1
|
Ijaz H, Sun S. A review on preparation and application of low-calorie structured lipids in food system. Food Sci Biotechnol 2025; 34:49-64. [PMID: 39758727 PMCID: PMC11695523 DOI: 10.1007/s10068-024-01689-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/10/2024] [Accepted: 08/19/2024] [Indexed: 01/07/2025] Open
Abstract
Low-calorie structured lipids are an advanced form of functional lipids made by changing the position of fatty acids attached to the glycerol backbone. The main reason for their production is to get nutraceutical lipids. Different methods are used to synthesize low-calorie structured lipids, like chemical or enzymatic methods. Initially, these lipids are prepared by using chemical methods. Synthesis of low-calorie structured lipids using enzymes is now in demand due to several advantages like good catalytic efficiency, environmentally friendly, and moderate reaction conditions. Enzymatic interesterification is mostly used in industries to make modified lipids like low-calorie structured lipids, human milk substitutes, cocoa butter equivalents, margarine, and shortenings. This review summarizes the synthesis, uses and clinical applications of modified lipids in food systems. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01689-8.
Collapse
Affiliation(s)
- Hira Ijaz
- School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou, 450001 Henan People’s Republic of China
| | - Shangde Sun
- School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou, 450001 Henan People’s Republic of China
- Henan Engineering Research Center of Oilseed Deep Processing, Henan University of Technology, Lianhua Road 100, Zhengzhou, 450001 Henan People’s Republic of China
| |
Collapse
|
2
|
Zhang Y, Fu Y, Li H, Wang X, Wang X. A systematic review on the acyl migration in enzymatic synthesis of structured lipids: Mechanisms, influencing factors, evaluation methods, and future prospects. Food Res Int 2024; 196:115140. [PMID: 39614530 DOI: 10.1016/j.foodres.2024.115140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/17/2024] [Accepted: 09/25/2024] [Indexed: 12/01/2024]
Abstract
Structured lipids (SLs) are modified triacylglycerols with specific physicochemical or nutritional properties. Acyl migration is a universal chemical phenomenon observed during interesterification, a critical process in the enzyme-catalyzed synthesis of SLs. Acyl migration causes shifts in the positional composition of lipids that bring changes in function. Recent advances in understanding acyl migration during lipase-catalyzed interesterification reactions were systematically summarized, offering a comprehensive overview of its mechanisms and influencing factors. The current research on acyl migration has been mainly at the level of enzymatic reactions, and the evaluation methods of acyl migration degree need further exploration. It is necessary to investigate the acyl migration throughout the production of SLs. A thorough investigation into the factors influencing rates of interesterification, hydrolysis, and randomization, along with their underlying mechanisms, is imperative for the efficient development of specialized SL products.
Collapse
Affiliation(s)
- Youfeng Zhang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Department of Flavor Chemistry, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Yijie Fu
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Houyue Li
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xiaohan Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xiaosan Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Effciency in Loess Plateau, Shanxi Agricultural University, Taigu, Taiyuan, Shanxi 030801, China.
| |
Collapse
|
3
|
Alves V, de Figueiredo Furtado G, Luccas V, Paula Badan Ribeiro A, Alves Macedo J, Alves Macedo G. Structuration of lipid bases zero-trans and palm oil-free for food applications. Food Res Int 2024; 192:114683. [PMID: 39147537 DOI: 10.1016/j.foodres.2024.114683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/03/2024] [Accepted: 06/26/2024] [Indexed: 08/17/2024]
Abstract
This work evaluated structured lipids (SLs) through chemical and enzymatic interesterification (CSLs and ESLs). Blends of soybean oil and peanut oil 1:1 wt% were used, with gradual addition of fully hydrogenated crambe to obtain a final behenic acid concentration of 6, 12, 18, and 24 %. Chemical catalysis used sodium methoxide (0.4 wt%) at 100 °C for 30 min, while enzymatic catalysis used Lipozyme TL IM (5 wt%) at 60 °C for 6 h. Major fatty acids identified were C16:0, C18:0, and C22:0. It was observed that with gradual increase of hard fat, the CSLs showed high concentrations of reaction intermediates, indicating further a steric hindrance, unlike ESLs. Increased hard fat also altered crystallization profile and triacylglycerols composition and ESLs showed lower solid fat, unlike CSLs. Both methods effectively produced SLs as an alternative to trans and palm fats, view to potential future applications in food products.
Collapse
Affiliation(s)
- Vanessa Alves
- Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato, 80, 13083-862, Campinas, SP, Brazil
| | - Guilherme de Figueiredo Furtado
- Centro de Ciências da Natureza, Universidade Federal de São Carlos (UFSCar), Rod. Lauri Simões de Barros, Km 12 - SP 189, Buri, SP 18290-000, Brazil
| | - Valdecir Luccas
- Instituto de Tecnologia de Alimentos (ITAL), Centro de Tecnologia de Cereais e Chocolates, Avenida Brasil, 2880 Campinas, SP 13070-178, Brazil
| | - Ana Paula Badan Ribeiro
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato, 80, 13083-862, Campinas, SP, Brazil
| | - Juliana Alves Macedo
- Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato, 80, 13083-862, Campinas, SP, Brazil
| | - Gabriela Alves Macedo
- Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato, 80, 13083-862, Campinas, SP, Brazil.
| |
Collapse
|
4
|
Yang D, Zhang Y, Lee YY, Lu Y, Wang Y, Zhang Z. Batch and continuous enzymatic interesterification of beef tallow: Interesterification degree, reaction relationship, and physicochemical properties. Food Chem 2024; 444:138635. [PMID: 38325087 DOI: 10.1016/j.foodchem.2024.138635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
The relationship between batch and continuous enzymatic interesterification was studied through enzymatic interesterification of beef tallow. The interesterification degree (ID) during the batch reaction was monitored based on triacylglycerol composition, sn-2 fatty acid composition, solid fat content, and melting profile and was described by an exponential model. A relationship equation featuring reaction parameters of the two reations was established to predict the ID and physicochemical characteristics in continuous interesterification. The prediction of the ID based on triacylglycerol composition was reliable, with an R2 value greater than 0.85. Interesterification produced more high-melting-point components for both reactions, but the acyl migration in the batch-stirring reactor was much greater, resulting in faster crystallization, a more delicate crystal network, and lower hardness. The relationship equation can be employed to predict the ID, but the prediction of physicochemical properties was constrained by the difference in acyl migration degree between the two reactions.
Collapse
Affiliation(s)
- Dubing Yang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yanan Zhang
- NO.27 Shandanan Road, Shandong University Hospital, Shandong University, Jinan, China
| | - Yee-Ying Lee
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Yuxia Lu
- Guangzhou Flavours & Fragrances Co., Ltd., China
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zhen Zhang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
5
|
Martins BC, da Silva Ribeiro M, Teixeira AVS, Peixoto TC, Lisboa PC, Martins FF, Souza-Mello V, Daleprane JB. Consumption of interesterified palm oil leads inflammation of white adipose tissue and triggers metabolic disturbances in mice on a high-fat diet. Sci Rep 2024; 14:12530. [PMID: 38822155 PMCID: PMC11143230 DOI: 10.1038/s41598-024-63488-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024] Open
Abstract
Growing obesity is linked to shifts in dietary patterns, particularly the increased intake of ultra-processed high-fat foods. This study aimed to evaluate the effects of interesterified palm oil consumption on glucose homeostasis, adipose tissue remodeling, and hepatic lipogenesis in C57BL/6 mice fed a high-fat diet. Sixty C57BL/6 mice were divided into four groups (n = 15): the control group (C) fed a standard diet (4% soybean oil), the high-fat group (HF) (23.8% lard), the high palm oil fat group (HFP) (23.8% palm oil), and the high interesterified palm fat group (HFI) (23.8% interesterified palm oil) for 8 weeks (all groups received 50% energy from lipids). The HFI group exhibited higher body mass than the HF group (+ 11%, P < 0.05), which was attributed to an increased percentage of fat mass. Plasma concentrations of IL-6, insulin, and HOMA-IR were also elevated in the HFI group. Both the HFP and HFI groups showed hypertrophied adipocytes and pancreatic islets, increased alpha and beta cell masses, hepatic steatosis, low expression of genes related to beta-oxidation, and upregulated lipogenesis. In conclusion, the consumption of interesterified palm oil alters inflammatory and glucose profiles.
Collapse
Affiliation(s)
- Bruna Cadete Martins
- Laboratory for Studies of Interactions Between Nutrition and Genetics, LEING, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Mayara da Silva Ribeiro
- Laboratory for Studies of Interactions Between Nutrition and Genetics, LEING, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Ananda Vitoria Silva Teixeira
- Laboratory for Studies of Interactions Between Nutrition and Genetics, LEING, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Thamara Cherem Peixoto
- Laboratory for Studies of Interactions Between Nutrition and Genetics, LEING, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Patrícia Cristina Lisboa
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, State University of Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Fabiane Ferreira Martins
- Laboratory for Studies of Interactions Between Nutrition and Genetics, LEING, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
- Department of Morphology, Federal University of Rio Grande Do Norte, Rio Grande do Norte, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Julio Beltrame Daleprane
- Laboratory for Studies of Interactions Between Nutrition and Genetics, LEING, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Tian Y, Zhou Y, Li L, Huang C, Lin L, Li C, Ye Y. Effect of substrate composition on physicochemical properties of the medium-long-medium structured triacylglycerol. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:942-955. [PMID: 37708388 DOI: 10.1002/jsfa.12982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Nutritional and functional qualities and applications of structured lipids (SL) depend on the composition and molecular structure of fatty acids in the glycerol backbone of triacylglycerol (TAG). However, the relationship between the substrate composition and physicochemical qualities of SL has not been revealed. The investigation aims to disclose the effect of substrate composition on the physicochemical properties of medium-long-medium structured lipids (MLM-SLs) by enzymatic interesterification of Lipozyme TLIM/RMIM. RESULTS The medium-long-chain triacylglycerol (MLCT) yield could reach 70.32%, including 28.98% CaLCa (1,3-dioctonyl-2-linoleoyl glyceride) and 24.34% CaOCa (1,3-didecanoyl-2-oleoyl glyceride). The sn-2 unsaturated fatty acid composition mainly depended on long-chain triacylglycerol (LCT) in the substrate. The increased carbon chain length and double bond in triacylglycerol decreased its melting and crystallization temperature. The balanced substrate composition of MCT/LCT increased the size and finer crystals. Molecular docking simulation revealed that the MLCT molecule mainly interacted with the catalytic triplets of Lipozyme TLIM (Arg81-Ser83-Arg84) and the Lipozyme RMIM (Tyr183-Thr226-Arg262) by OH bond. The oxygen atom of the ester on the MLCT molecule was primarily bound to the hydrogen of hydroxyl and amino groups on the binding sites of Lipozyme TLIM/RMIM. The intermolecular interplay between MLCT and Lipozyme RMIM is more stable than Lipozyme TLIM due to the formation of lower binding affinity energy. CONCLUSION This research clarifies the interaction mechanism between MLCT molecules and lipases, and provides an in-depth understanding of the relationship between substrate composition, molecular structure and physicochemical property of MLM-SLs. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yunong Tian
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Yanhui Zhou
- Hunan Singular Biological Technology Co. Ltd, Changsha, China
| | - Lu Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Chuanqing Huang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Yong Ye
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
- SCUT - Zhuhai Institute of Modern Industrial Innovation, Zhuhai, China
- Jiangxi Environmental Engineering Vocational College, Ganzhou, China
| |
Collapse
|
7
|
Ai H, Lee YY, Xie X, Tan CP, Ming Lai O, Li A, Wang Y, Zhang Z. Structured lipids produced from palm-olein oil by interesterification: A controllable lipase-catalyzed approach in a solvent-free system. Food Chem 2023; 412:135558. [PMID: 36716631 DOI: 10.1016/j.foodchem.2023.135558] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
Palm olein (POL) was modified by enzymatic interesterification with different degrees of acyl migration in a solvent-free packed bed reactor. The fatty acid and acylglycerol composition, isomer content, thermodynamic behavior, and relationship between crystal polymorphism, solid fat content (SFC), crystal microstructure, and texture before and after modification were studied. We found that the increase in sn-2 saturation interesterification was not only due to the generated tripalmitin (PPP) but also caused by acyl migration, and the SFC profiles were changed accordingly. The emergence of high melting point acylglycerols was an important factor accelerating the crystallization rate, further shortening the crystallization induction time, leading to the formation of large crystal spherulites, thereby reducing the hardness. The transformation from the β' to the β form occurred during post-hardening during storage. The isomer content also affected the physicochemical properties of the modified POL.
Collapse
Affiliation(s)
- Hongzeng Ai
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yee-Ying Lee
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Xiaodong Xie
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Chin Ping Tan
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Oi Ming Lai
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Aijun Li
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China; Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou, Guangdong 510632, China
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China; Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou, Guangdong 510632, China.
| | - Zhen Zhang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
8
|
Zou X, Su H, Zhang F, Zhang H, Yeerbolati Y, Xu X, Chao Z, Zheng L, Jiang B. Bioimprinted lipase-catalyzed synthesis of medium- and long-chain structured lipids rich in docosahexaenoic acid for infant formula. Food Chem 2023; 424:136450. [PMID: 37247604 DOI: 10.1016/j.foodchem.2023.136450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 05/31/2023]
Abstract
Medium- and long-chain structured lipids (MLSLs) rich in docosahexaenoic acid (DHA) were obtained in shorter reaction time by acidolysis of single-cell oil (DHASCO) from Schizochytrium sp. with caprylic acid (CA) using a lipase bioimprinted with fatty acids as a catalyst. The conditions for preparation of the bioimprinted lipase for the acidolysis reaction were firstly optimized and the activity of the obtained lipase was 2.17 times higher than that of the non-bioimprinted. The bioimprinted lipase was then used as a catalyst and the reaction conditions were optimized. Under the optimal conditions, the equilibrium could be achieved in 4 h, and the total and sn-1,3 CA contents in the product were 29.18% and 42.34%, respectively, and the total and sn-2 DHA contents were 46.26% and 70.12%, respectively. Such MLSLs rich in sn-1,3 CA and sn-2 DHA are beneficial for DHA absorption, and thus have potential for use in infant formula.
Collapse
Affiliation(s)
- Xiaoqiang Zou
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.
| | - Heng Su
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.
| | - Fengcheng Zhang
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Hongjiang Zhang
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Yeliaman Yeerbolati
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Xiuli Xu
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Zhonghao Chao
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Lei Zheng
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Bangzhi Jiang
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| |
Collapse
|
9
|
Progress and perspectives of enzymatic preparation of human milk fat substitutes. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:118. [PMCID: PMC9635142 DOI: 10.1186/s13068-022-02217-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Human milk fat substitutes (HMFS) with triacylglycerol profiles highly similar to those of human milk fat (HMF) play a crucial role in ensuring the supply in infant nutrition. The synthesis of HMFS as the source of lipids in infant formula has been drawing increasing interest in recent years, since the rate of breastfeeding is getting lower. Due to the mild reaction conditions and the exceptionally high selectivity of enzymes, lipase-mediated HMFS preparation is preferred over chemical catalysis especially for the production of lipids with desired nutritional and functional properties. In this article, recent researches regarding enzymatic production of HMFS are reviewed and specific attention is paid to different enzymatic synthetic route, such as one-step strategy, two-step catalysis and multi-step processes. The key factors influencing enzymatic preparation of HMFS including the specificities of lipase, acyl migration as well as solvent and water activity are presented. This review also highlights the challenges and opportunities for further development of HMFS through enzyme-mediated acylation reactions.
Collapse
|
10
|
Gao R, Sun S, Zhou Y, Chen X, Zhang H, Yao N. Low-cost liquid lipase selective deacidification of corn oil with high triglyceride yield. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Wang X, Liu K, Wang Y, Huang Z, Wang X. Preparation of 2-Arachidonoylglycerol by Enzymatic Alcoholysis: Effects of Solvent and Water Activity on Acyl Migration. Foods 2022; 11:3213. [PMCID: PMC9601288 DOI: 10.3390/foods11203213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Enzymatic alcoholysis was performed in an organic medium to synthesize 2-monoacylglycerol (2-MAG) rich in arachidonic acid. The results showed that solvent type and water activity (aw) significantly affected the 2-MAG yield. Under the optimum conditions, 33.58% 2-MAG was produced in the crude product in t-butanol system. Highly pure 2-MAG was obtained after two-stage extraction using 85% ethanol aqueous solution and hexane at first stage and dichloromethane and water at second stage. Isolated 2-MAG was used as substrate to investigate the effect of solvent type and aw on 2-MAG acyl migration in a lipase-inactivated system. The results indicated that non-polar solvents accelerated the acyl migration of 2-MAG, whereas isomerization was inhibited in polar solvent systems. The aw exhibited the strongest inhibition effect on 2-MAG isomerization at 0.97, but also affected the hydrolysis of glycerides and lipase selectivity.
Collapse
Affiliation(s)
- Xiaohan Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Keying Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Yifan Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhuoneng Huang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Xiaosan Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel.: +86-510-85876799
| |
Collapse
|
12
|
Romero S, Minari RJ, Collins SE. Lipase-Catalyzed Interesterification of Fully and Partially Hydrogenated Soybean Oil Blends for Bioparaffin Production. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sandra Romero
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC−CONICET), Güemes 3450, Santa Fe 3000, Argentina
| | - Roque J. Minari
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC−CONICET), Güemes 3450, Santa Fe 3000, Argentina
- Facultad de Ingeniería Química, Universidad Nacional del Litoral (FIQ-UNL), Santiago del Estero 2829, Santa Fe 3000, Argentina
| | - Sebastián E. Collins
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC−CONICET), Güemes 3450, Santa Fe 3000, Argentina
- Facultad de Ingeniería Química, Universidad Nacional del Litoral (FIQ-UNL), Santiago del Estero 2829, Santa Fe 3000, Argentina
| |
Collapse
|
13
|
Sonprasert T, Ornla‐ied P, Sonwai S. Synthesis of confectionery fat from illipé butter stearin and palm mid‐fraction blend via enzymatic interesterification. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thunchanok Sonprasert
- Department of Food Technology Faculty of Engineering and Industrial Technology Silpakorn University Nakhon Pathom Thailand
| | - Pimwalan Ornla‐ied
- Department of Food Technology Faculty of Engineering and Industrial Technology Silpakorn University Nakhon Pathom Thailand
| | - Sopark Sonwai
- Department of Food Technology Faculty of Engineering and Industrial Technology Silpakorn University Nakhon Pathom Thailand
| |
Collapse
|
14
|
ZENG G, TIAN W, ZENG Z, YAN X, YU P, GONG D, WANG J. Construction and in vitro digestibility evaluation of a novel human milk fat substitute rich in structured triglycerides. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.10422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Affiliation(s)
- Guibing ZENG
- Nanchang University, China; Nanchang University, China; Nanchang University, China
| | - Wenran TIAN
- Nanchang University, China; Nanchang University, China; Nanchang University, China
| | - Zheling ZENG
- Nanchang University, China; Nanchang University, China; Nanchang University, China
| | - Xianghui YAN
- Nanchang University, China; Nanchang University, China; Nanchang University, China
| | - Ping YU
- Nanchang University, China; Nanchang University, China; Nanchang University, China
| | - Deming GONG
- New Zealand Institute of Natural Medicine Research, New Zealand
| | - Jun WANG
- Nanchang University, China; Nanchang University, China
| |
Collapse
|
15
|
Zhang Z, Lee WJ, Xie X, Ye J, Tan CP, Lai OM, Li A, Wang Y. Enzymatic Interesterification of Palm Stearin and Palm Olein Blend Catalyzed by sn-1,3-Specific Lipase: Interesterification Degree, Acyl Migration, and Physical Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9056-9066. [PMID: 33433208 DOI: 10.1021/acs.jafc.0c06297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Acyl migration of fatty acid at sn-2 is often observed alongside enzymatic interesterification (EIE), causing the loss of lipase selectivity toward the acyl group at sn-1,3. In this study, an oil blend consisting of palm stearin (PST) and palm olein (POL) was interesterified via a chemical interesterification (CIE) and enzymatic method using a packed bed reactor. Characterization in terms of the triacylglycerol (TAG) compositions, sn-2 fatty acid distributions, and solid fat content profiles was performed. In comparison to that of CIE fats, EIE fats showed different modification effects on the solid fat content. Under similar reaction conditions, different interesterification degrees (IDs) were obtained according to the various blend ratios. Using the same mass ratio of substrates (POL/PST of 9:1), the EIE reaction time and temperature affected the ID and the change in the fatty acyl group at the sn-2 position. Under the reaction time of 46 min, an ID of 94.41% was acquired, while at 80 °C, the degree of acyl migration at sn-2 was 92.87%. EIE with high acyl migration exhibited a lower crystallization rate than that of EIE with low acyl migration. However, the effect of acyl migration on crystal polymorphism and oxidative stability was insignificant. Outcomes from this study are meaningful for the establishment of a theoretical basis for a controlled positional-specific EIE that is catalyzed by sn-1,3-specific lipase.
Collapse
Affiliation(s)
- Zhen Zhang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Wan Jun Lee
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Xiaodong Xie
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Jing Ye
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Chin Ping Tan
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
- Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou, Guangdong 510632, People's Republic of China
| | - Oi Ming Lai
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
- Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou, Guangdong 510632, People's Republic of China
| | - Aijun Li
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
- Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou, Guangdong 510632, People's Republic of China
| |
Collapse
|
16
|
Temkov M, Mureșan V. Tailoring the Structure of Lipids, Oleogels and Fat Replacers by Different Approaches for Solving the Trans-Fat Issue-A Review. Foods 2021; 10:1376. [PMID: 34198688 PMCID: PMC8232242 DOI: 10.3390/foods10061376] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/26/2022] Open
Abstract
The issue of the adverse effects of trans-fatty acids has become more transparent in recent years due to researched evidence of their link with coronary diseases, obesity or type 2 diabetes. Apart from conventional techniques for lipid structuring, novel nonconventional approaches for the same matter, such as enzymatic interesterification, genetic modification, oleogelation or using components from nonlipid origins such as fat replacers have been proposed, leading to a product with a healthier nutritional profile (low in saturated fats, zero trans fats and high in polyunsaturated fats). However, replacing conventional fat with a structured lipid or with a fat mimetic can alternate some of the technological operations or the food quality impeding consumers' acceptance. In this review, we summarize the research of the different existing methods (including conventional and nonconventional) for tailoring lipids in order to give a concise and critical overview in the field. Specifically, raw materials, methods for their production and the potential of food application, together with the properties of new product formulations, have been discussed. Future perspectives, such as the possibility of bioengineering approaches and the valorization of industrial side streams in the framework of Green Production and Circular Economy in the production of tailored lipids, have been highlighted. Additionally, a schematic diagram classifying conventional and nonconventional techniques is proposed based on the processing steps included in tailored lipid production as a convenient and straightforward tool for research and industry searching for healthy, sustainable and zero trans edible lipid system alternatives.
Collapse
Affiliation(s)
- Mishela Temkov
- Department of Food Technology and Biotechnology, Faculty of Technology and Metallurgy, Ss. Cyril and Methodius University in Skopje, Rudjer Boskovic 16, 1000 Skopje, North Macedonia
| | - Vlad Mureșan
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj Napoca, 3-5 Manăștur st., 400372 Cluj Napoca, Romania
| |
Collapse
|
17
|
Acyl migration occurrence of palm olein during interesterification catalyzed by sn-1,3 specific lipase. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Suri T, Basu S. Heat resistant chocolate development for subtropical and tropical climates: a review. Crit Rev Food Sci Nutr 2021; 62:5603-5622. [PMID: 33635177 DOI: 10.1080/10408398.2021.1888690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Heat resistant chocolate (HRC) which can retain the desired texture and mouthfeel in tropical and subtropical climatic conditions has become a major research area in the chocolate industry. Liking of the chocolate products keeps on changing with the geographical conditions of the world due to the availability of ingredients from local resources and consumer's taste preferences. The geographical changes also bring about the change in climatic conditions and as such no chocolates have been formulated to withstand the hot tropical or sub-tropical temperature conditions. Textural issues and various storage related problems faced due to meltability of chocolate in different countries has opened up a broad research field of sustainable HRC manufacturing. Over the years, there are broadly three different approaches (fat modification, sugar structure modification and innovative process approach) to develop the HRC and all these scientific approaches have given different scientific insights about improving the heat resistance characteristics and textural stability of chocolate. There is a lack or coordinated fundamental and applied research related to cocoa butter polymorphism, and thermal-textural issues during product development/storage. This review paper is an attempt to describe the different scientific approaches for developing HRC and how they affect the physical/sensory chocolate attributes.
Collapse
Affiliation(s)
- Twinkle Suri
- Dr. SS Bhatnagar University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Santanu Basu
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|