1
|
Zhang Y, Liang H, Qi P, Xu Z, Fei H, Guo C. Deciphering the Roles of Interfacial Amino Acids in Inter-Protein Charge Transport. NANO LETTERS 2024; 24:4178-4185. [PMID: 38552164 DOI: 10.1021/acs.nanolett.4c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Elucidating charge transport (CT) through proteins is critical for gaining insights into ubiquitous CT chain reactions in biological systems and developing high-performance bioelectronic devices. While intra-protein CT has been extensively studied, crucial knowledge about inter-protein CT via interfacial amino acids is still absent due to the structural complexity. Herein, by loading cytochrome c (Cyt c) on well-defined peptide self-assembled monolayers to mimic the protein-protein interface, we provide a precisely controlled platform for identifying the roles of interfacial amino acids in solid-state CT via peptide-Cyt c junctions. The terminal amino acid of peptides serves as a fine-tuning factor for both the interfacial interaction between peptides and Cyt c and the immobilized Cyt c orientation, resulting in a nearly 10-fold difference in current through peptide-Cyt c junctions with varied asymmetry. This work provides a valuable platform for studying CT across proteins and contributes to the understanding of fundamental principles governing inter-protein CT.
Collapse
Affiliation(s)
- Yongkang Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Han Liang
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Pan Qi
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Zhongchen Xu
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Houguo Fei
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Cunlan Guo
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| |
Collapse
|
2
|
Cherepanov D, Aybush A, Johnson TW, Shelaev I, Gostev F, Mamedov M, Nadtochenko V, Semenov A. Inverted region in the reaction of the quinone reduction in the A 1-site of photosystem I from cyanobacteria. PHOTOSYNTHESIS RESEARCH 2024; 159:115-131. [PMID: 37093503 DOI: 10.1007/s11120-023-01020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Photosystem I from the menB strain of Synechocystis sp. PCC 6803 containing foreign quinones in the A1 sites was used for studying the primary steps of electron transfer by pump-probe femtosecond laser spectroscopy. The free energy gap (- ΔG) of electron transfer between the reduced primary acceptor A0 and the quinones bound in the A1 site varied from 0.12 eV for the low-potential 1,2-diamino-anthraquinone to 0.88 eV for the high-potential 2,3-dichloro-1,4-naphthoquinone, compared to 0.5 eV for the native phylloquinone. It was shown that the kinetics of charge separation between the special pair chlorophyll P700 and the primary acceptor A0 was not affected by quinone substitutions, whereas the rate of A0 → A1 electron transfer was sensitive to the redox-potential of quinones: the decrease of - ΔG by 400 meV compared to the native phylloquinone resulted in a ~ fivefold slowing of the reaction The presence of the asymmetric inverted region in the ΔG dependence of the reaction rate indicates that the electron transfer in photosystem I is controlled by nuclear tunneling and should be treated in terms of quantum electron-phonon interactions. A three-mode implementation of the multiphonon model, which includes modes around 240 cm-1 (large-scale protein vibrations), 930 cm-1 (out-of-plane bending of macrocycles and protein backbone vibrations), and 1600 cm-1 (double bonds vibrations) was applied to rationalize the observed dependence. The modes with a frequency of at least 1600 cm-1 make the predominant contribution to the reorganization energy, while the contribution of the "classical" low-frequency modes is only 4%.
Collapse
Affiliation(s)
- Dmitry Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Street 4, Moscow, Russia, 119991.
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1, bldg 40, Moscow, Russia, 119992.
| | - Arseny Aybush
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Street 4, Moscow, Russia, 119991
| | - T Wade Johnson
- Department of Chemistry, Susquehanna University, 514 University Ave., Selinsgrove, PA, 17870, USA
| | - Ivan Shelaev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Street 4, Moscow, Russia, 119991
| | - Fedor Gostev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Street 4, Moscow, Russia, 119991
| | - Mahir Mamedov
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1, bldg 40, Moscow, Russia, 119992
| | - Victor Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Street 4, Moscow, Russia, 119991
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, Moscow, Russia, 119991
| | - Alexey Semenov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Street 4, Moscow, Russia, 119991.
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1, bldg 40, Moscow, Russia, 119992.
| |
Collapse
|
3
|
Semenov AY, Tikhonov AN. Electrometric and Electron Paramagnetic Resonance Measurements of a Difference in the Transmembrane Electrochemical Potential: Photosynthetic Subcellular Structures and Isolated Pigment-Protein Complexes. MEMBRANES 2023; 13:866. [PMID: 37999352 PMCID: PMC10673362 DOI: 10.3390/membranes13110866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
A transmembrane difference in the electrochemical potentials of protons (ΔμH+) serves as a free energy intermediate in energy-transducing organelles of the living cell. The contributions of two components of the ΔμH+ (electrical, Δψ, and concentrational, ΔpH) to the overall ΔμH+ value depend on the nature and lipid composition of the energy-coupling membrane. In this review, we briefly consider several of the most common instrumental (electrometric and EPR) methods for numerical estimations of Δψ and ΔpH. In particular, the kinetics of the flash-induced electrometrical measurements of Δψ in bacterial chromatophores, isolated bacterial reaction centers, and Photosystems I and II of the oxygenic photosynthesis, as well as the use of pH-sensitive molecular indicators and kinetic data regarding pH-dependent electron transport in chloroplasts, have been reviewed. Further perspectives on the application of these methods to solve some fundamental and practical problems of membrane bioenergetics are discussed.
Collapse
Affiliation(s)
- Alexey Yu. Semenov
- A.N. Belozersky Institute of Physical-Chemical Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia;
| | | |
Collapse
|
4
|
Samaei A, Deshmukh SS, Protheroe C, Nyéki S, Tremblay-Ethier RA, Kálmán L. Photoactivation and conformational gating for manganese binding and oxidation in bacterial reaction centers. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148928. [PMID: 36216075 DOI: 10.1016/j.bbabio.2022.148928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
The influence of illumination history of native bacterial reaction centers (BRCs) on the ability of binding and photo-induced oxidation of manganous ions was investigated in the pH range between 8.0 and 9.4. Binding of manganous ions to a buried site required 6 to 11-fold longer incubation periods, depending on the pH, in dark-adapted BRCs than in BRCs that were previously illuminated prior to manganese binding. The intrinsic electron transfer from the bound manganese ion to the photo-oxidized primary electron donor was found to be limited by a 2 to 5-fold slower precursor conformational step in the dark-adapted samples for the same pH range. The conformational gating could be eliminated by photoactivation, namely if the BRCs were illuminated prior to binding. Unlike in Photosystem II, photoactivation in BRCs did not involve cluster assembly. Photoactivation with manganese already bound was only possible at elevated detergent concentration. In addition, also exclusively in dark-adapted BRCs, a marked breaking point in the Arrhenius-plot was discovered around 15 °C at pH 9.4 indicating a change in the reaction mechanism, most likely caused by the change of orientation of the 2-acetyl group of the inactive bacteriochlorophyll monomer located near the manganese binding site.
Collapse
Affiliation(s)
- Ali Samaei
- Department of Physics, Concordia University, Montreal, QC, Canada
| | | | | | - Sarah Nyéki
- Department of Physics, Concordia University, Montreal, QC, Canada
| | | | - László Kálmán
- Department of Physics, Concordia University, Montreal, QC, Canada.
| |
Collapse
|
5
|
Cherepanov DA, Semenov AY, Mamedov MD, Aybush AV, Gostev FE, Shelaev IV, Shuvalov VA, Nadtochenko VA. Current state of the primary charge separation mechanism in photosystem I of cyanobacteria. Biophys Rev 2022; 14:805-820. [PMID: 36124265 PMCID: PMC9481807 DOI: 10.1007/s12551-022-00983-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/10/2022] [Indexed: 11/24/2022] Open
Abstract
This review analyzes new data on the mechanism of ultrafast reactions of primary charge separation in photosystem I (PS I) of cyanobacteria obtained in the last decade by methods of femtosecond absorption spectroscopy. Cyanobacterial PS I from many species harbours 96 chlorophyll a (Chl a) molecules, including six specialized Chls denoted Chl1A/Chl1B (dimer P700, or PAPB), Chl2A/Chl2B, and Chl3A/Chl3B arranged in two branches, which participate in electron transfer reactions. The current data indicate that the primary charge separation occurs in a symmetric exciplex, where the special pair P700 is electronically coupled to the symmetrically located monomers Chl2A and Chl2B, which can be considered together as a symmetric exciplex Chl2APAPBChl2B with the mixed excited (Chl2APAPBChl2B)* and two charge-transfer states P700 +Chl2A - and P700 +Chl2B -. The redistribution of electrons between the branches in favor of the A-branch occurs after reduction of the Chl2A and Chl2B monomers. The formation of charge-transfer states and the symmetry breaking mechanisms were clarified by measuring the electrochromic Stark shift of β-carotene and the absorption dynamics of PS I complexes with the genetically altered Chl 2B or Chl 2A monomers. The review gives a brief description of the main methods for analyzing data obtained using femtosecond absorption spectroscopy. The energy levels of excited and charge-transfer intermediates arising in the cyanobacterial PS I are critically analyzed.
Collapse
Affiliation(s)
- Dmitry A. Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Alexey Yu Semenov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
- A.N. Belozersky Institute of Physical-Chemical Biology, M.V. Lomonosov Moscow State University, 119992 Leninskye gory 1 building, 40 Moscow, Russia
| | - Mahir D. Mamedov
- A.N. Belozersky Institute of Physical-Chemical Biology, M.V. Lomonosov Moscow State University, 119992 Leninskye gory 1 building, 40 Moscow, Russia
| | - Arseniy V. Aybush
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Fedor E. Gostev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Ivan V. Shelaev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Vladimir A. Shuvalov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Victor A. Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119991, Leninskiye Gory 1-3, Moscow, Russia
| |
Collapse
|
6
|
Mamedov MD, Milanovsky GE, Vitukhnovskaya L, Semenov AY. Measurements of the light-induced steady state electric potential generation by photosynthetic pigment-protein complexes. Biophys Rev 2022; 14:933-939. [DOI: 10.1007/s12551-022-00966-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/26/2022] [Indexed: 12/17/2022] Open
|
7
|
Yilimulati M, Jin J, Wang X, Wang X, Shevela D, Wu B, Wang K, Zhou L, Jia Y, Pan B, Govindjee G, Zhang S. Regulation of Photosynthesis in Bloom-Forming Cyanobacteria with the Simplest β-Diketone. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14173-14184. [PMID: 34590827 DOI: 10.1021/acs.est.1c04683] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Selective inhibition of photosynthesis is a fundamental strategy to solve the global challenge caused by harmful cyanobacterial blooms. However, there is a lack of specificity of the currently used cyanocides, because most of them act on cyanobacteria by generating nontargeted oxidative stress. Here, for the first time, we find that the simplest β-diketone, acetylacetone, is a promising specific cyanocide, which acts on Microcystis aeruginosa through targeted binding on bound iron species in the photosynthetic electron transport chain, rather than by oxidizing the components of the photosynthetic apparatus. The targeted binding approach outperforms the general oxidation mechanism in terms of specificity and eco-safety. Given the essential role of photosynthesis in both natural and artificial systems, this finding not only provides a unique solution for the selective control of cyanobacteria but also sheds new light on the ways to modulate photosynthesis.
Collapse
Affiliation(s)
- Mihebai Yilimulati
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Jiyuan Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xin Wang
- School of Life Science, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xiaomeng Wang
- Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Dmitry Shevela
- Department of Chemistry, Chemical Biological Centre, Umeå University, 90187 Umeå, Sweden
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Kai Wang
- Hansha Scientific Instruments Limited, Tai'an 271099, People's Republic of China
| | - Lang Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yunlu Jia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Govindjee Govindjee
- Department of Biochemistry, Department of Plant Biology, and the Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
8
|
Gorka M, Baldansuren A, Malnati A, Gruszecki E, Golbeck JH, Lakshmi KV. Shedding Light on Primary Donors in Photosynthetic Reaction Centers. Front Microbiol 2021; 12:735666. [PMID: 34659164 PMCID: PMC8517396 DOI: 10.3389/fmicb.2021.735666] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Chlorophylls (Chl)s exist in a variety of flavors and are ubiquitous in both the energy and electron transfer processes of photosynthesis. The functions they perform often occur on the ultrafast (fs-ns) time scale and until recently, these have been difficult to measure in real time. Further, the complexity of the binding pockets and the resulting protein-matrix effects that alter the respective electronic properties have rendered theoretical modeling of these states difficult. Recent advances in experimental methodology, computational modeling, and emergence of new reaction center (RC) structures have renewed interest in these processes and allowed researchers to elucidate previously ambiguous functions of Chls and related pheophytins. This is complemented by a wealth of experimental data obtained from decades of prior research. Studying the electronic properties of Chl molecules has advanced our understanding of both the nature of the primary charge separation and subsequent electron transfer processes of RCs. In this review, we examine the structures of primary electron donors in Type I and Type II RCs in relation to the vast body of spectroscopic research that has been performed on them to date. Further, we present density functional theory calculations on each oxidized primary donor to study both their electronic properties and our ability to model experimental spectroscopic data. This allows us to directly compare the electronic properties of hetero- and homodimeric RCs.
Collapse
Affiliation(s)
- Michael Gorka
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Amgalanbaatar Baldansuren
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Amanda Malnati
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Elijah Gruszecki
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - John H. Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - K. V. Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
9
|
Zaspa AA, Vitukhnovskaya LA, Mamedova AM, Semenov AY, Mamedov MD. Photovoltage generation by photosystem II core complexes immobilized onto a Millipore filter on an indium tin oxide electrode. J Bioenerg Biomembr 2020; 52:495-504. [PMID: 33190172 DOI: 10.1007/s10863-020-09857-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
The light-induced functioning of photosynthetic pigment-protein complex of photosystem II (PSII) is linked to the vectorial translocation of charges across the membrane, which results in the formation of voltage. Direct measurement of the light-induced voltage (∆V) generated by spinach oxygen-evolving PSII core complexes adsorbed onto a Millipore membrane filter (MF) on an indium tin oxide (ITO) electrode under continuous illumination has been performed. PSII was shown to participate in electron transfer from water to the ITO electrode, resulting in ∆V generation. No photovoltage was detected in PSII deprived of the water-oxidizing complex. The maximal and stable photoelectric signal was observed in the presence of disaccharide trehalose and 2,6-dichloro-1,4-benzoquinone, acting as a redox mediator between the primary quinone acceptor QA of PSII and electrode surface. Long time preservation of the steady-state photoactivity at room temperature in a simple in design ITO|PSII-MF|ITO system may be related to the retention of water molecules attached to the PSII surface in the presence of trehalose.
Collapse
Affiliation(s)
- Andrey A Zaspa
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Liya A Vitukhnovskaya
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Aida M Mamedova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,First Moscow State Medical University, Moscow, Russia
| | - Alexey Yu Semenov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Mahir D Mamedov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|