1
|
Ji S, Xu M, Li Y, Zou Y, Zhou Z, Zhao X, Shen J, Lu B. Exploring the mechanism of fatty acids to improve 3D printing precision of cassava starch gel. Food Res Int 2025; 207:116074. [PMID: 40086962 DOI: 10.1016/j.foodres.2025.116074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/27/2025] [Accepted: 02/22/2025] [Indexed: 03/16/2025]
Abstract
Understanding the printability and underlying mechanisms of starch food systems is crucial for the industrial application of 3D food printing. This work investigated the effect of fatty acids with various degrees of unsaturation and chain lengths on the three-dimensional (3D) food printing precision of cassava starch (CS) gel and its mechanism. Results showed that fatty acids with shorter chain lengths and higher unsaturation levels improved printing precision. These modifications increased the average molecular size (Rh) and crystallinity of starch, with shorter fatty acid chains reducing the percentage of amylopectin chains for 6 < X ≤ 12, while higher unsaturation levels increased the proportion of amylose chains for 100 < X ≤ 1000. These changes in starch multi-scale structure contributed to a decline in the T23 of the printing ink, which in turn resulted in an increase in elastic modulus (G') of the gel system, thus eventually enhancing the self-supporting properties and improving the printing precision of the 3D printed product. This research presents valuable insights into the use of lipids in 3D printing of starchy foods.
Collapse
Affiliation(s)
- Shengyang Ji
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Minghao Xu
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Ye Li
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Yucheng Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhenjiang Zhou
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Xi Zhao
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Jianfu Shen
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
2
|
Wang Y, Guo F, Li H, Tang Z, Cheng Y, Li W. Study on the enhanced 3D printing performance of high internal phase emulsions using protein fibrosis strategy. Int J Biol Macromol 2025; 297:139975. [PMID: 39826719 DOI: 10.1016/j.ijbiomac.2025.139975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/30/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Soy glycinin amyloid fibrils (11Fs) with different lengths were prepare, and their influence on 3D printing performance of high internal phase emulsions (HIPEs) were investigated. The longest fibril with an average length of 1594.40 ± 135.56 nm and a maximum surface charge of 27.62 ± 0.57 mV was obtained after 9 h heating treatment. The intermolecular force analysis revealed that the formation of amyloid fibrils was mainly mediated by hydrophobic interaction. The interfacial rheology showed the fibrils had faster diffusion and rearrangement rate at the oil-water interface compared with 11S, leading to a quicker reduction in the interfacial tension. Notably, the interfacial film formed by 11F9 maintained the highest dilatational modulus, which might be attributed to the entanglement of long fibrils to form a more elastic and tough network structure, thereby enhancing the storage and thermal stability of HIPEs. With increasing fibril length, the viscosity, G' and G'' of HIPEs slightly increased, and the linear viscoelastic region (LVR) gradually widened. 3D printing test revealed that HIPEs formed of 11F9 had good extrudability, high printability and shape fidelity. This study could provide a promising guide for enhancing the 3D printing performance of protein-based HIPEs.
Collapse
Affiliation(s)
- Ying Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Fengxian Guo
- Key Laboratory for Development of Bioactive Material from Marine Algae, College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Haoliwen Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Zhonghao Tang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yu Cheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Weiwei Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
3
|
Thorakkattu P, Awasti N, Sajith Babu K, Khanashyam AC, Deliephan A, Shah K, Singh P, Pandiselvam R, Nirmal NP. 3D printing: trends and approaches toward achieving long-term sustainability in the food industry. Crit Rev Biotechnol 2025; 45:48-68. [PMID: 38797671 DOI: 10.1080/07388551.2024.2344577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/05/2023] [Accepted: 06/17/2023] [Indexed: 05/29/2024]
Abstract
Global food security has recently been under serious threat from the rapid rise in the world's population, the problems brought on by climate change, and the appearance of new pandemics. As a result, the need for novel and innovative solutions to solve the existing problems and improve food sustainability has become crucial. 3D printing is expected to play a significant role in providing tangible contributions to the food industry in achieving sustainable development goals. The 3D food printing holds the potential to produce highly customized food in terms of shape, texture, flavor, structure and nutritional value and enable us to create new unique formulations and edible alternatives. The problem of whether the cost of the printed meal and 3D printing itself can be sustainably produced is becoming more and more important due to global concerns. This review intends to provide a comprehensive overview of 3D printed foods with an overview of the current printing methodologies, illustrating the technology's influencing factors, and its applications in personalized nutrition, packaging, value addition, and valorization aspects to fully integrate sustainability concerns thus exploring the potential of 3D food printing.
Collapse
Affiliation(s)
- Priyamvada Thorakkattu
- Department of Animal Sciences and Industry, Food Science Institute, KS State University, Manhattan, USA
| | | | | | | | | | | | - Punit Singh
- Department of Mechanical Engineering, Institute of Engineering and Technology, GLA University Mathura, Chaumuhan, India
| | - R Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod, India
| | | |
Collapse
|
4
|
Arshad R, Saqib A, Sharif HR, Liaqat A, Xu B. Recent advances in 3D food printing: Therapeutic implications, opportunities, potential applications, and challenges in the food industry. Food Res Int 2025; 203:115791. [PMID: 40022323 DOI: 10.1016/j.foodres.2025.115791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 03/03/2025]
Abstract
3D food printing (3DFP) offers a transformative approach in the food industry, diverging from traditional manufacturing techniques. The integration of food science and nutrition with 3DFP is pioneering personalized, eco-friendly, and nutrient-rich food options, overcoming limitations of traditional manufacturing methods. For the past 10 years, we have been strongly focused on creating innovative, efficient, and functional food products while allowing customization of food based on preferences for nutrition, flavor, texture, mouthfeel, and appearance. Beyond customization, 3DFP demonstrates promise in addressing pressing global challenges including food security, famine, and malnutrition by facilitating the production of fortified, shelf-stable food products suitable for resource- constrained environments. This comprehensive review explores the intersection of 3DFP with food constituents, emphasizing its potential in enhancing customization, sustainability, food safety, and shelf-life extension. Additionally, it discusses the therapeutic potential of 3D printed foods for various diseases, including gastrointestinal disorders, cancer, diabetes, neurodegenerative disorders, and food allergies. Moreover, the review examines potential food applications of 3DFP, such as in space food, food packaging, dairy industry, fruit and vegetable processing, and cereal-based foods. The review also addresses key challenges associated with 3DFP and underscores the importance of four-dimensional food printing (4DFP).
Collapse
Affiliation(s)
- Rizwan Arshad
- Department of Allied Health Sciences, The University of Chenab, Gujrat, Pakistan
| | - Aroosha Saqib
- University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Hafiz Rizwan Sharif
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| | - Atiqa Liaqat
- University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
5
|
van den Nieuwenhof DWA, Moroni L, Chou J, Hinkelbein J. Cellular response in three-dimensional spheroids and tissues exposed to real and simulated microgravity: a narrative review. NPJ Microgravity 2024; 10:102. [PMID: 39505879 PMCID: PMC11541851 DOI: 10.1038/s41526-024-00442-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
The rising aging population underscores the need for advances in tissue engineering and regenerative medicine. Alterations in cellular response in microgravity might be pivotal in unraveling the intricate cellular mechanisms governing tissue and organ regeneration. Microgravity could improve multicellular spheroid, tissue, and organ formation. This review summarizes microgravity-induced cellular alterations and highlights the potential of tissue engineering in microgravity for future breakthroughs in space travel, transplantation, drug testing, and personalized medicine.
Collapse
Affiliation(s)
| | - Lorenzo Moroni
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Engineering, Maastricht University, Maastricht, The Netherlands
| | - Joshua Chou
- University of Technology Sydney (UTS), Sydney, NSW, Australia
| | - Jochen Hinkelbein
- Department of Anesthesiology, Intensive Care Medicine and Emergency Medicine, Johannes Wesling Klinikum Minden, University Hospital Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
6
|
Liu Y, Zhang Y, Cai L, Zeng Q, Wang P. Protein and protein-polysaccharide composites-based 3D printing: The properties, roles and opportunities in future functional foods. Int J Biol Macromol 2024; 272:132884. [PMID: 38844274 DOI: 10.1016/j.ijbiomac.2024.132884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
The food industry is undergoing a significant transformation with the advancement of 3D technology. Researchers in the field are increasingly interested in using protein and protein-polysaccharide composite materials for 3D printing applications. However, maintaining nutritional and sensory properties while guaranteeing printability of these materials is challenging. This review examines the commonly used protein and composite materials in food 3D printing and their roles in printing inks. This review also outlines the essential properties required for 3D printing, including extrudability, appropriate viscoelasticity, thixotropic properties, and gelation properties. Furthermore, it explores the wide range of potential applications for 3D printing technology in novel functional foods such as space food, dysphagia food, kid's food, meat analogue, and other specialized food products.
Collapse
Affiliation(s)
- Yi Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yue Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Lei Cai
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Qinglin Zeng
- FooodLab (Hangzhou) Technology Co., Ltd, Hangzhou 310024, China
| | - Pengrui Wang
- FooodLab (Hangzhou) Technology Co., Ltd, Hangzhou 310024, China.
| |
Collapse
|
7
|
Zhou L, Miller J, Vezza J, Mayster M, Raffay M, Justice Q, Al Tamimi Z, Hansotte G, Sunkara LD, Bernat J. Additive Manufacturing: A Comprehensive Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:2668. [PMID: 38732776 PMCID: PMC11085389 DOI: 10.3390/s24092668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024]
Abstract
Additive manufacturing has revolutionized manufacturing across a spectrum of industries by enabling the production of complex geometries with unparalleled customization and reduced waste. Beginning as a rapid prototyping tool, additive manufacturing has matured into a comprehensive manufacturing solution, embracing a wide range of materials, such as polymers, metals, ceramics, and composites. This paper delves into the workflow of additive manufacturing, encompassing design, modeling, slicing, printing, and post-processing. Various additive manufacturing technologies are explored, including material extrusion, VAT polymerization, material jetting, binder jetting, selective laser sintering, selective laser melting, direct metal laser sintering, electron beam melting, multi-jet fusion, direct energy deposition, carbon fiber reinforced, laminated object manufacturing, and more, discussing their principles, advantages, disadvantages, material compatibilities, applications, and developing trends. Additionally, the future of additive manufacturing is projected, highlighting potential advancements in 3D bioprinting, 3D food printing, large-scale 3D printing, 4D printing, and AI-based additive manufacturing. This comprehensive survey aims to underscore the transformative impact of additive manufacturing on global manufacturing, emphasizing ongoing challenges and the promising horizon of innovations that could further elevate its role in the manufacturing revolution.
Collapse
Affiliation(s)
- Longfei Zhou
- Department of Biomedical, Industrial and Systems Engineering, School of Engineering and Computing, College of Engineering and Business, Gannon University, Erie, PA 16541, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Shi H, Zhang M, Mujumdar AS. 3D/4D printed super reconstructed foods: Characteristics, research progress, and prospects. Compr Rev Food Sci Food Saf 2024; 23:e13310. [PMID: 38369929 DOI: 10.1111/1541-4337.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/20/2024]
Abstract
Super reconstructed foods (SRFs) have characteristics beyond those of real system in terms of nutrition, texture, appearance, and other properties. As 3D/4D food printing technology continues to be improved in recent years, this layered manufacturing/additive manufacturing preparation technology based on food reconstruction has made it possible to continuously develop large-scale manufacture of SRFs. Compared with the traditional reconstructed foods, SRFs prepared using 3D/4D printing technologies are discussed comprehensively in this review. To meet the requirements of customers in terms of nutrition or other characteristics, multi-processing technologies are being combined with 3D/4D printing. Aspects of printing inks, product quality parameters, and recent progress in SRFs based on 3D/4D printing are assessed systematically and discussed critically. The potential for 3D/4D printed SRFs and the need for further research and developments in this area are presented and discussed critically. In addition to the natural materials which were initially suitable for 3D/4D printing, other derivative components have already been applied, which include hydrogels, polysaccharide-based materials, protein-based materials, and smart materials with distinctive characteristics. SRFs based on 3D/4D printing can retain the characteristics of deconstruction and reconstruction while also exhibiting quality parameters beyond those of the original material systems, such as variable rheological properties, on-demand texture, essential printability, improved microstructure, improved nutrition, and more appealing appearance. SRFs with 3D/4D printing are already widely used in foods such as simulated foods, staple foods, fermented foods, foods for people with special dietary needs, and foods made from food processingbyproducts.
Collapse
Affiliation(s)
- Hao Shi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Quebec, Canada
| |
Collapse
|
9
|
Ma Y, Morozova SM, Kumacheva E. From Nature-Sourced Polysaccharide Particles to Advanced Functional Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2312707. [PMID: 38391153 DOI: 10.1002/adma.202312707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Polysaccharides constitute over 90% of the carbohydrate mass in nature, which makes them a promising feedstock for manufacturing sustainable materials. Polysaccharide particles (PSPs) are used as effective scavengers, carriers of chemical and biological cargos, and building blocks for the fabrication of macroscopic materials. The biocompatibility and degradability of PSPs are advantageous for their uses as biomaterials with more environmental friendliness. This review highlights the progresses in PSP applications as advanced functional materials, by describing PSP extraction, preparation, and surface functionalization with a variety of functional groups, polymers, nanoparticles, and biologically active species. This review also outlines the fabrication of PSP-derived macroscopic materials, as well as their applications in soft robotics, sensing, scavenging, water harvesting, drug delivery, and bioengineering. The paper is concluded with an outlook providing perspectives in the development and applications of PSP-derived materials.
Collapse
Affiliation(s)
- Yingshan Ma
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Sofia M Morozova
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
- Center of Fluid Physics and Soft Matter, N.E. Bauman Moscow State Technical University, 5/1 2-nd Baumanskaya street, Moscow, 105005, Russia
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
- The Institute of Biomaterials and Biomedical Engineering, University of Toronto, 4 Taddle Creek Road, Toronto, Ontario, M5S 3G9, Canada
| |
Collapse
|
10
|
Hamilton AN, Mirmahdi RS, Ubeyitogullari A, Romana CK, Baum JI, Gibson KE. From bytes to bites: Advancing the food industry with three-dimensional food printing. Compr Rev Food Sci Food Saf 2024; 23:e13293. [PMID: 38284594 DOI: 10.1111/1541-4337.13293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/27/2023] [Accepted: 12/17/2023] [Indexed: 01/30/2024]
Abstract
The rapid advancement of three-dimensional (3D) printing (i.e., a type of additive manufacturing) technology has brought about significant advances in various industries, including the food industry. Among its many potential benefits, 3D food printing offers a promising solution to deliver products meeting the unique nutritional needs of diverse populations while also promoting sustainability within the food system. However, this is an emerging field, and there are several aspects to consider when planning for use of 3D food printing for large-scale food production. This comprehensive review explores the importance of food safety when using 3D printing to produce food products, including pathogens of concern, machine hygiene, and cleanability, as well as the role of macronutrients and storage conditions in microbial risks. Furthermore, postprocessing factors such as packaging, transportation, and dispensing of 3D-printed foods are discussed. Finally, this review delves into barriers of implementation of 3D food printers and presents both the limitations and opportunities of 3D food printing technology.
Collapse
Affiliation(s)
- Allyson N Hamilton
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
- Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Razieh S Mirmahdi
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Ali Ubeyitogullari
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
- Department of Biological and Agricultural Engineering, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Chetanjot K Romana
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
- Center for Human Nutrition, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Jamie I Baum
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
- Center for Human Nutrition, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Kristen E Gibson
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
- Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| |
Collapse
|
11
|
Dakkumadugula A, Pankaj L, Alqahtani AS, Ullah R, Ercisli S, Murugan R. Space nutrition and the biochemical changes caused in Astronauts Health due to space flight: A review. Food Chem X 2023; 20:100875. [PMID: 38144801 PMCID: PMC10740090 DOI: 10.1016/j.fochx.2023.100875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 12/26/2023] Open
Abstract
Astronauts required food that is healthy, nutritious, and tasted good, while also meeting their dietary needs. To ensure the astronauts' nutritional needs are met, a Nutritional Status Assessment Supplemental Medical Objective (Nutrition SMO) is conducted. This involves collecting blood and urine samples from the astronauts, which are then tested and analysed. The assessment looks for indications of bone health, muscle loss, hormonal imbalances, gastrointestinal functions, cardiovascular health, iron metabolism, ophthalmic changes, and immune changes that occur during space flight under conditions of microgravity or weightlessness. It was discovered that iron levels in astronauts tend to increase due to the decrease in body volume during space flight. It requires skilful optimization considering nutrient delivery, shelf life, and packaging of space food, while minimizing resource usage and ensuring reliability, safety, and addressing the physiological and psychological effects on the crew members.
Collapse
Affiliation(s)
- Angel Dakkumadugula
- Food Science and Technology, Department of Food Technology, Faculty of Life and Allied Health Sciences, Ramaiah University of Applied Sciences, Bangalore 560054, Karnataka, India
| | - Lakshaa Pankaj
- Food Science and Technology, Department of Food Technology, Faculty of Life and Allied Health Sciences, Ramaiah University of Applied Sciences, Bangalore 560054, Karnataka, India
| | - Ali S. Alqahtani
- Medicinal Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
- HGF Agro, Ata Teknokent, TR-25240, Erzurum, Turkiye
| | - Rajadurai Murugan
- Department of Food Technology, Faculty of Life and Allied Health Sciences, Ramaiah University of Applied Sciences, Bangalore 560054, Karnataka, India
| |
Collapse
|
12
|
Hu S, Xiao F, Du M, Pan J, Song L, Wu C, Zhu B, Xu X. The freeze-thaw stability of flavor high internal phase emulsion and its application to flavor preservation and 3D printing. Food Chem X 2023; 19:100759. [PMID: 37780284 PMCID: PMC10534104 DOI: 10.1016/j.fochx.2023.100759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 10/03/2023] Open
Abstract
Volatilization of flavor substances may reduce consumers' perception of flavor, and the research on preservation of flavor substances by high internal phase emulsions (HIPEs) under freeze-thaw conditions is still blank. Herein, flavor HIPEs prepared by adding more than 15% litsea cubeba oil in the oil phase could be used as food-grade 3D printing inks, and showed better stability after 5 freeze-thaw cycles, which could be interpreted as the reduced ice crystal formation, more stable interface layer, and more flexible gel-like network structure resulting from the protein binding to flavor substances. The constructed HIPEs system in this study could preserve the encapsulated flavor substances perfectly after 5 freeze-thaw cycles. Overall, this study contributes a food-grade 3D printing ink, and provides a new method for the preservation of flavor substances under freezing conditions and expands the application range of flavor HIPEs in food industry.
Collapse
Affiliation(s)
- Sijie Hu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Feng Xiao
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Ming Du
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Jinfeng Pan
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Liang Song
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chao Wu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Xianbing Xu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| |
Collapse
|
13
|
Tong Q, Meng Y, Tong Y, Wang D, Dong X. The Effect of Nozzle Temperature on the Low-Temperature Printing Performance of Low-Viscosity Food Ink. Foods 2023; 12:2666. [PMID: 37509758 PMCID: PMC10378533 DOI: 10.3390/foods12142666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/26/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Low-temperature food printing technology is used in many fields, such as personalized nutrition, cooking art, food design and medical nutrition. By precisely controlling the deposition temperature of the ink, a food with a finer and more controllable structure can be produced. This paper investigates the influence of nozzle temperature on printing performance via a numerical simulation and experimental research. The results indicate that the ink gradually changed from a granular state to a fLow-characteristic deposition structure when the nozzle temperature increased from 19 °C to 27 °C. When the nozzle temperature exceeded 21 °C, the ink demonstrated excellent extrusion behavior and tended to flow. The widths of the rectangular frame deposition showed no obvious changes and were 4.07 mm, 4.05 mm and 4.20 mm, respectively. The extrusion behavior of the ink showed a structural mutation in the temperature range of 19-21 °C. Its line width changed from 3.15 mm to 3.73 mm, and its deposition structure changed from a grainy shape to a normal shape. Under the influence of different environmental control capabilities, bulk structure deposition demonstrates an ideal printing performance at 21, 23 and 25 °C, and the latter temperature is more suitable in the case of large external interference. The ink flowed violently when the nozzle temperature reached 27 °C, at which point the deposit structure flowed and deformed seriously. On the other hand, evaporation losses had a strong effect on Low-viscosity ink. To reach the full potential of this promising technology, it is necessary to determine the effect of nozzle temperature on printing performance. This article provides a method for developing and applying Low-viscosity, Low-temperature food printing.
Collapse
Affiliation(s)
- Qiang Tong
- College of Mechanical Engineering and Automation, Dalian Polytechnic University, Dalian 116034, China
| | - Yuxiang Meng
- College of Mechanical Engineering and Automation, Dalian Polytechnic University, Dalian 116034, China
| | - Yao Tong
- College of Mechanical Engineering and Automation, Dalian Polytechnic University, Dalian 116034, China
| | - Dequan Wang
- College of Mechanical Engineering and Automation, Dalian Polytechnic University, Dalian 116034, China
| | - Xiuping Dong
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
14
|
Extrusion-based 3D printing of food biopolymers: A highlight on the important rheological parameters to reach printability. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Rysenaer VBJ, Ahmadzadeh S, Van Bockstaele F, Ubeyitogullari A. An extrusion-based 3D food printing approach for generating alginate-pectin particles. Curr Res Food Sci 2022; 6:100404. [PMID: 36506111 PMCID: PMC9732126 DOI: 10.1016/j.crfs.2022.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
In the present study, alginate-pectin (Al-P) hydrogel particles containing varied total gum concentrations (TGC) at a constant Al:P ratio of 80:20 were formed utilizing an innovative extrusion-based 3D food printing (3DFOODP) approach. The 3DFOODP conditions, namely, TGC (1.8, 2.0, and 2.2 wt%) and nozzle size (0.108, 0.159, and 0.210 mm) were investigated. The 3DFOODP approach was compared with the conventional bead formation method via a peristaltic pump. All Al-P printing inks exhibited a shear-thinning behavior. The increased apparent viscosity, loss and storage moduli were associated with the increase in the TGC. The size of the wet 3D-printed Al-P hydrogel particles ranged between 1.27 and 1.59 mm, which was smaller than that produced using the conventional method (1.44-1.79 mm). Freeze-dried Al-P particles showed a porous structure with reduced crystallinity. No chemical interaction was observed between alginate and pectin. This is the first report on generating Al-P-based beads using a 3DFOODP technique that can create delivery systems with high precision and flexibility.
Collapse
Affiliation(s)
- Valentine Barbara J. Rysenaer
- Department of Food Science, University of Arkansas, Fayetteville, AR, 72704, USA,Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Safoura Ahmadzadeh
- Department of Food Science, University of Arkansas, Fayetteville, AR, 72704, USA
| | - Filip Van Bockstaele
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Ali Ubeyitogullari
- Department of Food Science, University of Arkansas, Fayetteville, AR, 72704, USA,Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA,Corresponding author. N205, 2650 N. Young Ave., Fayetteville, AR, 72704.
| |
Collapse
|
16
|
Hassoun A, Bekhit AED, Jambrak AR, Regenstein JM, Chemat F, Morton JD, Gudjónsdóttir M, Carpena M, Prieto MA, Varela P, Arshad RN, Aadil RM, Bhat Z, Ueland Ø. The fourth industrial revolution in the food industry-part II: Emerging food trends. Crit Rev Food Sci Nutr 2022; 64:407-437. [PMID: 35930319 DOI: 10.1080/10408398.2022.2106472] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The food industry has recently been under unprecedented pressure due to major global challenges, such as climate change, exponential increase in world population and urbanization, and the worldwide spread of new diseases and pandemics, such as the COVID-19. The fourth industrial revolution (Industry 4.0) has been gaining momentum since 2015 and has revolutionized the way in which food is produced, transported, stored, perceived, and consumed worldwide, leading to the emergence of new food trends. After reviewing Industry 4.0 technologies (e.g. artificial intelligence, smart sensors, robotics, blockchain, and the Internet of Things) in Part I of this work (Hassoun, Aït-Kaddour, et al. 2022. The fourth industrial revolution in the food industry-Part I: Industry 4.0 technologies. Critical Reviews in Food Science and Nutrition, 1-17.), this complimentary review will focus on emerging food trends (such as fortified and functional foods, additive manufacturing technologies, cultured meat, precision fermentation, and personalized food) and their connection with Industry 4.0 innovations. Implementation of new food trends has been associated with recent advances in Industry 4.0 technologies, enabling a range of new possibilities. The results show several positive food trends that reflect increased awareness of food chain actors of the food-related health and environmental impacts of food systems. Emergence of other food trends and higher consumer interest and engagement in the transition toward sustainable food development and innovative green strategies are expected in the future.
Collapse
Affiliation(s)
- Abdo Hassoun
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
- Syrian AcademicExpertise (SAE), Gaziantep, Turkey
| | | | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Farid Chemat
- Green Extraction Team, INRAE, Avignon University, Avignon, France
| | - James D Morton
- Department of Wine Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - María Gudjónsdóttir
- Faculty of Food Science and Nutrition, School of Health Sciences, University of Iceland, Reykjavík, Iceland
| | - María Carpena
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Miguel A Prieto
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Paula Varela
- Fisheries and Aquaculture Research, Nofima - Norwegian Institute of Food, Ås, Norway
| | - Rai Naveed Arshad
- Institute of High Voltage & High Current, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Zuhaib Bhat
- Division of Livestock Products Technology, SKUAST-J, Jammu, India
| | - Øydis Ueland
- Fisheries and Aquaculture Research, Nofima - Norwegian Institute of Food, Ås, Norway
| |
Collapse
|