1
|
Assefa M, Zhao Y, Zhou C, Song Y, Zhao X. Advancements in Crop PUFAs Biosynthesis and Genetic Engineering: A Systematic and Mixed Review System. Int J Mol Sci 2025; 26:3462. [PMID: 40331974 DOI: 10.3390/ijms26083462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 05/08/2025] Open
Abstract
Recent advances in molecular studies on plant lipids have revealed novel functions, increasing interest in their roles in plant metabolic processes and food functionality. With evolving living standards, the demand for crop-derived polyunsaturated fatty acids (PUFAs) oil is increasing due to their benefits for cardiovascular health, brain function, and anti-inflammatory properties. Despite these benefits, there are gaps in comprehensive, integrated, and consolidated documents on recent advancements in crop biotechlogy, particularly concerning the biosynthesis of essential lipids. Such a document could provide valuable insights for researchers, breeders, and industry professionals seeking to enhance crop oil profiles and optimize the nutritional and functional qualities of plant-based foods. Therefore, this study aims to: (1) provide an updated review of crop lipid biosynthesis and (2) identify trending topics, key contributors, and institutions contributing to research on crop PUFAs, their health benefits, and genes associated with these functions. Methods: Systematic and mixed-method review approaches were used to gather the most recent evidence by identifying all relevant primary research studies on the specific review topic. Five databases were used in the process. Result and conclusion: 366 papers were identified, with 73 highly cited and recent ones focusing on crop PUFA biosynthesis and genetic engineering. Key genes involved in lipid biosynthesis include FAD, TMT, HGG, GhKAR, GhHAD, and transcription factors like MYB89, MYB96, WRI, LEC, GL2, FUS3, and HB2 all critical for enhancing PUFA biosynthesis. However, challenges such as poor transgene expression, reduced seed germination, and metabolic toxicity must be addressed to develop crops with improved oil profiles.
Collapse
Affiliation(s)
- Molalign Assefa
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Yajie Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Chao Zhou
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Xiangyu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
2
|
Mawlood RZ, Abdoulrahman K. Acute toxicity and hepatoprotective effect of Arum maculatum on rat liver cirrhosis induced with thioacetamide. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2025; 75:87-102. [PMID: 40208782 DOI: 10.2478/acph-2025-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/11/2025] [Indexed: 04/12/2025]
Abstract
Arum maculatum is a medicinal plant that has been employed in traditional medicine for treating liver diseases. The objective of the current study was to evaluate the hepatoprotective impacts of ethanolic extract of the A. maculatum leaves on cirrhosis induced by thioacetamide (TAA) in Sprague--Dawley rats. The rats were treated for two months with thioacetamide (TAA) administered intraperitoneally thrice weekly. Histopathological examination revealed severe liver damage in the thioacetamide control group, while the silymarin treatments (p < 0.05). Furthermore, A. maculatum treatment led to the normalization of pro-inflammatory cytokines TNF-α and IL-6, and increased expression of the anti-inflammatory cytokine IL-10 (p < 0.05). Thus, A. maculatum leaves might have a hepatoprotective role in rat liver cirrhosis induced by TAA, along with antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Riyadh Zainadin Mawlood
- 1Department of Chemistry, College of Science, University of Sulaimani Sulaymaniyah, 46002, Iraq
- 2Chemistry Department, College of Science, University of Raparin, Rania 46012 Sulaymaniyah, Iraq
| | - Kamaran Abdoulrahman
- 3Department of Chemistry, College of Science, Salahaddin University-Erbil Erbil, 44001, Kurdistan Region, Iraq
| |
Collapse
|
3
|
Ismail RFSA, Khalil WA, Grawish SI, Mahmoud KGM, Abdelnour SA, Gad AMA. Putative effects of moringa oil or its nano-emulsion on the growth, physiological responses, blood health, semen quality, and the sperm antioxidant-related genes in ram. BMC Vet Res 2025; 21:11. [PMID: 39789573 PMCID: PMC11715245 DOI: 10.1186/s12917-024-04444-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025] Open
Abstract
Phytochemicals have been effectively used to enhance the growth and productivity of farm animals, while the potential roles of essential oils and their nano-emulsions are limited. This plan was proposed to investigate the impacts of orally administered moringa oil (MO) or its nano-emulsion (NMO) on the growth, physiological response, blood health, semen attributes, and sperm antioxidant-related genes in rams. A total of 15 growing Rahmani rams were enrolled in this study and allotted into three groups. The 1st control group received a basal diet only and treated orally one mL of distilled water, while the 2nd, and 3rd groups received a basal diet and were orally treated with 1 mL of NMO or 2 mL of MO /head/day for 4 months, respectively. Growth, physiological response, blood health, semen quality, and antioxidant genes in sperm were assessed. The MO and NMO treatments had no significant effect on growth indices (final body weight and weight gain ) and physiological response (rectal temperature, pulse, and respiration rates) (P > 0.05). The NMO group had the lowest levels of MCV (mean corpuscular volume) (P < 0.05), while all treated groups produced higher levels of mean corpuscular hemoglobin (MCH) and mean corpuscular hemoglobin concentration (MCHC) compared to those in the control group (P < 0.05). Aspartate transferase (AST) and total cholesterol were significantly reduced in the MO and NMO groups, while total protein and glucose levels were significantly improved in NMO group (P < 0.05). Serum and seminal interstitial-cell-stimulating hormone (ICSH) levels were significantly improved (P < 0.0001) in the NMO group. Testosterone in serum and seminal plasma was significantly improved (P < 0.0001) in the MO group. Total antioxidant capacity (TAC) levels showed a tendency to increase in both the MO and NMO groups, but this increase was not significant compared to the untreated group (P > 0.05). On the other hand, the MO group exhibited lower levels of AST and malondialdehyde (MDA), while the alanine aminotransferase (ALT) levels were the lowest in the NMO group (P > 0.05). Mass motility, viability, membrane integrity and sperm concentration were significantly improved in the MO group (P < 0.0001) compared to the other groups. The NMO group had worse expressions of superoxide dismutase 1 (SOD1) compared to the control and MO groups. MO group significantly upregulated the catalase gene compared to the other groups (P < 0.001). The expression of Caspase-3 was highest in the group that received NMO compared to the other groups (P < 0.001). This study suggests that MO may serve as a novel therapeutic agent for improving the reproductive health in Rahmani rams.
Collapse
Affiliation(s)
- Rehab F S A Ismail
- Department of Animal Production, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Wael A Khalil
- Department of Animal Production, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt.
| | - Sara I Grawish
- Animal Production Research Institute, Agriculture Research Centre, Ministry of Agriculture, Dokki, 12619, Giza, Egypt
| | - Karima Gh M Mahmoud
- Department of Animal Reproduction and AI, Veterinary Research Institute, National Research Centre, Dokki, 12622, Egypt
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Alaa M A Gad
- Department of Animal Production, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
4
|
Kalogerakou T, Antoniadou M. The Role of Dietary Antioxidants, Food Supplements and Functional Foods for Energy Enhancement in Healthcare Professionals. Antioxidants (Basel) 2024; 13:1508. [PMID: 39765836 PMCID: PMC11672929 DOI: 10.3390/antiox13121508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/07/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Healthcare professionals frequently experience significant work overload, which often leads to substantial physical and psychological stress. This stress is closely linked to increased oxidative stress and a corresponding decline in energy levels. This scoping review investigates the potential impact of dietary antioxidants and food supplements in conjunction with diet in controlling these negative effects. Through an analysis of the biochemical pathways involved in oxidative stress and energy metabolism, the paper emphasizes the effectiveness of targeted dietary interventions. Key dietary antioxidants, such as vitamins C and E, polyphenols, and carotenoids, are evaluated for their ability to counteract oxidative stress and enhance energy levels. Additionally, the review assesses various food supplements, including omega-3 fatty acids, coenzyme Q10, and ginseng, and their mechanisms of action in energy enhancement. Practical guidelines for incorporating energy-boost dietary strategies into the routine of healthcare professionals are provided, emphasizing the importance of dietary modifications in reducing oxidative stress and improving overall well-being and performance in high-stress healthcare environments. The review concludes by suggesting directions for future research to validate these findings and to explore new dietary interventions that may further support healthcare professionals under work overload.
Collapse
Affiliation(s)
- Theodora Kalogerakou
- Department of Dentistry, School of Health Sciences, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Antoniadou
- Department of Dentistry, School of Health Sciences, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Executive Mastering Program in Systemic Management (CSAP), University of Piraeus, 18534 Piraeus, Greece
| |
Collapse
|
5
|
Natnan ME, Low CF, Chong CM, Jasmany MSM, Baharum SN. Oleic acid enriched diet affects the metabolome composition of the hybrid grouper infected with vibriosis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:2327-2342. [PMID: 39102011 DOI: 10.1007/s10695-024-01389-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
This study focuses in investigating the fatty acid contents of surviving infected hybrid grouper fed with oleic acid immunostimulant. After a 6-week feeding trial, Epinephelus fuscoguttatus × Epinephelus lanceolatus fingerlings were infected with Vibrio vulnificus. One week after bacterial challenge, fish oil was extracted from body tissue of surviving infected fingerlings using the Soxhlet extraction method. The extracted samples were then sent for GC-MS analysis. The raw GC-MS data were analyzed using software programs and databases (i.e., MetaboAnalyst, SIMCA-P, NIST Library, and KEGG). A total of 39 metabolites were putatively identified, with 18 metabolites derived from the fatty acid group. Our further analysis revealed that most metabolites were highly abundant in the oleic acid dietary samples, including oleic acid (4.56%), 5,8,11-eicosatrienoic acid (3.45%), n-hexadecenoic acid (3.34%), cis-erucic acid (2.76%), and 9-octadecenoic acid (2.5%). Worthy of note, we observed a greater abundance of α-linoleic acid (15.57%) in the control diet samples than in the oleic acid diet samples (14.59%) with no significant difference in their results. The results obtained from this study revealed that surviving infected hybrid grouper expressed more immune-related fatty acids due to the effect of oleic acid immunostimulant. Therefore, in this study, we propose oleic acid as a potential immunostimulant in enhancing fish immunity in aquaculture industry.
Collapse
Affiliation(s)
- Maya Erna Natnan
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Chen-Fei Low
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Chou-Min Chong
- Laboratory of Immunogenomics, Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Muhammad Shuhaily Mohd Jasmany
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Syarul Nataqain Baharum
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
6
|
Ortiz-Sempértegui J, Ibieta G, Tullberg C, Peñarrieta JM, Linares-Pastén JA. Chemical Characterisation of New Oils Extracted from Cañihua and Tarwi Seeds with Different Organic Solvents. Foods 2024; 13:1982. [PMID: 38998488 PMCID: PMC11240921 DOI: 10.3390/foods13131982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Vegetable oils are rich in health-beneficial compounds, including fatty acids, phenolic compounds, natural antioxidants, and fat-soluble vitamins. However, oil extraction methods can influence their composition. This study aims to understand the chemical basis for developing a green process to extract oils from two Andean seeds, cañihua (Chenopodium pallidicaule) and tarwi (Lupinus mutabilis). Ethanol, considered a green solvent, is compared to petroleum ether used at the laboratory level and hexane used at the industrial scale for extracting oils. The extraction efficiency is assessed in terms of yield, fatty acids profile, polar and neutral lipids, tocopherols, phenolic compounds, and antioxidant capacity. The chemical composition of edible commercial oils, such as sunflower, rapeseed, and olive oils, was used as a reference. Hexane had the highest extraction yield, followed by petroleum ether and ethanol. However, the oils extracted with ethanol having yields of tarwi 15.5% and cañihua 5.8%, w/w showed the significatively superior content of tocopherols (α, γ, and δ); phenolic compounds; and antioxidant capacity. In addition, ethanol-extracted (EE) oils have higher levels of polar lipids, such as phosphatidylcholine and phosphatidylinositol, than those extracted with the other solvents. Remarkably, EE oils presented comparable or slightly higher levels of monounsaturated fatty acids than those extracted with hexane. Finally, compared to the commercial oils, tarwi and cañihua EE oils showed lower but acceptable levels of oleic, linoleic and palmitic acids and a wider variety of fatty acids (10 and 13, respectively). The composition of tarwi and cañahua oils extracted with ethanol includes compounds associated with nutritional and health benefits, providing a sustainable alternative for oil production.
Collapse
Affiliation(s)
- Jimena Ortiz-Sempértegui
- Biotechnology, Faculty of Engineering LTH, Lund University, P.O. Box 117, S-221 00 Lund, Sweden
- Instituto de Investigaciones Químicas IIQ, Universidad Mayor de San Andrés UMSA, Av. Villazón N° 1995, 0201-0220 La Paz, Bolivia
| | - Gabriela Ibieta
- Biotechnology, Faculty of Engineering LTH, Lund University, P.O. Box 117, S-221 00 Lund, Sweden
- Instituto de Investigaciones Químicas IIQ, Universidad Mayor de San Andrés UMSA, Av. Villazón N° 1995, 0201-0220 La Paz, Bolivia
| | - Cecilia Tullberg
- Biotechnology, Faculty of Engineering LTH, Lund University, P.O. Box 117, S-221 00 Lund, Sweden
| | - J. Mauricio Peñarrieta
- Instituto de Investigaciones Químicas IIQ, Universidad Mayor de San Andrés UMSA, Av. Villazón N° 1995, 0201-0220 La Paz, Bolivia
| | | |
Collapse
|
7
|
Guo F, Danielski R, Santhiravel S, Shahidi F. Unlocking the Nutraceutical Potential of Legumes and Their By-Products: Paving the Way for the Circular Economy in the Agri-Food Industry. Antioxidants (Basel) 2024; 13:636. [PMID: 38929075 PMCID: PMC11201070 DOI: 10.3390/antiox13060636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Legumes, including beans, peas, chickpeas, and lentils, are cultivated worldwide and serve as important components of a balanced and nutritious diet. Each legume variety contains unique levels of protein, starch, fiber, lipids, minerals, and vitamins, with potential applications in various industries. By-products such as hulls, rich in bioactive compounds, offer promise for value-added utilization and health-focused product development. Various extraction methods are employed to enhance protein extraction rates from legume by-products, finding applications in various foods such as meat analogs, breads, and desserts. Moreover, essential fatty acids, carotenoids, tocols, and polyphenols are abundant in several residual fractions from legumes. These bioactive classes are linked to reduced incidence of cardiovascular diseases, chronic inflammation, some cancers, obesity, and type 2 diabetes, among other relevant health conditions. The present contribution provides a comprehensive review of the nutritional and bioactive composition of major legumes and their by-products. Additionally, the bioaccessibility and bioavailability aspects of legume consumption, as well as in vitro and in vivo evidence of their health effects are addressed.
Collapse
Affiliation(s)
- Fanghua Guo
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (F.G.); (R.D.); (S.S.)
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Renan Danielski
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (F.G.); (R.D.); (S.S.)
| | - Sarusha Santhiravel
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (F.G.); (R.D.); (S.S.)
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (F.G.); (R.D.); (S.S.)
| |
Collapse
|
8
|
Nguyen N, Woodside DB, Lam E, Quehenberger O, German JB, Shih PAB. Fatty Acids and Their Lipogenic Enzymes in Anorexia Nervosa Clinical Subtypes. Int J Mol Sci 2024; 25:5516. [PMID: 38791555 PMCID: PMC11122126 DOI: 10.3390/ijms25105516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Disordered eating behavior differs between the restricting subtype (AN-R) and the binging and purging subtype (AN-BP) of anorexia nervosa (AN). Yet, little is known about how these differences impact fatty acid (FA) dysregulation in AN. To address this question, we analyzed 26 FAs and 7 FA lipogenic enzymes (4 desaturases and 3 elongases) in 96 women: 25 AN-R, 25 AN-BP, and 46 healthy control women. Our goal was to assess subtype-specific patterns. Lauric acid was significantly higher in AN-BP than in AN-R at the fasting timepoint (p = 0.038) and displayed significantly different postprandial changes 2 h after eating. AN-R displayed significantly higher levels of n-3 alpha-linolenic acid, stearidonic acid, eicosapentaenoic acid (EPA), docosapentaenoic acid, and n-6 linoleic acid and gamma-linolenic acid compared to controls. AN-BP showed elevated EPA and saturated lauric acid compared to controls. Higher EPA was associated with elevated anxiety in AN-R (p = 0.035) but was linked to lower anxiety in AN-BP (p = 0.043). These findings suggest distinct disordered eating behaviors in AN subtypes contribute to lipid dysregulation and eating disorder comorbidities. A personalized dietary intervention may improve lipid dysregulation and enhance treatment effectiveness for AN.
Collapse
Affiliation(s)
- Nhien Nguyen
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92037, USA
| | - D. Blake Woodside
- Centre for Mental Health, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Eileen Lam
- Centre for Mental Health, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Oswald Quehenberger
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - J. Bruce German
- Department of Food Science & Technology, University of California, Davis, Davis, CA 95616, USA;
| | - Pei-an Betty Shih
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
9
|
Kim DK, Rajan P, Cuong DM, Choi JH, Yoon TH, Go GM, Lee JW, Noh SW, Choi HK, Cho SK. Melosira nummuloides Ethanol Extract Ameliorates Alcohol-Induced Liver Injury by Affecting Metabolic Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8476-8490. [PMID: 38588403 DOI: 10.1021/acs.jafc.3c06261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Melosira nummuloides is a microalga with a nutritionally favorable polyunsaturated fatty acid profile. In the present study, M. nummuloides ethanol extract (MNE) was administered to chronic-binge alcohol-fed mice and alcohol-treated HepG2 cells, and its hepatoprotective effects and underlying mechanisms were investigated. MNE administration reduced triglyceride (TG), total cholesterol (T-CHO), and liver injury markers, including aspartate transaminase (AST) and alanine transaminase (ALT), in the serum of chronic-binge alcohol-fed mice. However, MNE administration increased the levels of phosphorylated adenosine monophosphate-activated protein kinase (P-AMPK/AMPK) and PPARα, which was accompanied by a decrease in SREBP-1; this indicates that MNE can inhibit adipogenesis and improve fatty acid oxidation. Moreover, MNE administration upregulated the expression of antioxidant enzymes, including SOD, NAD(P)H quinone dehydrogenase 1, and GPX, and ameliorated alcohol-induced inflammation by repressing the Akt/NFκB/COX-2 pathway. Metabolomic analysis revealed that MNE treatment modulated many lipid metabolites in alcohol-treated HepG2 cells. Our study findings provide evidence for the efficacy and mechanisms of MNE in ameliorating alcohol-induced liver injury.
Collapse
Affiliation(s)
- Dae Kyeong Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Priyanka Rajan
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea
| | - Do Manh Cuong
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Jae Ho Choi
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon 16499, Republic of Korea
| | - Tae Hyeon Yoon
- College of Applied Life Sciences, SARI, Jeju National University, Jeju 63243, Republic of Korea
| | - Gyung Min Go
- JDKBIO lnc., Jeju-si, Jeju 63023, Republic of Korea
| | - Ji Won Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Soon-Wook Noh
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyung-Kyoon Choi
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Somi Kim Cho
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea
- College of Applied Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
10
|
Mahasneh ZMH, Abdelnour S, Ebrahim A, Almasodi AGS, Moustafa M, Alshaharni MO, Algopish U, Tellez-Isaias G, Abd El-Hack ME. Olive oil and its derivatives for promoting performance, health, and struggling thermal stress effects on broilers. Poult Sci 2024; 103:103348. [PMID: 38150829 PMCID: PMC10788279 DOI: 10.1016/j.psj.2023.103348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/29/2023] Open
Abstract
Olive oil (OL) production is the most significant agro-industrial business and has a high impact on the economy of numerous Mediterranean countries. However, OL extraction results in massive amounts of byproducts, including a solid residue (olive cake or olive pomace) and an aqueous stage (olive mill wastewater), which have serious environmental effects due to their hazardous nature and excessive organic content. Despite these byproducts causing environmental pollution, they can be applied for animal feeding. According to the literature, OL or its derivatives have been used to promote broiler performance, feed utilization, and health status in broilers as growth promoters or protein sources. Furthermore, using OL and its derivatives could improve heat resistance in stressed broilers via struggling thermal stress effects. In this framework, we highlighted the use of OL and its byproducts in broiler feeding to promote performance and health status. Additionally, the role of these byproducts and OL in combating thermal stress is investigated for sustainable strategy and promoting circular economy in broiler industry.
Collapse
Affiliation(s)
- Zeinab M H Mahasneh
- Department of Animal Production, School of Agriculture, the University of Jordan, Amman 11942, Jordan
| | - Sameh Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt.
| | - Alia Ebrahim
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Abeer G S Almasodi
- Food Science Department, College of Science, Taif University, Branch of the College at Turbah, Turbah, Saudi Arabia
| | - Mahmoud Moustafa
- Department of Biology, College of Science, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Mohammed O Alshaharni
- Department of Biology, College of Science, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Uthman Algopish
- Department of Biology, College of Science, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Guillermo Tellez-Isaias
- Department of Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
11
|
Chidambaram A, Prabhakaran R, Sivasamy S, Kanagasabai T, Thekkumalai M, Singh A, Tyagi MS, Dhandayuthapani S. Male Breast Cancer: Current Scenario and Future Perspectives. Technol Cancer Res Treat 2024; 23:15330338241261836. [PMID: 39043043 PMCID: PMC11271170 DOI: 10.1177/15330338241261836] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 05/06/2024] [Accepted: 05/28/2024] [Indexed: 07/25/2024] Open
Abstract
Male breast cancer (MBC), one of the rare types of cancer among men where the global incidence rate is 1.8% of all breast cancers cases with a yearly increase in a pace of 1.1%. Since the last 10 years, the incidence has been increased from 7.2% to 10.3% and the mortality rate was decreased from 11% to 3.8%. Nevertheless, the rate of diagnoses has been expected to be around 2.6% in the near future, still there is a great lack in studies to characterize the MBC including the developed countries. Based on our search, it is evidenced from the literature that the number of risk factors for the cause of MBC are significant, which includes the increase in age, family genetic history, mutations in specific genes due to various environmental impacts, hormonal imbalance and unregulated expression receptors for specific hormones of high levels of estrogen or androgen receptors compared to females. MBCs are broadly classified into ductal and lobular carcinomas with further sub-types, with some of the symptoms including a lump or swelling in the breast, redness of flaky skin in the breast, irritation and nipple discharge that is similar to the female breast cancer (FBC). The most common diagnostic tools currently in use are the ultrasound guided sonography, mammography, and biopsies. Treatment modalities for MBC include surgery, radiotherapy, chemotherapy, hormonal therapy, and targeted therapies. However, the guidelines followed for the diagnosis and treatment modalities of MBC are mostly based on FBC that is due to the lack of prospective studies related to MBC. However, there are distinct clinical and molecular features of MBC, it is a need to develop different clinical methods with more multinational approaches to help oncologist to improve care for MBC patients.
Collapse
Affiliation(s)
- Anitha Chidambaram
- Department of Biochemistry, PRIST Deemed to be University, Thanjavur, TN, India
| | - Rajkumar Prabhakaran
- Central Research Facility, Santosh Deemed to be University, Ghaziabad, UP, India
| | - Sivabalan Sivasamy
- Central Research Facility, Santosh Deemed to be University, Ghaziabad, UP, India
| | - Thanigaivelan Kanagasabai
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, USA
| | - Malarvili Thekkumalai
- Department of Biochemistry, Center for Distance Education, Bharathidasan University, Tiruchirappalli, TN, India
| | - Ankit Singh
- Department of Community Medicine, United Institute of Medical Sciences, Prayagraj, UP, India
| | - Mayurika S. Tyagi
- Department of Immuno Hematology and Blood Transfusion, Santosh Deemed to be University, Ghaziabad, UP, India
| | | |
Collapse
|
12
|
Lakshimi VI, Kavitha M. New Insights into Prospective Health Potential of ω-3 PUFAs. Curr Nutr Rep 2023; 12:813-829. [PMID: 37996669 DOI: 10.1007/s13668-023-00508-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
PURPOSE OF REVIEW Docosahexaenoic acid and eicosapentaenoic acid are the two essential long-chain ω-3 polyunsaturated fatty acids (ω-3 PUFAs) promoting human health which are obtained from diet or supplementation. The eicosanoids derived from ω-6 and ω-3 PUFAs have opposite characteristics of pro- and anti-inflammatory activities. The proinflammatory effects of ω-6 PUFAs are behind the pathology of the adverse health conditions of PUFA metabolism like cardiovascular diseases, neurological disorders, and inflammatory diseases. A balanced ω-6 to ω-3 ratio of 1-4:1 is critical to prevent the associated disorders. But due to modern agricultural practices, there is a disastrous shift in this ratio to 10-20:1. This review primarily aims to discuss the myriad health potentials of ω-3 PUFAs uncovered through recent research. It further manifests the importance of maintaining a balanced ω-6 to ω-3 PUFA ratio. RECENT FINDINGS ω-3 PUFAs exhibit protective effects against diabetes mellitus-associated complications including diabetic retinopathy, diabetic nephropathy, and proteinuria. COVID-19 is also not an exception to the health benefits of ω-3 PUFAs. Supplementation of ω-3 PUFAs improved the respiratory and clinical symptoms in COVID-19 patients. ω-3 PUFAs exhibit a variety of health benefits including anti-inflammatory property and antimicrobial property and are effective in protecting against various health conditions like atherosclerosis, cardiovascular diseases, diabetes mellitus, COVID-19, and neurological disorders. In the present review, various health potentials of ω-3 PUFAs are extensively reviewed and summarized. Further, the importance of a balanced ω-6 to ω-3 PUFA ratio has been emphasized besides stating the diverse sources of ω-3 PUFA.
Collapse
Affiliation(s)
- V Iswareya Lakshimi
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - M Kavitha
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
13
|
Fabjanowska J, Kowalczuk-Vasilev E, Klebaniuk R, Milewski S, Gümüş H. N-3 Polyunsaturated Fatty Acids as a Nutritional Support of the Reproductive and Immune System of Cattle-A Review. Animals (Basel) 2023; 13:3589. [PMID: 38003206 PMCID: PMC10668692 DOI: 10.3390/ani13223589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
This paper focuses on the role of n-3 fatty acids as a nutrient crucial to the proper functioning of reproductive and immune systems in cattle. Emphasis was placed on the connection between maternal and offspring immunity. The summarized results confirm the importance and beneficial effect of n-3 family fatty acids on ruminant organisms. Meanwhile, dietary n-3 fatty acids supplementation, especially during the critical first week for dairy cows experiencing their peripartum period, in general, is expected to enhance reproductive performance, and the impact of its supplementation appears to be dependent on body condition scores of cows during the drying period, the severity of the negative energy balance, and the amount of fat in the basic feed ration. An unbalanced, insufficient, or excessive fatty acid supplementation of cows' diets in the early stages of pregnancy (during fetus development) may affect both the metabolic and nutritional programming of the offspring. The presence of the polyunsaturated fatty acids of the n-3 family in the calves' ration affects not only the performance of calves but also the immune response, antioxidant status, and overall metabolism of the future adult cow.
Collapse
Affiliation(s)
- Julia Fabjanowska
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (J.F.); (R.K.); (S.M.)
| | - Edyta Kowalczuk-Vasilev
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (J.F.); (R.K.); (S.M.)
| | - Renata Klebaniuk
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (J.F.); (R.K.); (S.M.)
| | - Szymon Milewski
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (J.F.); (R.K.); (S.M.)
| | - Hıdır Gümüş
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, University of Burdur Mehmet Akif Ersoy, 15030 Burdur, Türkiye;
| |
Collapse
|
14
|
Vlaicu PA, Untea AE, Varzaru I, Saracila M, Oancea AG. Designing Nutrition for Health-Incorporating Dietary By-Products into Poultry Feeds to Create Functional Foods with Insights into Health Benefits, Risks, Bioactive Compounds, Food Component Functionality and Safety Regulations. Foods 2023; 12:4001. [PMID: 37959120 PMCID: PMC10650119 DOI: 10.3390/foods12214001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
This review delves into the concept of nutrition by design, exploring the relationship between poultry production, the utilization of dietary by-products to create functional foods, and their impact on human health. Functional foods are defined as products that extend beyond their basic nutritional value, offering potential benefits in disease prevention and management. Various methods, including extraction, fermentation, enrichment, biotechnology, and nanotechnology, are employed to obtain bioactive compounds for these functional foods. This review also examines the innovative approach of enhancing livestock diets to create functional foods through animal-based methods. Bioactive compounds found in these functional foods, such as essential fatty acids, antioxidants, carotenoids, minerals, vitamins, and bioactive peptides, are highlighted for their potential in promoting well-being and mitigating chronic diseases. Additionally, the review explores the functionality of food components within these products, emphasizing the critical roles of bioaccessibility, bioactivity, and bioavailability in promoting health. The importance of considering key aspects in the design of enhanced poultry diets for functional food production is thoroughly reviewed. The safety of these foods through the establishment of regulations and guidelines was reviewed. It is concluded that the integration of nutrition by design principles empowers individuals to make informed choices that can prioritize their health and well-being. By incorporating functional foods rich in bioactive compounds, consumers can proactively take steps to prevent and manage health issues, ultimately contributing to a healthier society and lifestyle.
Collapse
Affiliation(s)
- Petru Alexandru Vlaicu
- Feed and Food Quality Department, National Research and Development Institute for Animal Nutrition and Biology, 077015 Balotesti, Romania; (A.E.U.); (I.V.); (M.S.); (A.G.O.)
| | | | | | | | | |
Collapse
|
15
|
Singh S, Singh A, Hallan SS, Brangule A, Kumar B, Bhatia R. A Compiled Update on Nutrition, Phytochemicals, Processing Effects, Analytical Testing and Health Effects of Chenopodium album: A Non-Conventional Edible Plant (NCEP). Molecules 2023; 28:4902. [PMID: 37446567 DOI: 10.3390/molecules28134902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Bathua (Chenopodium album) is a rich source of extensive-ranging nutrients, including bio-active carbohydrates, flavonoids and phenolics, minerals, and vitamins that translate to countless health benefits such as anticancer, antidiabetic, anti-inflammatory, antimicrobial, and antioxidant activity. Ascaridole, an important phytoconstituent present in aerial parts of the plant, contributes to its anthelmintic property. Even with vast historical use and significant health benefits, its renown has not spread, and utilization has significantly decreased in recent decades. Gradually, the plant has become known under the name of Non-conventional edible plant (NCEP). This compilation is prepared to bring out the plant under the spotlight for further research by foregrounding previous studies on the plant. Scientific research databases, including PubMed, Google Scholar, Scopus, SpringerLink, ScienceDirect, and Wiley Online, were used to fetch data on C. album. This review offers over up-to-date knowledge on nutritious values, phytochemical composition, volatile compounds, as well as health benefits of C. album. The ethnobotanical and ethnomedicinal uses of the plant in India and other parts of the world are deliberately discussed. Scrutinizing the reported literature on C. album reveals its powerful nutrient composition advantageous in the development of food products. The impact of various cooking and processing methods on the nutritional profile and bioavailability are discussed. The future perspectives with regards to the potential for food and nutraceutical products are critically addressed. This review proves the necessity of breakthrough research to investigate the pharmacology and safety of phytochemicals and nutraceutical development studies on the C. album.
Collapse
Affiliation(s)
- Sukhwinder Singh
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Amandeep Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Supandeep Singh Hallan
- Department of Pharmaceutical Chemistry, Riga Stradins University, Konsula 21, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Kalku Street 1, LV-1658 Riga, Latvia
| | - Agnese Brangule
- Department of Pharmaceutical Chemistry, Riga Stradins University, Konsula 21, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Kalku Street 1, LV-1658 Riga, Latvia
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Srinagar 246174, Uttarakhand, India
- Department of Chemistry, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India
| | - Rohit Bhatia
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga 142001, Punjab, India
| |
Collapse
|
16
|
El-Sabrout K, Khalifah A, Mishra B. Application of botanical products as nutraceutical feed additives for improving poultry health and production. Vet World 2023; 16:369-379. [PMID: 37041996 PMCID: PMC10082723 DOI: 10.14202/vetworld.2023.369-379] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 01/23/2023] [Indexed: 02/27/2023] Open
Abstract
Poultry is one of the most consumed sources of animal protein around the world. To meet the global demands for poultry meat and eggs, it is necessary to improve their nutrition to sustain the poultry industry. However, the poultry industry faces several challenges, including feedstuff availability, the banning of antibiotics as growth promoters, and several environmental stressors. Therefore, there is a critical need to include available nutraceuticals in the diet to sustain the poultry industry. Nutraceuticals are natural chemical substances that positively influence animal physiological and productive traits. Botanical products (such as fenugreek seeds, ginger roots, and olive leaves) are among the most commonly used nutraceuticals and are gradually gaining popularity in the poultry industry due to their immense benefits in nutrition and therapeutic properties. They can be added to the diet separately or in combination (as a natural antioxidant and immunostimulant) to improve poultry health and production. Botanical products are rich in essential oils and essential fatty acids, which have multiple benefits on the animal's digestive system, such as activating the digestive enzymes and restoring microbiota balance, enhancing poultry health, and production. These nutraceuticals have been shown to stimulate the expression of several genes related to growth, metabolism, and immunity. In addition, the essential oil supplementation in poultry diets up-regulated the expression of some crucial genes associated with nutrient transportation (such as glucose transporter-2 and sodium-glucose cotransporter-1). Previous studies have suggested that supplementation of botanical compounds increased broiler body weight and hen egg production by approximately 7% and 15%, respectively. Furthermore, the supplementation of botanical compounds enhanced the reproductive efficiency of hens and the semen quality of roosters by 13%. This review article discusses the significant effects of some botanical products in the poultry industry and how they can benefit poultry, especially in light of the ban on antibiotics as growth promoters.
Collapse
Affiliation(s)
- Karim El-Sabrout
- Department of Poultry Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, Egypt
| | - Ayman Khalifah
- Department of Livestock Research, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Borg El Arab, Egypt
| | - Birendra Mishra
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI, 96822, USA
| |
Collapse
|
17
|
Li L, Zhang F, Meng X, Cui X, Ma Q, Wei Y, Liang M, Xu H. Recovery of Fatty Acid and Volatile Flavor Compound Composition in Farmed Tiger Puffer ( Takifugu rubripes) with a Fish Oil-Finishing Strategy. Mar Drugs 2023; 21:122. [PMID: 36827163 PMCID: PMC9959805 DOI: 10.3390/md21020122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Booming fish farming results in a relative shortage of fish oil (FO) supply, meaning that alternative oils are increasingly used in fish feeds, which leads to reduction of long-chain polyunsaturated fatty acids (LC-PUFAs) and other relevant changes in fish products. This study investigated the efficacy of an FO-finishing strategy in recovering the muscle quality of farmed tiger puffer. An eight-week feeding trial (growing-out period) was conducted with five experimental diets, in which graded levels (0 (control), 25, 50, 75, and 100%) of added FO were replaced by poultry oil (PO). Following the growing-out period was a four-week FO-finishing period, during which fish in all groups were fed the control diet. Dietary PO significantly decreased the muscle LC-PUFA content, whereas in general, the FO-finishing strategy recovered it to a level comparable with that of the group fed FO continuously. The recovery efficiency of EPA was higher than that of DHA. Dietary PO also led to changes of volatile flavor compounds in the muscle, such as butanol, pentenal, and hexenal, whereas the FO-finishing strategy mitigated the changes. In conclusion, the FO-finishing strategy is promising in recovering the LC-PUFA and volatile-flavor-compound composition in farmed tiger puffer after the feeding of PO-based diets.
Collapse
Affiliation(s)
- Lin Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Feiran Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaoxue Meng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Xishuai Cui
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Qiang Ma
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yuliang Wei
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Mengqing Liang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Houguo Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
18
|
Pirzado SA, Arain MA, Huiyi C, Fazlani SA, Alagawany M, Gouhua L. Effect of Azomite on growth performance, immune function and tibia breaking strength of broiler chickens during starter period. Anim Biotechnol 2022; 33:1539-1544. [PMID: 33938381 DOI: 10.1080/10495398.2021.1914644] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This study was examined to investigate the effect of Azomite (AZO) on the growth performance, immune function, and bone mineralization of broiler chickens. A total of 240-d old male chicks were randomly assigned into four treatments with six replicates (n = 10), which included control (basal diet), basal diet +0.25% AZO, basal diet + 0.50% AZO and basal diet + kitasamycin as antibiotic growth promoter (AGP). The results indicate that live body weight (LBW), average daily gain (ADG) and feed conversion ratio (FCR) were significantly (p < .05) improved in AZO 0.25% and 0.50% than the control. The weight of bursa of Fabricus was significantly (p < .05) higher in AZO-0.25% and AZO-0.50% than control. Total protein (TP), globulin, IgA and IgG levels were significantly (p < .05) increased with AZO supplemented treatments. Tibia diameter tibia breaking strength was significantly (p < .05) increased in AZO- 0.25% and AZO-0.50% treatment. In conclusion, the results indicated that addition of AZO at the doses of 0.25% and 0.50% in the diet had beneficial effects on growth performance, immune functions and tibia breaking strength.
Collapse
Affiliation(s)
- Shoaib Ahmed Pirzado
- Key Laboratory of Feed Biotechnology of Agricultural Ministry, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Department of Animal Nutrition, Sindh Agriculture University, Tando Jam, Pakistan
| | - Muhammad A Arain
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture Water and Marine Sciences, Uthal, Pakistan
| | - Cai Huiyi
- Key Laboratory of Feed Biotechnology of Agricultural Ministry, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sarfraz Ali Fazlani
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture Water and Marine Sciences, Uthal, Pakistan
| | - Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Liu Gouhua
- Key Laboratory of Feed Biotechnology of Agricultural Ministry, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
19
|
El-Sabrout K, Aggag S, Mishra B. Advanced Practical Strategies to Enhance Table Egg Production. SCIENTIFICA 2022; 2022:1393392. [PMID: 36349300 PMCID: PMC9637464 DOI: 10.1155/2022/1393392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/19/2022] [Indexed: 05/31/2023]
Abstract
The global demand for table eggs has increased exponentially due to the growing human population. To meet this demand, major advances in hen genetics, nutrition, and husbandry procedures are required. Developing cost-effective and practically applicable strategies to improve egg production and quality is necessary for the development of egg industry worldwide. Consumers have shown a strong desire regarding the improvement of hens' welfare and egg quality. They also become interested in functional and designer foods. Modifications in the nutritional composition of laying hen diets significantly impact egg nutritional composition and quality preservation. According to previous scientific research, enriched egg products can benefit human health. However, producers are facing a serious challenge in optimizing breeding, housing, and dietary strategies to ensure hen health and high product quality. This review discussed several practical strategies to increase egg production, quality, and hens' welfare. These practical strategies can potentially be used in layer farms for sustainable egg production. One of these strategies is the transition from conventional to enriched or cage-free production systems, thereby improving bird behavior and welfare. In addition, widely use of plant/herbal substances as dietary supplements in layers' diets positively impacts hens' physiological, productive, reproductive, and immunological performances.
Collapse
Affiliation(s)
- Karim El-Sabrout
- Department of Poultry Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, Egypt
| | - Sarah Aggag
- Department of Genetics, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, Egypt
| | - Birendra Mishra
- Department of Human Nutrition Food and Animal Sciences, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI, 96822, USA
| |
Collapse
|
20
|
Rabail R, Sultan MT, Khalid AR, Sahar AT, Zia S, Kowalczewski PŁ, Jeżowski P, Shabbir MA, Aadil RM. Clinical, Nutritional, and Functional Evaluation of Chia Seed-Fortified Muffins. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185907. [PMID: 36144643 PMCID: PMC9503555 DOI: 10.3390/molecules27185907] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 12/23/2022]
Abstract
Health-protective functional foods are gaining popularity in the world of nutrition because they promote excellent health while decreasing pharmaceutical burdens. Chia seeds (CS) (Salvia hispanica L.), the greatest vegetative source of α-linolenic acid, bioactive proteins, and fibers, are among the top unconventional oilseeds shown to have bounteous benefits against various non-communicable diseases. Purposely, this study was designed to integrate roasted CS powder into white-flour-based ordinary bakery goods to improve their nutritional and nutraceutical profiles. CS efficacy in normal and hyperlipidemic Sprague-Dawley rats resulted in mitigating blood glucose, triglycerides, total cholesterol, and low-density lipoprotein cholesterol while elevating high-density lipoprotein cholesterol, hematocrit, hemoglobin, red blood cell counts, and platelets. The nutritional profiling of chia-fortified muffins indicated significant increases of 47% in fat, 92% in fiber, 15% in protein, and 62% in minerals. The farinographic experiments of CS-blends revealed generally improved dough quality features with a significant rise in the degree of softening as fortification levels increased. A marketable recipe for CSF-muffins with several degrees of fortification demonstrated a significant rise in fat, 92% rise in fiber, 15% rise in protein, and 62% rise in minerals. Sensorial evaluation by trained taste panelists revealed a maximum appraisal of the 15% chia-fortified muffins due to aroma, appearance, and overall acceptability, and were forwarded for being acceptable for commercialization.
Collapse
Affiliation(s)
- Roshina Rabail
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Tauseef Sultan
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan
- Correspondence: (M.T.S.); (R.M.A.)
| | - Abdur Rauf Khalid
- Department of Livestock and Poultry Production, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Aqiba Tus Sahar
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Sania Zia
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | | | - Paweł Jeżowski
- Institute of Chemistry and Technical Electrochemistry, Poznań University of Technology, 60-965 Poznań, Poland
| | - Muhammad Asim Shabbir
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
- Correspondence: (M.T.S.); (R.M.A.)
| |
Collapse
|
21
|
The High ‘Lipolytic Jump’ of Immobilized Amano A Lipase from Aspergillus niger in Developed ‘ESS Catalytic Triangles’ Containing Natural Origin Substrates. Catalysts 2022. [DOI: 10.3390/catal12080853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Lipase Amano A from Aspergillus niger (AA-ANL) is among the most commonly applied enzymes in biocatalysis processes, making it a significant scientific subject in the pharmaceutical and medical disciplines. In this study, we investigated the lipolytic activity of AA-ANL immobilized onto polyacrylic support IB-150A in 23 oils of natural origin containing various amounts of polyunsaturated fatty acids (PUFAs) and monounsaturated fatty acids (MUFAs). The created systems were expressed as an ‘ESS catalytic triangle’. A distinct ‘jump’ (up to 2400%) of lipolytic activity of immobilized AA-ANL compared to free lipase and hyperactivation in mostly tested substrates was observed. There was a ‘cutoff limit’ in a quantitative mutual ratio of ω-PUFAs/MUFAs, for which there was an increase or decrease in the activity of the immobilized AA-ANL. In addition, we observed the beneficial effect of immobilization using three polyacrylic supports (IB-150A, IB-D152, and IB-EC1) characterized by different intramolecular interactions. The developed substrate systems demonstrated considerable hyperactivation of immobilized AA-ANL. Moreover, a ‘lipolytic jump’ in the full range of tested temperature and pH was also observed. The considerable activity of AA-ANL-IB-150A after four reuse cycles was demonstrated. On the other hand, we observed an essential decrease in stability of immobilized lipase after 168 h of storage in a climate chamber. The tested kinetic profile of immobilized AA-ANL confirmed the increased affinity to the substrate relative to lipase in the free form.
Collapse
|
22
|
El-Saadany AS, El-Barbary AM, Shreif EY, Elkomy A, Khalifah AM, El-Sabrout K. Pumpkin and garden cress seed oils as feed additives to improve the physiological and productive traits of laying hens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2090288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Amina S. El-Saadany
- Poultry Breeding Research Department, Animal Production Research Institute, Agriculture Research Center, Giza, Egypt
| | - Amal M. El-Barbary
- Poultry Breeding Research Department, Animal Production Research Institute, Agriculture Research Center, Giza, Egypt
| | - Effat Y. Shreif
- Poultry Nutrition Research Department, Animal Production Research Institute, Agriculture Research Center, Giza, Egypt
| | - Alaa Elkomy
- Livestock Research Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Borg El Arab, Egypt
- Faculty of Desert and Environmental Agriculture, Matrouh University, Matrouh, Egypt
| | - Ayman M. Khalifah
- Livestock Research Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Borg El Arab, Egypt
| | - Karim El-Sabrout
- Poultry Production Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, Egypt
| |
Collapse
|
23
|
Boone KM, Klebanoff MA, Rogers LK, Rausch J, Coury DL, Keim SA. Effects of Omega-3-6-9 fatty acid supplementation on behavior and sleep in preterm toddlers with autism symptomatology: Secondary analysis of a randomized clinical trial. Early Hum Dev 2022; 169:105588. [PMID: 35644107 PMCID: PMC9516351 DOI: 10.1016/j.earlhumdev.2022.105588] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/01/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Children born extremely preterm disproportionately experience sequelae of preterm birth compared to those born at later gestational ages, including higher prevalence of autism spectrum disorder (ASD) and associated behaviors. AIM Explore effects of combined dietary docosahexaenoic acid, eicosapentaenoic acid, gamma-linolenic acid, and oleic acid (omega 3-6-9) on caregiver-reported behavior and sleep in toddlers born at ≤29 weeks' gestation who were exhibiting symptoms commonly seen with ASD. STUDY DESIGN 90-day randomized (1:1), double blinded, placebo-controlled trial. SUBJECTS Thirty-one children aged 18-38 months received omega 3-6-9 (n = 15) or canola oil placebo (n = 16). OUTCOME MEASURES Mixed effects regression analyses followed intent to treat and explored treatment effects on measures of caregiver-reported behavior (Child Behavior Checklist 1.5-5, Toddler Behavior Assessment Questionnaire - Short Form, Vineland Adaptive Behavior Scales, 2nd Edition) and sleep (Children's Sleep Habits Questionnaire, Brief Infant Sleep Questionnaire). RESULTS Twenty-nine of 31 (94%; ntx = 13, nplacebo = 16) children randomized had data available for at least one outcome measure, 27 (87%; ntx = 12, nplacebo = 15) had complete outcome data. Children randomized to omega 3-6-9 experienced a medium magnitude benefit of supplementation on anxious and depressed behaviors (ΔDifference = -1.27, d = -0.58, p = 0.049) and internalizing behaviors (ΔDifference = -3.41, d = -0.68, p = 0.05); and a large magnitude benefit on interpersonal relationship adaptive behaviors (ΔDifference = 7.50, d = 0.83, p = 0.01), compared to placebo. No effects were observed on other aspects of behavior or sleep. CONCLUSIONS Findings provide preliminary support for further exploration of omega 3-6-9 during toddlerhood to improve socioemotional outcomes among children born preterm, especially for those showing early symptoms commonly seen with ASD. Results need to be replicated in a larger sample. TRIAL REGISTRATION Registered with ClinicalTrials.gov: NCT01683565.
Collapse
Affiliation(s)
- Kelly M. Boone
- Center for Biobehavioral Health, Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA,Corresponding author at: 700 Children's Drive, Columbus, OH 43205, USA. (K.M. Boone)
| | - Mark A. Klebanoff
- Center for Perinatal Research., Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA,Department of Pediatrics, College of Medicine, The Ohio State University, 370 W 9th Ave, Columbus, OH 43210, USA,Division of Epidemiology, College of Public Health, The Ohio State University, 1841 Neil Ave, Columbus, OH 43210, USA,Department of Obstetrics and Gynecology, College of Medicine, The Ohio State University, 370 W 9th Ave, Columbus, OH 43210, USA
| | - Lynette K. Rogers
- Center for Perinatal Research., Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA,Department of Pediatrics, College of Medicine, The Ohio State University, 370 W 9th Ave, Columbus, OH 43210, USA
| | - Joseph Rausch
- Center for Biobehavioral Health, Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA; Department of Pediatrics, College of Medicine, The Ohio State University, 370 W 9th Ave, Columbus, OH 43210, USA.
| | - Daniel L. Coury
- Department of Pediatrics, College of Medicine, The Ohio State University, 370 W 9th Ave, Columbus, OH 43210, USA
| | - Sarah A. Keim
- Center for Biobehavioral Health, Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA,Department of Pediatrics, College of Medicine, The Ohio State University, 370 W 9th Ave, Columbus, OH 43210, USA,Division of Epidemiology, College of Public Health, The Ohio State University, 1841 Neil Ave, Columbus, OH 43210, USA
| |
Collapse
|
24
|
Meijaard E, Abrams JF, Slavin JL, Sheil D. Dietary Fats, Human Nutrition and the Environment: Balance and Sustainability. Front Nutr 2022; 9:878644. [PMID: 35548568 PMCID: PMC9083822 DOI: 10.3389/fnut.2022.878644] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 01/27/2023] Open
Abstract
Dietary fats are essential ingredients of a healthy diet. Their production, however, impacts the environment and its capacity to sustain us. Growing knowledge across multiple disciplines improves our understanding of links between food, health and sustainability, but increases apparent complexity. Whereas past dietary guidelines placed limits on total fat intake especially saturated fats, recent studies indicate more complex links with health. Guidelines differ between regions of general poverty and malnutrition and those where obesity is a growing problem. Optimization of production to benefit health and environmental outcomes is hindered by limited data and shared societal goals. We lack a detailed overview of where fats are being produced, and their environmental impacts. Furthermore, the yields of different crops, for producing oils or feeding animals, and the associated land needs for meeting oil demands, differ greatly. To illuminate these matters, we review current discourse about the nutritional aspects of edible fats, summarize the inferred environmental implications of their production and identify knowledge gaps.
Collapse
Affiliation(s)
- Erik Meijaard
- Borneo Futures, Bandar Seri Begawan, Brunei
- Department of Ecology, Charles University in Prague, Prague, Czechia
- School of Anthropology and Conservation, Durrell Institute of Conservation and Ecology (DICE), University of Kent, Canterbury, United Kingdom
| | - Jesse F. Abrams
- Global Systems Institute, Institute for Data Science and Artificial Intelligence, University of Exeter, Exeter, United Kingdom
| | - Joanne L. Slavin
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, United States
| | - Douglas Sheil
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
25
|
Rabail R, Shabbir MA, Ahmed W, Inam‐Ur‐Raheem M, Khalid AR, Sultan MT, Aadil RM. Nutritional, functional, and therapeutic assessment of muffins fortified with garden cress seeds. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Roshina Rabail
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | - Muhammad Asim Shabbir
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | - Waqar Ahmed
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | - Muhammad Inam‐Ur‐Raheem
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | - Abdur Rauf Khalid
- Department of Livestock and Poultry Production, Faculty of Veterinary Sciences Bahauddin Zakariya University Multan Pakistan
| | | | - Rana Muhammad Aadil
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| |
Collapse
|
26
|
Effects of dietary sacha inchi (Plukenetia volubilis L.) oil and medicinal plant powder supplementation on growth performance, carcass traits, and breast meat quality of colored broiler chickens raised in Vietnam. Trop Anim Health Prod 2022; 54:87. [PMID: 35122524 DOI: 10.1007/s11250-021-02994-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022]
Abstract
The present study aimed to investigate the effects of replacing dietary soybean oil (SBO) with sacha inchi (Plukenetia volubilis L.) oil (SIO) supplemented or not with medicinal plant powder (MP, 60% cinnamon twig, and 40% star anise fruits) on broiler performance, carcass traits, and omega-3 polyunsaturated fatty acid (n-3 PUFA) content of breast meat. A total of 288 Ho × Luong Phuong broiler chickens (age and average body weight: 6 weeks old and 877 ± 13.4 g) were equally divided into three groups (6 replicates of 16 birds each), balanced by BW and sex. Each group was randomly allocated to one of three dietary treatments: a 2% SBO diet (CON), a 2% SIO diet (SI), and a diet supplemented with 2% SIO and 1% MP (SIM). The experiment lasted for 70 days. Broiler performance, carcass traits, and technological meat quality were not affected by the diets (P > 0.05). However, colored broiler chickens fed the SIM diet had increased empty gizzard percentage (P < 0.05) compared to those fed the CON diet. Especially, the n-3 PUFA content of breast meat from broiler chickens fed diets containing SIO was higher than those of birds fed CON diet (P < 0.01). A significant decrease in cholesterol content was observed (P < 0.01) in broilers fed SIM diet compared to those fed CON diet. In conclusion, replacing 2% SBO with 2% SIO and 1% MP supplementation in broiler diets increased n-3 PUFA content and decreased cholesterol content in breast meat, without negative effects on bird performance, carcass characteristics, and meat quality. Therefore, a combination of SIO and MP can be used as an effective strategy to ameliorate the meat quality of finishing broiler chickens by enhancing n-3 PUFA content and reducing the cholesterol content of breast meat.
Collapse
|
27
|
Ilić P, Rakita S, Spasevski N, Đuragić O, Marjanović-Jeromela A, Cvejić S, Zanetti F. Nutritive value of Serbian camelina genotypes as an alternative feed ingredient. FOOD AND FEED RESEARCH 2022. [DOI: 10.5937/ffr49-41060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Camelina has been used from ancient times, but recently has re-emerged as a valuable plant with the potential for successful replacement of conventional oilseed crops. The utilisation of camelina and its by-products in animal feed is a matter of scientific study due to their excellent nutritional potential. The present study aimed to investigate the nutritive value of two Serbian camelina seed genotypes (NS Zlatka and NS Slatka) as a potential alternative to commonly used oilseed crops in animal feeding. For that purpose proximate composition, fatty acid profile, amino acid profile and tocopherols were analysed. The study also included the investigation of the content of anti-nutritive compounds that can adversely affect the nutritional value of feed. The results showed that camelina seeds had a high amount of proteins (around 28%), amino acids and gtocopherols. Camelina genotypes were characterized by unique fatty acids composition, with its oil consisting of approximately 57% polyunsaturated fatty acids, of which the highest proportions were a-linolenic acid (~37%) and linoleic acid (~17%). An optimal ratio of n-6 and n-3 fatty acids (0.5) was also reported in this study. The concentration of anti-nutritional factors and heavy metals in camelina seeds was below the maximum set limit for feedstuff. To conclude, the investigated Serbian camelina genotypes can be used as a valuable source of proteins, essential fatty acids and tocopherols in animal nutrition and has a great potential to replace conventional oilseeds.
Collapse
|
28
|
Lee SM, Kim HK, Lee HB, Kwon OD, Lee EB, Bok JD, Cho CS, Choi YJ, Kang SK. Effects of flaxseed supplementation on omega-6 to omega-3 fatty acid ratio, lipid mediator profile, proinflammatory cytokines and stress indices in laying hens. JOURNAL OF APPLIED ANIMAL RESEARCH 2021. [DOI: 10.1080/09712119.2021.2000416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sang-Mok Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Hee Kyum Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Ho-Bin Lee
- Institute of Green-Bio Science & Technology, Seoul National University, Pyeongchang, Republic of Korea
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Oh-Dae Kwon
- Institute of Green-Bio Science & Technology, Seoul National University, Pyeongchang, Republic of Korea
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Eun-Bi Lee
- Institute of Green-Bio Science & Technology, Seoul National University, Pyeongchang, Republic of Korea
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Jin-Duck Bok
- Institute of Green-Bio Science & Technology, Seoul National University, Pyeongchang, Republic of Korea
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Chong-Su Cho
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang-Kee Kang
- Institute of Green-Bio Science & Technology, Seoul National University, Pyeongchang, Republic of Korea
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
29
|
Kato M, Iwakoshi-Ukena E, Furumitsu M, Ukena K. A Novel Hypothalamic Factor, Neurosecretory Protein GM, Causes Fat Deposition in Chicks. Front Physiol 2021; 12:747473. [PMID: 34759838 PMCID: PMC8573243 DOI: 10.3389/fphys.2021.747473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/04/2021] [Indexed: 12/25/2022] Open
Abstract
We recently discovered a novel cDNA encoding the precursor of a small secretory protein, neurosecretory protein GM (NPGM), in the mediobasal hypothalamus of chickens. Although our previous study showed that subcutaneous infusion of NPGM for 6 days increased body mass in chicks, the chronic effect of intracerebroventricular (i.c.v.) infusion of NPGM remains unknown. In this study, we performed i.c.v. administration of NPGM in eight-day-old layer chicks using osmotic pumps for 2 weeks. In the results, chronic i.c.v. infusion of NPGM significantly increased body mass, water intake, and the mass of abdominal and gizzard fat in chicks, whereas NPGM did not affect food intake, liver and muscle masses, or blood glucose concentration. Morphological analyses using Oil Red O and hematoxylin-eosin stainings revealed that fat accumulation occurred in both the liver and gizzard fat after NPGM infusion. The real-time PCR analysis showed that NPGM decreased the mRNA expression of peroxisome proliferator-activated receptor α, a lipolytic factor in the liver. These results indicate that NPGM may participate in fat storage in chicks.
Collapse
Affiliation(s)
- Masaki Kato
- Laboratory of Neurometabolism, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Eiko Iwakoshi-Ukena
- Laboratory of Neurometabolism, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Megumi Furumitsu
- Laboratory of Neurometabolism, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Kazuyoshi Ukena
- Laboratory of Neurometabolism, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
30
|
Effect of Escherichia coli lipopolysaccharide challenge on eggshell, tibia, and keel bone attributes in ISA brown hens exposed to dietary n-3 fatty acids prior to onset of lay. Poult Sci 2021; 100:101431. [PMID: 34607148 PMCID: PMC8493573 DOI: 10.1016/j.psj.2021.101431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 11/22/2022] Open
Abstract
The impact of Escherichia coli lipopolysaccharide (LPS) challenge on eggshell, tibia, and keel bone characteristics in ISA brown hens derived from breeders and pullets fed omega-3 polyunsaturated fatty acids (n-3 PUFA) was examined. The breeders were fed the following diets: 1) Control (CON); 2) CON + 1% microalgae as the source of docosahexaenoic acid (DHA); and 3) CON + 2.6% of a co-extruded mixture of full-fat flaxseed and pulses as a source of α-linolenic acid (ALA). During the pullet phase, offspring from breeders fed CON were fed CON or supplemented diets, and offspring from supplemented diets either continued with respective n-3 PUFA diets or CON. At 18 weeks of age (WOA), pullets were fed a common layer diet to 42 WOA. A total of 5 birds were selected based on the average body weight (BW) of each treatment and moved to an individual cage at 41 WOA. Three days before the end of 42 WOA, all the birds were weighed and subcutaneously injected with either saline or 4 mg LPS/kg BW. Eggs were recorded, labeled, and kept for egg quality analyses. At 42 WOA, birds were necropsied for tibia and keel bone samples. Administration of LPS reduced eggshell breaking strength, eggshell weight, tibia, and keel bone ash content (P < 0.05). Specifically, LPS challenged hens had 14.9, 11.1, 9.2, and 11.6% lower eggshell breaking strength, eggshell weight, keel, and tibia ash content, respectively relative to unchallenged hens. Hens from breeders and pullets fed n-3 PUFA had similar (P > 0.05) eggshell, tibia, and keel bone attributes to control hens. In conclusion, the provision of ALA and DHA to breeders and their offspring did not alleviate the negative effects of LPS on eggshell, tibia, and keel bone characteristics in laying hens.
Collapse
|
31
|
Bilal RM, Liu C, Zhao H, Wang Y, Farag MR, Alagawany M, Hassan FU, Elnesr SS, Elwan HAM, Qiu H, Lin Q. Olive Oil: Nutritional Applications, Beneficial Health Aspects and its Prospective Application in Poultry Production. Front Pharmacol 2021; 12:723040. [PMID: 34512350 PMCID: PMC8424077 DOI: 10.3389/fphar.2021.723040] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/12/2021] [Indexed: 01/18/2023] Open
Abstract
Plant polyphenols have promoting health features, including anti-mutagenic, anti-inflammatory, anti-thrombotic, anti-atherogenic, and anti-allergic effects. These polyphenols improve the immune system by affecting the white blood cell proliferation, as well as by the synthesis of cytokines and other factors, which contribute to immunological resistance. Olive trees are one of the most famous trees in the world. Whereas, olive olive oil and derivatives represent a large group of feeding resource for farm animals. In recent years, remarkable studies have been carried out to show the possible use of olive oil and derivatives for improvement of both animal performance and product quality. In vivo application of olive oil and its derived products has shown to maintain oxidative balance owing to its polyphenolic content. Consumption of extra virgin olive oil reduces the inflammation, limits the risk of liver damage, and prevents the progression of steatohepatitis through its potent antioxidant activities. Also, the monounsaturated fatty acids content of olive oil (particularly oleic acid), might have positive impacts on lipid peroxidation and hepatic protection. Therefore, this review article aims to highlight the nutritional applications and beneficial health aspects of olive oil and its effect on poultry production.
Collapse
Affiliation(s)
- Rana M. Bilal
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- University College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Chunjie Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Haohan Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Yanzhou Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- Hunan Deren Husbandry Technology Co., Ltd., Changde, China
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Faiz-ul Hassan
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, Pakistan
| | - Shaaban S. Elnesr
- Poultry Production Department, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Hamada A. M. Elwan
- Animal and Poultry Production Department, Faculty of Agriculture, Minia University, El-Minya, Egypt
| | - Huajiao Qiu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Qian Lin
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- Hunan Deren Husbandry Technology Co., Ltd., Changde, China
| |
Collapse
|
32
|
Encapsulation and Protection of Omega-3-Rich Fish Oils Using Food-Grade Delivery Systems. Foods 2021; 10:foods10071566. [PMID: 34359436 PMCID: PMC8305697 DOI: 10.3390/foods10071566] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
Regular consumption of adequate quantities of lipids rich in omega-3 fatty acids is claimed to provide a broad spectrum of health benefits, such as inhibiting inflammation, cardiovascular diseases, diabetes, arthritis, and ulcerative colitis. Lipids isolated from many marine sources are a rich source of long-chain polyunsaturated fatty acids (PUFAs) in the omega-3 form which are claimed to have particularly high biological activities. Functional food products designed to enhance human health and wellbeing are increasingly being fortified with these omega-3 PUFAs because of their potential nutritional and health benefits. However, food fortification with PUFAs is challenging because of their low water-solubility, their tendency to rapidly oxidize, and their variable bioavailability. These challenges can be addressed using advanced encapsulation technologies, which typically involve incorporating the omega-3 oils into well-designed colloidal particles fabricated from food-grade ingredients, such as liposomes, emulsion droplets, nanostructured lipid carriers, or microgels. These omega-3-enriched colloidal dispersions can be used in a fluid form or they can be converted into a powdered form using spray-drying, which facilitates their handling and storage, as well as prolonging their shelf life. In this review, we provide an overview of marine-based omega-3 fatty acid sources, discuss their health benefits, highlight the challenges involved with their utilization in functional foods, and present the different encapsulation technologies that can be used to improve their performance.
Collapse
|