1
|
Hong SM, Lee DJ, Lee DG, Yeom JH, Lee JW, Chung N. Gold nanoparticle resveratrol complex increases apoptosis in KRAS mutant pancreatic cancer cells. Sci Rep 2025; 15:13760. [PMID: 40258879 PMCID: PMC12012166 DOI: 10.1038/s41598-025-98124-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 04/09/2025] [Indexed: 04/23/2025] Open
Abstract
The KRAS G12D mutation is the most prevalent type of pancreatic cancer and is found in about 35% of patients. Numerous natural chemicals are frequently investigated in cancer treatment to decrease side effects. Resveratrol (RVT) is a polyphenol that can promote cancer cell apoptosis and improve chemotherapy efficacy in cancers. To enhance delivery rate and efficacy, the size of about 30 nm gold nanoparticles (GNPs) was synthesized and conjugated to resveratrol via polyvinylpyrrolidone (GRs) for high bioavailability. Compared to RVT and GNPs, GRs had less inflammatory response and less toxicity on RAW 264.7 cells. This suggests that the toxicity of resveratrol can be alleviated by conjugation with gold nanoparticles. The viability of the human pancreatic cancer cell line (AsPC-1) decreased in sequence of GRs > RVT > GNPs, suggesting an enhanced anticancer effect of the GRs compared to resveratrol (RVT) alone. In addition, the extent of apoptosis was much bigger with GRs compared to RVT and GNPs. The apoptotic effects were confirmed with cell cycle arrest and expression of apoptosis-related genes and proteins. Thus, GRs had a better extent of anticancer effect than RVT, suggesting that GRs be considered as one of the prospective anti-cancer drugs for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Seung Myun Hong
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Deok Jae Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Dong Gun Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jae Ho Yeom
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jin-Woo Lee
- Medical Science Research Institute, Kyung Hee University Medical Center, Seoul, Republic of Korea.
| | - Namhyun Chung
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Zhou X, Zhang D, Han M, Ma Y, Li W, Yu N. Carbohydrate polymer-functionalized metal nanoparticles in cancer therapy: A review. Int J Biol Macromol 2025; 306:141235. [PMID: 39986501 DOI: 10.1016/j.ijbiomac.2025.141235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/31/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
Metal nanoparticles have been emerged as promising candidates in cancer therapy because of their large surface area, optical properties and ROS generation. Therefore, these nanoparticles are able to mediate cell death through hyperthermia, photothermal therapy and ROS-triggered apoptosis. The various metal nanoparticles including gold, silver and iron oxide nanostructures have been exploited for the theranostic application. Moreover, precision oncology and off-targeting features can be improved by metal nanoparticles. The modification of metal nanoparticles with carbohydrate polymers including chitosan, hyaluronic acid, cellulose, agarose, starch and pectin, among others can significantly improve their anti-cancer activities. Carbohydrate polymers have been idea for the purpose of drug delivery due to their biocompatibility, biodegradability and increasing nanoparticle stability. In addition, carbohydrate polymers are able to improve drug delivery, cellular uptake and sustained release of cargo. Such nanoparticles are capable of responding to the specific stimuli in the tumor microenvironment including pH and light. Furthermore, the carbohydrate polymer-modified metal nanoparticles can be utilized for the combination of chemotherapy, phototherapy and immunotherapy. Since the biocompatibility and long-term safety are critical factors for the clinical translation of nanoparticles, the modification of metal nanoparticles with carbohydrate polymers can improve this way to the application in clinic.
Collapse
Affiliation(s)
- Xi Zhou
- Department of Occupational Pulmonology, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China
| | - Dongbin Zhang
- Department of Anesthesiology, Affiliated Hospital Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Mingming Han
- Department of Pharmacy and Medical Devices, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China
| | - Yanhong Ma
- Department of Rehabilitation, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China.
| | - Wentao Li
- Department of Traditional Chinese Medicine, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China.
| | - Ning Yu
- Department of Occupational Pulmonology, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China.
| |
Collapse
|
3
|
Ashique S, Bhowmick M, Pal R, Khatoon H, Kumar P, Sharma H, Garg A, Kumar S, Das U. Multi drug resistance in Colorectal Cancer- approaches to overcome, advancements and future success. ADVANCES IN CANCER BIOLOGY - METASTASIS 2024; 10:100114. [DOI: 10.1016/j.adcanc.2024.100114] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
|
4
|
Nandy SK, Das S, Pandey S, Kalita P, Gupta MK, Kabra A, Wadhwa P, Kumar D. The futuristic applications of transition metal dichalcogenides for cancer therapy. LUMINESCENCE 2024; 39:e4771. [PMID: 38747206 DOI: 10.1002/bio.4771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/01/2024] [Accepted: 04/25/2024] [Indexed: 05/21/2024]
Abstract
The second-most common cause of death resulting from genetic mutations in DNA sequences is cancer. The difficulty in the field of anticancer research is the application of the traditional methods, which also affects normal cells. Mutations, genetic replication alterations, and chromosomal abnormalities have a direct impact on the effectiveness of anticancer drugs at different stages. Presently, therapeutic techniques utilize nanotechnology, transition metal dichalcogenides (TMDCs), and robotics. TMDCs are being increasingly employed in tumor therapy and biosensing applications due to their biocompatibility, adjustable bandgap, versatile functionality, exceptional photoelectric properties, and wide range of applications. This study reports the advancement of nanoplatforms based on TMDCs that are specifically engineered for responsive and intelligent cancer therapy. This article offers a thorough examination of the current challenges, future possibilities for theranostic applications using TMDCs, and recent progress in employing TMDCs for cancer therapy. Currently, there is significant interest in two-dimensional (2D) TMDCs nanomaterials as ultrathin unique physicochemical properties. These materials have attracted attention in various fields, including biomedicine. Due to their inherent ability to absorb near-infrared light and their exceptionally large surface area, significant efforts are being made to prepare multifunctional nanoplatforms based on 2D TMDCs.
Collapse
Affiliation(s)
- Shouvik Kumar Nandy
- Department of Pharmacology, School of Pharmacy, Techno India University, Kolkata, India
| | - Sattwik Das
- Department of Pharmacology, School of Pharmacy, Techno India University, Kolkata, India
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, Gyeongsan, Republic of Korea
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| | - Pallab Kalita
- University of Science and Technology Meghalaya, Ribhoi, India
| | - Manoj K Gupta
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh, India
| | - Atul Kabra
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, India
| | - Pankaj Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar - Delhi, Phagwara, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, India
| |
Collapse
|
5
|
Yun WS, Kim J, Lim DK, Kim DH, Jeon SI, Kim K. Recent Studies and Progress in the Intratumoral Administration of Nano-Sized Drug Delivery Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2225. [PMID: 37570543 PMCID: PMC10421122 DOI: 10.3390/nano13152225] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
Over the last 30 years, diverse types of nano-sized drug delivery systems (nanoDDSs) have been intensively explored for cancer therapy, exploiting their passive tumor targetability with an enhanced permeability and retention effect. However, their systemic administration has aroused some unavoidable complications, including insufficient tumor-targeting efficiency, side effects due to their undesirable biodistribution, and carrier-associated toxicity. In this review, the recent studies and advancements in intratumoral nanoDDS administration are generally summarized. After identifying the factors to be considered to enhance the therapeutic efficacy of intratumoral nanoDDS administration, the experimental results on the application of intratumoral nanoDDS administration to various types of cancer therapies are discussed. Subsequently, the reports on clinical studies of intratumoral nanoDDS administration are addressed in short. Intratumoral nanoDDS administration is proven with its versatility to enhance the tumor-specific accumulation and retention of therapeutic agents for various therapeutic modalities. Specifically, it can improve the efficacy of therapeutic agents with poor bioavailability by increasing their intratumoral concentration, while minimizing the side effect of highly toxic agents by restricting their delivery to normal tissues. Intratumoral administration of nanoDDS is considered to expand its application area due to its potent ability to improve therapeutic effects and relieve the systemic toxicities of nanoDDSs.
Collapse
Affiliation(s)
- Wan Su Yun
- Korea Institute of Science and Technology (KU-KIST), Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Jeongrae Kim
- Korea Institute of Science and Technology (KU-KIST), Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Dong-Kwon Lim
- Korea Institute of Science and Technology (KU-KIST), Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Dong-Hwee Kim
- Korea Institute of Science and Technology (KU-KIST), Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Seong Ik Jeon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kwangmeyung Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
6
|
Yefimova S, Onishchenko A, Klochkov V, Myasoedov V, Kot Y, Tryfonyuk L, Knigavko O, Maksimchuk P, Kökbaş U, Kalashnyk-Vakulenko Y, Arkatov A, Khanzhyn V, Prokopyuk V, Vyshnytska I, Tkachenko A. Rare-earth orthovanadate nanoparticles trigger Ca 2+-dependent eryptosis. NANOTECHNOLOGY 2023; 34:205101. [PMID: 36780664 DOI: 10.1088/1361-6528/acbb7f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Introduction. Rare-earth orthovanadate nanoparticles (ReVO4:Eu3+, Re = Gd, Y or La) are promising agents for photodynamic therapy of cancer due to their modifiable redox properties. However, their toxicity limits their application.Objective. The aim of this research was to elucidate pro-eryptotic effects of GdVO4:Eu3+and LaVO4:Eu3+nanoparticles with identification of underlying mechanisms of eryptosis induction and to determine their pharmacological potential in eryptosis-related diseases.Methods. Blood samples (n= 9) were incubated for 24 h with 0-10-20-40-80 mg l-1GdVO4:Eu3+or LaVO4:Eu3+nanoparticles, washed and used to prepare erythrocyte suspensions to analyze the cell membrane scrambling (annexin-V-FITC staining), cell shrinkage (forward scatter signaling), reactive oxygen species (ROS) generation through 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) staining and intracellular Ca2+levels via FLUO4 AM staining by flow cytometry. Internalization of europium-enabled luminescent GdVO4:Eu3+and LaVO4:Eu3+nanoparticles was assessed by confocal laser scanning microscopy.Results.Both nanoparticles triggered eryptosis at concentrations of 80 mg l-1. ROS-mediated mechanisms were not involved in rare-earth orthovanadate nanoparticles-induced eryptosis. Elevated cytosolic Ca2+concentrations were revealed even at subtoxic concentrations of nanoparticles. LaVO4:Eu3+nanoparticles increased intracellular calcium levels in a more pronounced way compared with GdVO4:Eu3+nanoparticles. Our data disclose that the small-sized (15 nm) GdVO4:Eu3+nanoparticles were internalized after a 24 h incubation, while the large-sized (∼30 nm) LaVO4:Eu3+nanoparticles were localized preferentially around erythrocytes.Conclusions.Both internalized GdVO4:Eu3+and non-internalized LaVO4:Eu3+nanoparticles (80 mg l-1) promote eryptosis of erythrocytes after a 24 h exposurein vitrovia Ca2+signaling without involvement of oxidative stress. Eryptosis is a promising model for assessing nanotoxicity.
Collapse
Affiliation(s)
- Svetlana Yefimova
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky ave, 61072 Kharkiv, Ukraine
| | - Anatolii Onishchenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave, 61022 Kharkiv, Ukraine
| | - Vladimir Klochkov
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky ave, 61072 Kharkiv, Ukraine
| | - Valeriy Myasoedov
- Department of Medical Biology, Kharkiv National Medical University, 4 Nauky ave, 61022 Kharkiv, Ukraine
| | - Yurii Kot
- Department of Biochemistry, V.N. Karazin Kharkiv National University, 4 Svobody sq, 61022 Kharkiv , Ukraine
| | - Liliya Tryfonyuk
- Institute of Health, National University of Water and Environmental Engineering, 11 Soborna st,33000 Rivne, Ukraine
| | - Oleksandr Knigavko
- Department of Urology, Nephrology and Andrology, Kharkiv National Medical University, 195 Moskovsky ave, 61002 Kharkiv, Ukraine
| | - Pavel Maksimchuk
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky ave, 61072 Kharkiv, Ukraine
| | - Umut Kökbaş
- Medical Biochemistry Department, Nevsehir Haci Bektas Veli University, 2000 Evler Mah. Zübeyde Hanım Cad. 50300 / Nevşehir, Turkey
| | - Yuliia Kalashnyk-Vakulenko
- Department of Otorhinolaryngology, Kharkiv National Medical University, 4 Nauky ave, 61022 Kharkiv, Ukraine
| | - Andrii Arkatov
- Department of Urology, Nephrology and Andrology, Kharkiv National Medical University, 195 Moskovsky ave, 61002 Kharkiv, Ukraine
| | - Vladyslav Khanzhyn
- Department of Urology, Nephrology and Andrology, Kharkiv National Medical University, 195 Moskovsky ave, 61002 Kharkiv, Ukraine
| | - Volodymyr Prokopyuk
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 23 Pereyaslavskaya st, 61015 Kharkiv, Ukraine
| | - Iryna Vyshnytska
- Saint James School of Medicine, Albert Lake Drive, The Quarter, A-1 2640, Anguilla
| | - Anton Tkachenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave, 61022 Kharkiv, Ukraine
| |
Collapse
|
7
|
Bioactive lipid-nanoparticles with inherent self-therapeutic and anti-angiogenic properties for cancer therapy. Acta Biomater 2023; 157:500-510. [PMID: 36535568 DOI: 10.1016/j.actbio.2022.12.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/22/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Angiogenesis inhibition has become a promising therapeutical strategy for cancer treatment. Current clinical anti-angiogenesis treatment includes antibodies against vascular endothelial growth factor (VEGF) or VEGF receptor, fusion proteins with high affinity to VEGF receptor, and tyrosine kinase inhibitors of VEGF receptor. However, current treatments are prone to systemic toxicity or acquiring drug resistance. A natural bioactive lipid 1,2-dipalmitoyl-sn‑glycero-3-phosphate (dipalmitoyl phosphatidic acid, DPPA) was reported to exhibit anti-angiogenic and anti-tumoral activity. However, the hydrophobic property of DPPA largely restricted its clinical use, while systemic infusion of free DPPA could result in undesirable side effects. Herein, we successfully developed DPPA-based lipid-nanoparticles (DPPA-LNPs) which turns the "therapeutic payload into nanocarrier". This strategy could improve on DPPA's hydrophiliciy, thereby facilitating its systemic administration. . DPPA-LNPs not only retained the therapeutic anti-angiogenic and anti-tumoral bioactivity of parental DPPA, but also greatly improved its tumor targeting ability via enhanced permeability and retention (EPR) effect. This strategy not only eliminates the limitation of drug encapsulation rate, toxicity of the delivery vehicle; but also enhances DPPA bioacvtity in vitro and in vivo. Systemic administration of DPPA-LNPs significantly suppressed the blood vessel formation and tumor growth of triple negative breast cancer and liver cancer growth on both xenograft tumor models. STATEMENT OF SIGNIFICANCE: This is the first-in-kind self-therapeutic inherent lipid to be made into a nanocarrier, with inherent anti-angiogenic and anti-tumor properties. DPPA nanocarrier is fully natural, fully compatible with minimal systemic toxicity. DPPA nanocarrier can accumulate at high concentration at tumor via EPR effect, exerting both anti-angiogenic and anti-tumor effects in vivo. DPPA nanocarrier could be used to encapsulate biologics or small molecules for synergistic anti-cancer therapy.
Collapse
|
8
|
Recent advances and futuristic potentials of nano-tailored doxorubicin for prostate cancer therapy. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Qian Z, Zhang Y, Yuan J, Gong S, Chen B. Current applications of nanomaterials in urinary system tumors. Front Bioeng Biotechnol 2023; 11:1111977. [PMID: 36890910 PMCID: PMC9986335 DOI: 10.3389/fbioe.2023.1111977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
The development of nanotechnology and nanomaterials has provided insights into the treatment of urinary system tumors. Nanoparticles can be used as sensitizers or carriers to transport drugs. Some nanoparticles have intrinsic therapeutic effects on tumor cells. Poor patient prognosis and highly drug-resistant malignant urinary tumors are worrisome to clinicians. The application of nanomaterials and the associated technology against urinary system tumors offers the possibility of improving treatment. At present, many achievements have been made in the application of nanomaterials against urinary system tumors. This review summarizes the latest research on nanomaterials in the diagnosis and treatment of urinary system tumors and provides novel ideas for future research on nanotechnologies in this field.
Collapse
Affiliation(s)
- Zhounan Qian
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yang Zhang
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jie Yuan
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Sun Gong
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Binghai Chen
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
10
|
Ali DS, Othman HO, Anwer ET. The Advances in Chitosan-based Drug Delivery Systems for Colorectal Cancer: A Narrative Review. Curr Pharm Biotechnol 2023; 24:1554-1559. [PMID: 36733239 DOI: 10.2174/1389201024666230202160504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/13/2022] [Accepted: 11/22/2022] [Indexed: 02/04/2023]
Abstract
Colorectal cancer (CRC) is considered a lethal cancer all around the world, and its incidence has been reported to be increasing. Chemotherapeutic drugs commonly used for treating this cancer have shown some drawbacks, including toxicity to healthy cells and non-precise delivery. Thus, there is a necessity for discovering novel diagnostic and therapeutic options to increase the survival rate of CRC patients. Chitosan, as a natural polymer, has attracted a lot attention during the past years in different fields, including cancer. Studies have indicated that chitosan-based materials play various roles in prevention, diagnosis, and treatment of cancers. Chitosan nanoparticles (NPs) have been shown to serve as anti-cancer agents, which provide sustained drug release and targeted delivery of drugs to the tumor site. In this paper, we review available literature on the roles of chitosan in CRC. We discuss the applications of chitosan in designing drug delivery systems as well as anti-cancer activities of chitosan and involved signaling pathways.
Collapse
Affiliation(s)
- Diyar Salahuddin Ali
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Hazha Omar Othman
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq
- Department of Pharmaceutics, Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Esra Tariq Anwer
- Department of Pharmaceutics, Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| |
Collapse
|
11
|
Kumar H, Kumar J, Pani B, Kumar P. Multifunctional Folic acid‐coated and Doxorubicin Encapsulated Mesoporous Silica Nanocomposites (FA/DOX@Silica) for Cancer Therapeutics, Bioimaging and
invitro
Studies. ChemistrySelect 2022. [DOI: 10.1002/slct.202203113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Hemant Kumar
- Department of Chemistry Ramjas College University of Delhi Delhi 110007 India
- Department of Chemistry University of Delhi Delhi 110007 India
- Bhaskaracharya College of Applied Sciences Department of Chemistry University of Delhi Delhi 110075
| | - Jitender Kumar
- Department of Chemistry University of Delhi Delhi 110007 India
| | - Balaram Pani
- Bhaskaracharya College of Applied Sciences Department of Chemistry University of Delhi Delhi 110075
| | - Pramod Kumar
- Department of Chemistry& Chemical Science School of Physical & Material Sciences Central University of Himachal Pradesh Dharamshala 176215 India
| |
Collapse
|
12
|
Dasram MH, Walker RB, Khamanga SM. Recent Advances in Endocannabinoid System Targeting for Improved Specificity: Strategic Approaches to Targeted Drug Delivery. Int J Mol Sci 2022; 23:13223. [PMID: 36362014 PMCID: PMC9658826 DOI: 10.3390/ijms232113223] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/26/2022] Open
Abstract
Opportunities for developing innovative and intelligent drug delivery technologies by targeting the endocannabinoid system are becoming more apparent. This review provides an overview of strategies to develop targeted drug delivery using the endocannabinoid system (ECS). Recent advances in endocannabinoid system targeting showcase enhanced pharmaceutical therapy specificity while minimizing undesirable side effects and overcoming formulation challenges associated with cannabinoids. This review identifies advances in targeted drug delivery technologies that may permit access to the full pharmacotherapeutic potential of the ECS. The design of optimized nanocarriers that target specific tissues can be improved by understanding the nature of the signaling pathways, distribution in the mammalian body, receptor structure, and enzymatic degradation of the ECS. A closer look at ligand-receptor complexes, endocannabinoid tone, tissue distribution, and G-protein activity leads to a better understanding of the potential of the ECS toolkit for therapeutics. The signal transduction pathways examine the modulation of downstream effector proteins, desensitization, signaling cascades, and biased signaling. An in-depth and overall view of the targeted system is achieved through homology modeling where mutagenesis and ligand binding examine the binding site and allow sequence analysis and the formation of libraries for molecular docking and molecular dynamic simulations. Internalization routes exploring receptor-mediated endocytosis and lipid rafts are also considered for explicit signaling. Furthermore, the review highlights nanotechnology and surface modification aspects as a possible future approach for specific targeting.
Collapse
Affiliation(s)
| | | | - Sandile M. Khamanga
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6139, South Africa
| |
Collapse
|
13
|
Kutumova EO, Akberdin IR, Kiselev IN, Sharipov RN, Egorova VS, Syrocheva AO, Parodi A, Zamyatnin AA, Kolpakov FA. Physiologically Based Pharmacokinetic Modeling of Nanoparticle Biodistribution: A Review of Existing Models, Simulation Software, and Data Analysis Tools. Int J Mol Sci 2022; 23:12560. [PMID: 36293410 PMCID: PMC9604366 DOI: 10.3390/ijms232012560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022] Open
Abstract
Cancer treatment and pharmaceutical development require targeted treatment and less toxic therapeutic intervention to achieve real progress against this disease. In this scenario, nanomedicine emerged as a reliable tool to improve drug pharmacokinetics and to translate to the clinical biologics based on large molecules. However, the ability of our body to recognize foreign objects together with carrier transport heterogeneity derived from the combination of particle physical and chemical properties, payload and surface modification, make the designing of effective carriers very difficult. In this scenario, physiologically based pharmacokinetic modeling can help to design the particles and eventually predict their ability to reach the target and treat the tumor. This effort is performed by scientists with specific expertise and skills and familiarity with artificial intelligence tools such as advanced software that are not usually in the "cords" of traditional medical or material researchers. The goal of this review was to highlight the advantages that computational modeling could provide to nanomedicine and bring together scientists with different background by portraying in the most simple way the work of computational developers through the description of the tools that they use to predict nanoparticle transport and tumor targeting in our body.
Collapse
Affiliation(s)
- Elena O. Kutumova
- Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia
- Federal Research Center for Information and Computational Technologies, 630090 Novosibirsk, Russia
- BIOSOFT.RU, Ltd., 630058 Novosibirsk, Russia
| | - Ilya R. Akberdin
- Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia
- BIOSOFT.RU, Ltd., 630058 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ilya N. Kiselev
- Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia
- Federal Research Center for Information and Computational Technologies, 630090 Novosibirsk, Russia
- BIOSOFT.RU, Ltd., 630058 Novosibirsk, Russia
| | - Ruslan N. Sharipov
- Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia
- Federal Research Center for Information and Computational Technologies, 630090 Novosibirsk, Russia
- BIOSOFT.RU, Ltd., 630058 Novosibirsk, Russia
- Specialized Educational Scientific Center, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Vera S. Egorova
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Anastasiia O. Syrocheva
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Alessandro Parodi
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Andrey A. Zamyatnin
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Fedor A. Kolpakov
- Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia
- Federal Research Center for Information and Computational Technologies, 630090 Novosibirsk, Russia
- BIOSOFT.RU, Ltd., 630058 Novosibirsk, Russia
| |
Collapse
|
14
|
Fard GH, Moinipoor Z, Anastasova-Ivanova S, Iqbal HM, Dwek MV, Getting S, Keshavarz T. Development of chitosan, pullulan, and alginate based drug-loaded nano-emulsions as a potential malignant melanoma delivery platform. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
15
|
Sastri KT, Gupta NV, M S, Chakraborty S, Kumar H, Chand P, Balamuralidhara V, Gowda D. Nanocarrier facilitated drug delivery to the brain through intranasal route: A promising approach to transcend bio-obstacles and alleviate neurodegenerative conditions. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
16
|
A Nanoparticle's Journey to the Tumor: Strategies to Overcome First-Pass Metabolism and Their Limitations. Cancers (Basel) 2022; 14:cancers14071741. [PMID: 35406513 PMCID: PMC8996837 DOI: 10.3390/cancers14071741] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Traditional cancer therapeutics suffer from off-target toxicity, limiting their effective dose and preventing patients’ tumors from being sufficiently treated by chemotherapeutics alone. Nanomedicine is an emerging class of therapeutics in which a drug is packaged into a nanoparticle that promotes uptake of the drug at a tumor site, shielding it from uptake by peripheral organs and enabling the safe delivery of chemotherapeutics that have poor aqueous solubility, short plasma half-life, narrow therapeutic window, and toxic side effects. Despite the advantages of nanomedicines for cancer, there remains significant challenges to improve uptake at the tumor and prevent premature clearance from the body. In this review, we summarize the effects of first-pass metabolism on a nanoparticle’s journey to a tumor and outline future steps that we believe will improve the efficacy of cancer nanomedicines. Abstract Nanomedicines represent the cutting edge of today’s cancer therapeutics. Seminal research decades ago has begun to pay dividends in the clinic, allowing for the delivery of cancer drugs with enhanced systemic circulation while also minimizing off-target toxicity. Despite the advantages of delivering cancer drugs using nanoparticles, micelles, or other nanostructures, only a small fraction of the injected dose reaches the tumor, creating a narrow therapeutic window for an otherwise potent drug. First-pass metabolism of nanoparticles by the reticuloendothelial system (RES) has been identified as a major culprit for the depletion of nanoparticles in circulation before they reach the tumor site. To overcome this, new strategies, materials, and functionalization with stealth polymers have been developed to improve nanoparticle circulation and uptake at the tumor site. This review summarizes the strategies undertaken to evade RES uptake of nanomedicines and improve the passive and active targeting of nanoparticle drugs to solid tumors. We also outline the limitations of current strategies and the future directions we believe will be explored to yield significant benefits to patients and make nanomedicine a promising treatment modality for cancer.
Collapse
|
17
|
Targeting nanoparticles to malignant tumors. Biochim Biophys Acta Rev Cancer 2022; 1877:188703. [DOI: 10.1016/j.bbcan.2022.188703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/01/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022]
|
18
|
Li R, Peng Y, Pu Y, Zhao Y, Nie R, Guo L, Wu Y. Fructose and biotin co-modified liposomes for dual-targeting breast cancer. J Liposome Res 2021; 32:119-128. [PMID: 34895001 DOI: 10.1080/08982104.2021.1894171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Chemotherapy, as the main treatment for breast cancer, inevitably damages normal tissues due to the lack of targeting. Various nano targeting drug delivery systems (TDDS) have the potential to be developed as anticancer therapeutics. Although mono-ligand-directed liposomes have been used with some success, dual-ligand-directed liposomes exhibit promising advantages. In current work, we synthesized a Y-shaped ligand covalently linking fructose and biotin (Fru-Bio-Chol) to prepare a dual-targeting liposome Fru-Bio-Lip for breast cancer. The targeting ability was evaluated by comparing the Fru-Bio-Lip with the non-modified liposome (Lip), fructose or biotin mono modified liposomes (Fru-Lip and Bio-Lip), and another dual-targeting liposome (Fru + Bio-Lip) physically mixing fructose and biotin mono modified ligands (Fru-Chol and Bio-Chol). The cellular uptake of Fru-Bio-Lip is 3.27-, 1.81-, 2.19-, 1.15-times that of Lip, Fru-Lip, Bio-Lip and Fru + Bio-Lip on 4T1 cells, and 3.11-, 1.80-, 1.89-, 1.15-times on MCF-7 cells. Additionally, the uptake mechanism indicates the uptake of Fru-Bio-Lip is energy-dependently achieved through multiple endocytosis pathway with a dual recognition of fructose and biotin by GLUT5 and SMVT. The cytotoxicity and apoptosis assay show PTX-Fru-Bio-Lip among liposomes have the strongest proliferation inhibitory effect on breast cancer cells, and the apoptosis rate is 1.7-times that of PTX-Lip. In vivo images indicate Fru-Bio-Lip have the strongest tumour enrichment ability, which is 2.76-, 1.60-, 1.96-, 1.40-times that of Lip, Fru-Lip, Bio-Lip and Fru + Bio-Lip, respectively. Overall, the fructose and biotin covalently modified liposomes improved breast cancer targeting ability, demonstrating great potential as a drug delivery system for breast cancer.
Collapse
Affiliation(s)
- Ru Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yao Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yanchi Pu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yi Zhao
- Department of Translational Medicine Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruifang Nie
- Department of Pharmacy, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Li Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Marcos X, Méndez-Luna D, Fragoso-Vázquez M, Rosales-Hernández M, Correa-Basurto J. Anti-breast cancer activity of novel compounds loaded in polymeric mixed micelles: Characterization and in vitro studies. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Karthika C, Hari B, Rahman MH, Akter R, Najda A, Albadrani GM, Sayed AA, Akhtar MF, Abdel-Daim MM. Multiple strategies with the synergistic approach for addressing colorectal cancer. Biomed Pharmacother 2021; 140:111704. [PMID: 34082400 DOI: 10.1016/j.biopha.2021.111704] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer treatment is improving widely over time, but finding a proper defender to beat them seems like a distant dream. The quest for identification and discovery of drugs with an effective action is still a vital work. The role of a membrane protein called P-glycoprotein, which functions as garbage chute that efflux the waste, xenobiotics, and toxins out of the cancer cells acts as a major reason behind the therapeutic failure of most chemotherapeutic drugs. In this review, we mainly focused on a multiple strategies by employing 5-Fluorouracil, curcumin, and lipids in Nano formulation for the possible treatment of colorectal cancer and its metastasis. Eventually, multidrug resistance and angiogenesis can be altered and it would be helpful in colorectal cancer targeting.We have depicted the possible way for the depletion of colorectal cancer cells without disturbing the normal cells. The concept of focusing on multiple pathways for marking the colorectal cancer cells could help in activating one among the pathways if the other one fails. The activity of the 5-Fluorouracil can be enhanced with the help of curcumin which acts as a chemosensitizer, chemotherapeutic agent, and even for altering the resistance. As we eat to survive, so do the cancer cells. The cancer cells utilize the energy source to stay alive and survive. Fatty acids can be used as the energy source and this concept can be employed for targeting the colorectal cancer cells and also for altering the resistant part.
Collapse
Affiliation(s)
- Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty 643001, Tamil Nadu, India
| | - Balaji Hari
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty 643001, Tamil Nadu, India
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh.
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka 1100, Bangladesh
| | - Agnieszka Najda
- Laboratory of Quality of Vegetables and Medicinal Plants, Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland.
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Pakistan
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
21
|
Martín-Sabroso C, Fraguas-Sánchez AI, Raposo-González R, Torres-Suárez AI. Perspectives in Breast and Ovarian Cancer Chemotherapy by Nanomedicine Approach: Nanoformulations in Clinical Research. Curr Med Chem 2021; 28:3271-3286. [PMID: 32814522 DOI: 10.2174/0929867327666200819115403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Breast and ovarian carcinomas represent major health problems in women worldwide. Chemotherapy constitutes the main treatment strategy, and the use of nanocarriers, a good tool to improve it. Several nanoformulations have already been approved, and others are under clinical trials for the treatment of both types of cancers. OBJECTIVE This review focuses on the analysis of the nanoformulations that are under clinical research in the treatment of these neoplasms. RESULTS Currently, there are 6 nanoformulations in clinical trials for breast and ovarian carcinomas, most of them in phase II and phase III. In the case of breast cancer treatment, these nanomedicines contain paclitaxel; and, for ovarian cancer, nanoformulations containing paclitaxel or camptothecin analogs are being evaluated. The nanoencapsulation of these antineoplastics facilitates their administration and reduces their systemic toxicity. Nevertheless, the final approval and commercialization of nanoformulations may be limited by other aspects like lack of correlation between the efficacy results evaluated at in vitro and in vivo levels, difficulty in producing large batches of nanoformulations in a reproducible manner and high production costs compared to conventional formulations of antineoplastics. However, these challenges are not insurmountable and the number of approved nanoformulations for cancer therapy is growing. CONCLUSION Reviewed nanoformulations have shown, in general, excellent results, demonstrating a good safety profile, a higher maximum tolerated dose and a similar or even slightly better antitumor efficacy compared to the administration of free drugs, reinforcing the use of nano-chemotherapy in both breast and ovarian tumors.
Collapse
Affiliation(s)
- Cristina Martín-Sabroso
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramon y Cajal s/n., 28040 Madrid, Spain
| | - Ana Isabel Fraguas-Sánchez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramon y Cajal s/n., 28040 Madrid, Spain
| | - Rafaela Raposo-González
- Department of Physiology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramon y Cajal s/n., 28040 Madrid, Spain
| | - Ana Isabel Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramon y Cajal s/n., 28040 Madrid, Spain
| |
Collapse
|
22
|
Fakhri KU, Sultan A, Mushtaque M, Hasan MR, Nafees S, Hafeez ZB, Zafaryab M, Rizwanullah M, Sharma D, Bano F, AlMalki WH, Ahmad FJ, Rizvi MMA. Obstructions in Nanoparticles Conveyance, Nano-Drug Retention, and EPR Effect in Cancer Therapies. HANDBOOK OF RESEARCH ON ADVANCEMENTS IN CANCER THERAPEUTICS 2021. [DOI: 10.4018/978-1-7998-6530-8.ch026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this chapter, the authors first review nano-devices that are mixtures of biologic molecules and synthetic polymers like nano-shells and nano-particles for the most encouraging applications for different cancer therapies. Nano-sized medications additionally spill especially into tumor tissue through penetrable tumor vessels and are then held in the tumor bed because of diminished lymphatic drainage. This procedure is known as the enhanced penetrability and retention (EPR) impact. Nonetheless, while the EPR impact is generally held to improve conveyance of nano-medications to tumors, it in certainty offers not exactly a 2-overlay increment in nano-drug conveyance contrasted with basic ordinary organs, bringing about medication concentration that is not adequate for restoring most malignant growths. In this chapter, the authors likewise review different obstructions for nano-sized medication conveyance and to make the conveyance of nano-sized medications to tumors progressively successful by expanding on the EPR impact..
Collapse
Affiliation(s)
| | | | | | | | | | | | - Md Zafaryab
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Md Rizwanullah
- School of Pharmaceutical Education and Research, Jamia Hamdard, India
| | - Deepti Sharma
- Institute of Nuclear Medicine and Allied Sciences, India
| | - Farhad Bano
- National Institute of Immunology, New Delhi, India
| | | | - Farhan Jalees Ahmad
- School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | | |
Collapse
|
23
|
Abstract
Liposomes are bilayer membrane vesicles that can serve as vehicles for drug delivery. They are a good alternative to free drug administration that provides cell-targeted delivery into tumors, limiting the systemic toxicity of chemotherapeutic agents. Previous results from our group showed that an astrocytoma cell line exhibits selective uptake of sulfatide-rich (SCB) liposomes, mediated by the low-density lipoprotein receptor (LDL-R). The goal of this study was to assess the uptake of liposomes in a neuroblastoma cell line. For this purpose, we used two types of liposomes, one representing a regular cell membrane (DOPC) and another rich in myelin components (SCB). An astrocytoma cell line was used as a control. Characterization of liposome uptake and distribution was conducted by flow cytometry and fluorescence microscopy. Similar levels of LDL-R expression were found in both cell lines. The uptake of SCB liposomes was higher than that of DOPC liposomes. No alterations in cell viability were found. SCB liposomes were located near the cell membrane and did not colocalize within the acidic cellular compartments. Two endocytic pathway inhibitors did not affect the liposome uptake. Neuroblastoma cells exhibited a similar uptake of SCB liposomes as astrocytoma cells; however, the pathway involved appeared to be different than the hypothesized pathway of LDL-R clathrin-mediated endocytosis.
Collapse
|
24
|
Florczak A, Deptuch T, Lewandowska A, Penderecka K, Kramer E, Marszalek A, Mackiewicz A, Dams-Kozlowska H. Functionalized silk spheres selectively and effectively deliver a cytotoxic drug to targeted cancer cells in vivo. J Nanobiotechnology 2020; 18:177. [PMID: 33261651 PMCID: PMC7709326 DOI: 10.1186/s12951-020-00734-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/19/2020] [Indexed: 12/31/2022] Open
Abstract
Background Chemotherapy is often a first-line therapeutic approach for the treatment of a wide variety of cancers. Targeted drug delivery systems (DDSs) can potentially resolve the problem of chemotherapeutic drug off-targeting effects. Herein, we examined in vivo models to determine the efficacy of Her2-targeting silk spheres (H2.1MS1) as DDSs for delivering doxorubicin (Dox) to Her2-positive and Her2-negative primary and metastatic mouse breast cancers. Results The specific accumulation of H2.1MS1 spheres was demonstrated at the site of Her2-positive cancer. Dox delivered only by functionalized H2.1MS1 particles selectively inhibited Her2-positive cancer growth in primary and metastatic models. Moreover, the significant effect of the Dox dose and the frequency of treatment administration on the therapeutic efficacy was indicated. Although the control MS1 spheres accumulated in the lungs in Her2-positive metastatic breast cancer, the Dox-loaded MS1 particles did not treat cancer. Histopathological examination revealed no systemic toxicity after multiple administrations and at increased doses of Dox-loaded silk spheres. Although the studies were performed in immunocompetent mice, the H2.1MS1 silk spheres efficiently delivered the drug, which exerted a therapeutic effect. Conclusion Our results indicated that functionalized silk spheres that enable cell-specific recognition, cellular internalization, and drug release represent an efficient strategy for cancer treatment in vivo.![]()
Collapse
Affiliation(s)
- Anna Florczak
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, 15 Garbary St, 61-866, Poznan, Poland. .,Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, 61-866, Poznan, Poland.
| | - Tomasz Deptuch
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, 15 Garbary St, 61-866, Poznan, Poland.,Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, 61-866, Poznan, Poland
| | - Anna Lewandowska
- Department of Tumor Pathology, Greater Poland Cancer Centre, 15 Garbary St, 61-866, Poznan, Poland.,Department of Tumor Pathology and Prophylaxis, Poznan University of Medical Sciences, 15 Garbary St, 61-866, Poznan, Poland
| | - Karolina Penderecka
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, 15 Garbary St, 61-866, Poznan, Poland.,Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, 61-866, Poznan, Poland
| | - Elzbieta Kramer
- Department of Tumor Pathology, Greater Poland Cancer Centre, 15 Garbary St, 61-866, Poznan, Poland
| | - Andrzej Marszalek
- Department of Tumor Pathology, Greater Poland Cancer Centre, 15 Garbary St, 61-866, Poznan, Poland.,Department of Tumor Pathology and Prophylaxis, Poznan University of Medical Sciences, 15 Garbary St, 61-866, Poznan, Poland
| | - Andrzej Mackiewicz
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, 15 Garbary St, 61-866, Poznan, Poland.,Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, 61-866, Poznan, Poland
| | - Hanna Dams-Kozlowska
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, 15 Garbary St, 61-866, Poznan, Poland. .,Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, 61-866, Poznan, Poland.
| |
Collapse
|
25
|
Florczak A, Grzechowiak I, Deptuch T, Kucharczyk K, Kaminska A, Dams-Kozlowska H. Silk Particles as Carriers of Therapeutic Molecules for Cancer Treatment. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4946. [PMID: 33158060 PMCID: PMC7663281 DOI: 10.3390/ma13214946] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/15/2022]
Abstract
Although progress is observed in cancer treatment, this disease continues to be the second leading cause of death worldwide. The current understanding of cancer indicates that treating cancer should not be limited to killing cancer cells alone, but that the target is the complex tumor microenvironment (TME). The application of nanoparticle-based drug delivery systems (DDS) can not only target cancer cells and TME, but also simultaneously resolve the severe side effects of various cancer treatment approaches, leading to more effective, precise, and less invasive therapy. Nanoparticles based on proteins derived from silkworms' cocoons (like silk fibroin and sericins) and silk proteins from spiders (spidroins) are intensively explored not only in the oncology field. This natural-derived material offer biocompatibility, biodegradability, and simplicity of preparation methods. The protein-based material can be tailored for size, stability, drug loading/release kinetics, and functionalized with targeting ligands. This review summarizes the current status of drug delivery systems' development based on proteins derived from silk fibroin, sericins, and spidroins, which application is focused on systemic cancer treatment. The nanoparticles that deliver chemotherapeutics, nucleic acid-based therapeutics, natural-derived agents, therapeutic proteins or peptides, inorganic compounds, as well as photosensitive molecules, are introduced.
Collapse
Affiliation(s)
- Anna Florczak
- Department of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (I.G.); (T.D.); (K.K.); (A.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Inga Grzechowiak
- Department of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (I.G.); (T.D.); (K.K.); (A.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Tomasz Deptuch
- Department of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (I.G.); (T.D.); (K.K.); (A.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Kamil Kucharczyk
- Department of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (I.G.); (T.D.); (K.K.); (A.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Alicja Kaminska
- Department of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (I.G.); (T.D.); (K.K.); (A.K.)
| | - Hanna Dams-Kozlowska
- Department of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (I.G.); (T.D.); (K.K.); (A.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| |
Collapse
|
26
|
Patil-Sen Y, Torino E, De Sarno F, Ponsiglione AM, Chhabria V, Ahmed W, Mercer T. Biocompatible superparamagnetic core-shell nanoparticles for potential use in hyperthermia-enabled drug release and as an enhanced contrast agent. NANOTECHNOLOGY 2020; 31:375102. [PMID: 32392545 DOI: 10.1088/1361-6528/ab91f6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) and core-shell type nanoparticles, consisting of SPIONs coated with mesoporous silica and/or lipid, were synthesised and tested for their potential theranostic applications in drug delivery, magnetic hyperthermia and as a contrast agent. Transmission Electron Microscopy (TEM) confirmed the size of bare and coated SPIONs was in the range of 5-20 nm and 100-200 nm respectively. The superparamagnetic nature of all the prepared nanomaterials as indicated by Vibrating Sample Magnetometry (VSM) and their heating properties under an AC field confirm their potential for hyperthermia applications. Scanning Column Magnetometry (SCM) data showed that extrusion of bare-SPION (b-SPION) dispersions through a 100 nm polycarbonate membrane significantly improved the dispersion stability of the sample. No sedimentation was apparent after 18 h compared to a pre-extrusion estimate of 43% settled at the bottom of the tube over the same time. Lipid coating also enhanced dispersion stability. Transversal relaxation time (T2) measurements for the nanoparticles, using a bench-top relaxometer, displayed a significantly lower value of 46 ms, with a narrow relaxation time distribution, for lipid silica coated SPIONs (Lip-SiSPIONs) as compared to that of 1316 ms for the b-SPIONs. Entrapment efficiency of the anticancer drug, Doxorubicin (DOX) for Lip-SPIONs was observed to be 35% which increased to 58% for Lip-SiSPIONs. Moreover, initial in-vitro cytotoxicity studies against human breast adenocarcinoma, MCF-7 cells showed that % cell viability increased from 57% for bSPIONs to 82% for Lip-SPIONs and to 87% for Lip-SiSPIONs. This suggests that silica and lipid coatings improve the biocompatibility of bSPIONs significantly and enhance the suitability of these particles as drug carriers. Hence, the magnetic nanomaterials prepared in this work have potential theranostic properties as a drug carrier for hyperthermia cancer therapy and also offer enhancement of contrast agent efficacy and a route to a significant increase in dispersion stability.
Collapse
Affiliation(s)
- Yogita Patil-Sen
- School of Physical Sciences and Computing, University of Central Lancashire, Preston PR1 2HE, United Kingdom. School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
27
|
Barani M, Sabir F, Rahdar A, Arshad R, Kyzas GZ. Nanotreatment and Nanodiagnosis of Prostate Cancer: Recent Updates. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1696. [PMID: 32872181 PMCID: PMC7559844 DOI: 10.3390/nano10091696] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022]
Abstract
The fabrication and development of nanomaterials for the treatment of prostate cancer have gained significant appraisal in recent years. Advancements in synthesis of organic and inorganic nanomaterials with charge, particle size, specified geometry, ligand attachment etc have resulted in greater biocompatibility and active targeting at cancer site. Despite all of the advances made over the years in discovering drugs, methods, and new biomarkers for cancer of the prostate (PCa), PCa remains one of the most troubling cancers among people. Early on, effective diagnosis is an essential part of treating prostate cancer. Prostate-specific antigen (PSA) or serum prostate-specific antigen is the best serum marker widely accessible for diagnosis of PCa. Numerous efforts have been made over the past decade to design new biosensor-based strategies for biomolecules detection and PSA miniaturization biomarkers. The growing nanotechnology is expected to have a significant effect in the immediate future on scientific research and healthcare. Nanotechnology is thus predicted to find a way to solve one of the most and long-standing problem, "early cancer detection". For early diagnosis of PCa biomarkers, different nanoparticles with different approaches have been used. In this review, we provide a brief description of the latest achievements and advances in the use of nanoparticles for PCa biomarker diagnosis.
Collapse
Affiliation(s)
- Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 7616914111, Iran;
| | - Fakhara Sabir
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran
| | - Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - George Z. Kyzas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece
| |
Collapse
|
28
|
Tan YY, Yap PK, Xin Lim GL, Mehta M, Chan Y, Ng SW, Kapoor DN, Negi P, Anand K, Singh SK, Jha NK, Lim LC, Madheswaran T, Satija S, Gupta G, Dua K, Chellappan DK. Perspectives and advancements in the design of nanomaterials for targeted cancer theranostics. Chem Biol Interact 2020; 329:109221. [PMID: 32768398 DOI: 10.1016/j.cbi.2020.109221] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/18/2020] [Accepted: 08/03/2020] [Indexed: 12/23/2022]
Abstract
Cancer continues to be one of the most challenging diseases to be treated and is one of the leading causes of deaths around the globe. Cancers account for 13% of all deaths each year, with cancer-related mortality expected to rise to 13.1 million by the year 2030. Although, we now have a large library of chemotherapeutic agents, the problem of non-selectivity remains the biggest drawback, as these substances are toxic not only to cancerous cells, but also to other healthy cells in the body. The limitations with chemotherapy and radiation have led to the discovery and development of novel strategies for safe and effective treatment strategies to manage the menace of cancer. Researchers have long justified and have shed light on the emergence of nanotechnology as a potential area for cancer therapy and diagnostics, whereby, nanomaterials are used primarily as nanocarriers or as delivery agents for anticancer drugs due to their tumor targeting properties. Furthermore, nanocarriers loaded with chemotherapeutic agents also overcome biological barriers such as renal and hepatic clearances, thus improving therapeutic efficacy with lowered morbidity. Theranostics, which is the combination of rationally designed nanomaterials with cancer-targeting moieties, along with protective polymers and imaging agents has become one of the core keywords in cancer research. In this review, we have highlighted the potential of various nanomaterials for their application in cancer therapy and imaging, including their current state and clinical prospects. Theranostics has successfully paved a path to a new era of drug design and development, in which nanomaterials and imaging contribute to a large variety of cancer therapies and provide a promising future in the effective management of various cancers. However, in order to meet the therapeutic needs, theranostic nanomaterials must be designed in such a way, that take into account the pharmacokinetic and pharmacodynamics properties of the drug for the development of effective carcinogenic therapy.
Collapse
Affiliation(s)
- Yoke Ying Tan
- School of Health Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Pui Khee Yap
- School of Health Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Griselda Loo Xin Lim
- School of Health Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Meenu Mehta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Yinghan Chan
- School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sin Wi Ng
- School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Deepak N Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No.32-34 Knowledge Park III Greater Noida, Uttar Pradesh, 201310, India
| | - Lay Cheng Lim
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Saurabh Satija
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura Mahal Road, 302017, Jaipur, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, The University of Newcastle (UoN), Callaghan, NSW, 2308, Australia.
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
29
|
Silindir-Gunay M, Karpuz M, Ozer AY. Targeted Alpha Therapy and Nanocarrier Approach. Cancer Biother Radiopharm 2020; 35:446-458. [DOI: 10.1089/cbr.2019.3213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Mine Silindir-Gunay
- Department of Radiopharmacy, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Merve Karpuz
- Department of Radiopharmacy, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | - A. Yekta Ozer
- Department of Radiopharmacy, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
30
|
Esnaashari SS, Muhammadnejad S, Amanpour S, Amani A. A Combinational Approach Towards Treatment of Breast Cancer: an Analysis of Noscapine-Loaded Polymeric Nanoparticles and Doxorubicin. AAPS PharmSciTech 2020; 21:166. [PMID: 32504144 DOI: 10.1208/s12249-020-01710-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 05/13/2020] [Indexed: 01/10/2023] Open
Abstract
Our aim in this study was to clarify the combination anticancer effect of Noscapine (Nos) loaded in a polymeric nanocarrier with Doxorubicin (Dox) on breast cancer cells. Nanoprecipitation method was used to prepare methoxy polyethylene glycol (mPEG), poly lactic-co-glycolic acid (PLGA) nanoparticles (NPs) containing Nos. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) were used to characterize the prepared Nos NPs. The anticancer activity of Nos NPs alone and in combination with Dox was assessed on 4T1 breast cancer cell line and in mice model. Spherical-shaped Nos NPs were prepared, with size of 101 ± 4.80 nm and zeta potential of - 15.40 ± 1 mV. Fourier transform infrared (FTIR) spectroscopy results demonstrated that Nos chemical structure was kept stable during preparation process. However, differential scanning calorimetric (DSC) thermogram proved that crystalline state of Nos changed to amorphous state in Nos NPs. The entrapment efficacy % (EE%) and drug loading % (DL%) of Nos NPs were about 87.20 ± 3.50% and 12.50 ± 2.30%, respectively. Synergistic anticancer effects of Nos both in free form (in hydrochloride form, Nos HCl) and Nos NPs form with Dox hydrochloride (Dox HCl) were observed on 4T1 cells. Combination of Nos NPs and Dox HCl inhibited tumor growth (68.50%) in mice more efficiently than Nos NPs (55.10%) and Dox HCl (32%) alone. Immunohistochemical (IHC) analysis of the tumor tissues confirmed antiangiogenic effect of Nos NPs. The findings highlighted efficacy of Nos NPs alone and in combination with Dox HCl on breast cancer tumors.
Collapse
|
31
|
Allen J, Wang J, Zolotarskaya OY, Sule A, Mohammad S, Arslan S, Wynne KJ, Yang H, Valerie K. PEAMOtecan, a novel chronotherapeutic polymeric drug for brain cancer. J Control Release 2020; 321:36-48. [PMID: 32027939 DOI: 10.1016/j.jconrel.2020.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/26/2020] [Accepted: 02/02/2020] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) is an aggressive and difficult to treat form of brain cancer. In this work, we report on a novel chronotherapeutic polymeric drug, PEAMOtecan, for GBM therapy. PEAMOtecan was synthesized by conjugating camptothecin, a topoisomerase I inhibitor, to our proprietary, 'clickable' and modular polyoxetane polymer platform consisting of acetylene-functionalized 3-ethyl-3-(hydroxymethyl)oxetane (EAMO) repeat units (Patent No.: US 9,421,276) via the linker 3,3'-dithiodipropionic acid (DDPA) with a disulfide bond (SS) extended by short-chain polyethylene glycol (PEG). We show that PEAMOtecan is a highly modular polymer nanoformulation that protects covalently bound CPT until slowly being released over extended periods of time dependent on the cleavage of the disulfide and ester linkages. PEAMOtecan kills glioma cells by mitotic catastrophe with p53 mutant/knockdown cells being more sensitive than matched wild type cells potentially providing cancer-specific targeting. To establish proof-of-principle therapeutic effects, we tested PEAMOtecan as monotherapy for efficacy in a mouse orthotopic glioma model. PEAMOtecan was administered by one-time, convection-enhanced delivery (CED) intra-tumorally to achieve superior distribution and extended drug release over time. In addition, the near-infrared (NIR) dye Cy5.5 was coupled to the polymer providing live-animal imaging capability to track tissue distribution and clearance of the injected polymer over time. We show that PEAMOtecan significantly improves the survival of mice harboring intra-cranial tumors (p = .0074 compared to untreated group). Altogether, these results support further development and testing of our nanoconjugate platform.
Collapse
Affiliation(s)
- Jasmine Allen
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America
| | - Juan Wang
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America
| | - Olga Yu Zolotarskaya
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America
| | - Amrita Sule
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America
| | - Sajjad Mohammad
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America
| | - Shukaib Arslan
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America
| | - Kenneth J Wynne
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America; Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America; Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America.
| | - Kristoffer Valerie
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America; Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America.
| |
Collapse
|
32
|
A multifunctional magnetic nanosystem based on "two strikes" effect for synergistic anticancer therapy in triple-negative breast cancer. J Control Release 2020; 322:401-415. [PMID: 32246976 DOI: 10.1016/j.jconrel.2020.03.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022]
Abstract
Multifunctional magnetic nanoparticles (MNPs) were widely used for ablation of cancer cells because of their potential on physical treatment. Herein, we developed the "cell targeting destructive" multifunctional polymeric nanoparticles (named as HA-Olb-PPMNPs) based on PEI-PLGA co-loaded with the anticancer drug Olaparib (Olb) and superparamagnetic iron oxide nanoparticles (Fe3O4 NPs), and further coated with a low molecular weight hyaluronic acid (HA) on its surface. Due to the high affinity between HA and CD44-receptor on cell surface of triple negative breast cancer (TNBC), an active targeting can be achieved. Under a rotating magnetic field (RMF), HA-Olb-PPMNPs produced a physical transfer of mechanical force by incomplete rotation. This mechanical force could cause the "two strikes" effect on the cells, in which "First-strike" was to damage the cell membrane structure (magneto-cell-lysis), another "Second-strike" could activate the lysosome-mitochondrial pathway by injuring lysosomes to induce cell apoptosis (magneto-cell-apoptosis). Therefore, the mechanical force and Olb exert dual anti-tumor effect to achieve synergistic therapeutic in the presence of RMF. This study proposes a novel multi-therapeutic concept for TNBC, as well as provided evidences of new anti-tumor therapeutic effects induced by the magnetic nanoparticles drug system.
Collapse
|
33
|
Inhalable spray dried lipidnanoparticles for the co-delivery of paclitaxel and doxorubicin in lung cancer. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101502] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
34
|
Niu R, Zhang P, Wang FQ, Liu M, Liu Q, Jia N, Yang S, Tao X, Wei D. Preparation and purification of novel phosphatidyl prodrug and performance modulation of phosphatidyl nanoprodrug. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0277-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Abstract
Background
A novel phosphatidyl nanoprodrug system can be selectively released parent drugs in cancer cells, triggered by the local overexpression of phospholipase D (PLD). This system significantly reduces the intrinsic disadvantages of conventional chemotherapeutic drugs. However, the separation and purification processes of phosphatidyl prodrug, the precursor of phosphatidyl nanoprodrug, have not been established, and the preparation of nanocrystals with good stability and tumor-targeting capability is still challenging.
Results
In this study, we established a successive elution procedure for the phosphatidyl prodrug—phosphatidyl mitoxantrone (PMA), using an initial ten-bed volume of chloroform/methanol/glacial acetic acid/water (26/10/0.8/0.7) (v/v/v/v) followed by a five-bed volume (26/10/0.8/3), with which purity rates of 96.93% and overall yields of 50.35% of PMA were obtained. Moreover, to reduce the intrinsic disadvantages of conventional chemotherapeutic drugs, phosphatidyl nanoprodrug—PMA nanoprodrug (NP@PMA)—was prepared. To enhance their stability, nanoparticles were modified with polyethylene glycol (PEG). We found that nanoprodrugs modified by PEG (NP@PEG–PMA) were stably present in RPMI-1640 medium containing 10% FBS, compared with unmodified nanoprodrug (NP@PMA). To enhance active tumor-targeting efficiency, we modified nanoparticles with an arginine-glycine-aspartic acid (RGD) peptide (NP@RGD–PEG–PMA). In vitro cytotoxicity assays showed that, compared with the cytotoxicity of NP@PEG–PMA against tumor cells, that of NP@RGD–PEG–PMA was enhanced. Thus, RGD modification may serve to enhance the active tumor-targeting efficiency of a nanoprodrug, thereby increasing its cytotoxicity.
Conclusions
A process for the preparation and purification of novel phosphatidyl prodrugs was successfully established, and the nanoprodrug was modified using PEG for enhanced nanoparticle stability, and using RGD peptide for enhanced active tumor-targeting efficiency. These procedures offer considerable potential in the development of functional antitumor prodrugs.
Collapse
|
35
|
Liu BY, Yang XL, Xing X, Li J, Liu YH, Wang N, Yu XQ. Trackable Water-Soluble Prodrug Micelles Capable of Rapid Mitochondrial-Targeting and Alkaline pH-Responsive Drug Release for Highly Improved Anticancer Efficacy. ACS Macro Lett 2019; 8:719-723. [PMID: 35619529 DOI: 10.1021/acsmacrolett.9b00121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A trackable water-soluble prodrug conjugate possessing high contents of chlorambucil (Cb) and triphenylphosphonium cation (TPP) was designed and developed after TPP modification on the "branch" of amphipathic prodrugs based on convenient synthesis of heterobifunctional clickable poly(ethylene glycol) (PEG). The aqueous self-assembly of fluorescent polymeric micelles along precise composition can be easily prepared after directly dissolved (DD) in aqueous solution, and exhibit superior cytotoxicity to cancer cells along with highly improved selectivity and sensitivity because of their rapid mitochondrial-targeting and alkaline pH-responsive drug release capabilities. Notably, efficient codelivery of doxorubicin (DOX) for synergistic targeted drug delivery and cancer therapy was achieved.
Collapse
Affiliation(s)
- Bei-Yu Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry Sichuan University, 29, Wangjiang Road, Chengdu, Sichuan Province, P. R. China
| | - Xian-Ling Yang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry Sichuan University, 29, Wangjiang Road, Chengdu, Sichuan Province, P. R. China
| | - Xiu Xing
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry Sichuan University, 29, Wangjiang Road, Chengdu, Sichuan Province, P. R. China
| | - Jun Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry Sichuan University, 29, Wangjiang Road, Chengdu, Sichuan Province, P. R. China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry Sichuan University, 29, Wangjiang Road, Chengdu, Sichuan Province, P. R. China
| | - Na Wang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry Sichuan University, 29, Wangjiang Road, Chengdu, Sichuan Province, P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry Sichuan University, 29, Wangjiang Road, Chengdu, Sichuan Province, P. R. China
| |
Collapse
|
36
|
Murugan C, Sharma V, Murugan RK, Malaimegu G, Sundaramurthy A. Two-dimensional cancer theranostic nanomaterials: Synthesis, surface functionalization and applications in photothermal therapy. J Control Release 2019; 299:1-20. [DOI: 10.1016/j.jconrel.2019.02.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023]
|
37
|
Mazumder A, Assawapanumat W, Dwivedi A, Reabroi S, Chairoungdua A, Nasongkla N. Glucose targeted therapy against liver hepatocellular carcinoma: In vivo study. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.12.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
38
|
Marcos X, Padilla-Beltrán C, Bernad-Bernad MJ, Rosales-Hernández MC, Pérez-Casas S, Correa-Basurto J. Controlled release of N-(2-hydroxyphenyl)-2-propylpentanamide nanoencapsulated in polymeric micelles of P123 and F127 tested as anti-proliferative agents in MDA-MB-231 cells. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
39
|
Khan AR, Yang X, Fu M, Zhai G. Recent progress of drug nanoformulations targeting to brain. J Control Release 2018; 291:37-64. [PMID: 30308256 DOI: 10.1016/j.jconrel.2018.10.004] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 02/08/2023]
|
40
|
Tan BL, Norhaizan ME, Chan LC. An Intrinsic Mitochondrial Pathway Is Required for Phytic Acid-Chitosan-Iron Oxide Nanocomposite (Phy-CS-MNP) to Induce G₀/G₁ Cell Cycle Arrest and Apoptosis in the Human Colorectal Cancer (HT-29) Cell Line. Pharmaceutics 2018; 10:pharmaceutics10040198. [PMID: 30360519 PMCID: PMC6321496 DOI: 10.3390/pharmaceutics10040198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 01/10/2023] Open
Abstract
Magnetic iron oxide nanoparticles are among the most useful metal nanoparticles in biomedical applications. A previous study had confirmed that phytic acid-chitosan-iron oxide nanocomposite (Phy-CS-MNP) exhibited antiproliferative activity towards human colorectal cancer (HT-29) cells. Hence, in this work, we explored the in vitro cytotoxicity activity and mechanistic action of Phy-CS-MNP nanocomposite in modulating gene and protein expression profiles in HT-29 cell lines. Cell cycle arrest and apoptosis were evaluated by NovoCyte Flow Cytometer. The mRNA changes (cyclin-dependent kinase 4 (Cdk4), vascular endothelial growth factor A (VEGFA), c-Jun N-terminal kinase 1 (JNK1), inducible nitric oxide synthase (iNOS), and matrix metallopeptidase 9 (MMP9)) and protein expression (nuclear factor-kappa B (NF-κB) and cytochrome c) were assessed by quantitative real-time polymerase chain reaction (PCR) and western blotting, respectively. The data from our study demonstrated that treatment with Phy-CS-MNP nanocomposite triggered apoptosis and G0/G1 cell cycle arrest. The transcriptional activity of JNK1 and iNOS was upregulated after treatment with 90 μg/mL Phy-CS-MNP nanocomposite. Our results suggested that Phy-CS-MNP nanocomposite induced apoptosis and cell cycle arrest via an intrinsic mitochondrial pathway through modulation of Bax and Bcl-2 and the release of cytochrome c from the mitochondria into the cytosol.
Collapse
Affiliation(s)
- Bee Ling Tan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Mohd Esa Norhaizan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Research Centre of Excellent, Nutrition and Non-Communicable Diseases (NNCD), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Lee Chin Chan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
41
|
Kalaydina RV, Bajwa K, Qorri B, Decarlo A, Szewczuk MR. Recent advances in "smart" delivery systems for extended drug release in cancer therapy. Int J Nanomedicine 2018; 13:4727-4745. [PMID: 30154657 PMCID: PMC6108334 DOI: 10.2147/ijn.s168053] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Advances in nanomedicine have become indispensable for targeted drug delivery, early detection, and increasingly personalized approaches to cancer treatment. Nanoparticle-based drug-delivery systems have overcome some of the limitations associated with traditional cancer-therapy administration, such as reduced drug solubility, chemoresistance, systemic toxicity, narrow therapeutic indices, and poor oral bioavailability. Advances in the field of nanomedicine include “smart” drug delivery, or multiple levels of targeting, and extended-release drug-delivery systems that provide additional methods of overcoming these limitations. More recently, the idea of combining smart drug delivery with extended-release has emerged in hopes of developing highly efficient nanoparticles with improved delivery, bioavailability, and safety profiles. Although functionalized and extended-release drug-delivery systems have been studied extensively, there remain gaps in the literature concerning their application in cancer treatment. We aim to provide an overview of smart and extended-release drug-delivery systems for the delivery of cancer therapies, as well as to introduce innovative advancements in nanoparticle design incorporating these principles. With the growing need for increasingly personalized medicine in cancer treatment, smart extended-release nanoparticles have the potential to enhance chemotherapy delivery, patient adherence, and treatment outcomes in cancer patients.
Collapse
Affiliation(s)
| | - Komal Bajwa
- Postgraduate Medical Education, Graduate Diploma and Professional Master in Medical Sciences, School of Medicine, Queen's University
| | - Bessi Qorri
- Department of Biomedical and Molecular Sciences, Queen's University,
| | | | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University,
| |
Collapse
|
42
|
Rho JG, Han HS, Han JH, Lee H, Nguyen VQ, Lee WH, Kwon S, Heo S, Yoon J, Shin HH, Lee EY, Kang H, Yang S, Lee EK, Park JH, Kim W. Self-assembled hyaluronic acid nanoparticles: Implications as a nanomedicine for treatment of type 2 diabetes. J Control Release 2018; 279:89-98. [PMID: 29649530 DOI: 10.1016/j.jconrel.2018.04.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/28/2018] [Accepted: 04/05/2018] [Indexed: 01/13/2023]
Abstract
Self-assembled hyaluronic acid nanoparticles (HA-NPs) have been extensively investigated for biomedical and pharmaceutical applications owing to their biocompatibility and receptor-binding properties. Here, we report that an empty HA-NP itself not bearing any drug has therapeutic effects on adipose tissue inflammation and insulin resistance. HA-NPs inhibited not only the receptor-mediated internalization of low-molecular-weight (LMW) free HA but also LMW free HA-induced pro-inflammatory gene expression in mouse primary bone marrow-derived macrophages (BMDMs) isolated from wild-type mice, but not in CD44-null (CD44-/-) BMDMs. An in vivo biodistribution study showed the distribution of HA-NPs and their co-localization with CD44 in adipose tissues including epididymal white adipose tissues (eWATs), but these were rarely observed in the eWATs of CD44-/- mice. In addition, CD44 expression and HA-NP accumulation in the eWATs were increased in mice with diet-induced obesity (DIO) compared to lean mice. Interestingly, treatment with HA-NPs in DIO mice suppressed adipose tissue inflammation as indicated by reduced macrophage content, the production of proinflammatory cytokines and NLRP3 inflammasome activity in eWATs, leading to improved insulin sensitivity and normalized blood glucose levels. Collectively, these results suggest that an empty HA-NP itself can be a therapeutic agent for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Jun Gi Rho
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hwa Seung Han
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Hye Han
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hansang Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Van Quy Nguyen
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Wang Hee Lee
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Seunglee Kwon
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sungeun Heo
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Juhwan Yoon
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Han Ho Shin
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Eun-Young Lee
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hoin Kang
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Siyoung Yang
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Eun Kyung Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Wook Kim
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|