1
|
Kahwa I, Omara T, Ayesiga I, Shah K, Ambe GNNN, Panwala ZJ, Mbabazi R, Iqbal S, Kyarimpa C, Nagawa CB, Chauhan NS. Nutraceutical benefits of seaweeds and their phytocompounds: a functional approach to disease prevention and management. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40304066 DOI: 10.1002/jsfa.14287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 05/02/2025]
Abstract
Seaweeds (SWD), macroalgae or sea vegetables are a diverse group of over 9000 macroscopic and multicellular marine algae taxonomically classified (based on morphology and pigmentation) as green, brown and red algae. With microalgae, SWD represents one of the most researched oceanic resources turned to as treasure troves of bioactive compounds with ethnomedicinal, pharmaceutical, cosmeceutical and dietetic end-uses for millennia. This review compiles the nutraceutical uses of SWD and their bioactive compounds in nutrition and traditional management of diseases, offering future perspectives on using this group of organisms to improve human life. The review reveals that the nutraceutical application of SWD as nutrient-dense marine foods for treating diseases may be correlated with their inherent biosynthesis and possession of minerals, vitamins, dietary fibres and bioactive compounds. Compounds of algal origin have been validated and found to elicit antimicrobial, anti-inflammatory, free radical scavenging (antioxidant), antiproliferative and antidiabetic activities, among others. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ivan Kahwa
- Pharm-BioTechnology and Traditional Medicine Centre of Excellence, Mbarara University of Science and Technology, Mbarara, Uganda
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Timothy Omara
- Department of Chemistry, College of Natural Sciences, Makerere University, Kampala, Uganda
| | | | - Kamal Shah
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | | | | | - Rachel Mbabazi
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Shabnoor Iqbal
- African Medicines Innovations and Technologies Development, Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Christine Kyarimpa
- Department of Chemistry, Faculty of Science, Kyambogo University, Kampala, Uganda
| | - Christine Betty Nagawa
- Department of Forestry, Biodiversity and Tourism, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | | |
Collapse
|
2
|
Cadar E, Popescu A, Dragan AML, Pesterau AM, Pascale C, Anuta V, Prasacu I, Velescu BS, Tomescu CL, Bogdan-Andreescu CF, Sirbu R, Ionescu AM. Bioactive Compounds of Marine Algae and Their Potential Health and Nutraceutical Applications: A Review. Mar Drugs 2025; 23:152. [PMID: 40278274 PMCID: PMC12029074 DOI: 10.3390/md23040152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/26/2025] Open
Abstract
Currently, marine algae are still an under-exploited natural bioresource of bioactive compounds. Seaweeds represent a sustainable source for obtaining bioactive compounds that can be useful for the fabrication of new active products with biomedical benefits and applications as biomedicinals and nutraceuticals. The objective of this review is to highlight scientific papers that identify biocompounds from marine macroalgae and emphasize their benefits. The method used was data analysis to systematize information to identify biocompounds and their various benefits in pharmaceuticals, cosmetics, and nutraceuticals. The research results demonstrate the multiple uses of seaweeds. As pharmaceuticals, seaweeds are rich sources of bioactive compounds like polysaccharides, protein compounds, pigments, and polyphenols, which have demonstrated various pharmacological activities such as antioxidant, antibacterial, anti-inflammatory, antiviral, anticoagulant, and potentially anticarcinogenic effects. Seaweed has gained recognition as a functional food and offers a unique set of compounds that promote body health, including vitamins, minerals, and antioxidants. In conclusion, the importance of this review is to expand the possibilities for utilizing natural resources by broadening the areas of research for human health and marine nutraceuticals.
Collapse
Affiliation(s)
- Emin Cadar
- Faculty of Pharmacy, “Ovidius” University of Constanta, Capitan Aviator Al. Serbanescu Street, No. 6, Campus, Corp C, 900470 Constanta, Romania; (E.C.); (A.P.)
| | - Antoanela Popescu
- Faculty of Pharmacy, “Ovidius” University of Constanta, Capitan Aviator Al. Serbanescu Street, No. 6, Campus, Corp C, 900470 Constanta, Romania; (E.C.); (A.P.)
| | - Ana-Maria-Laura Dragan
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.)
| | - Ana-Maria Pesterau
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.)
| | - Carolina Pascale
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.)
| | - Valentina Anuta
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy of Bucharest, Traian Vuia Street, No. 6, Sector 2, 020021 Bucharest, Romania; (V.A.); (I.P.); (B.S.V.)
| | - Irina Prasacu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy of Bucharest, Traian Vuia Street, No. 6, Sector 2, 020021 Bucharest, Romania; (V.A.); (I.P.); (B.S.V.)
| | - Bruno Stefan Velescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy of Bucharest, Traian Vuia Street, No. 6, Sector 2, 020021 Bucharest, Romania; (V.A.); (I.P.); (B.S.V.)
| | - Cezar Laurentiu Tomescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Corp B, 900470 Constanta, Romania; (C.L.T.); (A.-M.I.)
- “Sf. Ap. Andrei” County Clinical Emergency Hospital, Tomis Bvd., No. 145, 900591 Constanta, Romania
| | | | - Rodica Sirbu
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.)
| | - Ana-Maria Ionescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Corp B, 900470 Constanta, Romania; (C.L.T.); (A.-M.I.)
- Clinical Hospital C F Constanta, 1 Mai Bvd., No. 3–5, 900123 Constanta, Romania
| |
Collapse
|
3
|
da Silva J, dos Santos LC, Ibañez E, Ferreira SRS. Green Extraction Methods Applied to the Brown Macroalga Saccharina latissima: Assessing Yield, Total Phenolics, Phlorotannins and Antioxidant Capacity. Foods 2025; 14:1017. [PMID: 40232094 PMCID: PMC11941721 DOI: 10.3390/foods14061017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/10/2025] [Accepted: 03/15/2025] [Indexed: 04/16/2025] Open
Abstract
The brown seaweed Saccharina latissima is an abundant, although yet underutilized, source of natural bioactive compounds commonly found in western regions. In recent years, brown algae have garnered attention as promising sources of polyphenols, particularly phlorotannins. The recovery of these relevant components by eco-friendly and energy-efficient methods with solvents GRAS (Generally recognized as safe) contributes to minimizing environmental impact, and promotes sustainability. Pressurized liquid extraction (PLE) and microwave-assisted extraction (MAE) optimized by Box-Behnken design (BBD) were explored for this purpose. The methods were evaluated considering the process yield and the quality of the recovered extracts by phenolic and phlorotannin levels, and their antioxidant capacity was assessed by DPPH and ABTS assays. The optimized MAE techniques (80 °C, 2% EtOH/Water at 40 mL g-1) and PLE2 (80 °C with water) showed the highest extract yields, with increases of 65.76% and 37.36%, respectively, compared to CRE. PLE2 also achieved higher TPC and antioxidant capacity (ABTS) values by 61.88% and 80.39%, respectively. MAE (optimized) increased TPC and ABTS by 53.90% and 36.42%, respectively. Regression analysis of MAE confirmed the accuracy of the models in assessing interaction parameters (adjustment p < 0.05 and adequacy R2 > 0.86). Therefore, the study presents eco-efficient approaches for recovering phenolic compounds and antioxidants from brown algae, contributing to the valorization of these resources in the industry and enhancing their application.
Collapse
Affiliation(s)
- Jonas da Silva
- Chemical Engineering and Food Engineering Department, Federal University of Santa Catarina, EQA, CTC-UFSC, Florianópolis 88040-900, SC, Brazil;
| | - Luana Cristina dos Santos
- Foodomics Laboratory, Department of Bioactivity and Food Analysis, CIAL, CSIC-UAM, Nicolas Cabrera 9, 28049 Madrid, Spain;
| | - Elena Ibañez
- Foodomics Laboratory, Department of Bioactivity and Food Analysis, CIAL, CSIC-UAM, Nicolas Cabrera 9, 28049 Madrid, Spain;
| | - Sandra Regina Salvador Ferreira
- Chemical Engineering and Food Engineering Department, Federal University of Santa Catarina, EQA, CTC-UFSC, Florianópolis 88040-900, SC, Brazil;
| |
Collapse
|
4
|
Amri S, Bouslama L, Mzoughi Z, Nouira F, Majdoub H, Bouraoui A. Chemical characterization and evaluation of antiviral activity of two fucoidans extracted from Mediterranean brown seaweeds, Padina pavonica and Dictyopteris membranacea. Lett Appl Microbiol 2025; 78:ovaf002. [PMID: 39776168 DOI: 10.1093/lambio/ovaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/06/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025]
Abstract
Brown seaweeds are known for their bioactive compounds, particularly sulfated polysaccharides such as fucoidans, which have demonstrated antiviral properties. However, limited studies have focused on the antiviral potential of fucoidans extracted from Mediterranean brown seaweeds. In this study, two brown seaweeds Padina pavonica and Dictyopteris membranacea (Fuc-Pad and Fuc-Dic, respectively) were collected from monastir coasts, Tunisia, and a specific extraction protocol was employed to obtain fucoidans. The main objective of this study was to evaluate their antiviral activity against Herpes simplex virus type 2 (HSV-2) and coxsackievirus B3 (CVB-3). Fuc-Pad and Fuc-Dic exhibited potent antiviral activity with high selectivity indexes (>158 780 and 3125 for Fuc-Pad and 6101 and 84 for Fuc-Dic against HSV-2 and CVB-3, respectively). On the other hand, the two brown algae demonstrated different mechanisms of antiviral action according to virus type since they inhibited HSV-2 during the adsorption and penetration stages likely through interaction with cellular receptors that block viral binding while directly inhibiting CVB-3 by blocking specific viral ligands, preventing their attachment to host cell receptors. This antiviral activity seems to be associated with the high degree of sulfating of the fucoidans. These results may suggest the possibility of developing new antiviral drugs.
Collapse
Affiliation(s)
- Safa Amri
- Laboratory for Chemical, Galenic and Pharmacological Development of Drugs (LR12ES09), Faculty of Pharmacy of Monastir, University of Monastir, Monastir, BP 5000, Tunisia
| | - Lamjed Bouslama
- Laboratory of Bioactive Substances (LR15CBBC03), Center of Biotechnology of Borj Cedria, University of Tunis El Manar, Hammam Lif 2050, BP 901, Tunisia
| | - Zeineb Mzoughi
- Laboratory of Interfaces and Advanced Materials (LR11ES55), Faculty of Sciences of Monastir, University of Monastir, Monastir 5019, Tunisia
| | - Fatma Nouira
- Laboratory of Bioactive Substances (LR15CBBC03), Center of Biotechnology of Borj Cedria, University of Tunis El Manar, Hammam Lif 2050, BP 901, Tunisia
| | - Hatem Majdoub
- Laboratory of Interfaces and Advanced Materials (LR11ES55), Faculty of Sciences of Monastir, University of Monastir, Monastir 5019, Tunisia
| | - Abderrahman Bouraoui
- Laboratory for Chemical, Galenic and Pharmacological Development of Drugs (LR12ES09), Faculty of Pharmacy of Monastir, University of Monastir, Monastir, BP 5000, Tunisia
| |
Collapse
|
5
|
Sadeghi A, Rajabiyan A, Nabizade N, Meygoli Nezhad N, Zarei-Ahmady A. Seaweed-derived phenolic compounds as diverse bioactive molecules: A review on identification, application, extraction and purification strategies. Int J Biol Macromol 2024; 266:131147. [PMID: 38537857 DOI: 10.1016/j.ijbiomac.2024.131147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/08/2024]
Abstract
Seaweed, a diverse group of marine macroalgae, has emerged as a rich source of bioactive compounds with numerous health-promoting properties. Among these, phenolic compounds have garnered significant attention for their diverse therapeutic applications. This review examines the methodologies employed in the extraction and purification of phenolic compounds from seaweed, emphasizing their importance in unlocking the full potential of these oceanic treasures. The article provides a comprehensive overview of the structural diversity and biological activities of seaweed-derived phenolics, elucidating their antioxidant, anti-inflammatory, and anticancer properties. Furthermore, it explores the impact of extraction techniques, including conventional methods and modern green technologies, on the yield and quality of phenolic extracts. The purification strategies for isolating specific phenolic compounds are also discussed, shedding light on the challenges and advancements in this field. Additionally, the review highlights the potential applications of seaweed-derived phenolics in various industries, such as pharmaceuticals, cosmetics, and functional foods, underscoring the economic value of these compounds. Finally, future perspectives and research directions are proposed to encourage continued exploration of seaweed phenolics, fostering a deeper understanding of their therapeutic potential and promoting sustainable practices in the extraction and purification processes. This comprehensive review serves as a valuable resource for researchers, industry professionals, and policymakers interested in harnessing the untapped potential of phenolic compounds from seaweed for the betterment of human health and environmental sustainability.
Collapse
Affiliation(s)
- Abbas Sadeghi
- Department of Basic Science, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Ali Rajabiyan
- Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Nafise Nabizade
- Department of Medicinal Chemistry, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Najme Meygoli Nezhad
- Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Amanollah Zarei-Ahmady
- Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
6
|
Marasinghe CK, Jung WK, Je JY. Phloroglucinol possesses anti-inflammatory activities by regulating AMPK/Nrf2/HO-1 signaling pathway in LPS-stimulated RAW264.7 murine macrophages. Immunopharmacol Immunotoxicol 2023; 45:571-580. [PMID: 36988555 DOI: 10.1080/08923973.2023.2196602] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/24/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND Inflammation is closely related to the pathogenesis of chronic illnesses. Secondary metabolites of marine seaweeds are recognized as reliable sources of bioactive compounds due to their health benefits besides their nutritional value. The objective of this study was to determine the potential anti-inflammatory effect of phloroglucinol (Phl) in RAW264.7 murine macrophages after lipopolysaccharides (LPS) stimulation. METHODS MTT, nitric oxide (NO), and DCFH-DA assays were conducted to determine cell viability, NO production, and reactive oxygen species (ROS) generation respectively. Pro-inflammatory cytokines and prostaglandin E2 (PGE2) levels were measured using ELISA assay kits. Protein expression levels were determined by western blot analysis. RESULTS Phl treatment showed a promising anti-inflammatory effect by reducing NO production, secretion of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6), PGE2 production, protein expression levels of inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), and ROS generation in LPS-stimulated RAW264.7 murine macrophages. Phl treatment upregulated heme oxygenase-1 (HO-1) expression by inducing nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and activating AMPK. However, Zinc protoporphyrin (ZnPP), an inhibitor of HO-1, partially reversed these effects, including NO production, pro-inflammatory cytokine secretion, iNOS, COX-2 and HO-1 expression, and ROS generation. CONCLUSION Phl has potential anti-inflammatory activities by regulating AMPK/Nrf2/HO-1 pathway in LPS-stimulated RAW264.7 murine macrophages.
Collapse
Affiliation(s)
| | - Won-Kyo Jung
- Major of Biomedical Engineering, Division of Smart Healthcare, Pukyong National University, Busan, Republic of Korea
- Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Jae-Young Je
- Major of Human Bioconvergence, Division of Smart Healthcare, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
7
|
Ozyigit II, Dogan I, Hocaoglu-Ozyigit A, Yalcin B, Erdogan A, Yalcin IE, Cabi E, Kaya Y. Production of secondary metabolites using tissue culture-based biotechnological applications. FRONTIERS IN PLANT SCIENCE 2023; 14:1132555. [PMID: 37457343 PMCID: PMC10339834 DOI: 10.3389/fpls.2023.1132555] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/22/2023] [Indexed: 07/18/2023]
Abstract
Plants are the sources of many bioactive secondary metabolites which are present in plant organs including leaves, stems, roots, and flowers. Although they provide advantages to the plants in many cases, they are not necessary for metabolisms related to growth, development, and reproduction. They are specific to plant species and are precursor substances, which can be modified for generations of various compounds in different plant species. Secondary metabolites are used in many industries, including dye, food processing and cosmetic industries, and in agricultural control as well as being used as pharmaceutical raw materials by humans. For this reason, the demand is high; therefore, they are needed to be obtained in large volumes and the large productions can be achieved using biotechnological methods in addition to production, being done with classical methods. For this, plant biotechnology can be put in action through using different methods. The most important of these methods include tissue culture and gene transfer. The genetically modified plants are agriculturally more productive and are commercially more effective and are valuable tools for industrial and medical purposes as well as being the sources of many secondary metabolites of therapeutic importance. With plant tissue culture applications, which are also the first step in obtaining transgenic plants with having desirable characteristics, it is possible to produce specific secondary metabolites in large-scale through using whole plants or using specific tissues of these plants in laboratory conditions. Currently, many studies are going on this subject, and some of them receiving attention are found to be taken place in plant biotechnology and having promising applications. In this work, particularly benefits of secondary metabolites, and their productions through tissue culture-based biotechnological applications are discussed using literature with presence of current studies.
Collapse
Affiliation(s)
| | - Ilhan Dogan
- Department of Medical Services and Techniques, Akyazi Vocational School of Health Services, Sakarya University of Applied Science, Sakarya, Türkiye
| | - Asli Hocaoglu-Ozyigit
- Department of Biology, Faculty of Science, Marmara University, Istanbul, Türkiye
- Biology Program, Institute of Pure and Applied Sciences, Tekirdag Namık Kemal University, Tekirdag, Türkiye
| | - Bestenur Yalcin
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Bahcesehir University, Istanbul, Türkiye
| | - Aysegul Erdogan
- Application and Research Centre for Testing and Analysis, EGE MATAL, Chromatography and Spectroscopy Laboratory, Ege University, Izmir, Türkiye
| | - Ibrahim Ertugrul Yalcin
- Department of Civil Engineering, Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Türkiye
| | - Evren Cabi
- Department of Biology, Faculty of Arts and Sciences, Tekirdag Namık Kemal University, Tekirdag, Türkiye
| | - Yilmaz Kaya
- Department of Biology, Faculty of Science, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Türkiye
| |
Collapse
|
8
|
Pradhan B, Ki JS. Antioxidant and chemotherapeutic efficacies of seaweed-derived phlorotannins in cancer treatment: A review regarding novel anticancer drugs. Phytother Res 2023; 37:2067-2091. [PMID: 36971337 DOI: 10.1002/ptr.7809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/17/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023]
Abstract
The ineffectiveness of traditional cancer therapies due to drug resistance, nontargeted delivery, and chemotherapy-associated adverse side effects has shifted attention to bioactive phytochemicals. Consequently, research efforts toward screening and identification of natural compounds with anticancer properties have increased in recent years. Marine seaweed-derived bioactive compounds, such as polyphenolic compounds, have exhibited anticancer properties. Phlorotannins (PTs), a major group of seaweed-derived polyphenolic compounds, have emerged as powerful chemopreventive and chemoprotective compounds, regulating apoptotic cell death pathways both in vitro and in vivo. In this context, this review focuses on the anticancer activity of polyphenols isolated from brown algae, with a special reference to PTs. Furthermore, we highlight the antioxidant effects of PTs and discuss how they can impact cell survival and tumor development and progression. Moreover, we discussed the potential therapeutic application of PTs as anticancer agents, having molecular mechanisms involving oxidative stress reduction. We have also discussed patents or patent applications that apply PTs as major components of antioxidant and antitumor products. With this review, researcher may gain new insights into the potential novel role of PTs, as well as uncover a novel cancer-prevention mechanism and improve human health.
Collapse
Affiliation(s)
- Biswajita Pradhan
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea
- School of Biological Sciences, AIPH University, Bhubaneswar, 752101, India
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea
| |
Collapse
|
9
|
Sunarwidhi AL, Hernawan A, Frediansyah A, Widyastuti S, Martyasari NWR, Abidin AS, Padmi H, Handayani E, Utami NWP, Maulana FA, Ichfa MSM, Prasedya ES. Multivariate Analysis Revealed Ultrasonic-Assisted Extraction Improves Anti-Melanoma Activity of Non-Flavonoid Compounds in Indonesian Brown Algae Ethanol Extract. Molecules 2022; 27:7509. [PMID: 36364336 PMCID: PMC9655947 DOI: 10.3390/molecules27217509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 07/29/2023] Open
Abstract
Indonesia has high biodiversity of algae that are under-utilised due to limitations in the processing techniques. Here, we observed the effect of two different extraction methods (cold maceration and ultrasonic-assisted extraction (UAE)) on multiple variables of Indonesian brown algae ethanol extracts (Sargassum polycystum, Sargassum cristaefolium, Sargassum aquifolium and Turbinaria ornata). The variables observed included metabolites screening by untargeted metabolomics liquid chromatography-high-resolution mass spectrometry (LC-HRMS), observation of total phenolic content (TPC), total flavonoid content (TFC), anti-oxidant and B16-F10 melanoma cells cytotoxicity. UAE extracts had higher extraction yield and TPC, but no TFC difference was observed. UAE extract had more lipophilic compounds, such as fatty acids (Palmitic acid, Oleamide, Palmitoleic acid, Eicosapentaenoic acid, α-Linolenic acid, Arachidonic acid), lipid-derived mediators (11,12-Epoxyeicosatrienoic acid ((±)11(12)-EET)), steroid derivatives (Ergosterol peroxide), lipophilic metabolite (Fucoxanthin), and lipid-soluble vitamins (all-trans-retinol). Principle component analysis (PCA) revealed that TPC, not TFC, in the UAE extracts was correlated with the anti-oxidant activities and cytotoxicity of the extracts towards B16-F10 melanoma cells. This means other non-flavonoid phenolic and lipophilic compounds may have contributed to its bioactivity. These results suggest that out of the two methods investigated, UAE could be a chosen method to extract natural anti-melanogenic agents from brown algae.
Collapse
Affiliation(s)
| | - Ari Hernawan
- Department of Informatics Engineering, Faculty of Engineering, University of Mataram, Mataram 83115, Indonesia
| | - Andri Frediansyah
- PRTPP, National Research and Innovation Agency (BRIN), Yogyakarta 55861, Indonesia
| | - Sri Widyastuti
- Faculty of Food Technology and Agroindustry, University of Mataram, Mataram 83115, Indonesia
| | - Ni Wayan Riyani Martyasari
- Bioscience and Biotechnology Research Centre, Faculty of Mathematics and Natural Sciences, University of Mataram, Mataram 83115, Indonesia
| | - Angga Susmana Abidin
- Bioscience and Biotechnology Research Centre, Faculty of Mathematics and Natural Sciences, University of Mataram, Mataram 83115, Indonesia
| | - Hasriaton Padmi
- Bioscience and Biotechnology Research Centre, Faculty of Mathematics and Natural Sciences, University of Mataram, Mataram 83115, Indonesia
| | - Ervina Handayani
- Department of Pharmacy, Faculty of Medicine, University of Mataram, Mataram 83115, Indonesia
| | - Ni Wayan Putri Utami
- Department of Pharmacy, Faculty of Medicine, University of Mataram, Mataram 83115, Indonesia
| | - Farreh Alan Maulana
- Department of Pharmacy, Faculty of Medicine, University of Mataram, Mataram 83115, Indonesia
| | | | - Eka Sunarwidhi Prasedya
- Bioscience and Biotechnology Research Centre, Faculty of Mathematics and Natural Sciences, University of Mataram, Mataram 83115, Indonesia
| |
Collapse
|
10
|
Imane B, Laila B, Fouzia H, Ismail G, Ahmed E, Kaoutar B, Mohamed EM, Samira E, Jamila B. Chemical characterization, antiproliferative activity and molecular docking of bioactive compounds from brown algae Fucus spiralis. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Khan F, Jeong GJ, Khan MSA, Tabassum N, Kim YM. Seaweed-Derived Phlorotannins: A Review of Multiple Biological Roles and Action Mechanisms. Mar Drugs 2022; 20:384. [PMID: 35736187 PMCID: PMC9227776 DOI: 10.3390/md20060384] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 12/31/2022] Open
Abstract
Phlorotannins are a group of phenolic secondary metabolites isolated from a variety of brown algal species belonging to the Fucaceae, Sargassaceae, and Alariaceae families. The isolation of phlorotannins from various algal species has received a lot of interest owing to the fact that they have a range of biological features and are very biocompatible in their applications. Phlorotannins have a wide range of therapeutic biological actions, including antimicrobial, antidiabetic, antioxidant, anticancer, anti-inflammatory, anti-adipogenesis, and numerous other biomedical applications. The current review has extensively addressed the application of phlorotannins, which have been extensively investigated for the above-mentioned biological action and the underlying mechanism of action. Furthermore, the current review offers many ways to use phlorotannins to avoid certain downsides, such as low stability. This review article will assist the scientific community in investigating the greater biological significance of phlorotannins and developing innovative techniques for treating both infectious and non-infectious diseases in humans.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea;
| | - Mohd Sajjad Ahmad Khan
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia;
| | - Nazia Tabassum
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea;
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea;
| |
Collapse
|
12
|
Getachew AT, Holdt SL, Meyer AS, Jacobsen C. Effect of Extraction Temperature on Pressurized Liquid Extraction of Bioactive Compounds from Fucus vesiculosus. Mar Drugs 2022; 20:263. [PMID: 35447936 PMCID: PMC9028048 DOI: 10.3390/md20040263] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
This study was aimed at investigating the effect of low polarity water (LPW) on the extraction of bioactive compounds from Fucus vesiculosus and to examine the influence of temperature on the extraction yield, total phenolic content, crude alginate, fucoidan content, and antioxidant activity. The extractions were performed at the temperature range of 120-200 °C with 10 °C increments, and the extraction yield increased linearly with the increasing extraction temperature, with the highest yields at 170-200 °C and with the maximum extraction yield (25.99 ± 2.22%) at 190 °C. The total phenolic content also increased with increasing temperature. The extracts showed a high antioxidant activity, measured with DPPH (2,2-Diphenyl-1-picrylhydrazyl) radicals scavenging and metal-chelating activities of 0.14 mg/mL and 1.39 mg/mL, respectively. The highest yield of alginate and crude fucoidan were found at 140 °C and 160 °C, respectively. The alginate and crude fucoidan contents of the extract were 2.13% and 22.3%, respectively. This study showed that the extraction of bioactive compounds from seaweed could be selectively maximized by controlling the polarity of an environmentally friendly solvent.
Collapse
Affiliation(s)
- Adane Tilahun Getachew
- Research Group for Bioactives-Analysis and Application, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (A.T.G.); (S.L.H.)
| | - Susan Løvstad Holdt
- Research Group for Bioactives-Analysis and Application, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (A.T.G.); (S.L.H.)
| | - Anne Strunge Meyer
- Department of Biotechnology and Biomedicine, DTU Bioengineering, Technical University of Denmark, Søltofts Plads 221, 2800 Kongens Lyngby, Denmark;
| | - Charlotte Jacobsen
- Research Group for Bioactives-Analysis and Application, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (A.T.G.); (S.L.H.)
| |
Collapse
|
13
|
Matulja D, Vranješević F, Kolympadi Markovic M, Pavelić SK, Marković D. Anticancer Activities of Marine-Derived Phenolic Compounds and Their Derivatives. Molecules 2022; 27:molecules27041449. [PMID: 35209235 PMCID: PMC8879422 DOI: 10.3390/molecules27041449] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 12/24/2022] Open
Abstract
Since the middle of the last century, marine organisms have been identified as producers of chemically and biologically diverse secondary metabolites which have exerted various biological activities including anticancer, anti-inflammatory, antioxidant, antimicrobial, antifouling and others. This review primarily focuses on the marine phenolic compounds and their derivatives with potent anticancer activity, isolated and/or modified in the last decade. Reports on the elucidation of their structures as well as biosynthetic studies and total synthesis are also covered. Presented phenolic compounds inhibited cancer cells proliferation or migration, at sub-micromolar or nanomolar concentrations (lamellarins D (37), M (38), K (39), aspergiolide B (41), fradimycin B (62), makulavamine J (66), mayamycin (69), N-acetyl-N-demethylmayamycin (70) or norhierridin B (75)). In addition, they exhibited anticancer properties by a diverse biological mechanism including induction of apoptosis or inhibition of cell migration and invasive potential. Finally, phlorotannins 1–7 and bromophenols 12–29 represent the most researched phenolic compounds, of which the former are recognized as protective agents against UVB or gamma radiation-induced skin damages. Finally, phenolic metabolites were assorted into six main classes: phlorotannins, bromophenols, flavonoids, coumarins, terpenophenolics, quinones and hydroquinones. The derivatives that could not be attributed to any of the above-mentioned classes were grouped in a separate class named miscellaneous compounds.
Collapse
Affiliation(s)
- Dario Matulja
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (D.M.); (F.V.); (M.K.M.)
| | - Filip Vranješević
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (D.M.); (F.V.); (M.K.M.)
| | - Maria Kolympadi Markovic
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (D.M.); (F.V.); (M.K.M.)
| | - Sandra Kraljević Pavelić
- Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 5, 51000 Rijeka, Croatia
- Correspondence: (S.K.P.); (D.M.); Tel.: +385-51-688-266 (S.K.P.); +385-91-500-8676 (D.M.)
| | - Dean Marković
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (D.M.); (F.V.); (M.K.M.)
- Correspondence: (S.K.P.); (D.M.); Tel.: +385-51-688-266 (S.K.P.); +385-91-500-8676 (D.M.)
| |
Collapse
|
14
|
Kumar LRG, Paul PT, Anas KK, Tejpal CS, Chatterjee NS, Anupama TK, Mathew S, Ravishankar CN. Phlorotannins-bioactivity and extraction perspectives. JOURNAL OF APPLIED PHYCOLOGY 2022; 34:2173-2185. [PMID: 35601997 PMCID: PMC9112266 DOI: 10.1007/s10811-022-02749-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 05/09/2023]
Abstract
Phlorotannins, a seaweed based class of polyphenolic compounds, have proven to possess potential bioactivities such as antioxidant, antimicrobial, anti-allergic, anti-diabetic, anti-inflammatory, anti-cancerous, neuroprotection etc. These bioactivities have further increased demand globally and sustainable techniques such as supercritical fluid extraction, microwave assisted extraction, enzyme assisted extraction, extraction using deep eutectic solvents etc. are being explored currently for production of phlorotannin-rich extracts. In spite of such well documented bioactivities, very few phlorotannin-based nutraceuticals are available commercially which highlights the significance of generating consumer awareness about their physiological benefits. However, for industry level commercialization accurate quantification of phlorotannins with respect to the different classes is vital requiring sophisticated analytical techniques such as mass spectrometry, 1H-NMR spectroscopy etc. owing to the wide structural diversity. This review summarizes the extraction and bioactivities of phlorotannins based on the findings of in vivo and in vitro studies.
Collapse
Affiliation(s)
- Lekshmi R. G. Kumar
- ICAR-Central Institute of Fisheries Technology (CIFT), Cochin-29, Cochin, India
| | - Preethy Treesa Paul
- ICAR-Central Institute of Fisheries Technology (CIFT), Cochin-29, Cochin, India
| | - K. K. Anas
- ICAR-Central Institute of Fisheries Technology (CIFT), Cochin-29, Cochin, India
| | - C. S. Tejpal
- ICAR-Central Institute of Fisheries Technology (CIFT), Cochin-29, Cochin, India
| | - N. S. Chatterjee
- ICAR-Central Institute of Fisheries Technology (CIFT), Cochin-29, Cochin, India
| | - T. K. Anupama
- ICAR-Central Institute of Fisheries Technology (CIFT), Veraval Research Centre, Veraval, India
| | - Suseela Mathew
- ICAR-Central Institute of Fisheries Technology (CIFT), Cochin-29, Cochin, India
| | - C. N. Ravishankar
- ICAR-Central Institute of Fisheries Technology (CIFT), Cochin-29, Cochin, India
| |
Collapse
|
15
|
Polat S, Trif M, Rusu A, Šimat V, Čagalj M, Alak G, Meral R, Özogul Y, Polat A, Özogul F. Recent advances in industrial applications of seaweeds. Crit Rev Food Sci Nutr 2021:1-30. [PMID: 34875930 DOI: 10.1080/10408398.2021.2010646] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Seaweeds have been generally utilized as food and alternative medicine in different countries. They are specifically used as a raw material for wine, cheese, soup, tea, noodles, etc. In addition, seaweeds are potentially good resources of protein, vitamins, minerals, carbohydrates, essential fatty acids and dietary fiber. The quality and quantity of biologically active compounds in seaweeds depend on season and harvesting period, seaweed geolocation as well as ecological factors. Seaweeds or their extracts have been studied as innovative sources for a variety of bioactive compounds such as polyunsaturated fatty acids, polyphenols, carrageenan, fucoidan, etc. These secondary metabolites have been shown to have antioxidant, antimicrobial, antiviral, anticancer, antidiabetic, anti-inflammatory, anti-aging, anti-obesity and anti-tumour properties. They have been used in pharmaceutical/medicine, and food industries since bioactive compounds from seaweeds are regarded as safe and natural. Therefore, this article provides up-to-date information on the applications of seaweed in different industries such as pharmaceutical, biomedical, cosmetics, dermatology and agriculture. Further studies on innovative extraction methods, safety issue and health-promoting properties should be reconsidered. Moreover, the details of the molecular mechanisms of seaweeds and their bioactive compounds for physiological activities are to be clearly elucidated.
Collapse
Affiliation(s)
- Sevim Polat
- Department of Marine Biology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Monica Trif
- Centre for Innovative Process Engineering (CENTIV) GmbH, Syke, Germany
| | - Alexandru Rusu
- CENCIRA Agrofood Research and Innovation Centre, Cluj-Napoca, Romania
| | - Vida Šimat
- University Department of Marine Studies, University of Split, Split, Croatia
| | - Martina Čagalj
- University Department of Marine Studies, University of Split, Split, Croatia
| | - Gonca Alak
- Department of Seafood Processing Technology, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Raciye Meral
- Department of Food Engineering, Faculty of Engineering, Van Yüzüncü Yıl University, Van, Turkey
| | - Yesim Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Abdurahman Polat
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| |
Collapse
|
16
|
Singhal S, Kumar Y, Badgujar PC. Effect of Hydrothermal Processing on Physico-chemical Properties and Antioxidant Activity of Edible Brown Seaweed Sargassum wightii. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.1987607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Somya Singhal
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana, India
| | - Yogesh Kumar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana, India
| | - Prarabdh C. Badgujar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana, India
| |
Collapse
|
17
|
Catarino MD, Fernandes I, Oliveira H, Carrascal M, Ferreira R, Silva AMS, Cruz MT, Mateus N, Cardoso SM. Antitumor Activity of Fucus vesiculosus-Derived Phlorotannins through Activation of Apoptotic Signals in Gastric and Colorectal Tumor Cell Lines. Int J Mol Sci 2021; 22:7604. [PMID: 34299223 PMCID: PMC8307049 DOI: 10.3390/ijms22147604] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
Seaweeds are one of the largest producers of biomass in the marine environment and a source of multiple bioactive metabolites with valuable health benefits. Among these, phlorotannins have been widely recognized for their promising bioactive properties. The potential antitumor capacity of Fucus vesiculosus-derived phlorotannins remains, however, poorly explored, especially in gastrointestinal tract-related tumors. Therefore, this work aimed to evaluate the cytotoxic properties and possible mechanisms by which F. vesiculosus crude extract (CRD), phlorotannin-rich extract (EtOAc), and further phlorotannin-purified fractions (F1-F9) trigger cell death on different tumor cell lines of the gastrointestinal tract, using flow cytometry. The results indicate that F. vesiculosus samples exert specific cytotoxicity against tumor cell lines without affecting the viability of normal cells. Moreover, it was found that, among the nine different phlorotannin fractions tested, F5 was the most active against both Caco-2 colorectal and MKN-28 gastric cancer cells, inducing death via activation of both apoptosis and necrosis. The UHPLC-MS analysis of this fraction revealed, among others, the presence of a compound tentatively identified as eckstolonol and another as fucofurodiphlorethol, which could be mainly responsible for the promising cytotoxic effects observed in this sample. Overall, the results herein reported contribute to a better understanding of the mechanisms behind the antitumor properties of F. vesiculosus phlorotannin-rich extracts.
Collapse
Affiliation(s)
- Marcelo D. Catarino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.D.C.); (R.F.); (A.M.S.S.)
| | - Iva Fernandes
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (I.F.); (H.O.); (N.M.)
| | - Hélder Oliveira
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (I.F.); (H.O.); (N.M.)
| | - Mylene Carrascal
- CNC.IBILI, Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, 3000-548 Coimbra, Portugal; (M.C.); (M.T.C.)
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.D.C.); (R.F.); (A.M.S.S.)
| | - Artur M. S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.D.C.); (R.F.); (A.M.S.S.)
| | - Maria Teresa Cruz
- CNC.IBILI, Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, 3000-548 Coimbra, Portugal; (M.C.); (M.T.C.)
| | - Nuno Mateus
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (I.F.); (H.O.); (N.M.)
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.D.C.); (R.F.); (A.M.S.S.)
| |
Collapse
|
18
|
Park JJ, Lee WY. Optimization of Ultrasound-Assisted Extraction of Anti-Glycation Agents from Ecklonia cava. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.1924906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Jong Jin Park
- School of Food Science and Technology, Kyungpook National University, Daegu, Korea
| | - Won Young Lee
- School of Food Science and Technology, Kyungpook National University, Daegu, Korea
| |
Collapse
|
19
|
Catarino MD, Amarante SJ, Mateus N, Silva AMS, Cardoso SM. Brown Algae Phlorotannins: A Marine Alternative to Break the Oxidative Stress, Inflammation and Cancer Network. Foods 2021; 10:foods10071478. [PMID: 34202184 PMCID: PMC8307260 DOI: 10.3390/foods10071478] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 02/07/2023] Open
Abstract
According to the WHO, cancer was responsible for an estimated 9.6 million deaths in 2018, making it the second global leading cause of death. The main risk factors that lead to the development of this disease include poor behavioral and dietary habits, such as tobacco use, alcohol use and lack of fruit and vegetable intake, or physical inactivity. In turn, it is well known that polyphenols are deeply implicated with the lower rates of cancer in populations that consume high levels of plant derived foods. In this field, phlorotannins have been under the spotlight in recent years since they have shown exceptional bioactive properties, with great interest for application in food and pharmaceutical industries. Among their multiple bioactive properties, phlorotannins have revealed the capacity to interfere with several biochemical mechanisms that regulate oxidative stress, inflammation and tumorigenesis, which are central aspects in the pathogenesis of cancer. This versatility and ability to act either directly or indirectly at different stages and mechanisms of cancer growth make these compounds highly appealing for the development of new therapeutical strategies to address this world scourge. The present manuscript revises relevant studies focusing the effects of phlorotannins to counteract the oxidative stress-inflammation network, emphasizing their potential for application in cancer prevention and/or treatment.
Collapse
Affiliation(s)
- Marcelo D. Catarino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.D.C.); (S.J.A.); (A.M.S.S.)
| | - Sónia J. Amarante
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.D.C.); (S.J.A.); (A.M.S.S.)
| | - Nuno Mateus
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal;
| | - Artur M. S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.D.C.); (S.J.A.); (A.M.S.S.)
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.D.C.); (S.J.A.); (A.M.S.S.)
- Correspondence: ; Tel.: +351-234-370-360; Fax: +351-234-370-084
| |
Collapse
|
20
|
Shannon E, Conlon M, Hayes M. Seaweed Components as Potential Modulators of the Gut Microbiota. Mar Drugs 2021; 19:358. [PMID: 34201794 PMCID: PMC8303941 DOI: 10.3390/md19070358] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/20/2021] [Accepted: 06/20/2021] [Indexed: 12/11/2022] Open
Abstract
Macroalgae, or seaweeds, are a rich source of components which may exert beneficial effects on the mammalian gut microbiota through the enhancement of bacterial diversity and abundance. An imbalance of gut bacteria has been linked to the development of disorders such as inflammatory bowel disease, immunodeficiency, hypertension, type-2-diabetes, obesity, and cancer. This review outlines current knowledge from in vitro and in vivo studies concerning the potential therapeutic application of seaweed-derived polysaccharides, polyphenols and peptides to modulate the gut microbiota through diet. Polysaccharides such as fucoidan, laminarin, alginate, ulvan and porphyran are unique to seaweeds. Several studies have shown their potential to act as prebiotics and to positively modulate the gut microbiota. Prebiotics enhance bacterial populations and often their production of short chain fatty acids, which are the energy source for gastrointestinal epithelial cells, provide protection against pathogens, influence immunomodulation, and induce apoptosis of colon cancer cells. The oral bioaccessibility and bioavailability of seaweed components is also discussed, including the advantages and limitations of static and dynamic in vitro gastrointestinal models versus ex vivo and in vivo methods. Seaweed bioactives show potential for use in prevention and, in some instances, treatment of human disease. However, it is also necessary to confirm these potential, therapeutic effects in large-scale clinical trials. Where possible, we have cited information concerning these trials.
Collapse
Affiliation(s)
- Emer Shannon
- Food Biosciences, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland;
- CSIRO Health and Biosecurity, Kintore Avenue, Adelaide, SA 5000, Australia;
| | - Michael Conlon
- CSIRO Health and Biosecurity, Kintore Avenue, Adelaide, SA 5000, Australia;
| | - Maria Hayes
- Food Biosciences, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland;
| |
Collapse
|
21
|
Ferreira CAM, Félix R, Félix C, Januário AP, Alves N, Novais SC, Dias JR, Lemos MFL. A Biorefinery Approach to the Biomass of the Seaweed Undaria pinnatifida (Harvey Suringar, 1873): Obtaining Phlorotannins-Enriched Extracts for Wound Healing. Biomolecules 2021; 11:461. [PMID: 33808694 PMCID: PMC8003497 DOI: 10.3390/biom11030461] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/27/2022] Open
Abstract
Brown seaweeds are recognized sources of compounds with a wide range of properties and applications. Within these compounds, phlorotannins are known to possess several bioactivities (e.g., antioxidant, anti-inflammatory, and antimicrobial) with potential to improve wound healing. To obtain phlorotannins enriched extracts from Undaria pinnatifida, a biorefinery was set using low-cost industry-friendly methodologies, such as sequential solid-liquid extraction and liquid-liquid extraction. The obtained extracts were screened for their antioxidant and antimicrobial activity against five common wound pathogens and for their anti-inflammatory potential. The ethanolic wash fraction (wE100) had the highest antioxidant activity (114.61 ± 10.04 mmol·mg-1 extract by Diphenyl-1-picrylhydrazyl (DPPH) and 6.56 ± 1.13 mM eq. Fe II·mg-1 extract by and Ferric Reducing Antioxidant Power (FRAP)), acting efficiently against Gram-negative (Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacteria, and showing a nitric oxide production inhibition over 47% when used at 0.01 µg·mL-1. NMR and FTIR chemical characterization suggested that phlorotannins are present. Obtained fraction wE100 proved to be a promising candidate for further inclusion as wound healing agents, while the remaining fractions analyzed are potential sources for other biotechnological applications, giving emphasis to a biorefinery and circular economy framework to add value to this seaweed and the industry.
Collapse
Affiliation(s)
- Carolina A. M. Ferreira
- MARE—Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2050-641 Peniche, Portugal; (C.A.M.F.); (R.F.); (C.F.); (A.P.J.); (S.C.N.)
- CDRSP—Centre for Rapid and Sustainable Product Development, Politécnico de Leiria, 2030-028 Marinha Grande, Portugal; (N.A.); (J.R.D.)
| | - Rafael Félix
- MARE—Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2050-641 Peniche, Portugal; (C.A.M.F.); (R.F.); (C.F.); (A.P.J.); (S.C.N.)
| | - Carina Félix
- MARE—Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2050-641 Peniche, Portugal; (C.A.M.F.); (R.F.); (C.F.); (A.P.J.); (S.C.N.)
| | - Adriana P. Januário
- MARE—Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2050-641 Peniche, Portugal; (C.A.M.F.); (R.F.); (C.F.); (A.P.J.); (S.C.N.)
| | - Nuno Alves
- CDRSP—Centre for Rapid and Sustainable Product Development, Politécnico de Leiria, 2030-028 Marinha Grande, Portugal; (N.A.); (J.R.D.)
| | - Sara C. Novais
- MARE—Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2050-641 Peniche, Portugal; (C.A.M.F.); (R.F.); (C.F.); (A.P.J.); (S.C.N.)
| | - Juliana R. Dias
- CDRSP—Centre for Rapid and Sustainable Product Development, Politécnico de Leiria, 2030-028 Marinha Grande, Portugal; (N.A.); (J.R.D.)
| | - Marco F. L. Lemos
- MARE—Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2050-641 Peniche, Portugal; (C.A.M.F.); (R.F.); (C.F.); (A.P.J.); (S.C.N.)
| |
Collapse
|
22
|
Mateos R, Pérez-Correa JR, Domínguez H. Bioactive Properties of Marine Phenolics. Mar Drugs 2020; 18:E501. [PMID: 33007997 PMCID: PMC7601137 DOI: 10.3390/md18100501] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Phenolic compounds from marine organisms are far less studied than those from terrestrial sources since their structural diversity and variability require powerful analytical tools. However, both their biological relevance and potential properties make them an attractive group deserving increasing scientific interest. The use of efficient extraction and, in some cases, purification techniques can provide novel bioactives useful for food, nutraceutical, cosmeceutical and pharmaceutical applications. The bioactivity of marine phenolics is the consequence of their enzyme inhibitory effect and antimicrobial, antiviral, anticancer, antidiabetic, antioxidant, or anti-inflammatory activities. This review presents a survey of the major types of phenolic compounds found in marine sources, as well as their reputed effect in relation to the occurrence of dietary and lifestyle-related diseases, notably type 2 diabetes mellitus, obesity, metabolic syndrome, cancer and Alzheimer's disease. In addition, the influence of marine phenolics on gut microbiota and other pathologies is also addressed.
Collapse
Affiliation(s)
- Raquel Mateos
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain;
| | - José Ricardo Pérez-Correa
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Macul, Santiago 7810000, Chile;
| | - Herminia Domínguez
- CINBIO, Department of Chemical Engineering, Faculty of Sciences, Campus Ourense, Universidade de Vigo, As Lagoas, 32004 Ourense, Spain
| |
Collapse
|
23
|
Silva A, Silva SA, Carpena M, Garcia-Oliveira P, Gullón P, Barroso MF, Prieto M, Simal-Gandara J. Macroalgae as a Source of Valuable Antimicrobial Compounds: Extraction and Applications. Antibiotics (Basel) 2020; 9:E642. [PMID: 32992802 PMCID: PMC7601383 DOI: 10.3390/antibiotics9100642] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
In the last few decades, attention on new natural antimicrobial compounds has arisen due to a change in consumer preferences and the increase in the number of resistant microorganisms. Macroalgae play a special role in the pursuit of new active molecules as they have been traditionally consumed and are known for their chemical and nutritional composition and their biological properties, including antimicrobial activity. Among the bioactive molecules of algae, proteins and peptides, polysaccharides, polyphenols, polyunsaturated fatty acids and pigments can be highlighted. However, for the complete obtaining and incorporation of these molecules, it is essential to achieve easy, profitable and sustainable recovery of these compounds. For this purpose, novel liquid-liquid and solid-liquid extraction techniques have been studied, such as supercritical, ultrasound, microwave, enzymatic, high pressure, accelerated solvent and intensity pulsed electric fields extraction techniques. Moreover, different applications have been proposed for these compounds, such as preservatives in the food or cosmetic industries, as antibiotics in the pharmaceutical industry, as antibiofilm, antifouling, coating in active packaging, prebiotics or in nanoparticles. This review presents the main antimicrobial potential of macroalgae, their specific bioactive compounds and novel green extraction technologies to efficiently extract them, with emphasis on the antibacterial and antifungal data and their applications.
Collapse
Affiliation(s)
- Aurora Silva
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain; (A.S.); (M.C.); (P.G.-O.); (P.G.)
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr António Bernardino de Almeida 431, 4200-072 Porto, Portugal;
| | - Sofia A. Silva
- Departamento de Química, Universidade de Aveiro, 3810-168 Aveiro, Portugal;
| | - M. Carpena
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain; (A.S.); (M.C.); (P.G.-O.); (P.G.)
| | - P. Garcia-Oliveira
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain; (A.S.); (M.C.); (P.G.-O.); (P.G.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - P. Gullón
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain; (A.S.); (M.C.); (P.G.-O.); (P.G.)
| | - M. Fátima Barroso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr António Bernardino de Almeida 431, 4200-072 Porto, Portugal;
| | - M.A. Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain; (A.S.); (M.C.); (P.G.-O.); (P.G.)
| | - J. Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain; (A.S.); (M.C.); (P.G.-O.); (P.G.)
| |
Collapse
|
24
|
Getachew AT, Jacobsen C, Holdt SL. Emerging Technologies for the Extraction of Marine Phenolics: Opportunities and Challenges. Mar Drugs 2020; 18:E389. [PMID: 32726930 PMCID: PMC7459876 DOI: 10.3390/md18080389] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
Natural phenolic compounds are important classes of plant, microorganism, and algal secondary metabolites. They have well-documented beneficial biological activities. The marine environment is less explored than other environments but have huge potential for the discovery of new unique compounds with potential applications in, e.g., food, cosmetics, and pharmaceutical industries. To survive in a very harsh and challenging environment, marine organisms like several seaweed (macroalgae) species produce and accumulate several secondary metabolites, including marine phenolics in the cells. Traditionally, these compounds were extracted from their sample matrix using organic solvents. This conventional extraction method had several drawbacks such as a long extraction time, low extraction yield, co-extraction of other compounds, and usage of a huge volume of one or more organic solvents, which consequently results in environmental pollution. To mitigate these drawbacks, newly emerging technologies, such as enzyme-assisted extraction (EAE), microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), pressurized liquid extraction (PLE), and supercritical fluid extraction (SFE) have received huge interest from researchers around the world. Therefore, in this review, the most recent and emerging technologies are discussed for the extraction of marine phenolic compounds of interest for their antioxidant and other bioactivity in, e.g., cosmetic and food industry. Moreover, the opportunities and the bottleneck for upscaling of these technologies are also presented.
Collapse
Affiliation(s)
| | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, Kemitorvet Building 204, 2800 Kgs Lyngby, Denmark; (A.T.G.); (S.L.H.)
| | | |
Collapse
|