Química e Bioatividade de Alimentos & Núcleo de Pesquisa em Café Professor Luiz Carlos Trugo - NuPeCafé, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, ZC 21941-902, Brazil.
| |
Collapse
|
19
|
de Andrade FHA, Ferreira AMO, Azevedo LM, de Oliveira Santos M, Carvalho GR, de Resende MLV, Bicalho EM, Silva VA. IBA and melatonin increase trigonelline and caffeine during the induction and initiation of adventitious roots in Coffea arabica L. cuttings. Sci Rep 2023; 13:15151. [PMID: 37704663 PMCID: PMC10499982 DOI: 10.1038/s41598-023-41288-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023] Open
Abstract
Caffeine and trigonelline are found in Coffea arabica, and show antioxidant roles and growth and development functions. However, there are no reports on trigonelline and caffeine in relation to coffee rooting. The aim was to evaluate the impact of application of indole-3-butyric acid (IBA) and melatonin on caffeine and trigonelline at different stages of adventitious rooting in cuttings. In addition, to study the correlation between these metabolites and H2O2, phenols, and antioxidant enzymes. Four treatments (Control, melatonin 21 µM (M21), melatonin 43 µM (M43), and IBA 7380 µM (IBA)) were used, with four replications. The growth and biochemical parameters of the antioxidant system were performed in induction, initiation, and extension rooting stages. Higher concentrations of trigonelline and caffeine quantified in the induction and initiation stages were positively correlated with higher percentage of rooted cuttings. Trigonelline and caffeine were positively correlated with H2O2 in all stages of development of adventitious roots. The correlations of trigoneline and caffeine with phenols and antioxidant enzymes reveal different profiles, depending on the phases. The results indicate that IBA and melatonin increase trigonelline and caffeine during the induction and initiation of adventitious roots in Coffea arabica cuttings, which is correlated with a higher percentage of rooted cuttings.
Collapse
Affiliation(s)
| | | | | | - Meline de Oliveira Santos
- Agricultural Research Company of Minas Gerais, Lavras, Minas Gerais, Brazil
- Scholarship BDCTI-I, FAPEMIG/INCT Café, Lavras, Brazil
| | | | | | | | - Vânia Aparecida Silva
- Agricultural Research Company of Minas Gerais, Lavras, Minas Gerais, Brazil
- Scholarship DT, CNPq, Lavras, Brazil
| |
Collapse
|
20
|
Tam JP, Huang J, Loo S, Li Y, Kam A. Ginsentide-like Coffeetides Isolated from Coffee Waste Are Cell-Penetrating and Metal-Binding Microproteins. Molecules 2023; 28:6556. [PMID: 37764332 PMCID: PMC10538209 DOI: 10.3390/molecules28186556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Coffee processing generates a huge amount of waste that contains many natural products. Here, we report the discovery of a panel of novel cell-penetrating and metal ion-binding microproteins designated coffeetide cC1a-c and cL1-6 from the husk of two popular coffee plants, Coffea canephora and Coffea liberica, respectively. Combining sequence determination and a database search, we show that the prototypic coffeetide cC1a is a 37-residue, eight-cysteine microprotein with a hevein-like cysteine motif, but without a chitin-binding domain. NMR determination of cC1a reveals a compact structure that confers its resistance to heat and proteolytic degradation. Disulfide mapping together with chemical synthesis reveals that cC1a has a ginsentide-like, and not a hevein-like, disulfide connectivity. In addition, transcriptomic analysis showed that the 98-residue micrcoproten-like coffeetide precursor contains a three-domain arrangement, like ginsentide precursors. Molecular modeling, together with experimental validation, revealed a Mg2+ and Fe3+ binding pocket at the N-terminus formed by three glutamic acids. Importantly, cC1a is amphipathic with a continuous stretch of 19 apolar amino acids, which enables its cell penetration to target intracellular proteins, despite being highly negatively charged. Our findings suggest that coffee by-products could provide a source of ginsentide-like bioactive peptides that have the potential to target intracellular proteins.
Collapse
Affiliation(s)
- James P. Tam
- Synthetic Enzymes and Natural Products Center, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (J.H.); (S.L.); (Y.L.); (A.K.)
| | - Jiayi Huang
- Synthetic Enzymes and Natural Products Center, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (J.H.); (S.L.); (Y.L.); (A.K.)
| | - Shining Loo
- Synthetic Enzymes and Natural Products Center, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (J.H.); (S.L.); (Y.L.); (A.K.)
- Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Yimeng Li
- Synthetic Enzymes and Natural Products Center, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (J.H.); (S.L.); (Y.L.); (A.K.)
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Antony Kam
- Synthetic Enzymes and Natural Products Center, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (J.H.); (S.L.); (Y.L.); (A.K.)
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| |
Collapse
|
21
|
Mei S, Chen X. Combination of HPLC–orbitrap‐MS/MS and network pharmacology to identify the anti‐inflammatory phytochemicals in the coffee leaf extracts. FOOD FRONTIERS 2023; 4:1395-1412. [DOI: 10.1002/fft2.248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
AbstractIn this study, we investigated the phytochemical compositions and the associated anti‐inflammatory activity of coffee leaf fractions prepared by sequential solvent extraction using high‐performance liquid chromatography–orbitrap‐tandem mass spectrometry (HPLC–orbitrap‐MS/MS) combined with network pharmacology. The results showed that the ethyl acetate fraction (EAC‐L) had the highest nitric oxide (NO), ABTS, and DPPH free radical scavenging abilities due to the higher concentrations of mangiferin, rutin, 3,5‐dicaffeoylquinic acid (3,5‐diCQA), and 4,5‐diCQA. The extraction solvents had the greatest impact on the anti‐inflammatory activity of coffee leaf fractions, whereas the processing method had the most significant effect on the antioxidant activity of these fractions. Untargeted metabolomics analysis using HPLC–orbitrap‐MS/MS indicated that palmitic acid, 3,4‐dihydroxybenzaldehyde, and caffeic acid may be involved in the anti‐inflammatory activity of EAC‐L fraction obtained from fresh coffee leaves. On the other hand, processed coffee leaf fraction exhibited anti‐inflammatory activity that was attributed to the presence of 9S,13R‐12‐oxophytodienoic acid, pinocembrin, and quercetin, which have high degree values associated with the inflammation network. Gene ontology and Kyoto encyclopedia of genes and genomes enrichment of network pharmacology analysis showed that these 35 differential compounds in the coffee leaf fractions affect cell transcription, apoptosis, phosphorylation, NO synthesis, phosphatidylinositide 3‐kinases‐protein kinase B (PI3K‐Akt) signaling pathway, focal adhesion, hypoxia‐inducible factor‐1, hepatitis, cancer, and so on. This result indicated that coffee leaf extract may also function as an inhibitor for inflammation‐related cancers. The findings of our research are valuable in guiding the extraction of anti‐inflammatory components from coffee leaves.
Collapse
Affiliation(s)
- Suhuan Mei
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu P. R. China
| | - Xiumin Chen
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu P. R. China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu P. R. China
- International Joint Research Laboratory of Intelligent Agriculture and Agri‐Products Processing Jiangsu University Zhenjiang P. R. China
| |
Collapse
|
22
|
Mei S, Ding J, Chen X. Identification of differential volatile and non-volatile compounds in coffee leaves prepared from different tea processing steps using HS-SPME/GC-MS and HPLC-Orbitrap-MS/MS and investigation of the binding mechanism of key phytochemicals with olfactory and taste receptors using molecular docking. Food Res Int 2023; 168:112760. [PMID: 37120211 DOI: 10.1016/j.foodres.2023.112760] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/03/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Tea processing steps affected the proximate composition, enzyme activity and bioactivity of coffee leaves; however, the effects of different tea processing steps on the volatiles, non-volatiles, color, and sensory characteristics of coffee leaves have yet been demonstrated. Here the dynamic changes of volatile and non-volatile compounds in different tea processing steps were investigated using HS-SPME/GC-MS and HPLC-Orbitrap-MS/MS, respectively. A total of 53 differential volatiles (alcohol, aldehyde, ester, hydrocarbon, ketone, oxygen heterocyclic compounds, phenol, and sulfur compounds) and 50 differential non-volatiles (xanthone, flavonoid, organic acid, amino acid, organic amine, alkaloid, aldehyde, and purine et al.) were identified in coffee leaves prepared from different processing steps. Kill-green, fermentation, and drying steps significantly influenced the volatiles; however, kill-green, rolling, and drying steps significantly affected the color of coffee leaves and their hot water infusion. The coffee leaf tea that was prepared without the kill-green process was found to have a more pleasant taste as compared to the tea that was prepared with the kill-green process. This can be attributed to the fact that the former contained lower levels of flavonoids, chlorogenic acid, and epicatechin, but had higher levels of floral, sweet, and rose-like aroma compounds. The binding interactions between the key differential volatile and non-volatile compounds and the olfactory and taste receptors were also investigated. The key differential volatiles, pentadecanal and methyl salicylate generate fresh and floral odors by activating olfactory receptors, OR5M3 and OR1G1, respectively. Epicatechin showed a high affinity to the bitter receptors, including T2R16, T2R14, and T2R46. Since the specific content of differential compounds in different samples varies greatly, the dose-effect and structure-function relationships of these key compounds and the molecular mechanism of the odor and taste of coffee leaf tea need to be further studied.
Collapse
Affiliation(s)
- Suhuan Mei
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China.
| | - Jian Ding
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China.
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
23
|
Harsha Haridas ES, Bhattacharya S, Varma MKR, Chandra GK. Bioinspired 5-caffeoylquinic acid capped silver nanoparticles using Coffee arabica leaf extract for high-sensitive cysteine detection. Sci Rep 2023; 13:8651. [PMID: 37244906 DOI: 10.1038/s41598-023-34944-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/10/2023] [Indexed: 05/29/2023] Open
Abstract
Selection of plant extracts as bioactive phytochemical source to synthesize nanoparticles is highly demanding due to the biocompatibility, nontoxicity, and cost-effectiveness over other available physical and chemical methods. Here, for the first time, Coffee arabica leaf extracts (CAE) were used to produce highly stable silver nanoparticles (AgNPs) and the corresponding bio reduction, capping and stabilization mechanism mediated by dominant isomer 5-caffeoylquinic acid (5-CQA) is discussed. UV-Vis, FTIR, μRaman spectroscopy, TEM, DLS and Zeta potential analyzer measurements were employed to characterize these green synthesized NPs. The affinity of 5-CQA capped CAE-AgNPs to thiol moiety of amino acid is utilized for the selective as well as sensitive detection of L-cysteine (L-Cys) to a low detection limit of 0.1 nM, as obtained from its μRaman spectra. Hence, the proposed novel, simple, eco-friendly, and economically sustainable method can provide a promising nanoplatform in the field of biosensors compliant with large-scale industrial production of AgNPs without aid of further instrumentation.
Collapse
Affiliation(s)
- E S Harsha Haridas
- Department of Physics, National Institute of Technology, Kozhikode, Kerala, 673601, India
| | | | - M K Ravi Varma
- Department of Physics, National Institute of Technology, Kozhikode, Kerala, 673601, India
| | - Goutam Kumar Chandra
- Department of Physics, National Institute of Technology, Kozhikode, Kerala, 673601, India.
| |
Collapse
|
24
|
Lee YG, Cho EJ, Maskey S, Nguyen DT, Bae HJ. Value-Added Products from Coffee Waste: A Review. Molecules 2023; 28:molecules28083562. [PMID: 37110796 PMCID: PMC10146170 DOI: 10.3390/molecules28083562] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Coffee waste is often viewed as a problem, but it can be converted into value-added products if managed with clean technologies and long-term waste management strategies. Several compounds, including lipids, lignin, cellulose and hemicelluloses, tannins, antioxidants, caffeine, polyphenols, carotenoids, flavonoids, and biofuel can be extracted or produced through recycling, recovery, or energy valorization. In this review, we will discuss the potential uses of by-products generated from the waste derived from coffee production, including coffee leaves and flowers from cultivation; coffee pulps, husks, and silverskin from coffee processing; and spent coffee grounds (SCGs) from post-consumption. The full utilization of these coffee by-products can be achieved by establishing suitable infrastructure and building networks between scientists, business organizations, and policymakers, thus reducing the economic and environmental burdens of coffee processing in a sustainable manner.
Collapse
Affiliation(s)
- Yoon-Gyo Lee
- Bio-Energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Eun-Jin Cho
- Bio-Energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Shila Maskey
- Bio-Energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Dinh-Truong Nguyen
- School of Biotechnology, Tan Tao University, Duc Hoa 82000, Long An, Vietnam
| | - Hyeun-Jong Bae
- Bio-Energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| |
Collapse
|
25
|
Investigation into the anti-inflammatory mechanism of coffee leaf extract in LPS-induced Caco-2/U937 co-culture model through cytokines and NMR-based untargeted metabolomics analyses. Food Chem 2023; 404:134592. [DOI: 10.1016/j.foodchem.2022.134592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/15/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
|
26
|
Shen X, Nie F, Fang H, Liu K, Li Z, Li X, Chen Y, Chen R, Zheng T, Fan J. Comparison of chemical compositions, antioxidant activities, and acetylcholinesterase inhibitory activities between coffee flowers and leaves as potential novel foods. Food Sci Nutr 2023; 11:917-929. [PMID: 36789063 PMCID: PMC9922109 DOI: 10.1002/fsn3.3126] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 11/08/2022] Open
Abstract
This study aimed to compare chemical compositions, antioxidant activities, and acetylcholinesterase inhibitory activities of coffee flowers (ACF) and coffee leaves (ACL) with green coffee beans (ACGB) of Coffea Arabica L. The chemical compositions were determined by employing high-performance liquid chromatography-mass spectroscopy (HPLC-MS) and gas chromatography-mass spectroscopy (GC-MS) techniques. Antioxidant effects of the components were evaluated using DPPH and ABTS radical scavenging assays, and the ferric reducing antioxidant power (FRAP) assay. Their acetylcholinesterase inhibitory activities were also evaluated. The coffee sample extracts contained a total of 214 components identified by HPLC-MS and belonged to 12 classes (such as nucleotides and amino acids and their derivatives, tannins, flavonoids, alkaloids, benzene, phenylpropanoids, and lipids.), where phenylpropanoids were the dominant component (>30%). The contents of flavonoids, alkaloids, saccharides, and carboxylic acid and its derivatives in ACF and ACL varied significantly (p < .05) compared to similar components in ACGB. Meanwhile, 30 differentially changed chemical compositions (variable importance in projection [VIP] > 1, p < .01 and fold change [FC] > 4, or <0.25), that determine the difference in characteristics, were confirmed in the three coffee samples. Furthermore, among 25 volatile chemical components identified by GC-MS, caffeine, n-hexadecanoic acid, 2,2'-methylenebis[6-(1,1-dimethylethyl)-4-methyl-phenol], and quinic acid were common in these samples with caffeine being the highest in percentage. In addition, ACL showed the significantly highest (p < .05) DPPH radical scavenging capacity with IC50 value of 0.491 ± 0.148 mg/ml, and acetylcholinesterase inhibitory activity with inhibition ratio 25.18 ± 2.96%, whereas ACF showed the significantly highest (p < .05) ABTS radical scavenging activity with 36.413 ± 1.523 mmol trolox/g Ex. The results suggested that ACL and ACF had potential values as novel foods in the future.
Collapse
Affiliation(s)
- Xiaojing Shen
- College of Food Science and Technology, College of ScienceYunnan Agricultural UniversityKunmingChina
- Yunnan Key Laboratory of Pharmacology for Natural ProductsKunming Medical UniversityKunmingChina
- Yunnan Organic Tea Industry Intelligent Engineering Research CenterKey Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan ProvinceKunmingChina
| | - Fanqiu Nie
- College of Food Science and Technology, College of ScienceYunnan Agricultural UniversityKunmingChina
| | - Haixian Fang
- Quality Standardizing and Testing Technology Institute, Yunnan Academy of Agricultural SciencesKunmingChina
| | - Kunyi Liu
- College of Wuliangye Technology and Food EngineeringYibin Vocational and Technical CollegeYibinChina
- Research Platform for Innovation and Utilization of Medicine Food Homology and Fermented FoodYibin Vocational and Technical CollegeYibinChina
| | - Zelin Li
- College of Food Science and Technology, College of ScienceYunnan Agricultural UniversityKunmingChina
| | - Xingyu Li
- College of Food Science and Technology, College of ScienceYunnan Agricultural UniversityKunmingChina
| | - Yumeng Chen
- College of Food Science and Technology, College of ScienceYunnan Agricultural UniversityKunmingChina
| | - Rui Chen
- College of Food Science and Technology, College of ScienceYunnan Agricultural UniversityKunmingChina
| | | | - Jiangping Fan
- College of Food Science and Technology, College of ScienceYunnan Agricultural UniversityKunmingChina
| |
Collapse
|
27
|
Castro-Moretti FR, Cocuron JC, Castillo-Gonzalez H, Escudero-Leyva E, Chaverri P, Guerreiro-Filho O, Slot JC, Alonso AP. A metabolomic platform to identify and quantify polyphenols in coffee and related species using liquid chromatography mass spectrometry. FRONTIERS IN PLANT SCIENCE 2023; 13:1057645. [PMID: 36684722 PMCID: PMC9852862 DOI: 10.3389/fpls.2022.1057645] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Products of plant secondary metabolism, such as phenolic compounds, flavonoids, alkaloids, and hormones, play an important role in plant growth, development, stress resistance. The plant family Rubiaceae is extremely diverse and abundant in Central America and contains several economically important genera, e.g. Coffea and other medicinal plants. These are known for the production of bioactive polyphenols (e.g. caffeine and quinine), which have had major impacts on human society. The overall goal of this study was to develop a high-throughput workflow to identify and quantify plant polyphenols. METHODS First, a method was optimized to extract over 40 families of phytochemicals. Then, a high-throughput metabolomic platform has been developed to identify and quantify 184 polyphenols in 15 min. RESULTS The current metabolomics study of secondary metabolites was conducted on leaves from one commercial coffee variety and two wild species that also belong to the Rubiaceae family. Global profiling was performed using liquid chromatography high-resolution time-of-flight mass spectrometry. Features whose abundance was significantly different between coffee species were discriminated using statistical analysis and annotated using spectral databases. The identified features were validated by commercially available standards using our newly developed liquid chromatography tandem mass spectrometry method. DISCUSSION Caffeine, trigonelline and theobromine were highly abundant in coffee leaves, as expected. Interestingly, wild Rubiaceae leaves had a higher diversity of phytochemicals in comparison to commercial coffee: defense-related molecules, such as phenylpropanoids (e.g., cinnamic acid), the terpenoid gibberellic acid, and the monolignol sinapaldehyde were found more abundantly in wild Rubiaceae leaves.
Collapse
Affiliation(s)
- Fernanda R. Castro-Moretti
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, United States
| | | | - Humberto Castillo-Gonzalez
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Efrain Escudero-Leyva
- School of Biology and Natural Products Research Center Centro de Investigaciones en Productos Naturales (CIPRONA), University of Costa Rica, San Jose, Costa Rica
- Centro Nacional de Alta Technologia-Consejo Nacional de Rectores (CeNAT-CONARE), National Center for Biotechnological Innovations (CENIBiot), San Jose, Costa Rica
| | - Priscila Chaverri
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
- School of Biology and Natural Products Research Center Centro de Investigaciones en Productos Naturales (CIPRONA), University of Costa Rica, San Jose, Costa Rica
| | | | - Jason C. Slot
- Department of Plant Pathology, The Ohio State University, Columbus, OH, United States
| | - Ana Paula Alonso
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, United States
- BioAnalytical Facility, University of North Texas, Denton, TX, United States
| |
Collapse
|
28
|
Huang Y, Sun Y, Lu T, Chen X. Effects of hot-air drying on the bioactive compounds, quality attributes, and drying and color change kinetics of coffee leaves. J Food Sci 2023; 88:214-227. [PMID: 36533940 DOI: 10.1111/1750-3841.16431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
Drying is a key step that affects the chemical composition and quality of tea. In the present study, we reported the impacts of drying temperature and time on drying and color change kinetics, phytochemical composition, antioxidant activity, and surface microstructure of coffee leaves during hot-air drying. The results showed that drying temperature was positively (p < 0.05) correlated with the drying rate (DR), color index a* and total color change ΔE, and total soluble sugar (TSS), while negatively correlated with color indexes b* and L*, soluble protein content, and the DPPH scavenging capacity. Drying time has similar impacts on the color indexes and soluble protein as drying temperature. The content of total free amino acid and TSS increased by 62.5% and 47.4%, respectively, when coffee leaves were dried at 160°C for 24 min, under which the total phenolic content and DPPH and ABTS scavenging capacities reached the maximum of 108.04 mg GAE/g, 515.07 µmol Trolox/g, and 606.70 µmol Trolox/g, respectively. Drying significantly decreased the contents of chlorogenic acids and mangiferin and antioxidant activity, while high-temperature short-time drying helped retain phenolic compounds in coffee leaves. The DR fitted Page kinetic model. The color changes fitted the first-order kinetic models and the activation energies ranged from 16.00 to 31.06 kJ·mol-1 . Prolonged drying time caused serious wrinkles on the surface of coffee leaves and the stomata closed. PRACTICAL APPLICATION: Drying decreased soluble protein while increasing free amino acid and soluble sugar. High-temperature short-time drying helps retain phenolics in the coffee leaves. The color change of coffee leaves during drying follows first-order kinetic. Prolonged drying time resulted in loosened texture of coffee leaves. Our study suggested that drying coffee leaves at 160°C for 24 min results in the coffee leaf tea being of better quality.
Collapse
Affiliation(s)
- Yuanyuan Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Yu Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Tingting Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| |
Collapse
|
29
|
Tsai PW, Tayo LL, Ting JU, Hsieh CY, Lee CJ, Chen CL, Yang HC, Tsai HY, Hsueh CC, Chen BY. Interactive deciphering electron-shuttling characteristics of Coffea arabica leaves and potential bioenergy-steered anti-SARS-CoV-2 RdRp inhibitor via microbial fuel cells. INDUSTRIAL CROPS AND PRODUCTS 2023; 191:115944. [PMID: 36405420 PMCID: PMC9659477 DOI: 10.1016/j.indcrop.2022.115944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 05/29/2023]
Abstract
Due to the pandemics of COVID-19, herbal medicine has recently been explored for possible antiviral treatment and prevention via novel platform of microbial fuel cells. It was revealed that Coffea arabica leaves was very appropriate for anti-COVID-19 drug development. Antioxidant and anti-inflammatory tests exhibited the most promising activities for C. arabica ethanol extracts and drying approaches were implemented on the leaf samples prior to ethanol extraction. Ethanol extracts of C. arabica leaves were applied to bioenergy evaluation via DC-MFCs, clearly revealing that air-dried leaves (CA-A-EtOH) exhibited the highest bioenergy-stimulating capabilities (ca. 2.72 fold of power amplification to the blank). Furthermore, molecular docking analysis was implemented to decipher the potential of C. arabica leaves metabolites. Chlorogenic acid (-6.5 kcal/mol) owned the highest binding affinity with RdRp of SARS-CoV-2, showing a much lower average RMSF value than an apoprotein. This study suggested C. arabica leaves as an encouraging medicinal herb against SARS-CoV-2.
Collapse
Key Words
- ADMET,, Absorption-distribution-metabolism-excretion-toxicity
- BBB,, Blood-brain barrier
- Biorefinery
- C. arabica,, Coffea arabica
- CA-40-EtOH,, EtOH extract of C. arabica leaves by 40°C oven-dried
- CA-80-EtOH,, EtOH extract of C. arabica leaves by 80°C oven-dried
- CA-A-EtOH,, EtOH extract of C. arabica leaves by air-dried
- CA-AC,, Acetone extract of C. arabica leaves by 40°C oven-dried
- CA-EA,, Ethyl acetate extract of C. arabica leaves by 40°C oven-dried
- CA-F-EtOH,, EtOH extract of C. arabica leaves by freeze-dried
- CA-H2O,, Water extract of C. arabica leaves by 40°C oven-dried
- CA-HX,, Hexane extract of C. arabica leaves by 40°C oven-dried
- COVID-19
- Chlorogenic acid
- Coffea arabica leaves
- DC-MFCs,, Dual Chamber-Microbial Fuel Cells
- DPPH,, 2,2-diphenyl-1-picrylhydrazyl
- FRAP,, Ferric ion reducing antioxidant power
- MFC,, Microbial fuel cell
- Microbial fuel cells
- QSAR,, Quantitative-structure-activity relationship
- RMSF,, Root-mean-square fluctuation
- RdRp
- RdRp,, RNA-dependent RNA polymerase
- SARS-CoV-2,, Severe acute respiratory syndrome coronavirus 2
Collapse
Affiliation(s)
- Po-Wei Tsai
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan
| | - Lemmuel L Tayo
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, 1002 Metro Manila, the Philippines
| | - Jasmine U Ting
- Department of Chemistry, College of Science, De La Salle University, Metro Manila 1004, the Philippines
| | - Cheng-Yang Hsieh
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Chia-Jung Lee
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Chih-Ling Chen
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan
| | - Hsiao-Chuan Yang
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan
| | - Hsing-Yu Tsai
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan
| | - Chung-Chuan Hsueh
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan
| | - Bor-Yann Chen
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan
| |
Collapse
|
30
|
Heli Z, Hongyu C, Dapeng B, Yee Shin T, Yejun Z, Xi Z, Yingying W. Recent advances of γ-aminobutyric acid: Physiological and immunity function, enrichment, and metabolic pathway. Front Nutr 2022; 9:1076223. [PMID: 36618705 PMCID: PMC9813243 DOI: 10.3389/fnut.2022.1076223] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
γ-aminobutyric acid (GABA) is a non-protein amino acid which naturally and widely occurs in animals, plants, and microorganisms. As the chief inhibitory neurotransmitter in the central nervous system of mammals, it has become a popular dietary supplement and has promising application in food industry. The current article reviews the most recent literature regarding the physiological functions, preparation methods, enrichment methods, metabolic pathways, and applications of GABA. This review sheds light on developing GABA-enriched plant varieties and food products, and provides insights for efficient production of GABA through synthetic biology approaches.
Collapse
Affiliation(s)
- Zhou Heli
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Chen Hongyu
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Bao Dapeng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China,National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Tan Yee Shin
- Faculty of Science and Mushroom Research Centre, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Zhong Yejun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Zhang Xi
- BannerBio Nutraceuticals Inc., Shenzhen, China
| | - Wu Yingying
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China,*Correspondence: Wu Yingying,
| |
Collapse
|
31
|
Mesquita Júnior GAD, da Costa YFG, Mello VD, Costa FF, Rodarte MP, Costa JDCD, Alves MS, Vilela FMP. Chemical characterisation by UPLC-Q-ToF-MS/MS and antibacterial potential of Coffea arabica L. leaves: A coffee by-product. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:1036-1044. [PMID: 35777933 DOI: 10.1002/pca.3157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Coffea arabica L. leaves are considered a by-product of the coffee industry however they are sources of several bioactive compounds. OBJECTIVES This study aimed to evaluate the chemical composition and the in vitro antibacterial activity of the lyophilised ethanol extract of arabica coffee leaves (EE-CaL). MATERIAL AND METHODS The chemical characterisation of EE-CaL was performed using ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-ToF-MS/MS). The in vitro antibacterial effect of EE-CaL was evaluated using the broth microdilution method and the adapted drop plate agar method to determine the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC), respectively. RESULTS The chemical analysis of EE-CaL revealed the presence of compounds from the alkaloid class, such as trigonelline and caffeine, in addition to the phenolic compounds such as quinic acid, 5-caffeoylquinic acid, caffeic acid-O-hexoside, mangiferin, (epi)catechin, (epi)catechin monoglucoside and procyanidin trimer. Regarding the antibacterial potential, EE-CaL was active against Gram-positive and Gram-negative bacteria, being more effective against Escherichia coli (ATCC 25922) (MIC = 2500 μg/mL and bactericidal effect). CONCLUSION The results of this research suggest that coffee leaves, a by-product, possess compounds with antibacterial properties. Thus, further studies with coffee leaf extracts must be carried out to relate the compounds present in the extract with the antibacterial activity and find the mechanisms of action of this extract against bacteria.
Collapse
Affiliation(s)
- Gilmar Alves de Mesquita Júnior
- Faculty of Pharmacy, Pharmaceutical Sciences Department, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Ygor Ferreira Garcia da Costa
- Faculty of Pharmacy, Pharmaceutical Sciences Department, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Valéria de Mello
- Faculty of Pharmacy, Pharmaceutical Sciences Department, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Fabiano Freire Costa
- Faculty of Pharmacy, Pharmaceutical Sciences Department, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Mirian Pereira Rodarte
- Faculty of Pharmacy, Pharmaceutical Sciences Department, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Juliana de Carvalho da Costa
- Faculty of Pharmacy, Pharmaceutical Sciences Department, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Maria Silvana Alves
- Faculty of Pharmacy, Pharmaceutical Sciences Department, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Fernanda Maria Pinto Vilela
- Faculty of Pharmacy, Pharmaceutical Sciences Department, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
32
|
Steger MC, Rigling M, Blumenthal P, Segatz V, Quintanilla-Belucci A, Beisel JM, Rieke-Zapp J, Schwarz S, Lachenmeier DW, Zhang Y. Coffee Leaf Tea from El Salvador: On-Site Production Considering Influences of Processing on Chemical Composition. Foods 2022; 11:foods11172553. [PMID: 36076738 PMCID: PMC9455624 DOI: 10.3390/foods11172553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/25/2022] [Accepted: 08/16/2022] [Indexed: 11/27/2022] Open
Abstract
The production of coffee leaf tea (Coffea arabica) in El Salvador and the influences of processing steps on non-volatile compounds and volatile aroma-active compounds were investigated. The tea was produced according to the process steps of conventional tea (Camellia sinensis) with the available possibilities on the farm. Influencing factors were the leaf type (old, young, yellow, shoots), processing (blending, cutting, rolling, freezing, steaming), drying (sun drying, oven drying, roasting) and fermentation (wild, yeast, Lactobacillus). Subsequently, the samples were analysed for the maximum levels of caffeine, chlorogenic acid, and epigallocatechin gallate permitted by the European Commission. The caffeine content ranged between 0.37–1.33 g/100 g dry mass (DM), the chlorogenic acid was between not detectable and 9.35 g/100 g DM and epigallocatechin gallate could not be detected at all. Furthermore, water content, essential oil, ash content, total polyphenols, total catechins, organic acids, and trigonelline were determined. Gas chromatography—mass spectrometry—olfactometry and calculation of the odour activity values (OAVs) were carried out to determine the main aroma-active compounds, which are β-ionone (honey-like, OAV 132-927), decanal (citrus-like, floral, OAV 14-301), α-ionone (floral, OAV 30-100), (E,Z)-2,6-nonadienal (cucumber-like, OAV 18-256), 2,4-nonadienal (melon-like, OAV 2-18), octanal (fruity, OAV 7-23), (E)-2 nonenal (citrus-like, OAV 1-11), hexanal (grassy, OAV 1-10), and 4-heptenal (green, OAV 1-9). The data obtained in this study may help to adjust process parameters directly to consumer preferences and allow coffee farmers to earn an extra income from this by-product.
Collapse
Affiliation(s)
- Marc C. Steger
- Department of Flavor Chemistry, University of Hohenheim, Fruwirthstr. 12, Verfügungsgebäude 221, 70599 Stuttgart, Germany
- Coffee Consulate, Hans-Thoma-Strasse 20, 68163 Mannheim, Germany
| | - Marina Rigling
- Department of Flavor Chemistry, University of Hohenheim, Fruwirthstr. 12, Verfügungsgebäude 221, 70599 Stuttgart, Germany
| | | | - Valerie Segatz
- Chemisches und Veterinäruntersuchungsamt (CVUA), Weissenburger Strasse 3, 76187 Karlsruhe, Germany
- Hochschule für Angewandte Wissenschaften Coburg, Friedrich-Streib-Strasse 2, 96450 Coburg, Germany
| | | | - Julia M. Beisel
- Chemisches und Veterinäruntersuchungsamt (CVUA), Weissenburger Strasse 3, 76187 Karlsruhe, Germany
| | - Jörg Rieke-Zapp
- Rubiacea Research and Development GmbH, Hans-Thoma-Strasse 20, 68163 Mannheim, Germany
| | - Steffen Schwarz
- Coffee Consulate, Hans-Thoma-Strasse 20, 68163 Mannheim, Germany
| | - Dirk W. Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA), Weissenburger Strasse 3, 76187 Karlsruhe, Germany
- Correspondence: (D.W.L.); (Y.Z.); Tel.: +49-721-926-5434 (D.W.L.); +49-711-459-24871 (Y.Z.)
| | - Yanyan Zhang
- Department of Flavor Chemistry, University of Hohenheim, Fruwirthstr. 12, Verfügungsgebäude 221, 70599 Stuttgart, Germany
- Correspondence: (D.W.L.); (Y.Z.); Tel.: +49-721-926-5434 (D.W.L.); +49-711-459-24871 (Y.Z.)
| |
Collapse
|
33
|
Cangeloni L, Bonechi C, Leone G, Consumi M, Andreassi M, Magnani A, Rossi C, Tamasi G. Characterization of Extracts of Coffee Leaves (Coffea arabica L.) by Spectroscopic and Chromatographic/Spectrometric Techniques. Foods 2022; 11:foods11162495. [PMID: 36010495 PMCID: PMC9407380 DOI: 10.3390/foods11162495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Coffea arabica L. leaves represent a viable alternative to the canonical matrices used for preparation of beverages, such as tea leaves and grounded coffee beans. Coffee leaves infusions are rich in antioxidant phenolic compounds and have a lower concentration of caffeine. Due to increasing interest in this field, a complete study of the bioactive compounds as chlorogenic acids, xanthones and alkaloids is noteworthy. C. arabica leaves were subjected to ultrasound-assisted extraction, and the extracts were studied via nuclear magnetic resonance spectroscopy (NMR) and chromatographic techniques coupled with mass spectrometry (HPLC-MSn) to identify and quantify the secondary metabolites profile through an untargeted data dependent approach. A quantitative analysis was performed for the major components—chlorogenic acids, mangiferin, caffeine and trigonelline—via HPLC-MS in Single Ion Monitoring (SIM) mode. In total, 39 compounds were identified. The presence of these bioactive compounds proved the strong potential of C. arabica leaves as functional food and as an alternative to classic infused beverages.
Collapse
Affiliation(s)
- Lorenzo Cangeloni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
- Centre for Colloid and Surface Science (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Claudia Bonechi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
- Centre for Colloid and Surface Science (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Gemma Leone
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| | - Marco Consumi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| | - Marco Andreassi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
- Centre for Colloid and Surface Science (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Agnese Magnani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| | - Claudio Rossi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
- Centre for Colloid and Surface Science (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Gabriella Tamasi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
- Centre for Colloid and Surface Science (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
- Correspondence:
| |
Collapse
|
34
|
Sun Y, Ji D, Ma H, Chen X. Ultrasound accelerated γ-aminobutyric acid accumulation in coffee leaves through influencing the microstructure, enzyme activity, and metabolites. Food Chem 2022; 385:132646. [PMID: 35279501 DOI: 10.1016/j.foodchem.2022.132646] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/19/2022] [Accepted: 03/04/2022] [Indexed: 11/17/2022]
Abstract
Gamma-aminobutyric acid (GABA) is a non-protein amino acid that possesses various physiological functions. Our previous study has shown that ultrasound increased GABA accumulation in coffee leaves. In this study, we aimed to uncover the GABA enrichment mechanism by investigating the surface microstructure, cellular permeability, enzyme activities, and metabolomics of coffee leaves under ultrasound treatment. The results showed that ultrasound increased the electrical conductivity and the activities of glutamate decarboxylase, γ-aminoaldehyde dehydrogenase, and diamine oxidase by 12.0%, 265.9%, 124.1%, 46.8%, respectively. Environmental scanning electron microscope analysis demonstrated an increased opening of stomata and the rougher surface in the leaves after ultrasound treatment. UPLC-qTOF-MS/MS-based untargeted metabolomics analysis identified 82 differential metabolites involved in various metabolism pathways. Our results indicated that ultrasound changed the surface microstructure of coffee leaves, thereby accelerating the migration of glutamate into the cells; activated related enzymes; regulated C/N metabolism pathways, which led to an increase of GABA.
Collapse
Key Words
- Asparagine, CID: 6267
- Citric acid, CID: 311
- Coffee leaves
- Gama-aminobutyric acid, PubChem CID: 119
- Gamma-aminobutyric acid
- Glutamate decarboxylase
- Glutamate, PubChem CID: 33032
- Isocitric acid, CID: 1198
- Lysine, CID: 5962
- Metabolomics
- Permeability
- Pyroglutamic acid, CID: 7405
- Sodium glutamate, CID: 167560
- Succinic acid, CID: 1110
- Ultrasonication
- alpha-Ketoglutarate, CID: 164533
Collapse
Affiliation(s)
- Yu Sun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China
| | - Dayi Ji
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
35
|
Ribeiro M, Alvarenga L, Cardozo LFMF, Kemp JA, Lima LS, Almeida JSD, Leal VDO, Stenvinkel P, Shiels PG, Mafra D. The magical smell and taste: Can coffee be good to patients with cardiometabolic disease? Crit Rev Food Sci Nutr 2022; 64:562-583. [PMID: 35930394 DOI: 10.1080/10408398.2022.2106938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Coffee is a beverage consumed globally. Although few studies have indicated adverse effects, it is typically a beneficial health-promoting agent in a range of diseases, including depression, diabetes, cardiovascular disease, and obesity. Coffee is rich in caffeine, antioxidants, and phenolic compounds, which can modulate the composition of the gut microbiota and mitigate both inflammation and oxidative stress, common features of the burden of lifestyle diseases. This review will discuss the possible benefits of coffee on complications present in patients with diabetes, cardiovascular disease and chronic kidney disease, outwith the social and emotional benefits attributed to caffeine consumption.
Collapse
Affiliation(s)
- Marcia Ribeiro
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Unidade de Pesquisa Clinica (UPC), University Hospital Antonio Pedro, Niterói, RJ, Brazil
| | - Livia Alvarenga
- Unidade de Pesquisa Clinica (UPC), University Hospital Antonio Pedro, Niterói, RJ, Brazil
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Ludmila F M F Cardozo
- Unidade de Pesquisa Clinica (UPC), University Hospital Antonio Pedro, Niterói, RJ, Brazil
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Julie A Kemp
- Unidade de Pesquisa Clinica (UPC), University Hospital Antonio Pedro, Niterói, RJ, Brazil
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Ligia S Lima
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Unidade de Pesquisa Clinica (UPC), University Hospital Antonio Pedro, Niterói, RJ, Brazil
| | - Jonatas S de Almeida
- Unidade de Pesquisa Clinica (UPC), University Hospital Antonio Pedro, Niterói, RJ, Brazil
| | - Viviane de O Leal
- Nutrition Division, Pedro Ernesto University Hospital, University of the State of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Instituted, Stockholm, Sweden
| | - Paul G Shiels
- Wolfson Wohl Translational Research Centre, University of Glasgow, Glasgow, UK
| | - Denise Mafra
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Unidade de Pesquisa Clinica (UPC), University Hospital Antonio Pedro, Niterói, RJ, Brazil
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| |
Collapse
|
36
|
Wu CS, Chiang HM, Chen Y, Chen CY, Chen HF, Su WC, Wang WJ, Chou YC, Chang WC, Wang SC, Hung MC. Prospects of Coffee Leaf against SARS-CoV-2 Infection. Int J Biol Sci 2022; 18:4677-4689. [PMID: 35874948 PMCID: PMC9305275 DOI: 10.7150/ijbs.76058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
In the current climate, many countries are in dire need of effective preventive methods to curb the Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2) pandemic. The purpose of this research is to screen and explore natural plant extracts that have the potential to against SARS-CoV-2 and provide alternative options for SARS-CoV-2 prevention and hand sanitizer or spray-like disinfectants. We first used Spike-ACE2 ELISA and TMPRSS2 fluorescence resonance energy transfer (FRET) assays to screen extracts from agricultural by-products from Taiwan with the potential to impede SARS-CoV-2 infection. Next, the SARS-CoV-2 pseudo-particles (Vpp) infection assay was tested to validate the effectiveness. We identified an extract from coffee leaf (Coffea Arabica), a natural plant that effectively inhibited wild-type SARS-CoV-2, and five Variants of Concern (Alpha, Beta, Gamma, Delta, and Omicron strain) from entering host cells. In an attempt to apply coffee leaf extract for hand sanitizer or spray-like disinfectants, we designed a skin-like gelatin membrane experiment. We showed that the high concentration of coffee leaf extract on the skin surface could block SARS-CoV-2 into cells more potently than 75% Ethanol, a standard disinfectant to inactivate SARS-CoV-2. Finally, LC-HRMS analysis was used to identify compounds such as caffeine, chlorogenic acid (CGA), quinic acid, and mangiferin that are associated with an anti-SARS-CoV-2 activity. Our results demonstrated that coffee leaf extract, an agricultural by-product effectively inhibits SARS-CoV-2 Vpp infection through an ACE2-dependent mechanism and may be utilized to develop products against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Chen-Shiou Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
| | - Hsiu-Mei Chiang
- Department of Cosmeceutics, China Medical University, Taichung 406040, Taiwan
| | - Yeh Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Institute of New Drug Development, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
| | - Chung-Yu Chen
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
| | - Hsiao-Fan Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
| | - Wen-Chi Su
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- International Master's Program of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404332, Taiwan
| | - Wei-Jan Wang
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan
| | - Yu-Chi Chou
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei 115024, Taiwan
| | - Wei-Chao Chang
- Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung 404332, Taiwan
| | - Shao-Chun Wang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung 404332, Taiwan
- Department of Biotechnology, Asia University, Taichung, 41354 Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung 404332, Taiwan
- Department of Biotechnology, Asia University, Taichung, 41354 Taiwan
| |
Collapse
|
37
|
Morpho-Physiological Traits, Phytochemical Composition, and Antioxidant Activity of Canephora Coffee Leaves at Various Stages. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2022. [DOI: 10.3390/ijpb13020011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Coffee leaves contain a wide range of leaf compounds, which vary by growth stage. Recently, the importance of coffee leaf metabolites with beneficial phytochemicals has been widely identified. This research investigated Canephora coffee’s morphological and physiological development and analyzed the phytochemical composition of the main leaf stage. Canephora coffee leaves were harvested and classified into the following five growth stages: S1 (leaf age of 1–4 days), S2 (leaf age of 5–8 days), S3 (leaf age of 9–14 days), S4 (leaf age of 15–20 days), and S5 (leaf age of 21–27 days). The antioxidant activity, total phenol content, flavonoids, and tannin content of coffee leaves at different stages were observed. The results indicated that the highest values for the leaf area, dry weight, greenness, chlorophyll content, and carotenoid content were found at the last stage (S5). The specific leaf area (SLA) differences had higher values in the S3 and S1 growth stages. The youngest leaf phase (S1) was less green, more yellow, and brighter in color than the mature phase. By comparing the assays, it was found that a significant increase in the antioxidant activity and the contents of phenolic compounds, flavonoids, and tannins were observed in the S1 and S2 growth stages.
Collapse
|
38
|
Targeted and Untargeted Mass Spectrometry-Based Metabolomics for Chemical Profiling of Three Coffee Species. Molecules 2022; 27:molecules27103152. [PMID: 35630628 PMCID: PMC9143251 DOI: 10.3390/molecules27103152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022] Open
Abstract
While coffee beans have been studied for many years, researchers are showing a growing interest in coffee leaves and by-products, but little information is currently available on coffee species other than Coffea arabica and Coffea canephora. The aim of this work was to perform a targeted and untargeted metabolomics study on Coffea arabica, Coffea canephora and Coffea anthonyi. The application of the recent high-resolution mass spectrometry-based metabolomics tools allowed us to gain a clear overview of the main differences among the coffee species. The results showed that the leaves and fruits of Coffea anthonyi had a different metabolite profile when compared to the two other species. In Coffea anthonyi, caffeine levels were found in lower concentrations while caffeoylquinic acid and mangiferin-related compounds were found in higher concentrations. A large number of specialized metabolites can be found in Coffea anthonyi tissues, making this species a valid candidate for innovative healthcare products made with coffee extracts.
Collapse
|
39
|
Zhang Y, Fu J, Zhou Q, Li F, Shen Y, Ye Z, Tang D, Chi N, Li L, Ma S, Inayat MA, Guo T, Zhao J, Li P. Metabolite Profiling and Transcriptome Analysis Revealed the Conserved Transcriptional Regulation Mechanism of Caffeine Biosynthesis in Tea and Coffee Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3239-3251. [PMID: 35245048 DOI: 10.1021/acs.jafc.1c06886] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Caffeine is a characteristic bioactive compound in tea and coffee plants, which is synthesized and accumulated extensively in leaves and seeds. However, little is known about the regulatory mechanism of caffeine synthesis in plants. This study compared the caffeine metabolite between tea and coffee plants. We found that tea leaves contained significantly higher caffeine than coffee leaves, which is perhaps due to more members of N-methyltransferase (NMT) genes as well as higher expression levels in tea plants. Substantial numbers of transcription factors were predicted to be involved in caffeine biosynthesis regulation, combining weighted gene co-expression network analysis and the cis-element of NMT promoter analysis in tea and coffee plants. Furthermore, analysis of the transcription factors from the caffeine-related modules suggested that the regulatory mechanism of caffeine biosynthesis was probably partly conservative in tea and coffee plants. This study provides an essential resource for the regulatory mechanism of caffeine biosynthesis in plants.
Collapse
Affiliation(s)
- Yanrui Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Jiamin Fu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Qiying Zhou
- Henan Key Laboratory of Tea Plant Biology, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Fangdong Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Yihua Shen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Zhili Ye
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Dingkun Tang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Ning Chi
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Lanqing Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Shuyu Ma
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Mallano Ali Inayat
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Tieying Guo
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili 679600, China
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
40
|
de Oliveira Aparecido LE, Lorençone JA, Lorençone PA, de Souza Rolim G, de Meneses KC, da Silva Cabral de Moraes JR, Torsoni GB. Can nonlinear agrometeorological models estimate coffee foliation? JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:584-596. [PMID: 34159603 DOI: 10.1002/jsfa.11387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 06/11/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The loss of coffee leaves caused by the attack of pests and diseases significantly reduces its production and bean quality. Thus this study aimed to estimate foliation for regions with the highest production of arabica coffee in Brazil using nonlinear models as a function of climate. A 25-year historical series (1995-2019) of Coffea arabica foliation (%) data was obtained by the Procafé Foundation in cultivations with no phytosanitary treatment. The climate data were obtained on a daily scale by NASA/POWER platform with a temporal resolution of 33 years (1987-2019) and a spatial resolution of approximately 106 km, thus allowing the calculation of the reference evapotranspiration (PET). Foliation estimation models were adjusted through regression analysis using four-parameter sigmoidal logistic models. The analysis of the foliation trend of coffee plantations was carried out from degrees-day for 70 locations. RESULTS The general model calibrated to estimate the arabica coffee foliation was accurate (mean absolute percentage error = 2.19%) and precise (R2 adj = 0.99) and can be used to assist decision-making by coffee growers. The model had a sigmoidal trend of reduction, with parameters ymax = 97.63%, ymin = 9%, Xo = 3517.41 DD, and p = 6.27%, showing that foliation could reach 0.009% if the necessary phytosanitary controls are not carried out. CONCLUSION Locations with high air temperatures over the year had low arabica coffee foliation, as shown by the correlation of -0.94. Therefore, coffee foliation can be estimated using degree days with accuracy and precision through the air temperature. This represents great convenience because crop foliation can be obtained using only a thermometer. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | - Glauco de Souza Rolim
- Department of Exact Sciences, State University of São Paulo-UNESP, Jaboticabal, Brazil, Jaboticabal, Brazil
| | - Kamila C de Meneses
- Department of Exact Sciences, State University of São Paulo-UNESP, Jaboticabal, Brazil, Jaboticabal, Brazil
| | | | | |
Collapse
|
41
|
Tea processing steps affect chemical compositions, enzyme activities, and antioxidant and anti‐inflammatory activities of coffee leaves. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
42
|
Tritsch N, Steger MC, Segatz V, Blumenthal P, Rigling M, Schwarz S, Zhang Y, Franke H, Lachenmeier DW. Risk Assessment of Caffeine and Epigallocatechin Gallate in Coffee Leaf Tea. Foods 2022; 11:263. [PMID: 35159415 PMCID: PMC8834188 DOI: 10.3390/foods11030263] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
Coffee leaf tea is prepared as an infusion of dried leaves of Coffea spp. in hot water. It is a traditional beverage in some coffee-producing countries and has been authorized in 2020 within the European Union (EU) according to its novel food regulation. This article reviews current knowledge on the safety of coffee leaf tea. From the various ingredients contained in coffee leaves, only two were highlighted as possibly hazardous to human health, namely, caffeine and epigallocatechin gallate (EGCG), with maximum limits implemented in EU legislation, which is why this article focuses on these two substances. While the caffeine content is comparable to that of roasted coffee beans and subject to strong fluctuations in relation to the age of the leaves, climate, coffee species, and variety, a maximum of 1-3 cups per day may be recommended. The EGCG content is typically absent or below the intake of 800 mg/day classified as hepatotoxic by the European Food Safety Authority (EFSA), so this compound is suggested as toxicologically uncritical. Depending on selection and processing (age of the leaves, drying, fermentation, roasting, etc.), coffee leaf tea may exhibit a wide variety of flavors, and its full potential is currently almost unexplored. As a coffee by-product, it is certainly interesting to increase the income of coffee farmers. Our review has shown that coffee leaf tea is not assumed to exhibit risks for the consumer, apart from the well-known risk of caffeine inherent to all coffee-related beverages. This conclusion is corroborated by the history of its safe use in several countries around the world.
Collapse
Affiliation(s)
- Nadine Tritsch
- Postgraduate Study of Toxicology and Environmental Toxicology, Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany; (N.T.); (H.F.)
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany;
| | - Marc C. Steger
- Coffee Consulate, Hans-Thoma-Strasse 20, 68163 Mannheim, Germany; (M.C.S.); (P.B.); (S.S.)
- Department of Flavor Chemistry, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (M.R.); (Y.Z.)
| | - Valerie Segatz
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany;
- Hochschule für Angewandte Wissenschaften Coburg, Friedrich-Streib-Strasse 2, 96450 Coburg, Germany
| | - Patrik Blumenthal
- Coffee Consulate, Hans-Thoma-Strasse 20, 68163 Mannheim, Germany; (M.C.S.); (P.B.); (S.S.)
| | - Marina Rigling
- Department of Flavor Chemistry, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (M.R.); (Y.Z.)
| | - Steffen Schwarz
- Coffee Consulate, Hans-Thoma-Strasse 20, 68163 Mannheim, Germany; (M.C.S.); (P.B.); (S.S.)
| | - Yanyan Zhang
- Department of Flavor Chemistry, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (M.R.); (Y.Z.)
| | - Heike Franke
- Postgraduate Study of Toxicology and Environmental Toxicology, Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany; (N.T.); (H.F.)
| | - Dirk W. Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany;
| |
Collapse
|
43
|
Wang Q, Mei S, Manivel P, Ma H, Chen X. Zinc oxide nanoparticles synthesized using coffee leaf extract assisted with ultrasound as nanocarriers for mangiferin. Curr Res Food Sci 2022; 5:868-877. [PMID: 35647560 PMCID: PMC9133588 DOI: 10.1016/j.crfs.2022.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/21/2022] [Accepted: 05/06/2022] [Indexed: 11/04/2022] Open
Abstract
Plant extracts have been widely used to green synthesize zinc oxide nanoparticles (ZnO NPs); however, how the combination of ultrasound and coffee leaf extract (CLE) affects the structure characteristics and the yield of ZnO NPs remains unknown. In this study, we used CLE to green synthesize ZnO NPs with the help of ultrasound. The highest yield (43.59 ± 0.13%) of ZnO NPs was obtained under the optimal processing conditions of pH = 8.0, mass ratio of coffee leaves to C4H6O4Zn•2H2O = 1.71, ultrasound time = 10 min, ultrasound frequency = 28/40 kHz, ultrasound power = 180 W, and synthesis temperature = 30 °C. The as-synthesized ZnO NPs were characterized by UV–Vis, SEM, EDX, TEM, FTIR, XRD, and zeta potential analyses. SEM and TEM analyses revealed that ZnO NPs synthesized using ultrasound-assisted method were spherical with an average particle size of 8.29 ± 1.38 nm, which was smaller than ZnO NPs synthesized without ultrasound treatment (10.48 ± 1.57 nm) and the chemically synthesized ZnO NPs (17.15 ± 2.84 nm). HPLC analysis showed that the phenolic compounds in coffee leaves, especially 5-CQA, were the main reductants and chelating agents for ZnO NPs synthesis. The synthesized ZnO NPs were used to load mangiferin, which was control released under pH 7.4 over 132 h. Our study provides an easy and eco-friendly method using CLE assisted with ultrasound for green synthesis of ZnO NPs which can be used as nanocarriers to control release of mangiferin. Ultrasound increased the yield of ZnO NPs synthesized using coffee leaf extract. Ultrasound reduced the particle size and increased the stability of ZnO NPs. 5-CQA was the main reductant for ZnO NPs synthesis. Caffeine and trigonelline were less potent reductants for ZnO NPs synthesis. Mangiferin loaded ZnO NPs can achieve long-term controlled release at pH 7.4.
Collapse
|
44
|
Saud S, Salamatullah AM. Relationship between the Chemical Composition and the Biological Functions of Coffee. Molecules 2021; 26:molecules26247634. [PMID: 34946716 PMCID: PMC8704863 DOI: 10.3390/molecules26247634] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023] Open
Abstract
Coffee is a Rubiaceae coffee plant ranked as the first of the three most important beverages in the world, with effects including lowering blood sugar, protecting the liver, and protecting the nerves. Coffee contains many chemical components, including alkaloids, phenolic acids, flavonoids, terpenoids, and so on. Chemical components in coffee are the basis of its biological function and taste. The chemical components are the basis of biological activities and form the characteristic aroma of coffee. The main chemical components and biological activities of coffee have been extensively studied, which would provide a relevant basis and theoretical support for the further development of the coffee industry.
Collapse
Affiliation(s)
- Shah Saud
- College of Life Sciences, Linyi University, Linyi 276012, China;
| | - Ahmad Mohammad Salamatullah
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence:
| |
Collapse
|
45
|
Jumaa RS, Abdulmajeed DI, Karim AJ. Evaluation of secondary metabolites of herbal plant extracts as an antiviral effect on infectious bursal disease virus isolates in embryonated chicken eggs. Vet World 2021; 14:2971-2978. [PMID: 35017846 PMCID: PMC8743771 DOI: 10.14202/vetworld.2021.2971-2978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/12/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND AND AIM Infectious bursal disease attacks the poultry industry, mainly young chickens, causing immunosuppression, and death with high economic losses. This study aimed to evaluate the effects of the monoextract, diextracts, and triextracts of Quercus infectoria (QI), Citrus aurantifolia (CiA), and Coffea arabica (CoA) on infectious bursal disease virus (IBDV) in embryonated chicken eggs (ECEs). MATERIALS AND METHODS The experimental design consisted of three sets of ECEs at 11 days of age, and each set included seven groups (G1-G7). The extracts of QI, CiA, and CoA were inoculated to ECEs by the chorioallantoic membrane method before, in concomitant (mixed) with, and after IBDV infection to the first, second, and third sets, respectively. The monoextract, diextracts, and triextracts of QI, CiA, and CoA were given at 1%, 2%, 5%, and 10% concentrations to G1-G3, G4-G6, and G7, respectively. Real-time polymerase chain reaction identified and confirmed the virus in accordance with the pathological changes. RESULTS The monoextract (5-10% concentrations) inhibited IBDV and had no effect on viral infection preinoculation, whereas the monoextract (10% concentration) inhibited IBDV during mixed inoculation and post-inoculation. Diextracts (2-10% concentrations) inhibited IBDV and had no effect on viral infection preinoculation, whereas diextracts (5-10% concentrations) inhibited IBDV during mixed inoculation and post-inoculation. Triextracts (1%, 2%, 5%, and 10% concentrations) inhibited IBDV by ameliorating the pathological changes of the virus and preventing the death of ECEs. CONCLUSION The inoculation of herbal extracts, particularly triextracts, alleviates the pathological changes in ECEs infected with IBDV. This study recommends the oral route in evaluating plant extracts against IBDV in poultry.
Collapse
Affiliation(s)
- Rawaa Saladdin Jumaa
- Department of Microbiology, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - Dhuha Ismael Abdulmajeed
- Department of Microbiology, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - Abdulkarim Jafar Karim
- Unit of Zoonotic Diseases, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
46
|
Ji D, Wang Q, Lu T, Ma H, Chen X. The effects of ultrasonication on the phytochemicals, antioxidant, and polyphenol oxidase and peroxidase activities in coffee leaves. Food Chem 2021; 373:131480. [PMID: 34731790 DOI: 10.1016/j.foodchem.2021.131480] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/30/2022]
Abstract
In the present study, we investigated the impacts of ultrasonic conditions on the phytochemical profiles, antioxidant activity, and polyphenol oxidase (PPO) and peroxidase (POD) activities in coffee leaves. Ultrasonic frequency, power, and time, pH, and incubation time affected PPO and POD differently, thus resulting in different ABTS scavenging capacity and phenolic content in coffee leaves. Triple-frequency (20/35/50 kHz) ultrasound significantly (P < 0.05) inhibited trigonelline, caffeine, mangiferin, rutin, chlorogenic acids, antioxidant activity, and PPO activity, while the single frequency of 35 kHz increased the phenolics compounds, which was associated with the lowest POD activity. Increasing the incubation time after ultrasonication gradually decreased phenolic compounds and antioxidant activities, however, POD activity followed a temporal pattern of first increase and then decrease. Our results showed that PPO and POD were temporally inactivated after ultrasonication, which leading to the continuous decrease of phenolics in coffee leaves.
Collapse
Affiliation(s)
- Dayi Ji
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, P.R. China
| | - Qiang Wang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, P.R. China
| | - Tingting Lu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, P.R. China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, P.R. China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, P.R. China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, P.R. China; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, P.R. China.
| |
Collapse
|
47
|
How do coffee substitutes compare to coffee? A comprehensive review of its quality characteristics, sensory characters, phytochemicals, health benefits and safety. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Montis A, Souard F, Delporte C, Stoffelen P, Stévigny C, Van Antwerpen P. Coffee Leaves: An Upcoming Novel Food? PLANTA MEDICA 2021; 87:949-963. [PMID: 34560791 DOI: 10.1055/a-1533-0021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Unlike those of coffee beans, the healthy properties of coffee leaves have been overlooked for a long time, even if they are consumed as a beverage by local communities of several African countries. Due to the presence of xanthines, diterpenes, xanthones, and several other polyphenol derivatives as main secondary metabolites, coffee leaves might be useful to prevent many daily disorders. At the same time, as for all bioactive molecules, careless use of coffee leaf infusions may be unsafe due to their adverse effects, such as the excessive stimulant effects on the central nervous system or their interactions with other concomitantly administered drugs. Moreover, the presence of some toxic diterpene derivatives requires careful analytical controls on manufactured products made with coffee leaves. Accordingly, knowledge about the properties of coffee leaves needs to be increased to know if they might be considered a good source for producing new supplements. The purpose of the present review is to highlight the biosynthesis, metabolism, and distribution of the 4 main classes of secondary metabolites present in coffee leaves, their main pharmacological and toxicological aspects, and their main roles in planta. Differences in coffee leaf chemical composition depending on the coffee species will also be carefully considered.
Collapse
Affiliation(s)
- Andrea Montis
- RD3 Department-Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
- APFP Analytical platform of the faculty of pharmacy, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
| | - Florence Souard
- Département de Pharmacochimie Moléculaire, UMR 5063 CNRS, Université Grenoble Alpes, Saint-Martin d'Hères, France
- DPP Department - Unit of Pharmacology, Pharmacotherapy and Pharmaceutical care, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
| | - Cédric Delporte
- RD3 Department-Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
- APFP Analytical platform of the faculty of pharmacy, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
| | - Piet Stoffelen
- Meise Botanic Garden, Domein van Bouchout, Meise, Belgium
| | - Caroline Stévigny
- RD3 Department-Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
| | - Pierre Van Antwerpen
- RD3 Department-Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
- APFP Analytical platform of the faculty of pharmacy, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
49
|
Ji D, Ma H, Chen X. Ultrasonication increases γ‐aminobutyric acid accumulation in coffee leaves and affects total phenolic content and angiotensin‐converting enzyme inhibitory activity. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dayi Ji
- School of Food and Biological Engineering Jiangsu University Zhenjiang P.R. China
| | - Haile Ma
- School of Food and Biological Engineering Jiangsu University Zhenjiang P.R. China
- Institute of Food Physical Processing Jiangsu University Zhenjiang P.R. China
| | - Xiumin Chen
- School of Food and Biological Engineering Jiangsu University Zhenjiang P.R. China
- Institute of Food Physical Processing Jiangsu University Zhenjiang P.R. China
- International Research Center for Food Nutrition and Safety Jiangsu University Zhenjiang China
| |
Collapse
|
50
|
Oliveira G, Passos CP, Ferreira P, Coimbra MA, Gonçalves I. Coffee By-Products and Their Suitability for Developing Active Food Packaging Materials. Foods 2021; 10:foods10030683. [PMID: 33806924 PMCID: PMC8005104 DOI: 10.3390/foods10030683] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 01/30/2023] Open
Abstract
The coffee industry generates a wide variety of by-products derived from green coffee processing (pulp, mucilage, parchment, and husk) and roasting (silverskin and spent coffee grounds). All these fractions are simply discarded, despite their high potential value. Given their polysaccharide-rich composition, along with a significant number of other active biomolecules, coffee by-products are being considered for use in the production of plastics, in line with the notion of the circular economy. This review highlights the chemical composition of coffee by-products and their fractionation, evaluating their potential for use either as polymeric matrices or additives for developing plastic materials. Coffee by-product-derived molecules can confer antioxidant and antimicrobial activities upon plastic materials, as well as surface hydrophobicity, gas impermeability, and increased mechanical resistance, suitable for the development of active food packaging. Overall, this review aims to identify sustainable and eco-friendly strategies for valorizing coffee by-products while offering suitable raw materials for biodegradable plastic formulations, emphasizing their application in the food packaging sector.
Collapse
Affiliation(s)
- Gonçalo Oliveira
- CICECO–Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; (G.O.); (P.F.)
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.P.P.); (M.A.C.)
| | - Cláudia P. Passos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.P.P.); (M.A.C.)
| | - Paula Ferreira
- CICECO–Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; (G.O.); (P.F.)
| | - Manuel A. Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.P.P.); (M.A.C.)
| | - Idalina Gonçalves
- CICECO–Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; (G.O.); (P.F.)
- Correspondence:
| |
Collapse
|