1
|
Jesus F, Mesquita F, Serpa D, Virumbrales Aldama E, Magalhães L, Ré A, Campos I, Abrantes N, Pereira JL, Gonçalves FJM, Nogueira AJA, Gonçalves AMM. Effects of wildfire ash on the fatty acid and sugar profiles of bivalves - A comparative study of a freshwater and a marine species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125540. [PMID: 39694314 DOI: 10.1016/j.envpol.2024.125540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Wildfires can impact both freshwater and marine ecosystems through post-fire runoff, but its effects on bivalves, particularly those living in marine habitats, remain largely overlooked. While evidence exists that wildfire ash can alter the fatty acid (FA) and sugar profiles of aquatic biota, its influence on the biochemical profiles of bivalves have not been addressed to date. This study aimed to assess the effects of ash exposure on the FA and sugar profiles of two bivalve species used for human consumption: a freshwater clam (Corbicula fluminea) and a marine bivalve (Cerastoderma edule), additionally evaluating potential effects on their nutritional value. Both species were exposed to environmentally relevant concentrations of aqueous extracts of Eucalypt ash (AEAs) for 96 h. Results showed species-specific responses to ash extracts exposure, with more pronounced effects on C. edule. This species exhibited a trend for reduced FA content, statistically significant for C17:0 but also evident for unsaturated FAs, which is relevant for human health as they represent a decrease in the nutritional value. Conversely, an increase in the sugar content of this species was observed with increasing AEA concentrations, despite only statistically significant for galactose and xylose. In contrast, the clams exhibited only minor effects, showing a trend for increased FA and decreased sugar contents, but only significant for the monounsaturated FA content. This study suggests a higher sensitivity of marine bivalves to wildfire ash compared to their freshwater counterparts. Moreover, it highlights, for the first time, the potential of post-fire runoff to alter the biochemical profiles of bivalve species, raising concerns about broader impacts on aquatic trophic webs and human health, an issue that becomes particularly relevant given the forecasted increase in wildfire's frequency and extension due to global warming.
Collapse
Affiliation(s)
- Fátima Jesus
- CESAM, Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Filipa Mesquita
- CESAM, Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Dalila Serpa
- CESAM, Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Elisa Virumbrales Aldama
- Faculty of Veterinary and Experimental Sciences, Catholic University of Valencia, Calle Guillem de Castro 94, 46001, Valencia, Spain
| | - Luísa Magalhães
- CESAM, Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ana Ré
- CESAM, Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Isabel Campos
- CESAM, Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Nelson Abrantes
- CESAM, Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Joana L Pereira
- CESAM, Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Fernando J M Gonçalves
- CESAM, Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - António J A Nogueira
- CESAM, Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ana M M Gonçalves
- CESAM, Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal; CFE, Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| |
Collapse
|
2
|
Linares-Maurizi A, Awad R, Durbec A, Reversat G, Gros V, Galano JM, Bertrand-Michel J, Durand T, Pradelles R, Oger C, Vigor C. Stress-Induced Production of Bioactive Oxylipins in Marine Microalgae. Mar Drugs 2024; 22:406. [PMID: 39330287 PMCID: PMC11432788 DOI: 10.3390/md22090406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Microalgae, stemming from a complex evolutionary lineage, possess a metabolic composition influenced by their evolutionary journey. They have the capacity to generate diverse polyunsaturated fatty acids (PUFAs), akin to those found in terrestrial plants and oily fish. Also, because of their numerous double bonds, these metabolic compounds are prone to oxidation processes, leading to the creation of valuable bioactive molecules called oxylipins. Moreover, owing to their adaptability across various environments, microalgae offer an intriguing avenue for biosynthesizing these compounds. Thus, modifying the culture conditions could potentially impact the profiles of oxylipins. Indeed, the accumulation of oxylipins in microalgae is subject to the influence of growth conditions, nutrient availability, and stressors, and adjusting these factors can enhance their production in microalgae culture. Consequently, the present study scrutinized the LC-MS/MS profiles of oxylipins from three marine microalgae species (two Haptagophytes and one Chlorophyte) cultivated in 1 L of photobioreactors under varying stress-inducing conditions, such as the introduction of H2O2, EtOAc, and NaCl, during their exponential growth phase. Approximately 50 oxylipins were identified, exhibiting different concentrations depending on the species and growth circumstances. This research suggests that microalgae metabolisms can be steered toward the production of bioactive oxylipins through modifications in the culture conditions. In this instance, the application of a low dose of hydrogen peroxide to Mi 124 appears to stimulate the production of nonenzymatic oxylipins. For Mi136, it is the application of salt stress that seems to increase the overall production of oxylipins. In the case of Mi 168, either a low concentration of H2O2 or a high concentration of AcOEt appears to have this effect.
Collapse
Affiliation(s)
- Amandyne Linares-Maurizi
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, 34093 Montpellier, France (R.A.); (G.R.); (V.G.); (J.-M.G.); (T.D.); (C.O.)
- Microphyt, 713 Route de Mudaison, 34670 Baillargues, France;
| | - Rana Awad
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, 34093 Montpellier, France (R.A.); (G.R.); (V.G.); (J.-M.G.); (T.D.); (C.O.)
| | - Anaelle Durbec
- MetaToul, MetaboHUB, Inserm/UPS UMR 1048, I2MC, Institut des Maladies Métaboliques et Cardiovasculaires, 31077 Toulouse, France; (A.D.); (J.B.-M.)
| | - Guillaume Reversat
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, 34093 Montpellier, France (R.A.); (G.R.); (V.G.); (J.-M.G.); (T.D.); (C.O.)
| | - Valérie Gros
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, 34093 Montpellier, France (R.A.); (G.R.); (V.G.); (J.-M.G.); (T.D.); (C.O.)
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, 34093 Montpellier, France (R.A.); (G.R.); (V.G.); (J.-M.G.); (T.D.); (C.O.)
| | - Justine Bertrand-Michel
- MetaToul, MetaboHUB, Inserm/UPS UMR 1048, I2MC, Institut des Maladies Métaboliques et Cardiovasculaires, 31077 Toulouse, France; (A.D.); (J.B.-M.)
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, 34093 Montpellier, France (R.A.); (G.R.); (V.G.); (J.-M.G.); (T.D.); (C.O.)
| | - Rémi Pradelles
- Microphyt, 713 Route de Mudaison, 34670 Baillargues, France;
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, 34093 Montpellier, France (R.A.); (G.R.); (V.G.); (J.-M.G.); (T.D.); (C.O.)
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, 34093 Montpellier, France (R.A.); (G.R.); (V.G.); (J.-M.G.); (T.D.); (C.O.)
| |
Collapse
|
3
|
Kühn J, Brandsch C, Kiourtzidis M, Nier A, Bieler S, Matthäus B, Griehl C, Stangl GI. Microalgae-derived sterols do not reduce the bioavailability of oral vitamin D 3 in mice. INT J VITAM NUTR RES 2023; 93:507-517. [PMID: 36124519 DOI: 10.1024/0300-9831/a000766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Microalgae have drawn increasing attention as sustainable food sources, also because of their lipid-lowering phytosterols. As phytosterols are also discussed critically regarding their effect on the availability of fat-soluble vitamins, this study aimed to investigate microalgae-derived phytosterols and their effect on vitamin D status. GC-MS analysis showed large variations in the phytosterol profiles of microalgal species. The most frequent sterols were β-sitosterol and stigmasterol. To investigate their effects on vitamin D status, 40 mice were randomized to four groups and fed a vitamin D3-adequate (25 μg/kg) Western-style diet with 0% phytosterols (control) or 1% ergosterol (a fungal sterol not typical for microalgae), β-sitosterol or stigmasterol for four weeks. Contrary to the hypothesis that phytosterols adversely affect vitamin D uptake, mice fed β-sitosterol had significantly higher concentrations of vitamin D3 in plasma (3.15-fold, p<0.01), liver (3.15-fold, p<0.05), and skin (4.12-fold, p<0.005) than the control group. Small increases in vitamin D3 in plasma and skin were also observed in mice fed stigmasterol. In contrast, vitamin D3 levels in the ergosterol and control groups did not differ. The increased tissue levels of vitamin D3 in mice fed β-sitosterol and stigmasterol were not attributable to the observed reduction in liver triglycerides in these groups. The data rather suggest that changes in bile acid profiles were responsible for the beneficial effect of microalgae sterols on the bioavailability of vitamin D3. In conclusion, consumption of microalgae might not adversely affect vitamin D status.
Collapse
Affiliation(s)
- Julia Kühn
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Corinna Brandsch
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Mikis Kiourtzidis
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Anika Nier
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Simone Bieler
- Competence Center Algal Biotechnology, Department of Applied Biosciences and Process Technology, Anhalt University of Applied Sciences, Koethen, Germany
| | - Bertrand Matthäus
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Cereals, Detmold, Germany
| | - Carola Griehl
- Competence Center Algal Biotechnology, Department of Applied Biosciences and Process Technology, Anhalt University of Applied Sciences, Koethen, Germany
| | - Gabriele I Stangl
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany
| |
Collapse
|
4
|
Pereira V, Pires SFS, Rodrigues ACM, Ofoegbu P, Bem-Haja P, Soares AMVM, Conceição LEC, Rocha RJM, Pacheco M. Microencapsulated Diets as an Alternative to Bivalve Feeding: Particle Size and Microalga Content Affect Feed Intake. Animals (Basel) 2023; 13:2009. [PMID: 37370519 DOI: 10.3390/ani13122009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Bivalve mollusks represent a nutritious source with a low environmental impact; as a result, they are one of the most attractive aquaculture options. Advances in microencapsulation technology offer great potential to face key bivalve nutrition problems, and an alga-based microencapsulated diet can turn enriched bivalves into potential functional foods. The central goal of this study was the evaluation of food intake as a function of particle size and microalga content following the supply of four microencapsulated diets, incorporating as core material Nannochloropsis sp. or Tetraselmis sp. in 20 or 40 µm diameter pellets (diets N20, T20, N40, and T40, respectively) in five bivalve species (Magallana gigas, Solen marginatus, Ruditapes decussatus, Ruditapes philippinarum, and Cerastoderma edule). Overall, all tested diets were easily ingested, although food intake was higher for N20 (except for the S. marginatus, which showed a higher rate for the diet T40). Concerning a size-related analysis, C. edule and S. marginatus favored, respectively, smaller and bigger pellet-sized diets, with no signs of selectivity for microalga species. The diet T20 was the lesser ingested, except for C. edule. This knowledge enables a better selection of feed with appropriate and species-adjusted profiles, contributing to the optimization of microencapsulated diets for bivalve rearing and a better final product.
Collapse
Affiliation(s)
- Vitória Pereira
- CESAM-Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sílvia F S Pires
- CESAM-Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Andreia C M Rodrigues
- CESAM-Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pearl Ofoegbu
- CESAM-Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro Bem-Haja
- CINTESIS@RISE-Center for Health Technology and Services Research, Department of Education and Psychology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- CESAM-Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Rui J M Rocha
- CESAM-Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
- Riasearch, Lda., 3870-168 Murtosa, Portugal
| | - Mário Pacheco
- CESAM-Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
5
|
Kumar Sethukali A, Darshaka Jayasena D. Fatty Acid Profiles of Venus Clam ( Marcia opima) and Blood Cockles ( Anadara granosa) Harvested at Different Geographical Locations in the Northwest Coast of Sri Lanka. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2048155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Anand Kumar Sethukali
- Department of Animal Science, Faculty of Agriculture, University of Jaffna, Kilinochchi, Sri Lanka
| | - Dinesh Darshaka Jayasena
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University of Sri Lanka, Badulla, Sri Lanka
| |
Collapse
|
6
|
Shin J, Song MH, Yu JW, Ko EY, Shang X, Oh JW, Keum YS, Saini RK. Anticancer Potential of Lipophilic Constituents of Eleven Shellfish Species Commonly Consumed in Korea. Antioxidants (Basel) 2021; 10:1629. [PMID: 34679763 PMCID: PMC8533504 DOI: 10.3390/antiox10101629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/21/2022] Open
Abstract
The present study was aimed to investigate the composition and contents and the major lipophilic compounds, including the sterols, fatty acids, and tocols of shellfish species. Moreover, to explore the antitumor activity of these lipophilic constituents, their cytotoxicity potentials were determined against five different human cancer cells, including colon carcinoma (HCT116), epithelial melanoma (A2058), glioblastoma multiforme (T98G), lung carcinoma (A549), and adenocarcinoma (HeLa). The results show a significant variation in the contents and composition of lipophilic constituents among the studied species. The highest omega-3 (n-3) polyunsaturated fatty acids (PUFAs) were recorded from arrow squid and pacific oysters, accounting for 53.2% and 53.0% of their total fatty acids, respectively. However, the highest cholesterol content was also recorded in arrow squid (154.4 mg/100 g; 92.6% of total sterols). In contrast, in the Japanese littleneck, Yesso scallop, and common orient clam, cholesterol was just 17.1%, 18.3%, and 18.9% of total sterols, respectively, making them the richest source of non-cholesterol sterols (NCS). Lipids extracted from shellfish species showed ABTS+•- and DPPH•-scavenging activities. In the cytotoxicity analysis, lipids extracted from the Argentine red shrimp showed the highest cytotoxicity against glioblastoma multiforme T98G cells, with an IC50 value of 12.3 µg/mL. The composition and cytotoxicity data reported herein may help explore the nutritional and anticancer potentials of shellfish species.
Collapse
Affiliation(s)
- Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea; (J.S.); (J.-W.O.)
| | - Min-Ho Song
- Department of Crop Science, Konkuk University, Seoul 143-701, Korea; (M.-H.S.); (J.-W.Y.); (Y.-S.K.)
| | - Ji-Woo Yu
- Department of Crop Science, Konkuk University, Seoul 143-701, Korea; (M.-H.S.); (J.-W.Y.); (Y.-S.K.)
| | - Eun-Young Ko
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 143-701, Korea;
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, China;
| | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea; (J.S.); (J.-W.O.)
| | - Young-Soo Keum
- Department of Crop Science, Konkuk University, Seoul 143-701, Korea; (M.-H.S.); (J.-W.Y.); (Y.-S.K.)
| | - Ramesh Kumar Saini
- Department of Crop Science, Konkuk University, Seoul 143-701, Korea; (M.-H.S.); (J.-W.Y.); (Y.-S.K.)
| |
Collapse
|
7
|
Jongsawatsataporn N, Suzuki Y, Tanaka R. Evaluation of Functional Chemical Components and Radical Scavenging Activity in 11 Fermented Fish Products from Thailand. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.1937422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Nichawee Jongsawatsataporn
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Yuka Suzuki
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Ryusuke Tanaka
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
8
|
Sañé E, Del Mondo A, Ambrosino L, Smerilli A, Sansone C, Brunet C. The Recent Advanced in Microalgal Phytosterols: Bioactive Ingredients Along With Human-Health Driven Potential Applications. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1938115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Elisabet Sañé
- Stazione Zoologica Anton Dohrn, Istituto Nazionale Di Biologia, Ecologia E Biotecnologie Marine, Napoli, Italy
| | - Angelo Del Mondo
- Stazione Zoologica Anton Dohrn, Istituto Nazionale Di Biologia, Ecologia E Biotecnologie Marine, Napoli, Italy
| | - Luca Ambrosino
- Stazione Zoologica Anton Dohrn, Istituto Nazionale Di Biologia, Ecologia E Biotecnologie Marine, Napoli, Italy
| | - Arianna Smerilli
- Stazione Zoologica Anton Dohrn, Istituto Nazionale Di Biologia, Ecologia E Biotecnologie Marine, Napoli, Italy
| | - Clementina Sansone
- Stazione Zoologica Anton Dohrn, Istituto Nazionale Di Biologia, Ecologia E Biotecnologie Marine, Napoli, Italy
| | - Christophe Brunet
- Stazione Zoologica Anton Dohrn, Istituto Nazionale Di Biologia, Ecologia E Biotecnologie Marine, Napoli, Italy
| |
Collapse
|