1
|
Lin J, Shen Y, Xia Y, Li Y, Jiang T, Shen X, Fu Y, Zhang D, Yang L, Xu H, Xu Z, Wang L. Vagotomy suppresses food intake by increasing GLP-1 secretion via the M3 AChR-AMPKα pathway in mice. Mol Cell Endocrinol 2025; 599:112464. [PMID: 39848433 DOI: 10.1016/j.mce.2025.112464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
OBJECTIVE The gut-brain axis (GBA) is involved in the modulation of multiple physiological activities, and the vagus nerve plays an important role in this process. However, the association between vagus nerve function and nutritional regulation remains unclear. Here, we explored changes in the nutritional status of mice after vagotomy and investigated the underlying mechanisms responsible for these changes. METHODS We performed vagotomies in mice and verified nerve resection using immunofluorescence staining. We then observed the food intake and body weight of the mice and tested nutritional and inflammation-related markers using enzyme-linked immunosorbent assay (ELISA) kits. The role of glucagon-like peptide 1 (GLP-1) in the GBA was determined using qRT-PCR and ELISA kits. Western blot and ELISA kits were used to explore the underlying mechanisms. RESULTS After vagotomy, the mice experienced a deterioration in their nutritional status, which manifested as a significant reduction in body weight and food intake. The expression of the proglucagon gene (GCG), which encodes GLP-1, significantly increased after vagotomy. Mechanistically, acetylcholine (ACh) reversed the HG (high glucose) -induced elevation of GLP-1 secretion. ACh upregulated AMPKα phosphorylation, thereby reducing GLP-1 secretion. Moreover, the level of AMPKα phosphorylation was enhanced by ACh via M3AChR. CONCLUSIONS ACh released by the vagus nerve counteracts the anorectic effects of GLP-1 under normal physiological conditions. Vagotomy blocks this feedback, resulting in a loss of food intake and body weight in mice.
Collapse
Affiliation(s)
- Jie Lin
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yikai Shen
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yiwen Xia
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ying Li
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Tianlu Jiang
- Department of General Surgery, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Peolple's Hospital, Wuxi, Jiangsu Province, China
| | - Xusheng Shen
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yiwang Fu
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Diancai Zhang
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li Yang
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hao Xu
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zekuan Xu
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Linjun Wang
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
2
|
Randeni N, Luo J, Xu B. Critical Review on Anti-Obesity Effects of Anthocyanins Through PI3K/Akt Signaling Pathways. Nutrients 2025; 17:1126. [PMID: 40218884 PMCID: PMC11990295 DOI: 10.3390/nu17071126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/18/2025] [Accepted: 03/23/2025] [Indexed: 04/14/2025] Open
Abstract
Obesity is a global health crisis and is one of the major reasons for the rising prevalence of metabolic disorders such as type 2 diabetes, cardiovascular diseases, and certain cancers. There has been growing interest in the search for natural molecules with potential anti-obesity effects; among the phytochemicals of interest are anthocyanins, which are flavonoid pigments present in many fruits and vegetables. Anthocyanins influence obesity via several signaling pathways. The PI3K/Akt signaling pathway plays a major role with a focus on downstream targets such as GLUT4, FOXO, GSK3β, and mTOR, which play a central role in the regulation of glucose metabolism, lipid storage, and adipogenesis. The influence of critical factors such as oxidative stress and inflammation also affect the pathophysiology of obesity. However, the studies reviewed have certain limitations, including variations in experimental models, bioavailability challenges, and a lack of extensive clinical validation. While anthocyanin shows tremendous potential, challenges such as poor bioavailability, stability, and regulatory matters must be overcome for successful functional food inclusion of anthocyanins. The future of anthocyanin-derived functional foods lies in their ability to overcome hurdles. Therefore, this review highlights the molecular mechanisms of obesity through the PI3K/Akt signaling pathways and explores how anthocyanins can modulate these signaling pathways to address obesity and related metabolic disorders. It also addresses some ways to solve the challenges, like bioavailability and stability, while emphasizing future possibilities for anthocyanin-based functional foods in obesity management.
Collapse
Affiliation(s)
| | | | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, Beijing Normal-Hong Kong Baptist University, Zhuhai 519087, China; (N.R.); (J.L.)
| |
Collapse
|
3
|
Deng X, Liu Z, Yang S. β-Elemene inhibits adipogenesis in 3T3-L1 cells by regulating AMPK pathway. J Clin Biochem Nutr 2025; 76:125-130. [PMID: 40151406 PMCID: PMC11936742 DOI: 10.3164/jcbn.24-179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/16/2024] [Indexed: 03/29/2025] Open
Abstract
The prevalence of childhood obesity in global is quickly augmented, resulting into grievous public health problems and influencing adolescent development. β-Elemene is a sesquiterpene, and can extracted from traditional Chinese medicine-Curcuma longa L. β-Elemene has been discovered to display regulatory functions in multiple diseases, but it's roles in obesity need further investigations. The purpose of this work is to investigate the regulatory impacts of β-elemene on obesity progression and associated pathways. In this study, it was revealed that the heightened lipid accumulation in 3T3-L1 cells triggered by 3-isobutyl-1-methylxanthine + dexamethazone + insulin (MDI) can be restrained by β-elemene. Furthermore, β-elemene can modulate lipid metabolism in 3T3-L1 cells mediated by MDI. The glucose consumption was descended after insulin resistance treatment, but this impact was reversed after β-elemene treatment. At last, it was illustrated that the AMPK pathway was retarded after β-elemene induction, but this change was offset after β-elemene treatment. To sum up, our results manifested that β-elemene inhibited adipogenesis in 3T3-L1 cells, and evoked the AMPK pathway. This project may supply serviceable insights of β-elemene in the progression of obesity.
Collapse
Affiliation(s)
- Xiang Deng
- Department of Pediatrics, Chengdu Fifth People’s Hospital, No. 33, Mashi street, Wenjiang District, Chengdu, Sichuan 611130, China
| | - Zhenmin Liu
- Department of Pediatrics, Chengdu Fifth People’s Hospital, No. 33, Mashi street, Wenjiang District, Chengdu, Sichuan 611130, China
| | - Sen Yang
- Department of Pediatrics, Chengdu Fifth People’s Hospital, No. 33, Mashi street, Wenjiang District, Chengdu, Sichuan 611130, China
- Department of Pediatrics, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, 611137, China
| |
Collapse
|
4
|
Zhang C, Yang T, Yu Y, Jia Q, Xiao WM, Liu S, Yu ZH, Wen CL, Wei Y, Li H, Lü MH. Causal roles of immune cells and metabolites in chronic pancreatitis: a mendelian randomization study. Hereditas 2025; 162:20. [PMID: 39940040 PMCID: PMC11816568 DOI: 10.1186/s41065-025-00378-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/26/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Previous research has established a correlation between immune cells and an increased likelihood of Chronic pancreatitis (CP). However, studies investigating the causal relationship remain limited. METHODS This study utilized publicly available genome-wide association study (GWAS) databases and conducted a two-sample Mendelian randomization (MR) analysis to examine the causal relationships (CRs) among 731 immune cells, 1,400 metabolites, and CP. Mediation MR analysis was also performed to assess whether metabolites serve as mediators in the relationship between immune cells and CP. RESULTS Our study identified four immune cell types that act as risk factors for CP, with odds ratios (OR) ranging between 1.076 and 1.177. In contrast, three immune cell types were found to serve as protective factors, exhibiting OR values between 0.846 and 0.913. Additionally, four metabolites were implicated as risk factors for CP, with OR values ranging from 1.243 to 1.334. On the other hand, eight metabolites were discovered to have a protective effect, with OR values between 0.580 and 0.871. Mediation analysis revealed that cholesterol levels mediate the causal relationship between immune cell cells and CP, with a mediation effect of 0.00918, accounting for 9.18% of the total effect. CONCLUSIONS Our findings provide valuable insights into the genetic underpinnings of CP, highlighting the role of immune cells and plasma metabolites in its pathogenesis. The mediation analysis further suggests that the presence of CD25 on IgD-CD38-B cells may facilitate CP development through the elevation of cholesterol levels. These results not only deepen our understanding of CP but also suggest potential biological targets for therapeutic intervention. Future clinical research should focus on these mediators to develop more effective treatment strategies for CP.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Tao Yang
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yuan Yu
- Gulin County People's Hospital, Luzhou, Sichuan Province, China
| | - Qian Jia
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Wan-Meng Xiao
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Sha Liu
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Ze-Hui Yu
- Laboratory Animal Center, Southwest Medical University, Luzhou, Sichuan, China
- Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Cheng-Li Wen
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yan Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Hao Li
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China.
| | - Mu-Han Lü
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China.
| |
Collapse
|
5
|
Guo K, Liu J, Yao Z, Tan Z, Yang T. Effect of soluble dietary fiber extracted from Lentinula edodes (Berk.) Pegler on lipid metabolism and liver protection in mice on high-fat diet. Front Nutr 2025; 12:1537569. [PMID: 39949544 PMCID: PMC11821492 DOI: 10.3389/fnut.2025.1537569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
With the increasing annual production of Lentinula edodes, the residues of Lentinus edodes are mass produced and wasted every year. In order to further explore the added value and effective utilization of Lentinus edodes, we studied the lipid-lowering efficacy and liver protective effect of Lentinus edodes soluble dietary fiber in mice on high-fat diet. Project team from Lentinus edodes extracted soluble dietary fiber, and its physicochemical properties, selected 30 male mice, randomly divided into normal group (N), high fat diet group (F), add low dose dietary fiber high fat diet (FL), add medium dose dietary fiber high fat diet group (FM), add high dose dietary fiber high fat diet group (FH) five groups. After 4 weeks, we assessed general state, organ conditions, liver status, blood parameters, expression of hepatic lipid metabolism genes, mRNA levels of key hepatic lipid metabolism genes. The results showed that the molecular weight of soluble dietary fiber is about 17.029 kDa, and the monosaccharides such as galactose, glucose and mannitol are connected by β-glycosidic bond. The soluble dietary fiber of Lentinus edodes can effectively slow the weight growth due to high-fat diet, delay liver tissue lesions, reduce the levels of ALT, AST, ACP, LDL-C, TG, TV, FFA, SOD, GSH and MDA, and increase the levels of γ-GT, HDL-C and CAT in blood. Lentinus edodes soluble dietary fiber decreased the expression of AMPKα and SREBP-2 in the liver, and increased the expression of PPARα, ACS, CPT1a, CYP7A1. It is proved that the soluble dietary fiber of Lentinus edodes can alleviate the organ fat accumulation caused by high-fat diet to some extent, effectively combat the liver injury, oxidative stress pressure and lipid metabolism disorder caused by high-fat diet, and provide an experimental basis for the subsequent effective use of soluble dietary fiber of Lentinus edodes in fat reduction.
Collapse
Affiliation(s)
- Kangxiao Guo
- National Engineering Laboratory for Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Department of Pharmacy, Changsha Health Vocational College, Changsha, China
| | - Jing Liu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zihan Yao
- National Engineering Laboratory for Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Zhoujin Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Tao Yang
- National Engineering Laboratory for Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
6
|
Hong S, Lee DB, Yoon DW, Yoo SL, Kim J. The Effect of Sleep Disruption on Cardiometabolic Health. Life (Basel) 2025; 15:60. [PMID: 39860000 PMCID: PMC11766988 DOI: 10.3390/life15010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Sleep disruption has emerged as a significant public health concern with profound implications for metabolic health. This review synthesizes current evidence demonstrating the intricate relationships between sleep disturbances and cardiometabolic dysfunction. Epidemiological studies have consistently demonstrated that insufficient sleep duration (<7 h) and poor sleep quality are associated with increased risks of obesity, type 2 diabetes, and cardiovascular disease. The underlying mechanisms are multifaceted, involving the disruption of circadian clock genes, alterations in glucose and lipid metabolism, the activation of inflammatory pathways, and the modulation of the gut microbiome. Sleep loss affects key metabolic regulators, including AMPK signaling and disrupts the secretion of metabolic hormones such as leptin and ghrelin. The latest evidence points to the role of sleep-induced changes in the composition and function of gut microbiota, which may contribute to metabolic dysfunction through modifications in the intestinal barrier and inflammatory responses. The NLRP3 inflammasome and NF-κB signaling pathways have been identified as crucial mediators linking sleep disruption to metabolic inflammation. An understanding of these mechanisms has significant implications for public health and clinical practice, suggesting that improving sleep quality could be an effective strategy for preventing and treating cardiometabolic disorders in modern society.
Collapse
Affiliation(s)
- SeokHyun Hong
- Sleep Medicine Institute, Jungwon University, Goesan-gun 28204, Chungcheongbuk-do, Republic of Korea; (S.H.); (D.-B.L.); (S.-L.Y.)
- Department of Biomedical Laboratory Science, College of Health Science, Jungwon University, Goesan-gun 28204, Chungcheongbuk-do, Republic of Korea
| | - Da-Been Lee
- Sleep Medicine Institute, Jungwon University, Goesan-gun 28204, Chungcheongbuk-do, Republic of Korea; (S.H.); (D.-B.L.); (S.-L.Y.)
| | - Dae-Wui Yoon
- Sleep Medicine Institute, Jungwon University, Goesan-gun 28204, Chungcheongbuk-do, Republic of Korea; (S.H.); (D.-B.L.); (S.-L.Y.)
- Department of Biomedical Laboratory Science, College of Health Science, Jungwon University, Goesan-gun 28204, Chungcheongbuk-do, Republic of Korea
| | - Seung-Lim Yoo
- Sleep Medicine Institute, Jungwon University, Goesan-gun 28204, Chungcheongbuk-do, Republic of Korea; (S.H.); (D.-B.L.); (S.-L.Y.)
- Department of Biomedical Laboratory Science, College of Health Science, Jungwon University, Goesan-gun 28204, Chungcheongbuk-do, Republic of Korea
| | - Jinkwan Kim
- Sleep Medicine Institute, Jungwon University, Goesan-gun 28204, Chungcheongbuk-do, Republic of Korea; (S.H.); (D.-B.L.); (S.-L.Y.)
- Department of Biomedical Laboratory Science, College of Health Science, Jungwon University, Goesan-gun 28204, Chungcheongbuk-do, Republic of Korea
| |
Collapse
|
7
|
Alasmari AA, Alhussain MH, Al-Khalifah AS, Alshiban NM, Alharthi R, Alyami NM, Alodah HS, Alahmed MF, Aljahdali BA, BaHammam AS. Ramadan fasting model modulates biomarkers of longevity and metabolism in male obese and non-obese rats. Sci Rep 2024; 14:28731. [PMID: 39567585 PMCID: PMC11579461 DOI: 10.1038/s41598-024-79557-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024] Open
Abstract
The health advantages of Ramadan fasting, a time-restricted eating from dawn to dusk, have garnered attention. Nevertheless, prior observational studies have found inconsistent findings because of challenges regulating variables such as sleep patterns, dietary habits, and physical activity. This study sought to investigate the impact of the Ramadan fasting model (RFM) on longevity and metabolic biomarkers in obese and non-obese rats. For 12 weeks, 48 male Wistar albino rats were separated into two groups and fed either a standard or a high-fat diet (HFD). During the final four weeks, rats in each group were separated into four subgroups to investigate the effect of RFM with/without training (on Treadmill) or glucose administration on the biomarkers of interest. The HFD groups subjected to RFM had significantly lower Insulin-like growth factor 1 (IGF-1) and mechanistic target of rapamycin (mTOR) serum, whereas AMPK, anti-inflammatory, and antioxidative stress serum levels were significantly higher. All groups reported decreased serum levels of Interleukin-6 (IL-6) and Tumor Necrosis Factor-alpha (TNF-α) compared to the HFD control group. Furthermore, the Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) results indicated a significant elevation in the TP53 gene expression in groups subjected to RFM. The data indicate that RFM can improve longevity and metabolic biomarkers and reduce pro-inflammation and oxidative stress. Also, RFM improves anti-inflammatory and antioxidant markers in HFD-induced obese rats.
Collapse
Affiliation(s)
- Abeer Abdallah Alasmari
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Maha H Alhussain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia.
| | - Abdulrahman Saleh Al-Khalifah
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Noura Mohammed Alshiban
- Experimental Surgery and Animal Lab, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Rawan Alharthi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nouf M Alyami
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hesham S Alodah
- Experimental Surgery and Animal Lab, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed F Alahmed
- Experimental Surgery and Animal Lab, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Bayan A Aljahdali
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed S BaHammam
- Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Mancini A, Orlandella FM, Vitucci D, Luciano N, Alfieri A, Orrù S, Salvatore G, Buono P. Exercise's impact on lung cancer molecular mechanisms: a current overview. Front Oncol 2024; 14:1479454. [PMID: 39555455 PMCID: PMC11563951 DOI: 10.3389/fonc.2024.1479454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024] Open
Abstract
Lung cancer is the major cause of cancer-related deaths worldwide with an estimated 1.8 million deaths and 2.4 million new cases in 2022. Poor cardiorespiratory fitness, dyspnea and fatigue are the common features in lung cancer patients, partially limiting the exercise prescription. Exercise improves cardiorespiratory and muscular fitness and reduces the risk of some types of cancer, including lung cancer. Recently, the American Society of Clinical Oncology has encouraged preoperative exercise for lung cancer patients. Nonetheless, only limited data, mostly obtained from mouse models of lung cancer, are available on the molecular effects of exercise in lung cancer. Thus, the present minireview aims to shed light on the molecular mechanisms induced by different type of exercise in lung cancer. In particular, the role of the exercise in tumor microenvironment remodeling, angiogenesis, gene expression, apoptosis and intermediate metabolism will be examined.
Collapse
Affiliation(s)
- Annamaria Mancini
- Department of Medical, Human Movement and Well-being Sciences, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
| | - Francesca Maria Orlandella
- Department of Medical, Human Movement and Well-being Sciences, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
| | - Daniela Vitucci
- Department of Medical, Human Movement and Well-being Sciences, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
| | - Neila Luciano
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Andreina Alfieri
- Department of Medical, Human Movement and Well-being Sciences, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
| | - Stefania Orrù
- Department of Medical, Human Movement and Well-being Sciences, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
| | - Giuliana Salvatore
- Department of Medical, Human Movement and Well-being Sciences, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
| | - Pasqualina Buono
- Department of Medical, Human Movement and Well-being Sciences, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
| |
Collapse
|
9
|
Liu JY, Liu JX, Li R, Zhang ZQ, Zhang XH, Xing SJ, Sui BD, Jin F, Ma B, Zheng CX. AMPK, a hub for the microenvironmental regulation of bone homeostasis and diseases. J Cell Physiol 2024; 239:e31393. [PMID: 39210747 DOI: 10.1002/jcp.31393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/21/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
AMP-activated protein kinase (AMPK), a crucial regulatory kinase, monitors energy levels, conserving ATP and boosting synthesis in low-nutrition, low-energy states. Its sensitivity links microenvironmental changes to cellular responses. As the primary support structure and endocrine organ, the maintenance, and repair of bones are closely associated with the microenvironment. While a series of studies have explored the effects of specific microenvironments on bone, there is lack of angles to comprehensively evaluate the interactions between microenvironment and bone cells, especially for bone marrow mesenchymal stem cells (BMMSCs) which mediate the differentiation of osteogenic lineage. It is noteworthy that accumulating evidence has indicated that AMPK may serve as a hub between BMMSCs and microenvironment factors, thus providing a new perspective for us to understand the biology and pathophysiology of stem cells and bone. In this review, we emphasize AMPK's pivotal role in bone microenvironment modulation via ATP, inflammation, reactive oxygen species (ROS), calcium, and glucose, particularly in BMMSCs. We further explore the use of AMPK-activating drugs in the context of osteoarthritis and osteoporosis. Moreover, building upon the foundation of AMPK, we elucidate a viewpoint that facilitates a comprehensive understanding of the dynamic relationship between the microenvironment and bone homeostasis, offering valuable insights for prospective investigations into stem cell biology and the treatment of bone diseases.
Collapse
Affiliation(s)
- Jin-Yu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Jie-Xi Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Rang Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Zi-Qi Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Xiao-Hui Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Shu-Juan Xing
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
- College of Life Science, Northwest University, Xi'an, China
| | - Bing-Dong Sui
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Fang Jin
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Bo Ma
- State Key Laboratory of National Security Specially Needed Medicines, Academy of Military Medical Sciences, Beijing, China
| | - Chen-Xi Zheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
10
|
Tian B, Pan Y, Zhou X, Jiang Y, Zhang X, Luo X, Yang K. Yellow leaf green tea modulates the AMPK/ACC/SREBP1c signaling pathway and gut microbiota in high-fat diet-induced mice to alleviate obesity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5882-5895. [PMID: 38407390 DOI: 10.1002/jsfa.13413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/11/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND Yellow leaf green tea (YLGT) is a new variety of Camellia sinensis (L.) O. Ktze, which has yellow leaves and the unique qualities of 'three green through three yellow'. The present study aimed to investigate the anti-obesity effect of YLGT in mice fed a high-fat diet (HFD) and to explore the potential mechanisms by regulating the AMPK/ACC/SREBP1c signaling pathways and gut microbiota. RESULTS The results showed that YLGT aqueous extract reduced body weight, hepatic inflammation, fat accumulation and hyperlipidemia in HFD-induced C57BL/6J mice, and also accelerated energy metabolism, reduced fat synthesis and suppressed obesity by activating the AMPK/CPT-1α signaling pathway and inhibiting the FAS/ACC/SREBP-1c signaling pathway. Fecal microbiota transplantation experiment further confirmed that the alteration of gut microbiota (e.g. increasing unclassified_Muribaculaceae and decreasing Colidextribacter) might be an important cause of YLGT water extract inhibiting obesity. CONCLUSION In conclusion, YLGT has a broad application prospect in the treatment of obesity and the development of anti-obesity function beverages. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Baoming Tian
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
| | - Yizhu Pan
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
| | - Xue Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
| | - Yuezhi Jiang
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Xudong Luo
- Sichuan Three MT. TEA-INDUSTRY Co., Ltd, Guangyuan, China
| | - Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
| |
Collapse
|
11
|
Hong SH, Lee DB, Yoon DW, Kim J. Melatonin Improves Glucose Homeostasis and Insulin Sensitivity by Mitigating Inflammation and Activating AMPK Signaling in a Mouse Model of Sleep Fragmentation. Cells 2024; 13:470. [PMID: 38534314 PMCID: PMC10969771 DOI: 10.3390/cells13060470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Sleep fragmentation (SF) can increase inflammation and production of reactive oxygen species (ROS), leading to metabolic dysfunction. SF is associated with inflammation of adipose tissue and insulin resistance. Several studies have suggested that melatonin may have beneficial metabolic effects due to activating AMP-activated protein kinase (AMPK). However, it is unclear whether melatonin affects the AMPK signaling pathway in SF-induced metabolic dysfunction. Therefore, we hypothesize that SF induces metabolic impairment and inflammation in white adipose tissue (WAT), as well as altered intracellular homeostasis. We further hypothesize that these conditions could be improved by melatonin treatment. We conducted an experiment using adult male C57BL/6 mice, which were divided into three groups: control, SF, and SF with melatonin treatment (SF+Mel). The SF mice were housed in SF chambers, while the SF+Mel mice received daily oral melatonin. After 12 weeks, glucose tolerance tests, insulin tolerance tests, adipose tissue inflammation tests, and AMPK assessments were performed. The SF mice showed increased weight gain, impaired glucose regulation, inflammation, and decreased AMPK in WAT compared to the controls. Melatonin significantly improved these outcomes by mitigating SF-induced metabolic dysfunction, inflammation, and AMPK downregulation in adipose tissue. The therapeutic efficacy of melatonin against cardiometabolic impairments in SF may be due to its ability to restore adipose tissue homeostatic pathways.
Collapse
Affiliation(s)
- Seok Hyun Hong
- Sleep Medicine Institute, Jungwon University, Goesan-gun 28204, Chungcheongbuk-do, Republic of Korea; (S.H.H.); (D.-B.L.)
- Department of Biomedical Laboratory Science, Jungwon University, Goesan-gun 28204, Chungcheongbuk-do, Republic of Korea
| | - Da-Been Lee
- Sleep Medicine Institute, Jungwon University, Goesan-gun 28204, Chungcheongbuk-do, Republic of Korea; (S.H.H.); (D.-B.L.)
- Department of Health and Safety Convergence Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Dae-Wui Yoon
- Sleep Medicine Institute, Jungwon University, Goesan-gun 28204, Chungcheongbuk-do, Republic of Korea; (S.H.H.); (D.-B.L.)
- Department of Biomedical Laboratory Science, Jungwon University, Goesan-gun 28204, Chungcheongbuk-do, Republic of Korea
| | - Jinkwan Kim
- Sleep Medicine Institute, Jungwon University, Goesan-gun 28204, Chungcheongbuk-do, Republic of Korea; (S.H.H.); (D.-B.L.)
- Department of Biomedical Laboratory Science, Jungwon University, Goesan-gun 28204, Chungcheongbuk-do, Republic of Korea
| |
Collapse
|
12
|
Guo T, Yan W, Cui X, Liu N, Wei X, Sun Y, Fan K, Liu J, Zhu Y, Wang Z, Zhang Y, Chen L. Liraglutide attenuates type 2 diabetes mellitus-associated non-alcoholic fatty liver disease by activating AMPK/ACC signaling and inhibiting ferroptosis. Mol Med 2023; 29:132. [PMID: 37770820 PMCID: PMC10540362 DOI: 10.1186/s10020-023-00721-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is one of the most common complications of type 2 diabetes mellitus (T2DM). The pathogenesis of NAFLD involves multiple biological changes, including insulin resistance, oxidative stress, inflammation, as well as genetic and environmental factors. Liraglutide has been used to control blood sugar. But the impact of liraglutide on T2DM-associated NAFLD remains unclear. In this study, we investigated the impact and potential molecular mechanisms of inhibiting ferroptosis for liraglutide improves T2DM-associated NAFLD. METHODS Mice were fed on high-fat-diet and injected with streptozotocin to mimic T2DM-associated NAFLD and gene expression in liver was analysed by RNA-seq. The fast blood glucose was measured during the period of liraglutide and ferrostatin-1 administration. Hematoxylin and eosin staining was used to evaluate the pathological changes in the liver. The occurrence of hepatic ferroptosis was measured by lipid peroxidation in vivo. The mechanism of liraglutide inhibition ferroptosis was investigated by in vitro cell culture. RESULTS Liraglutide not only improved glucose metabolism, but also ameliorated tissue damage in the livers. Transcriptomic analysis indicated that liraglutide regulates lipid metabolism related signaling including AMPK and ACC. Furthermore, ferroptosis inhibitor rather than other cell death inhibitors rescued liver cell viability in the presence of high glucose. Mechanistically, liraglutide-induced activation of AMPK phosphorylated ACC, while AMPK inhibitor compound C blocked the liraglutide-mediated suppression of ferroptosis. Moreover, ferroptosis inhibitor restored liver function in T2DM mice in vivo. CONCLUSIONS These findings indicate that liraglutide ameliorates the T2DM-associated NAFLD, which possibly through the activation of AMPK/ACC pathway and inhibition of ferroptosis.
Collapse
Affiliation(s)
- Tingli Guo
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Wenhui Yan
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xin Cui
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Na Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xiaotong Wei
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Yuzhuo Sun
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - KeXin Fan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, The Institute of Molecular and Translational Medicine, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Jieyun Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Yuanyuan Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Zhuanzhuan Wang
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Yilei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, The Institute of Molecular and Translational Medicine, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China.
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China.
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Lina Chen
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China.
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China.
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
13
|
Wei B, Peng Z, Xiao M, Huang T, Yang S, Liu K, Wu M, Zheng W, Xie M, Xiong T. Modulation of the Microbiome-Fat-Liver Axis by Lactic Acid Bacteria: A Potential Alleviated Role in High-Fat-Diet-Induced Obese Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37390401 DOI: 10.1021/acs.jafc.3c03149] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
The major characteristics of obesity are abnormal lipid metabolism, chronic inflammation, and imbalanced gut microbiota. It has been reported that lactic acid bacteria (LAB) possess potential for alleviating obesity, considering which the strain-specific functions and diverse mechanisms and the roles and mechanisms of various LAB are worthy of investigation. This study aimed to validate and investigate the alleviating effects and underlying mechanisms of three LAB strains, Lactiplantibacillus plantarum NCUH001046 (LP), Limosilactobacillus reuteri NCUH064003, and Limosilactobacillus fermentum NCUH003068 (LF), in high-fat-diet-induced obese mice. The findings demonstrated that the three strains, particularly LP, suppressed body weight gain and fat deposition; ameliorated lipid disorders, liver and adipocyte morphology, and chronic low-grade inflammation; and reduced lipid synthesis via activating the adenosine 5'-monophosphate-activated protein kinase (AMPK) signaling pathway. In addition, LP and LF decreased the enrichment of bacteria positively correlated with obesity, like Mucispirillum, Olsenella, and Streptococcus, but facilitated the growth of beneficial bacteria negatively correlated with obesity, like Roseburia, Coprococcus, and Bacteroides, along with increasing the short-chain fatty acid levels. It is deduced that the underlying alleviating mechanism of LP was to modulate the hepatic AMPK signaling pathway and gut microbiota by the microbiome-fat-liver axis to alleviate obesity development. In conclusion, as a diet supplement, LP has promising potential in obesity prevention and treatment.
Collapse
Affiliation(s)
- Benliang Wei
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
| | - Zhen Peng
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
| | - Muyan Xiao
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- International Institute of Food Innovation, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
| | - Tao Huang
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- International Institute of Food Innovation, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
| | - Shiyu Yang
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
| | - Kui Liu
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
| | - Min Wu
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
| | - Wendi Zheng
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
| | - Tao Xiong
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
| |
Collapse
|
14
|
Khaledi K, Hoseini R, Gharzi A. Effects of aerobic training and vitamin D supplementation on glycemic indices and adipose tissue gene expression in type 2 diabetic rats. Sci Rep 2023; 13:10218. [PMID: 37353689 PMCID: PMC10290097 DOI: 10.1038/s41598-023-37489-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/22/2023] [Indexed: 06/25/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a progressive metabolic disorder mainly caused by overweight and obesity that accumulates pro-inflammatory factors in adipose tissue. Studies have confirmed the efficacy of exercise and vitamin D supplementation in preventing, controlling, and treating diabetes. While, reduced physical activity and vitamin D deficiency are related to increased adiposity, blood glucose level, insulin concentration, and insulin resistance. This study purposed to investigate the effect of 8-week aerobic training with vitamin D supplementation on the expression of AMPK, PGC-1α, and UCP-1 genes expression in the visceral adipose tissue of obese rats with T2DM. In this experimental study, fifty male Wistar rats were divided into 5 groups (n = 10): aerobic training and vitamin D supplementation (AT + Vit D), aerobic training (5 days/week for 8 weeks; AT), vitamin D supplementation (Vit D), diabetic control (C) and NC (Non-Diabetic Control). AT + Vit D and AT groups practiced an 8-week aerobic training, 5 days a week. Vit D and AT + Vit D groups receive 5000 IU of vitamin D by injection once a week while AT and C received sesame oil. After blood sampling, visceral fat was taken to measure AMPK, PGC-1α, and UCP1 gene expression. Data were statistically analyzed by One-way ANOVA and paired sample t-test at a significance level of p < 0.05. Based on our results BW, BMI, WC, visceral fat, insulin, glucose, and HOMA-IR were significantly lower in the AT + Vit D, AT, and Vit D groups compared with the C group (p < 0.01). Furthermore, AT + Vit D, AT, and Vit D upregulated AMPK, PGC-1α, and UCP1 gene expression compared to the C. Based on the results compared to AT and Vit D, AT + Vit D significantly upregulated AMPK (p = 0.004; p = 0.001), PGC-1α (p = 0.010; p = 0.001), and UCP1 (p = 0.032; p = 0.001) gene expression, respectively. Also, AT induced more significant upregulations in the AMPK (p = 0.001), PGC-1α (p = 0.001), and UCP1 gene expression (p = 0.001) than Vit D. Vitamin D supplementation enhanced the beneficial effects of aerobic training on BW, BMI, WC, visceral fat, insulin, glucose, and HOMA-IR in diabetic rats. We also observed that separate AT or Vit D upregulated the gene expression of AMPK, PGC-1α, and UCP1 however, combined AT + Vit D upregulated AMPK, PGC-1α, and UCP1 more significantly. These results suggested that combining aerobic training and vitamin D supplementation exerted incremental effects on the gene expressions related to adipose tissue in animal models of diabetes.
Collapse
Affiliation(s)
- Kimya Khaledi
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, P.O. Box. 6714414971, Kermanshah, Iran
| | - Rastegar Hoseini
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, P.O. Box. 6714414971, Kermanshah, Iran.
| | - Ahmad Gharzi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| |
Collapse
|
15
|
Wei Y, Wang L, Liu J. The diabetogenic effects of pesticides: Evidence based on epidemiological and toxicological studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121927. [PMID: 37268216 DOI: 10.1016/j.envpol.2023.121927] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
While the use of pesticides has improved grain productivity and controlled vector-borne diseases, the widespread use of pesticides has resulted in ubiquitous environmental residues that pose health risks to humans. A number of studies have linked pesticide exposure to diabetes and glucose dyshomeostasis. This article reviews the occurrence of pesticides in the environment and human exposure, the associations between pesticide exposures and diabetes based on epidemiological investigations, as well as the diabetogenic effects of pesticides based on the data from in vivo and in vitro studies. The potential mechanisms by which pesticides disrupt glucose homeostasis include induction of lipotoxicity, oxidative stress, inflammation, acetylcholine accumulation, and gut microbiota dysbiosis. The gaps between laboratory toxicology research and epidemiological studies lead to an urgent research need on the diabetogenic effects of herbicides and current-use insecticides, low-dose pesticide exposure research, the diabetogenic effects of pesticides in children, and assessment of toxicity and risks of combined exposure to multiple pesticides with other chemicals.
Collapse
Affiliation(s)
- Yile Wei
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Linping Wang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
16
|
Abdul Khaliq H, Alhouayek M, Quetin-Leclercq J, Muccioli GG. 5'AMP-activated protein kinase: an emerging target of phytochemicals to treat chronic inflammatory diseases. Crit Rev Food Sci Nutr 2022; 64:4763-4788. [PMID: 36450301 DOI: 10.1080/10408398.2022.2145264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Inflammation is a defensive response of the organism to traumatic, infectious, toxic, ischemic, and autoimmune injury. Inflammatory mediators are released to effectively eliminate the inflammatory trigger and restore homeostasis. However, failure of these processes can lead to chronic inflammatory conditions and diseases such as inflammatory bowel diseases, rheumatoid arthritis, inflammatory lung diseases, atherosclerosis, and neurodegenerative diseases. The cure of chronic inflammatory diseases remains challenging as current therapies have various limitations, such as pronounced side effects, progressive loss of efficacy, and high cost especially for biologics. In this context, phytochemicals (such as alkaloids, flavonoids, lignans, phenolic acids, saponins, terpenoids, and other classes) are considered as an interesting alternative approach. Among the numerous targets of phytochemicals, AMP-activated protein kinase (AMPK) can be considered as an interesting target in the context of inflammation. AMPK regulates inflammatory response by inhibiting inflammatory pathways (NF-κB, JAK/STAT, and MAPK) and regulating several other processes of the inflammatory response (oxidative stress, autophagy, and apoptosis). In this review, we summarize and discuss the studies focusing on phytochemicals that showed beneficial effects by blocking different inflammatory pathways implicating AMPK activation in chronic inflammatory disease models. We also highlight elements to consider when investigating AMPK in the context of phytochemicals.
Collapse
Affiliation(s)
- Hafiz Abdul Khaliq
- Pharmacognosy Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
- Department of Pharmacognosy, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Joëlle Quetin-Leclercq
- Pharmacognosy Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| |
Collapse
|