1
|
Hong J, Chang Y, Feng H, Jiang L, Wu F, He Z. A new technique for antioxidant walnut peptide preparation directly from walnut cake: Enzymatic preparation process optimization coupled with enzyme membrane reactor and kinetic analysis. Food Chem 2025; 475:143368. [PMID: 39970570 DOI: 10.1016/j.foodchem.2025.143368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/08/2024] [Accepted: 02/09/2025] [Indexed: 02/21/2025]
Abstract
The lack of scalable production methods limits the commercial production viability of walnut peptides. To overcome this obstacle, enzyme membrane reactors (EMRs) were used to continuously produce bioactive peptides (called CEMR) directly from walnut cake. The optimum operating conditions were pH 10.7, an [E/S] ratio of 11 %, and a temperature of 44 °C, which resulted in a peptide yield of 256.0 ± 4.66 mg/g cake and a protein conversion degree reaching 63.49 ± 0.82 %. Kinetic analysis showed that affinity between alkaline protease and walnut cake can be enhanced by EMR (km decreased, kA increased). The antioxidant results showed that the strongest antioxidant activity was detected in CEMR. The composition of amino acids and molecular weight distribution results showed that the highest content of Glu (20.20 ± 0.48 %), Asp (20.70 ± 0.95 %), and peptides with molecular weight < 1KD (51.92 %) were detected in CEMR. The results of CEMR provide a new option for simplifying the production process of walnut peptide.
Collapse
Affiliation(s)
- Jiahui Hong
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China; National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A & F University, Hangzhou 311300, China
| | - Yinzi Chang
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China; National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A & F University, Hangzhou 311300, China
| | - Hong Feng
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China; National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A & F University, Hangzhou 311300, China
| | - Luxi Jiang
- Xinjiang Institute of Technology, Aksu 843100, China
| | - Fenghua Wu
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A & F University, Hangzhou 311300, China; College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhiping He
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China; National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A & F University, Hangzhou 311300, China.
| |
Collapse
|
2
|
Cui W, Xie Y, Zhang Y, Su X, Cui T, Chen X, Wang Z, Xu F, Zhou H, Xu B. Antioxidant potential of peptides from poultry hemoglobin via probiotic-assisted hydrolysis: Deciphering mechanisms at the cellular level and through molecular dynamics simulations. Food Res Int 2025; 204:115953. [PMID: 39986793 DOI: 10.1016/j.foodres.2025.115953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/24/2025]
Abstract
Achieving the therapeutic goal of treating diseases by effectively controlling the excessive accumulation of intracellular free radicals is still very challenging, which motivates researchers to develop efficient novel antioxidant peptides from sustainable resources continuously. This study first pioneered a probiotic-assisted enzymatic hydrolysis of hemoglobin, which obtained 149 peptides. Two antioxidant peptides were rapidly screened using advanced molecular dynamics simulation techniques, revealing their molecular interaction mechanisms with Keap1. It was found that GLWGKV occupied six binding sites for Keap1 to form hydrogen bonds with Nrf2, whereas LIVYPW occupied two binding sites, and the binding free energy of GLWGKV to Keap1 was lower binding more stable. Cellular experiments confirmed that GLWGKV up-regulated the expression of related proteins and increased antioxidant enzyme activities, thereby attenuating H2O2-induced oxidative damage in Caco-2 cells. This research increases the economic added value of animal blood and demonstrates its great potential for development in functional foods.
Collapse
Affiliation(s)
- Wei Cui
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Yong Xie
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Yinghui Zhang
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Xinlian Su
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Tianqi Cui
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xingguang Chen
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Zhaoming Wang
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Feiran Xu
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Hui Zhou
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| | - Baocai Xu
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
3
|
Tarahi M, Aghababaei F, McClements DJ, Pignitter M, Hadidi M. Bioactive peptides derived from insect proteins: Preparation, biological activities, potential applications, and safety issues. Food Chem 2025; 465:142113. [PMID: 39581148 DOI: 10.1016/j.foodchem.2024.142113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/22/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024]
Abstract
Bioactive peptides are polypeptides with specific amino acid sequences that exhibit biological activities and health benefits. Insects have emerged as a sustainable source of proteins in human food and animal feed due to their efficient resource utilization, low environmental footprint, and good nutritional profile. Moreover, insect-derived bioactive peptides (IBPs) offer potential applications in functional foods and pharmaceuticals due to their antioxidant, antimicrobial, antihypertensive, anti-inflammatory, antidiabetic, and anti-obesity activities. In this article, the isolation, purification, and properties of IBPs are reviewed, as well as their potential health benefits, commercial applications, and safety. Despite the growing interest in incorporating IBPs into food products, challenges regarding consumer acceptance, safety, and regulations still persist. Thus, there is a pressing need for further research in this area, as well as clarification of the regulatory framework, before the full potential of insects as a sustainable source of bioactive peptides for human consumption can be realized.
Collapse
Affiliation(s)
- Mohammad Tarahi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | | | | | - Marc Pignitter
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Milad Hadidi
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria.
| |
Collapse
|
4
|
Zhang D, Luo K, Wen S, Zhou Q, Li B, Liang W, Di J. Isolation and Identification of Aspergillus spp. from Rotted Walnuts and Inhibition Mechanism of Aspergillus flavus via Cinnamon Essential Oil. Foods 2025; 14:357. [PMID: 39941948 PMCID: PMC11816927 DOI: 10.3390/foods14030357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
Walnuts are prone to contamination by rotting fungi. However, the microflora present in walnuts across various regions of China has not been thoroughly investigated. Cinnamon essential oil (CEO) is commonly used in food preservation because of its natural safety and strong antimicrobial properties. Additionally, studies on the antifungal potential of CEO to prevent walnut spoilage are limited. Therefore, we investigated Aspergillus spp. contamination in moldy walnuts stored across different locations in Shanxi, China. A total of 100 moldy walnut samples underwent traditional mycological analysis to isolate Aspergillus spp. The antibacterial properties and the mechanisms by which CEO targets Aspergillus spp. were thoroughly investigated. Five representative morphospecies were subsequently classified to the species level using Internal Transcribed Spacer sequence analysis. The dominant species were Aspergillus flavus and Aspergillus fumigatus, with frequencies of 100% and 93%, respectively, followed by Aspergillus nigers, Aspergillus terreus, and Aspergillus tubingensis, with frequencies of 78%, 47%, and 40%, respectively. Overall, 358 fungal species belonging to the Aspergillus genus were recovered. The MIC of CEO against A. flavus in vitro was 0.78 g/L. Furthermore, CEO compromised the permeability and integrity of the cell membrane, causing the leakage of intracellular components and promoting the accumulation of malondialdehyde compounds and a decrease in superoxide dismutase activity. Overall, we isolated and identified Aspergillus spp. in moldy walnuts and confirmed the feasibility of using CEO as a green anti-Aspergillus spp. agent for the preservation of walnuts.
Collapse
Affiliation(s)
- Doudou Zhang
- Food Science and Engineering College, Shanxi Agriculture University, 1 Mingxian South 3 Road, Taigu District, Jinzhong 030801, China; (D.Z.); (K.L.); (B.L.); (W.L.)
| | - Kangjing Luo
- Food Science and Engineering College, Shanxi Agriculture University, 1 Mingxian South 3 Road, Taigu District, Jinzhong 030801, China; (D.Z.); (K.L.); (B.L.); (W.L.)
| | - Shaocong Wen
- Food Science and Engineering College, Shanxi Agriculture University, 1 Mingxian South 3 Road, Taigu District, Jinzhong 030801, China; (D.Z.); (K.L.); (B.L.); (W.L.)
| | - Qing Zhou
- Food Science and Engineering College, Shanxi Agriculture University, 1 Mingxian South 3 Road, Taigu District, Jinzhong 030801, China; (D.Z.); (K.L.); (B.L.); (W.L.)
| | - Bochao Li
- Food Science and Engineering College, Shanxi Agriculture University, 1 Mingxian South 3 Road, Taigu District, Jinzhong 030801, China; (D.Z.); (K.L.); (B.L.); (W.L.)
| | - Wenhui Liang
- Food Science and Engineering College, Shanxi Agriculture University, 1 Mingxian South 3 Road, Taigu District, Jinzhong 030801, China; (D.Z.); (K.L.); (B.L.); (W.L.)
| | - Jianbing Di
- Food Science and Engineering College, Shanxi Agriculture University, 1 Mingxian South 3 Road, Taigu District, Jinzhong 030801, China; (D.Z.); (K.L.); (B.L.); (W.L.)
- Shanxi Fruit and Vegetable Storage and Processing Technology Innovation Center, 1 Mingxian South 3 Road, Taigu District, Jinzhong 030801, China
| |
Collapse
|
5
|
Xu C, Liu Y, Li K, Zhang J, Wei B, Wang H. Absorption of food-derived peptides: Mechanisms, influencing factors, and enhancement strategies. Food Res Int 2024; 197:115190. [PMID: 39593400 DOI: 10.1016/j.foodres.2024.115190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 11/28/2024]
Abstract
Food-derived peptides (FPs) are bioactive molecules produced from dietary proteins through enzymatic hydrolysis or fermentation. These peptides exhibit various biological activities. However, their efficacy largely depends on bioavailability, the ability to cross absorption barriers, and reach target sites within the body. This review addresses key issues in FP absorption, including barriers, pathways, influencing factors, and strategies to enhance absorption. The biochemical and physical barriers to FP absorption include pH variations, enzymes, unstirred water layer, mucus layer, and intestinal epithelial cells. FPs enter the bloodstream via four main pathways: carrier-mediated transport, endocytosis, paracellular, and passive diffusion. The barrier-crossing efficiency depends on the structural properties and state of FPs and coexisting substances. Absorption efficiency can be significantly improved with permeability enhancers, nano-delivery systems, and chemical modifications. These insights provide a scientific basis and practical guidance for optimizing the bioactivity and health benefits of food-derived peptides.
Collapse
Affiliation(s)
- Chengzhi Xu
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Yuting Liu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Ke Li
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Juntao Zhang
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Benmei Wei
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China.
| | - Haibo Wang
- College of Life Science and Technology, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan, Hubei, China.
| |
Collapse
|
6
|
Wang H, Su Y, Hu X, Wu B, Liu Y, Kan H, Cao C. Integrated Transcriptomic and Proteomic Analysis of Nutritional Quality-Related Molecular Mechanisms in "Longjia", "Yangpao", and "Niangqing" Walnuts ( Juglans sigillata). Int J Mol Sci 2024; 25:11671. [PMID: 39519221 PMCID: PMC11546566 DOI: 10.3390/ijms252111671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
In this study, "Longjia (LJ)" and "Yangpao (YP)"exhibited higher contents of major nutrients compared to "Niangqing (NQ)" walnuts. The combination of transcriptome and proteome by RNA sequencing and isotope labeling for relative and absolute quantification techniques provides new insights into the molecular mechanisms underlying the nutritional quality of the three walnut species. A total of 4146 genes and 139 proteins showed differential expression levels in the three comparison groups. Combined transcriptome and proteome analyses revealed that these genes and proteins were mainly enriched in signaling pathways such as fatty acid biosynthesis, protein processing in endoplasmic reticulum, and amino acid metabolism, revealing their relationship with the nutritional quality of walnut kernels. This study identified key genes and proteins associated with nutrient metabolism and accumulation in walnut kernels, provided transcriptomic and proteomic information on the molecular mechanisms of nutrient differences in walnut kernels, and contributed to the elucidation of the mechanisms of nutrient differences and the selection and breeding of high-quality walnut seedlings.
Collapse
Affiliation(s)
| | | | | | | | | | - Huan Kan
- Department of Food Science and Engineering, College of Biological and Food Engineering, Southwest Forestry University, Kunming 650224, China; (H.W.); (Y.S.); (X.H.); (B.W.); (Y.L.)
| | - Changwei Cao
- Department of Food Science and Engineering, College of Biological and Food Engineering, Southwest Forestry University, Kunming 650224, China; (H.W.); (Y.S.); (X.H.); (B.W.); (Y.L.)
| |
Collapse
|
7
|
Zheng S, Cui R, Yu D, Niu Y, Wu X, Yang F, Chen J. Novel Antioxidant Self-Assembled Peptides Extracted from Azumapecten farreri Meat: In Vitro- and In Silico-Assisted Identification. Antioxidants (Basel) 2024; 13:790. [PMID: 39061861 PMCID: PMC11273597 DOI: 10.3390/antiox13070790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Previous studies have found that the self-assembled supramolecules of Azumapecten farreri meat peptides have antioxidant effects. Therefore, this study aims to isolate and identify novel antioxidant peptides with self-assembly characteristics and analyze their structure-activity relationship through molecular docking and molecular dynamics simulation. The in vitro results show that as the purification steps increased, the antioxidant activity of peptides became stronger. Additionally, the purification step did not affect its pH-responsive self-assembly. Using LC-MS/MS, 298 peptide sequences were identified from the purified fraction PF1, and 12 safe and antioxidant-active peptides were acquired through in silico screening. The molecular docking results show that they had good binding interactions with key antioxidant-related protein ligands (KEAP1 (Kelch-like ECH-associated protein 1) and MPO (myeloperoxidase)). The peptide QPPALNDSYLYGPQ, with the lowest docking energy, was selected for a 100 ns molecular dynamics simulation. The results show that the peptide QPPALNDSYLYGPQ exhibited excellent stability when docked with KEAP1 and MPO, thus exerting antioxidant effects by regulating the KEAP1-NRF2 pathway and inhibiting MPO activity. This study further validates the antioxidant and self-assembling properties of the self-assembled supramolecules of Azumapecten farreri meat peptide and shows its potential for developing new, effective, and stable antioxidants.
Collapse
Affiliation(s)
- Shuang Zheng
- Marine College, Shandong University, Weihai 264209, China; (S.Z.); (R.C.); (D.Y.); (Y.N.); (X.W.)
| | - Ronghua Cui
- Marine College, Shandong University, Weihai 264209, China; (S.Z.); (R.C.); (D.Y.); (Y.N.); (X.W.)
| | - Dingyi Yu
- Marine College, Shandong University, Weihai 264209, China; (S.Z.); (R.C.); (D.Y.); (Y.N.); (X.W.)
| | - Yanxiang Niu
- Marine College, Shandong University, Weihai 264209, China; (S.Z.); (R.C.); (D.Y.); (Y.N.); (X.W.)
| | - Xuehan Wu
- Marine College, Shandong University, Weihai 264209, China; (S.Z.); (R.C.); (D.Y.); (Y.N.); (X.W.)
| | - Faming Yang
- Marine College, Shandong University, Weihai 264209, China; (S.Z.); (R.C.); (D.Y.); (Y.N.); (X.W.)
| | - Jingdi Chen
- Marine College, Shandong University, Weihai 264209, China; (S.Z.); (R.C.); (D.Y.); (Y.N.); (X.W.)
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 265599, China
| |
Collapse
|
8
|
Cai C, Liu Y, Xu Y, Zhang J, Wei B, Xu C, Wang H. Mineral-element-chelating activity of food-derived peptides: influencing factors and enhancement strategies. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 38841814 DOI: 10.1080/10408398.2024.2361299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Mineral elements including calcium, iron, and zinc play crucial roles in human health. Their deficiency causes public health risk globally. Commercial mineral supplements have limitations; therefore, alternatives with better solubility, bioavailability, and safety are needed. Chelates of food-derived peptides and mineral elements exhibit advantages in terms of stability, absorption rate, and safety. However, low binding efficiency limits their application. Extensive studies have focused on understanding and enhancing the chelating activity of food-derived peptides with mineral elements. This includes obtaining peptides with high chelating activity, elucidating interaction mechanisms, optimizing chelation conditions, and developing techniques to enhance the chelating activity. This review provides a comprehensive theoretical basis for the development and utilization of food-derived peptide-mineral element chelates in the food industry. Efforts to address the challenge of low binding rates between peptides and mineral elements have yielded promising results. Optimization of peptide sources, enzymatic hydrolysis processes, and purification schemes have helped in obtaining peptides with high chelating activity. The understanding of interaction mechanisms has been enhanced through advanced separation techniques and molecular simulation calculations. Optimizing chelation process conditions, including pH and temperature, can help in achieving high binding rates. Methods including phosphorylation modification and ultrasonic treatment can enhance the chelating activity.
Collapse
Affiliation(s)
- Chaonan Cai
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yuting Liu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yuling Xu
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Juntao Zhang
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Benmei Wei
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Chengzhi Xu
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Haibo Wang
- College of Life Science and Technology, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan, China
| |
Collapse
|
9
|
Wang Y, Tang H, Deng X, Shen Y, Tang M, Wang F. Screening and Constructing of Novel Angiotensin I-Converting Enzyme Inhibiting Peptides from Walnut Protein Isolate and Their Mechanisms of Action: A Merged In Silico and In Vitro Study. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:48-58. [PMID: 37962805 DOI: 10.1007/s11130-023-01122-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
Angiotensin I-converting enzyme (ACE)-inhibiting peptides were isolated from walnut protein isolate (WPI) using ultrasound-assisted extraction. This study aimed to assess the impact of ultrasonic pretreatment on the physicochemical properties of WPI. The optimal extraction conditions for WPI were determined as a 15-min ultrasonic treatment at 400 W. Subsequently, the hydrolysate exhibiting the highest in vitro ACE-inhibiting activity underwent further processing and separation steps, including ultrafiltration, ion exchange chromatography, liquid chromatography-tandem mass spectrometry, ADMET screening, and molecular docking. As a result of this comprehensive process, two previously unidentified ACE-inhibiting peptides, namely Tyr-Ile-Gln (YIQ) and Ile-Tyr-Gln (IYQ), were identified. In addition, a novel peptide, Ile-Lys-Gln (IKQ), was synthesized, demonstrating superior ACE-inhibiting activity and temperature stability. In silico analysis estimated an in vivo utilization rate of 21.7% for IKQ. These peptides were observed to inhibit ACE through an anti-competitive mechanism, with molecular docking simulations suggesting an interaction mechanism involving hydrogen bonding. Notably, both IYQ and IKQ peptides exhibited no discernible toxicity to HUVECs cells and promoted nitric oxide (NO) generation. These findings underscore the potential of ultrasonicated WPI in the separation of ACE-inhibiting peptides and their utility in the development of novel ACE inhibitors for functional food applications.
Collapse
Affiliation(s)
- Yuzhen Wang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Forest Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Tsinghua East Road, Haidian District, Beijing City, 100083, China
| | - Hengkuan Tang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Forest Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Tsinghua East Road, Haidian District, Beijing City, 100083, China
- The Institute of Inspection and Supervision, Hygiene and Health in Chaoyang District of Beijing, Beijing, 100021, China
| | - Xinyue Deng
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Forest Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Tsinghua East Road, Haidian District, Beijing City, 100083, China
| | - Yijie Shen
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Forest Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Tsinghua East Road, Haidian District, Beijing City, 100083, China
| | - Mingjian Tang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Forest Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Tsinghua East Road, Haidian District, Beijing City, 100083, China
| | - Fengjun Wang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Forest Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Tsinghua East Road, Haidian District, Beijing City, 100083, China.
| |
Collapse
|
10
|
Li Y, Dang Q, Shen Y, Guo L, Liu C, Wu D, Fang L, Leng Y, Min W. Therapeutic effects of a walnut-derived peptide on NLRP3 inflammasome activation, synaptic plasticity, and cognitive dysfunction in T2DM mice. Food Funct 2024; 15:2295-2313. [PMID: 38323487 DOI: 10.1039/d3fo05076a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
NLRP3 inflammasome activation plays a key role in the development of diabetes-induced cognitive impairment. However, strategies to inhibit NLRP3 inflammasome activation remain elusive. Herein, we evaluated the impact of a walnut-derived peptide, TWLPLPR (TW-7), on cognitive impairment in high-fat diet/streptozotocin-induced type 2 diabetes mellitus (T2DM) mice and explored its underlying mechanisms in high glucose-induced HT-22 cells. In the Morris water maze test, TW-7 alleviated cognitive deficits in mice; this was confirmed at the level of synaptic structure and dendritic spine density in the mouse hippocampus using transmission electron microscopy and Golgi staining. TW-7 increased the expression of synaptic plasticity-related proteins and suppressed the NEK7/NLRP3 inflammatory pathway, as determined by western blotting and immunofluorescence analysis. The mechanism of action of TW-7 was verified in an HT-22 cell model of high glucose-induced insulin resistance. Collectively, TW-7 could regulate T2DM neuroinflammation and synaptic function-induced cognitive impairment by inhibiting NLRP3 inflammasome activation and improving synaptic plasticity.
Collapse
Affiliation(s)
- Yanru Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China.
| | - Qiao Dang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China.
| | - Yue Shen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China.
| | - Linxin Guo
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China.
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China.
| | - Dan Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China.
| | - Li Fang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China.
| | - Yue Leng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China.
| | - Weihong Min
- College of Food and Health, Zhejiang A & F University, Hangzhou 311300, P.R. China.
- National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Hangzhou 311300, China
| |
Collapse
|
11
|
Lin L, Li C, Zhang Y, Zhang L, Gao L, Jin L, Shu Y, Shen Y. Effects of an Akt-activating peptide obtained from walnut protein degradation on the prevention of memory impairment in mice. Food Funct 2024; 15:2115-2130. [PMID: 38305469 DOI: 10.1039/d3fo04479c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Akt acts as a central protein influencing multiple pathologies in neurodegenerative diseases including AD and PD, and using Akt activators is a promising management strategy. The current study characterized the effects of an Akt-activating peptide (Glu-Pro-Glu-Val-Leu-Pro, EPEVLR) obtained from walnut protein degradation on D-gal-induced memory impairment in mice. EPEVLR was obtained by hydrolysis of walnut proteins, identification of peptide sequences, and screening for molecular docking sequentially. The MWM test in mice indicated that the oral administration of EPEVLR (80, 200 and 400 mg per kg per day) significantly (p < 0.05) reversed D-gal-induced memory impairment. WB tests of the mouse hippocampus confirmed that EPEVLR could activate Akt by promoting its phosphorylation. In addition, further characterization (including TEM, ELISA, and immunohistochemistry) related to Akt phosphorylation showed lower Aβ and p-tau levels, as well as more autophagosomes than those in the model group. Moreover, the EPEVLR treatment significantly increased Lactobacillus abundance and reduced Helicobacter abundance in the gut microbiome and caused up-regulation of SCFAs and down-regulation of LPS of serum metabolites. Therefore, EPEVLR ingestion reversed cognitive impairment symptoms, possibly related to the activation of Akt and regulation of the intestinal flora pathway. Consumption of an EPEVLR-containing diet is beneficial for treating cognitive dysfunction.
Collapse
Affiliation(s)
- Like Lin
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China.
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China.
| | - Yujiao Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China.
| | - Li Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China.
| | - Lu Gao
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China.
| | - Lihua Jin
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China.
| | - Yu Shu
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China.
| |
Collapse
|
12
|
Li L, Wang S, Zhang T, Lv B, Jin Y, Wang Y, Chen X, Li N, Han N, Wu Y, Yuan J. Walnut peptide alleviates obesity, inflammation and dyslipidemia in mice fed a high-fat diet by modulating the intestinal flora and metabolites. Front Immunol 2023; 14:1305656. [PMID: 38162665 PMCID: PMC10755907 DOI: 10.3389/fimmu.2023.1305656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Obesity is a chronic disease in which the body stores excess energy in the form of fat, and intestinal bacterial metabolism and inflammatory host phenotypes influence the development of obesity. Walnut peptide (WP) is a small molecule biopeptide, and the mechanism of action of WP against metabolic disorders has not been fully elucidated. In this study, we explored the potential intervention mechanism of WP on high-fat diet (HFD)-induced obesity through bioinformatics combined with animal experiments. Methods PPI networks of Amino acids and their metabolites in WP (AMWP) and "obesity" and "inflammation" diseases were searched and constructed by using the database, and their core targets were enriched and analyzed. Subsequently, Cytoscape software was used to construct the network diagram of the AMWP-core target-KEGG pathway and analyze the topological parameters. MOE2019.0102 was used to verify the molecular docking of core AMWP and core target. Subsequently, an obese Mice model induced by an HFD was established, and the effects of WP on obesity were verified by observing weight changes, glucose, and lipid metabolism levels, liver pathological changes, the size of adipocytes in groin adipose tissue, inflammatory infiltration of colon tissue, and intestinal microorganisms and their metabolites. Results The network pharmacology and molecular docking showed that glutathione oxide may be the main active component of AMWP, and its main targets may be EGFR, NOS3, MMP2, PLG, PTGS2, AR. Animal experiments showed that WP could reduce weight gain and improve glucose-lipid metabolism in HFD-induced obesity model mice, attenuate hepatic lesions reduce the size of adipocytes in inguinal adipose tissue, and reduce the inflammatory infiltration in colonic tissue. In addition, the abundance and diversity of intestinal flora were remodeled, reducing the phylum Firmicutes/Bacteroidetes (F/B) ratio, while the intestinal mucosal barrier was repaired, altering the content of short-chain fatty acids (SCFAs), and alleviating intestinal inflammation in HFD-fed mice. These results suggest that WP intervenes in HFD-induced obesity and dyslipidemia by repairing the intestinal microenvironment, regulating flora metabolism and anti-inflammation. Discussion Our findings suggest that WP intervenes in HFD-induced obesity and dyslipidemia by repairing the intestinal microenvironment, regulating flora metabolism, and exerting anti-inflammatory effects. Thus, WP may be a potential therapeutic strategy for preventing and treating metabolic diseases, and for alleviating the intestinal flora disorders induced by these diseases. This provides valuable insights for the development of WP therapies.
Collapse
Affiliation(s)
- Lei Li
- College of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Si Wang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- First Clinical School of Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Tong Zhang
- College of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Bijun Lv
- College of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yanling Jin
- College of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yue Wang
- College of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xiaojiao Chen
- College of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Ning Li
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- First Clinical School of Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Niping Han
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yueying Wu
- College of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jiali Yuan
- College of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
13
|
Chen M, Ma A, Sun Z, Xie B, Shi L, Chen S, Chen L, Xiong G, Wang L, Wu W. Enhancing activity of food protein-derived peptides: An overview of pretreatment, preparation, and modification methods. Compr Rev Food Sci Food Saf 2023; 22:4698-4733. [PMID: 37732471 DOI: 10.1111/1541-4337.13238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023]
Abstract
Food protein-derived peptides have garnered considerable attention due to their potential bioactivities and functional properties. However, the limited activity poses a challenge in effective utilization aspects. To overcome this hurdle, various methods have been explored to enhance the activity of these peptides. This comprehensive review offers an extensive overview of pretreatment, preparation methods, and modification strategies employed to augment the activity of food protein-derived peptides. Additionally, it encompasses a discussion on the current status and future prospects of bioactive peptide applications. The review also addresses the standardization of mass production processes and safety considerations for bioactive peptides while examining the future challenges and opportunities associated with these compounds. This comprehensive review serves as a valuable guide for researchers in the food industry, offering insights and recommendations to optimize the production process of bioactive peptides.
Collapse
Affiliation(s)
- Mengting Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhida Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bijun Xie
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liu Shi
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, China
| | - Sheng Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, China
| | - Lang Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, China
| | - Guangquan Xiong
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, China
| | - Lan Wang
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, China
| | - Wenjin Wu
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Hong Z, Shi C, Hu X, Chen J, Li T, Zhang L, Bai Y, Dai J, Sheng J, Xie J, Tian Y. Walnut Protein Peptides Ameliorate DSS-Induced Ulcerative Colitis Damage in Mice: An in Silico Analysis and in Vivo Investigation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15604-15619. [PMID: 37815395 DOI: 10.1021/acs.jafc.3c04220] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Walnut (Juglans regia L.) is a food with food-medicine homology, whose derived protein peptides have been shown to have anti-inflammatory activity in vitro. However, the effects and mechanisms of walnut protein peptides on ulcerative colitis (UC) in vivo have not been systematically and thoroughly investigated. In this study, we applied virtual screening and network pharmacology screening of bioactive peptides to obtain three novel WPPs (SHTLP, HYNLN, and LGTYP) that may alleviate UC through TLR4-MAPK signaling. In vivo studies have shown that WPPs improve intestinal mucosal barrier dysfunction and reduce inflammation by inhibiting activation of the TLR4-MAPK pathway. In addition, WPPs restore intestinal microbial homeostasis by reducing harmful bacteria (Helicobacter and Bacteroides) and increasing the relative abundance of beneficial bacteria (Candidatus_Saccharimonas). Our study showed that the WPPs obtained by virtual screening were effective in ameliorating colitis, which has important implications for future screening of bioactive peptides from medicinal food homologues as drugs or dietary supplements.
Collapse
Affiliation(s)
- Zishan Hong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Chongying Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Xia Hu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Jinlian Chen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Tingting Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Li Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Yuying Bai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Jingjing Dai
- School of Tea and Coffee, Puer University, Puer 665000, China
| | - Jun Sheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Jing Xie
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Yang Tian
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
- School of Tea and Coffee, Puer University, Puer 665000, China
| |
Collapse
|
15
|
Zhang L, Bai YY, Hong ZS, Xie J, Tian Y. Isolation, Identification, Activity Evaluation, and Mechanism of Action of Neuroprotective Peptides from Walnuts: A Review. Nutrients 2023; 15:4085. [PMID: 37764868 PMCID: PMC10534798 DOI: 10.3390/nu15184085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
As human life expectancy increases, the incidence of neurodegenerative diseases in older adults has increased in parallel. Walnuts contain bioactive peptides with demonstrated neuroprotective effects, making them a valuable addition to the diet. We here present a comprehensive review of the various methods used to prepare, isolate, purify, and identify the neuroprotective peptides found in walnuts. We further summarise the different approaches currently used to evaluate the activity of these peptides in experimental settings, highlighting their potential to reduce oxidative stress, neuroinflammation, and promote autophagy, as well as to regulate the gut microflora and balance the cholinergic system. Finally, we offer suggestions for future research concerning bioavailability and improving or masking the bitter taste and sensory properties of final products containing the identified walnut neuroprotective peptides to ensure successful adoption of these peptides as functional food ingredients for neurohealth promotion.
Collapse
Affiliation(s)
- Li Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (L.Z.)
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Yu-Ying Bai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (L.Z.)
- Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Zi-Shan Hong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (L.Z.)
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Jing Xie
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (L.Z.)
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Yang Tian
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
- School of Tea and Coffee, Puer University, Puer 665000, China
| |
Collapse
|
16
|
Wen C, Zhang Z, Cao L, Liu G, Liang L, Liu X, Zhang J, Li Y, Yang X, Li S, Ren J, Xu X. Walnut Protein: A Rising Source of High-Quality Protein and Its Updated Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:10525-10542. [PMID: 37399339 DOI: 10.1021/acs.jafc.3c01620] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Recently, plant protein as a necessary nutrient source for human beings, a common ingredient of traditional processed food, and an important element of new functional food has gained prominence due to the increasing demand for healthy food. Walnut protein (WP) is obtained from walnut kernels and walnut oil-pressing waste and has better nutritional, functional, and essential amino acids in comparison with other vegetable and grain proteins. WP can be conveniently obtained by various extraction techniques, including alkali-soluble acid precipitation, salting-out, and ultrasonic-assisted extraction, among others. The functional properties of WP can be modified for desired purposes by using some novel methods, including free radical oxidation, enzymatic modification, high hydrostatic pressure, etc. Moreover, walnut peptides play an important biological role both in vitro and in vivo. The main activities of the walnut peptides are antihypertensive, antioxidant, learning improvement, and anticancer, among others. Furthermore, WP could be applied in the development of functional foods or dietary supplements, such as delivery systems and food additives, among others. This review summarizes recent knowledge on the nutritional, functional, and bioactive peptide aspects of WP and possible future products, providing a theoretical reference for the utilization and development of oil crop waste.
Collapse
Affiliation(s)
- Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Zhiyi Zhang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Liyan Cao
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Li Liang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Xiaofang Liu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Youdong Li
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Xinquan Yang
- Dongguan Chuangwei Precision Nutrition and Health Innovation Center, Dong guan 523000, China
| | - Shugang Li
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 51064, China
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| |
Collapse
|
17
|
Fu J, Song W, Song X, Fang L, Wang X, Leng Y, Wang J, Liu C, Min W. Synergistic Effect of Combined Walnut Peptide and Ginseng Extracts on Memory Improvement in C57BL/6 Mice and Potential Mechanism Exploration. Foods 2023; 12:2329. [PMID: 37372540 PMCID: PMC10297067 DOI: 10.3390/foods12122329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
This work aimed to investigate whether there are synergistic effects between walnut peptide (WNP) and ginseng extracts (GSE) treatments to ameliorate the memory impairment caused by scopolamine (SCOP). The Morris water maze trial, hippocampal neuron morphology, neurotransmitters, and synaptic ultrastructure were examined, along with brain-derived neurotrophic factor (BDNF)-related signaling pathway proteins. The results of the Morris water maze trial demonstrated that the combined administration of WNP and GSE effectively alleviated memory impairment in C57BL/6 rats caused by SCOP. Improvement in the morphology of hippocampal neurons, dendritic spines, and synaptic plasticity and upregulation of neurotransmitters AChE, ACh, ChAT, Glu, DA, and 5-HT supported the memory improvement effects of WNP + GSE. In addition, compared with the model group, WNP + GSE significantly enhanced the protein levels of VAChT, Trx-1, and the CREB/BDNF/TrkB pathway in hippocampal and PC12 cells induced by SCOP (p < 0.05). Notably, WNP + GSE boosted memory via multiple pathways, not only the BDNF/TrkB/CREB target.
Collapse
Affiliation(s)
- Junxi Fu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (J.F.); (W.S.); (L.F.); (X.W.); (Y.L.); (J.W.)
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Wentian Song
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (J.F.); (W.S.); (L.F.); (X.W.); (Y.L.); (J.W.)
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Xiaobing Song
- Zhongke Special Food Institute, Changchun 130022, China;
| | - Li Fang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (J.F.); (W.S.); (L.F.); (X.W.); (Y.L.); (J.W.)
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Xiyan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (J.F.); (W.S.); (L.F.); (X.W.); (Y.L.); (J.W.)
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Yue Leng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (J.F.); (W.S.); (L.F.); (X.W.); (Y.L.); (J.W.)
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (J.F.); (W.S.); (L.F.); (X.W.); (Y.L.); (J.W.)
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (J.F.); (W.S.); (L.F.); (X.W.); (Y.L.); (J.W.)
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Weihong Min
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (J.F.); (W.S.); (L.F.); (X.W.); (Y.L.); (J.W.)
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, China
| |
Collapse
|
18
|
Santos-Sánchez G, Aiello G, Rivardo F, Bartolomei M, Bollati C, Arnoldi A, Cruz-Chamorro I, Lammi C. Antioxidant Effect Assessment and Trans Epithelial Analysis of New Hempseed Protein Hydrolysates. Antioxidants (Basel) 2023; 12:antiox12051099. [PMID: 37237964 DOI: 10.3390/antiox12051099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Hempseed (Cannabis sativa) is one of the most promising sources of plant proteins. It contains approximately 24% (w/w) protein, and edestin accounts for approximately 60-80% (w/w) of its total proteins. In a framework of research aimed at fostering the proteins recovered from the press cake by-products generated after the extraction of hempseed oil, two hempseed protein hydrolysates (HH1 and HH2) were produced at an industrial level using a mixture of different enzymes from Aspergillus niger, Aspergillus oryzae, and Bacillus licheniformis for different times (5 h and 18 h). Using a combination of different direct antioxidant tests (DPPH, TEAC, FRAP, and ORAC assays, respectively), it has been demonstrated that HHs exert potent, direct antioxidant activity. A crucial feature of bioactive peptides is their intestinal bioavailability; for this reason, in order to solve this peculiar issue, the ability of HH peptides to be transported by differentiated human intestinal Caco-2 cells has been evaluated. Notably, by using mass spectrometry analysis (HPLC Chip ESI-MS/MS), the stable peptides transported by intestinal cells have been identified, and dedicated experiments confirmed that the trans-epithelial transported HH peptide mixtures retain their antioxidant activity, suggesting that these hempseed hydrolysates may be considered sustainable antioxidant ingredients to be exploited for further application, i.e., nutraceutical and/or food industries.
Collapse
Affiliation(s)
- Guillermo Santos-Sánchez
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| | - Gilda Aiello
- Department of Human Science and Quality of Life Promotion, Telematic University San Raffaele, 00166 Rome, Italy
| | - Fabrizio Rivardo
- A. Costantino & C. Spa, Via Francesco Romana 11-15, 10083 Favria, Italy
| | - Martina Bartolomei
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| | - Anna Arnoldi
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| | - Ivan Cruz-Chamorro
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| |
Collapse
|
19
|
Quantitative In Silico Evaluation of Allergenic Proteins from Anacardium occidentale, Carya illinoinensis, Juglans regia and Pistacia vera and Their Epitopes as Precursors of Bioactive Peptides. Curr Issues Mol Biol 2022; 44:3100-3117. [PMID: 35877438 PMCID: PMC9317212 DOI: 10.3390/cimb44070214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of the study presented here was to determine if there is a correlation between the presence of specific protein domains within tree nut allergens or tree nut allergen epitopes and the frequency of bioactive fragments and the predicted susceptibility to enzymatic digestion in allergenic proteins from tree nuts of cashew (Anacardium occidentale), pecan (Carya illinoinensis), English walnut (Juglans regia) and pistachio (Pistacia vera) plants. These bioactive peptides are distributed along the length of the protein and are not enriched in IgE epitope sequences. Classification of proteins as bioactive peptide precursors based on the presence of specific protein domains may be a promising approach. Proteins possessing a vicilin, N-terminal family domain, or napin domain contain a relatively low occurrence of bioactive fragments. In contrast, proteins possessing the cupin 1 domain without the vicilin N-terminal family domain contain a relatively high total frequency of bioactive fragments and predicted release of bioactive fragments by the joint action of pepsin, trypsin, and chymotrypsin. This approach could be utilized in food science to simplify the selection of protein domains enriched for bioactive peptides.
Collapse
|
20
|
Zhou X, Peng X, Pei H, Chen Y, Meng H, Yuan J, Xing H, Wu Y. An overview of walnuts application as a plant-based. Front Endocrinol (Lausanne) 2022; 13:1083707. [PMID: 36589804 PMCID: PMC9797595 DOI: 10.3389/fendo.2022.1083707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
The plant-based refers to plant-based raw materials or products that are available as the source of protein and fat. Utilization and development of walnuts as a plant-based, resulting in a high-quality protein-rich walnut plant-based product: walnut protein powder and walnut peptides. Progress in research on the application of walnuts as a plant-based has been advanced, solving the problem of wasted resources and environmental pollution caused by the fact that walnut residue, a product of walnuts after oil extraction, is often thrown away as waste, or becomes animal feed or compost. This paper reviews and summarizes the research and reports on walnut plant-based at home and abroad, focusing on the application of walnut plant-based in the preparation process (enzymatic and fermentation methods) and the biological activity of the walnut protein and walnut peptide, to provide a theoretical basis for the further processing of walnuts as a walnut plant-based. It can make full use of walnut resources and play its nutritional and health care value, develop and build a series of walnut plant-based products, improve the competitiveness of walnut peptide products, turn them into treasure, and provide more powerful guidance for the development of food and medicine health industry in Yunnan.
Collapse
Affiliation(s)
- Xingjian Zhou
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xingyu Peng
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Huan Pei
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yuhan Chen
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Hui Meng
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jiali Yuan
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Haijing Xing
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- *Correspondence: Haijing Xing, ; Yueying Wu,
| | - Yueying Wu
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- *Correspondence: Haijing Xing, ; Yueying Wu,
| |
Collapse
|