1
|
Carey CM, Hollins HL, Schmid AV, Gagnon JA. Distinct features of the regenerating heart uncovered through comparative single-cell profiling. Biol Open 2024; 13:bio060156. [PMID: 38526188 PMCID: PMC11007736 DOI: 10.1242/bio.060156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/14/2024] [Indexed: 03/26/2024] Open
Abstract
Adult humans respond to heart injury by forming a permanent scar, yet other vertebrates are capable of robust and complete cardiac regeneration. Despite progress towards characterizing the mechanisms of cardiac regeneration in fish and amphibians, the large evolutionary gulf between mammals and regenerating vertebrates complicates deciphering which cellular and molecular features truly enable regeneration. To better define these features, we compared cardiac injury responses in zebrafish and medaka, two fish species that share similar heart anatomy and common teleost ancestry but differ in regenerative capability. We used single-cell transcriptional profiling to create a time-resolved comparative cell atlas of injury responses in all major cardiac cell types across both species. With this approach, we identified several key features that distinguish cardiac injury response in the non-regenerating medaka heart. By comparing immune responses to injury, we found altered cell recruitment and a distinct pro-inflammatory gene program in medaka leukocytes, and an absence of the injury-induced interferon response seen in zebrafish. In addition, we found a lack of pro-regenerative signals, including nrg1 and retinoic acid, from medaka endothelial and epicardial cells. Finally, we identified alterations in the myocardial structure in medaka, where they lack primordial layer cardiomyocytes and fail to employ a cardioprotective gene program shared by regenerating vertebrates. Our findings reveal notable variation in injury response across nearly all major cardiac cell types in zebrafish and medaka, demonstrating how evolutionary divergence influences the hidden cellular features underpinning regenerative potential in these seemingly similar vertebrates.
Collapse
Affiliation(s)
- Clayton M. Carey
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Hailey L. Hollins
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Alexis V. Schmid
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - James A. Gagnon
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
- Henry Eyring Center for Cell & Genome Science, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
2
|
Carey CM, Hollins HL, Schmid AV, Gagnon JA. Distinct features of the regenerating heart uncovered through comparative single-cell profiling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.04.547574. [PMID: 37461520 PMCID: PMC10349989 DOI: 10.1101/2023.07.04.547574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Adult humans respond to heart injury by forming a permanent scar, yet other vertebrates are capable of robust and complete cardiac regeneration. Despite progress towards characterizing the mechanisms of cardiac regeneration in fish and amphibians, the large evolutionary gulf between mammals and regenerating vertebrates complicates deciphering which cellular and molecular features truly enable regeneration. To better define these features, we compared cardiac injury responses in zebrafish and medaka, two fish species that share similar heart anatomy and common teleost ancestry but differ in regenerative capability. We used single-cell transcriptional profiling to create a time-resolved comparative cell atlas of injury responses in all major cardiac cell types across both species. With this approach, we identified several key features that distinguish cardiac injury response in the non-regenerating medaka heart. By comparing immune responses to injury, we found altered cell recruitment and a distinct pro-inflammatory gene program in medaka leukocytes, and an absence of the injury-induced interferon response seen in zebrafish. In addition, we found a lack of pro-regenerative signals, including nrg1 and retinoic acid, from medaka endothelial and epicardial cells. Finally, we identified alterations in the myocardial structure in medaka, where they lack embryonic-like primordial layer cardiomyocytes, and fail to employ a cardioprotective gene program shared by regenerating vertebrates. Our findings reveal notable variation in injury response across nearly all major cardiac cell types in zebrafish and medaka, demonstrating how evolutionary divergence influences the hidden cellular features underpinning regenerative potential in these seemingly similar vertebrates.
Collapse
Affiliation(s)
- Clayton M. Carey
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Hailey L. Hollins
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Alexis V. Schmid
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - James A. Gagnon
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
- Henry Eyring Center for Cell & Genome Science, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
3
|
van der Valk WH, van Beelen ESA, Steinhart MR, Nist-Lund C, Osorio D, de Groot JCMJ, Sun L, van Benthem PPG, Koehler KR, Locher H. A single-cell level comparison of human inner ear organoids with the human cochlea and vestibular organs. Cell Rep 2023; 42:112623. [PMID: 37289589 PMCID: PMC10592453 DOI: 10.1016/j.celrep.2023.112623] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/21/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023] Open
Abstract
Inner ear disorders are among the most common congenital abnormalities; however, current tissue culture models lack the cell type diversity to study these disorders and normal otic development. Here, we demonstrate the robustness of human pluripotent stem cell-derived inner ear organoids (IEOs) and evaluate cell type heterogeneity by single-cell transcriptomics. To validate our findings, we construct a single-cell atlas of human fetal and adult inner ear tissue. Our study identifies various cell types in the IEOs including periotic mesenchyme, type I and type II vestibular hair cells, and developing vestibular and cochlear epithelium. Many genes linked to congenital inner ear dysfunction are confirmed to be expressed in these cell types. Additional cell-cell communication analysis within IEOs and fetal tissue highlights the role of endothelial cells on the developing sensory epithelium. These findings provide insights into this organoid model and its potential applications in studying inner ear development and disorders.
Collapse
Affiliation(s)
- Wouter H van der Valk
- OtoBiology Leiden, Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA.
| | - Edward S A van Beelen
- OtoBiology Leiden, Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Matthew R Steinhart
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Carl Nist-Lund
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel Osorio
- Research Computing, Department of Information Technology, Boston Children's Hospital, Boston, MA 02115, USA
| | - John C M J de Groot
- OtoBiology Leiden, Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Liang Sun
- Research Computing, Department of Information Technology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Peter Paul G van Benthem
- OtoBiology Leiden, Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Karl R Koehler
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA; Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA 02115, USA.
| | - Heiko Locher
- OtoBiology Leiden, Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
4
|
Zhong L, Tang L, He X. Angiopoietin-like 3 (ANGPTL3) drives cell proliferation, migration and angiogenesis in cervical cancer via binding to integrin alpha v beta 3. Bioengineered 2022; 13:2971-2980. [PMID: 35038961 PMCID: PMC8974177 DOI: 10.1080/21655979.2021.2024951] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Angiopoietin-like 3 (ANGPTL3) has been uncovered to play an oncogenic role in several kinds of human malignancies. Nevertheless, whether ANGPTL3 functions in cervical cancer (CC) has not yet been reported. This paper is intended to explore the impact of ANGPTL3 on CC cells and elucidate the potential mechanism. In this study, quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were performed to analyze the ANGPTL3 expression. Western blot was also performed to examine integrin αvβ3 protein level. Cell proliferation was evaluated by MTT assay, EdU staining and Western blot analysis. In addition, the migratory and invasive abilities of cells were, respectively, estimated by wound healing and transwell assays. Tube formation assay was performed to determine endothelial cell angiogenesis. Levels of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor 2 (VEGFR2) were measured by ELISA. As a result, ANGPTL3 expression was significantly higher in CC cells relative to that in normal cervical cells. Silencing of ANGPTL3 suppressed cell proliferation, migration and invasion. Besides, downregulation of ANGPTL3 inhibited human umbilical vein endothelial cell (HUVEC) angiogenesis and repressed protein level of integrin alpha v beta 3 (αvβ3). Upregulation of αvβ3 offsets the inhibitory effect of ANGPTL3 on proliferation, migration and invasion in CC cells. Upregulated expression of αvβ3 promoted blood vessel formation and secretions of VEGF and VEGFR2. In conclusion, ANGPTL3 silencing may serve as a tumor suppressor in CC through integrin αvβ3, which provides a potentially novel therapeutic target for patients with CC.
Collapse
Affiliation(s)
- Lijun Zhong
- Department of Gynecology, The Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - Lin Tang
- Department of Gynecology, The Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - Xiaoxia He
- Department of Gynecology, The Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
Kaur D, Behl T, Chigurupati S, Sehgal A, Singh S, Sharma N, Badavath VN, Vargas-De-La-Cruz C, Bhatia S, Al-Harrasi A, Dey A, Aleya L, Bungau S. Deciphering the focal role of endostatin in Alzheimer's disease. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:61998-62011. [PMID: 34561808 DOI: 10.1007/s11356-021-16567-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Alzheimer's disease (AD) is a paramount chronic neurodegenerative condition that has been affecting elderly people since the 1900s. It causes memory loss, disorientation, and poor mental function. AD is considered to be one of the most serious problems that dementia sufferers face. Despite extensive investigation, the pathological origin of Alzheimer's disease remains a mystery. The amyloid cascade theory and the vascular hypothesis, which stresses the buildup of Aβ plaques, have dominated research into dementia and aging throughout history. However, research into this task failed to yield the long-awaited therapeutic miracle lead for Alzheimer's disease. Perhaps a hypothetical fragility in the context of Alzheimer's disease was regarded as a state distinct from aging in general, as suggested by the angiogenesis hypothesis, which suggests that old age is one state associated with upregulation of angiogenic growth factors, resulting in decreased microcirculation throughout the body. There has also been evidence that by controlling or inhibiting the components involved in the sequence of events that cause angiogenesis, there is a visible progression in AD patients. In Alzheimer's disease, one such antiangiogenic drug is being used.
Collapse
Affiliation(s)
- Dapinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India.
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah, Saudi Arabia
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | | | - Celia Vargas-De-La-Cruz
- Faculty of Pharmacy and Biochemistry, Academic Department of Pharmacology, Bromatology and Toxicology, Centro Latinoamericano de Ensenanza e Investigacion en Bacteriologia Alimentaria, Universidad Nacinol Mayor de San Marcos, Lima, Peru
- E-Health Research Center, Universidad de Ciencias y Humanidades, Lima, Peru
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Simona Bungau
- Department of Pharmacy, Faculty of Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
6
|
Araujo Júnior E, Zamarian AC, Caetano AC, Peixoto AB, Nardozza LM. Physiopathology of late-onset fetal growth restriction. Minerva Obstet Gynecol 2021; 73:392-408. [PMID: 33876907 DOI: 10.23736/s2724-606x.21.04771-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Fetal growth restriction (FGR) is defined as the inability of the fetus to reach its potential for genetic determination. FGR can have several causes, including genetic syndromes, chromosomal diseases, and infections; however, a vast majority of cases are probably attributed to impaired uterine and placental circulation. The relationships between abnormal placental development and FGR are complex, and studies are generally few, presenting confounding factors. Damage to the uteroplacental circulation associated with vasculogenesis and villus angiogenesis dysfunction are the main factors involved in subsequent FGR. The main receptors involved in FGR include hypoxia-inducible factor (HIF 1, 2, and 3), vascular endothelial growth factor (VEGF), placental growth factor (PlGF), vascular endothelial growth factor C (VEGF-C), soluble Flt-1, soluble endoglin (Seng), angiopoietin-1 and -2 (Ang-1 and Ang-2), tyrosine kinase receptor 1 (Flt-1), tyrosine kinase receptor 2 (Flt-2), vascular endothelial growth factor receptor (VEGFR) 1, 2 and 3, kinase domain receptor (KDR), and vascular endothelial growth factor receptor A (VEGFR-A). Furthermore, failure in trophoblastic invasion and remodeling of spiral arteries has been associated with FGR owing to poor placental perfusion. There are several possible causes for poor remodeling of spiral arteries, which probably vary on a case-to-case basis. Changes in the placental form, macroscopic and microscopic vascular lesions, inflammation, and genetic changes are also related to FGR. Based on gestational age at diagnosis, FGR can be classified as early- (˂32 weeks) and late-onset (≥32 weeks). Moreover, there exist several theories regarding possible pathophysiological differences between early- and late-onset FGR, with some postulating that it the same disease but at different stages or severity. Another hypothesis suggests that the change in the trophoblastic invasion of spiral arteries would be milder. In this article, we address the main mechanisms described in the pathophysiology of FGR and, later, the specific findings in late-onset FGR.
Collapse
Affiliation(s)
- Edward Araujo Júnior
- Paulista School of Medicine, Department of Obstetrics, Federal University of São Paulo (EPM-UNIFESP), São Paulo, Brazil -
- Municipal University of São Caetano do Sul (USCS), São Paulo, Brazil -
| | - Ana C Zamarian
- Paulista School of Medicine, Department of Obstetrics, Federal University of São Paulo (EPM-UNIFESP), São Paulo, Brazil
| | - Ana C Caetano
- Paulista School of Medicine, Department of Obstetrics, Federal University of São Paulo (EPM-UNIFESP), São Paulo, Brazil
| | - Alberto B Peixoto
- Department of Obstetrics and Gynecology, Federal University of Triângulo Mineiro (UFTM), Uberaba, Brazil
- Mario Palmério University Hospital, University of Uberaba (UNIUBE), Uberaba, Brazil
| | - Luciano M Nardozza
- Paulista School of Medicine, Department of Obstetrics, Federal University of São Paulo (EPM-UNIFESP), São Paulo, Brazil
| |
Collapse
|
7
|
Maiti A, Okano I, Oshi M, Okano M, Tian W, Kawaguchi T, Katsuta E, Takabe K, Yan L, Patnaik SK, Hait NC. Altered Expression of Secreted Mediator Genes That Mediate Aggressive Breast Cancer Metastasis to Distant Organs. Cancers (Basel) 2021; 13:cancers13112641. [PMID: 34072157 PMCID: PMC8199412 DOI: 10.3390/cancers13112641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/11/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Heterogeneity is the characteristic of breast tumors, making it difficult to understand the molecular mechanism. Alteration of gene expression in the primary tumor versus the metastatic lesion remains challenging for getting any specific targeted therapy. To better understand how gene expression profile changes during metastasis, we compare the primary tumor and distant metastatic tumor gene expression using primary breast tumors compared with its metastatic variant in animal models. Our RNA sequencing data from cells revealed that parental cell and the metastatic variant cell are different in gene expression while gene signature significantly altered during metastasis to distant organs than primary breast tumors. We found that secreted mediators encoding genes (ANGPTL7, MMP3, LCN2, S100A8, and ESM1) are correlated with poor prognosis in the clinical setting as divulged from METABRIC and TCGA-BRCA cohort data analysis. Abstract Due to the heterogeneous nature of breast cancer, metastasis organotropism has been poorly understood. This study assessed the specific cancer-related gene expression changes occurring with metastatic breast cancer recurrence to distant organs compared with non-metastatic breast cancer. We found that several secreted mediators encoding genes notably, LCN2 and S100A8 overexpressed at the distant metastatic site spine (LCN2, 5-fold; S100A8, 6-fold) and bone (LCN2, 5-fold; S100A8, 3-fold) vs. primary tumors in the syngeneic implantation/tumor-resection metastasis mouse model. In contrast, the ESM-1 encoding gene is overexpressed in the primary tumors and markedly downregulated at distant metastatic sites. Further digging into TCAGA-BRCA, SCAN-B, and METABRIC cohorts data analysis revealed that LCN2, S100A8, and ESM-1 mediators encoding individual gene expression scores were strongly associated with disease-specific survival (DSS) in the METABRIC cohort (hazard ratio (HR) > 1, p < 0.0004). The gene expression scores predicted worse clinically aggressive tumors, such as high Nottingham histological grade and advanced cancer staging. Higher gene expression score of ESM-1 gene was strongly associated with worse overall survival (OS) in the triple-negative breast cancer (TNBC) and hormonal receptor (HR)-positive/HER2-negative subtype in METABRIC cohort, HER2+ subtype in TCGA-BRCA and SCAN-B breast cancer cohorts. Our data suggested that mediators encoding genes with prognostic and predictive values may be clinically useful for breast cancer spine, bone, and lung metastasis, particularly in more aggressive subtypes such as TNBC and HER2+ breast cancer.
Collapse
Affiliation(s)
- Aparna Maiti
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (I.O.); (M.O.); (M.O.); (T.K.); (E.K.); (K.T.)
- Department of Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Correspondence: (A.M.); (N.C.H.); Tel.: +1-(716)-845-3505 (A.M.); +1-(716)-845-8527 (N.C.H.); Fax: +1-(716)-845-1668 (N.C.H.)
| | - Ichiro Okano
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (I.O.); (M.O.); (M.O.); (T.K.); (E.K.); (K.T.)
| | - Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (I.O.); (M.O.); (M.O.); (T.K.); (E.K.); (K.T.)
| | - Maiko Okano
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (I.O.); (M.O.); (M.O.); (T.K.); (E.K.); (K.T.)
| | - Wanqing Tian
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (W.T.); (L.Y.)
| | - Tsutomu Kawaguchi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (I.O.); (M.O.); (M.O.); (T.K.); (E.K.); (K.T.)
| | - Eriko Katsuta
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (I.O.); (M.O.); (M.O.); (T.K.); (E.K.); (K.T.)
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (I.O.); (M.O.); (M.O.); (T.K.); (E.K.); (K.T.)
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (W.T.); (L.Y.)
| | - Santosh K. Patnaik
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Nitai C. Hait
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (I.O.); (M.O.); (M.O.); (T.K.); (E.K.); (K.T.)
- Department of Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Correspondence: (A.M.); (N.C.H.); Tel.: +1-(716)-845-3505 (A.M.); +1-(716)-845-8527 (N.C.H.); Fax: +1-(716)-845-1668 (N.C.H.)
| |
Collapse
|
8
|
Navaeian M, Asadian S, Ahmadpour Yazdi H, Gheibi N. ANGPTL8 roles in proliferation, metabolic diseases, hypothyroidism, polycystic ovary syndrome, and signaling pathways. Mol Biol Rep 2021; 48:3719-3731. [PMID: 33864588 DOI: 10.1007/s11033-021-06270-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 03/05/2021] [Indexed: 12/18/2022]
Abstract
A new and atypical member of the ANGPTL family is angiopoietin-like protein 8 (ANGPTL8). This newly discovered hormone is a drug target that can be used to treat diabetes and dyslipidemia. The protein, as a hepatocyte-derived circulating factor, can control the triglyceride level of plasma. ANGPTL8 is significantly associated with inflammation and metabolic syndrome consequences such as obesity, diabetes, hypothyroidism, and PCOS. ANGPTL8 gene has four exons encoding a 22/5 kDa weight of 198 amino acid polypeptides. A highly preserved ANGPTL8 gene among mammals exhibits the essential hormone functions of ANGPTL8. Nevertheless, the physiological function of this hormone in the body is poorly understood. Studies published in PubMed (2008-2020), Google Scholar (2004-2020), and Scopus (2004-2020) databases of clinical trials were reviewed. This analysis is aimed at collecting information on ANGPTL8. The emphasis of this review was on gathering information about the role of ANGPTL8 in the metabolism of glucose and lipids and cell proliferation. It addition to the different roles of ANGPTL8 in diabetes and lipid metabolism, this review emphasized on the protein role in signaling pathways. The study also proposes the signaling pathways that may be considered as a new target for treatment.
Collapse
Affiliation(s)
- Maryam Navaeian
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Samieh Asadian
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hossein Ahmadpour Yazdi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
9
|
Yang J, Li X, Xu D. Research Progress on the Involvement of ANGPTL4 and Loss-of-Function Variants in Lipid Metabolism and Coronary Heart Disease: Is the "Prime Time" of ANGPTL4-Targeted Therapy for Coronary Heart Disease Approaching? Cardiovasc Drugs Ther 2020; 35:467-477. [PMID: 32500296 DOI: 10.1007/s10557-020-07001-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Multiple genetic studies have confirmed the definitive link among the loss-of-function variants of angiogenin-like protein 4 (ANGPTL4), significantly decreased plasma triglyceride (TG) levels, and reduced risk of coronary heart disease (CHD). The potential therapeutic effect of ANGPTL4 on dyslipidemia and CHD has been widely studied. OBJECTIVE This review provides a detailed introduction to the research progress on the involvement of ANGPTL4 in lipid metabolism and atherosclerosis and evaluates the efficacy and safety of ANGPTL4 as a therapeutic target for CHD. RELEVANT FINDINGS By inhibiting lipoprotein lipase (LPL) activity, ANGPTL4 plays a vital role in the regulation of lipid metabolism and energy balance. However, the role of ANGPTL4 in regulating lipid metabolism is tissue-specific. ANGPTL4 acts as a locally released LPL inhibitor in the heart, skeletal muscle and small intestine, while ANGPTL4 derived from liver and adipose tissue mainly acts as an endocrine factor that regulates systemic lipid metabolism. As a multifunctional protein, ANGPTL4 also inhibits the formation of foam cells in macrophages, exerting an anti-atherogenic role. The function of ANGPTL4 in endothelial cells is still uncertain. The safety of ANGPTL4 monoclonal antibodies requires further evaluation due to their potential adverse effects. CONCLUSION The biological characteristics of ANGPTL4 are much more complex than those demonstrated by genetic studies. Future studies must elucidate how to effectively reduce the risk of CHD while avoiding potential atherogenic effects and other complications before the "prime time" of ANGPTL4-targeted therapy arrives.
Collapse
Affiliation(s)
- Jingmin Yang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Xiao Li
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Danyan Xu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China.
| |
Collapse
|
10
|
Chiang WC, Huang YC, Fu TI, Chen PM, Chang FC, Lai CF, Wu VC, Lin SL, Chen YM. Angiopoietin 1 influences ischemic reperfusion renal injury via modulating endothelium survival and regeneration. Mol Med 2019; 25:5. [PMID: 30760202 PMCID: PMC6375134 DOI: 10.1186/s10020-019-0072-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/24/2019] [Indexed: 01/08/2023] Open
Abstract
Background Damage to the endothelium due to ischemia reperfusion injury (IRI) leads to a disruption of the microvasculature, which could be influenced by angiopoietin 1 via its effects on endothelium. We investigated the physiological and therapeutic roles of angiopoietin 1 in renal IRI using angiopoietin 1 knockout and over-expression mice. Methods Renal IRI was induced by clamping the right renal artery seven days after left uninephrectomy for 25 min followed by reperfusion. A whole body angiopoietin 1 knockout was achieved by induction with tamoxifen. The renal tubule over-expression of angiopoietin 1 was induced by doxycycline. Results In the normal mice, the renal expression of angiopoietin 1 increased 7 days to 14 days after IRI. The angiopoietin 1 knockout caused a delay in the recovery of renal function, less tubular regeneration and more residual tubular necrosis. The endothelial density was lower and the VE-cadherin protein loss was greater in the knockout mice. The over-expression of angiopoietin 1 attenuated the tubular necrosis and renal function impairment 1 and 3 days after IRI. The loss of the endothelium was ameliorated in the over-expression mice. This protective effect was associated with the up-regulation of the gene expression of epidermal growth factor, hepatocyte growth factor, and insulin like growth factor-1 and less tubular apoptosis. The over-expression of angiopoietin 1 stimulated tumor necrosis factor-α, C-C chemokine receptor type 2 and CX3C chemokine receptor 1 inflammatory gene expression, but did not influence macrophage infiltration. Conclusions Altogether, the augmentation and downregulation of angiopoietin 1 attenuated renal damage and impaired renal recovery, respectively, by influencing the survival/regeneration of the endothelium. The manipulation of angiopoietin 1 represents a novel therapeutic approach for the treatment of ischemic kidney injury. Electronic supplementary material The online version of this article (10.1186/s10020-019-0072-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wen-Chih Chiang
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Jhong-Shan South Road, Taipei, 100, Taiwan
| | - Yu-Chin Huang
- Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan City, Taiwan
| | - Ten-I Fu
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Jhong-Shan South Road, Taipei, 100, Taiwan
| | - Ping-Min Chen
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Jhong-Shan South Road, Taipei, 100, Taiwan
| | - Fan-Chi Chang
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Jhong-Shan South Road, Taipei, 100, Taiwan
| | - Chun-Fu Lai
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Jhong-Shan South Road, Taipei, 100, Taiwan
| | - Vin-Cent Wu
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Jhong-Shan South Road, Taipei, 100, Taiwan
| | - Shuei-Liong Lin
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Jhong-Shan South Road, Taipei, 100, Taiwan.,Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Ming Chen
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Jhong-Shan South Road, Taipei, 100, Taiwan. .,College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
11
|
Whitehead M, Osborne A, Widdowson PS, Yu-Wai-Man P, Martin KR. Angiopoietins in Diabetic Retinopathy: Current Understanding and Therapeutic Potential. J Diabetes Res 2019; 2019:5140521. [PMID: 31485452 PMCID: PMC6710771 DOI: 10.1155/2019/5140521] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022] Open
Abstract
Diabetic retinopathy (DR) is the commonest cause of blindness in the working-age population of the developed world. The molecular pathophysiology of DR is complex, and a complete spatiotemporal model of the disease is still being elucidated. Recently, a role for angiopoietin (Ang) proteins in the pathophysiology of DR has been proposed by several research groups, and several aspects of Ang signalling are being explored as novel therapeutic strategies. Here, we review the role of the Ang proteins in two important forms of DR, diabetic macular oedema and proliferative diabetic retinopathy. The function of the Ang proteins in regulating blood vessel permeability and neovascularisation is discussed, and we also evaluate recent preclinical and clinical studies highlighting the potential benefits of modulating Ang signalling as a treatment for DR.
Collapse
Affiliation(s)
- Michael Whitehead
- Van Geest Building, West Forvie Site, Addenbrookes Biomedical Campus, Cambridge CB2 0PY, UK
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Andrew Osborne
- Van Geest Building, West Forvie Site, Addenbrookes Biomedical Campus, Cambridge CB2 0PY, UK
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter S. Widdowson
- Camburgh House 27 New Dover Road, Canterbury, Kent, CT1 3DN, UK
- Ikarovec Ltd., Canterbury, UK
| | - Patrick Yu-Wai-Man
- Van Geest Building, West Forvie Site, Addenbrookes Biomedical Campus, Cambridge CB2 0PY, UK
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK
| | - Keith R. Martin
- Van Geest Building, West Forvie Site, Addenbrookes Biomedical Campus, Cambridge CB2 0PY, UK
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, UK
- Centre for Eye Research Australia, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
| |
Collapse
|
12
|
The Role of Dll4/Notch Signaling in Normal and Pathological Ocular Angiogenesis: Dll4 Controls Blood Vessel Sprouting and Vessel Remodeling in Normal and Pathological Conditions. J Ophthalmol 2018; 2018:3565292. [PMID: 30116629 PMCID: PMC6079472 DOI: 10.1155/2018/3565292] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/04/2018] [Indexed: 12/16/2022] Open
Abstract
Background Retina is the highest oxygen-demanding and vascularized tissue in the body. Retinal development and function require proper vascularization and blood vessel function and integrity. Dll4 is most prominently expressed in the endothelium of angiogenic blood vessels and in quiescent arteries and capillaries in all tissues and organs of the mammalian species, and it is the key regulator of blood vessel sprouting. Results Dll4 is a transmembrane protein that acts as a ligand for Notch receptors 1 and 4. Genetic deletion of Dll4 causes severe abnormalities in embryonic and postnatal vascular development. Deletion of even a single Dll4 allele results in almost complete embryonic lethality due to severe vascular abnormalities, the phenomenon called haploinsufficiency indicating the critical role of Dll4/Notch in vascular development. Dll4/Notch pathway interplays at multiple levels with other signaling pathways including VEGF, Wnt/Fzd, and genes controlling vascular toning. Multiple studies of the effects of Dll4 inhibition were performed in the developing retina to elucidate the key functions of Dll4 in normal and pathological angiogenesis. Several genetic approaches and therapeutic molecules were tested to evaluate the biological and therapeutic effects of acute and prolonged Dll4 inhibition in the eye and oncology. Conclusions All current studies demonstrated that Dll4 controls blood vessel sprouting, growth, and remodeling in normal and pathological conditions as well as arterial-venous differentiation. Genetic and therapeutic Dll4 modulation studies show that Dll4 inhibition can promote blood vessel sprouting and might be useful to stimulate vessel growth in the ischemic retina and Dll4 is the key modulator of the postangiogenic vascular remodeling that ultimately defines vascular patterning.
Collapse
|
13
|
Gao H, Chen P, Wei L, Xu J, Liu L, Zhao Y, Hara H, Pan D, Li Z, Cooper DKC, Cai Z, Mou L. Angiopoietin-1 and angiopoietin-2 protect porcine iliac endothelial cells from human antibody-mediated complement-dependent cytotoxicity through phosphatidylinositide 3-kinase/AKT pathway activation. Xenotransplantation 2017; 24. [PMID: 28474373 DOI: 10.1111/xen.12309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/16/2017] [Accepted: 03/27/2017] [Indexed: 01/06/2023]
Abstract
Cytokines play crucial roles in inflammation, but their role in xenotransplantation remains elusive. We assessed the role of several cytokines using an in vitro model of human antibody-mediated complement-dependent cytotoxicity (CDC). Recombinant human angiopoietin-1 (Ang-1) protected porcine iliac endothelial cells (PIECs) from human antibody-mediated CDC. Interestingly, human angiopoietin-2 (Ang-2) had a similar protective effect on PIECs. By flow cytometry analysis, the extent of human IgM and IgG binding to PIECs did not decrease when PIECs were exposed to Ang-1/Ang-2. The mRNA level of complement regulators (CD46, CD55, CD59) was not upregulated in PIECs treated with Ang-1/Ang-2, both of which activated the PI3K/AKT pathway in PIECs. Wortmannin, which inhibits phosphatidylinositide 3-kinase (PI3K), suppressed Ang-1/Ang-2-induced AKT phosphorylation and consequent Ang-1/Ang-2-mediated protection of PIECs in human antibody-mediated CDC model. Moreover, dominant negative AKT also suppressed Ang-1/Ang-2-mediated protection of PIECs in this model. In conclusion, our data suggest that human Ang-1/Ang-2 induces the protection of PIECs from human antibody-mediated CDC by activating the PI3K/AKT pathway. Ang-1/Ang-2 is likely to protect porcine endothelial cells and may be beneficial in xenotransplantation research.
Collapse
Affiliation(s)
- Hanchao Gao
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Pengfei Chen
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ling Wei
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jia Xu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Lu Liu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yanli Zhao
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Hidetaka Hara
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dengke Pan
- Key Laboratory of Farm Animal Genetic Resource and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zesong Li
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
14
|
Zhou Q, Deng Q, Hu B, Wang YJ, Chen JL, Cui JJ, Cao S, Song HN. Ultrasound combined with targeted cationic microbubble-mediated angiogenesis gene transfection improves ischemic heart function. Exp Ther Med 2017; 13:2293-2303. [PMID: 28565841 PMCID: PMC5443262 DOI: 10.3892/etm.2017.4270] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/19/2016] [Indexed: 01/02/2023] Open
Abstract
The present study aimed to construct targeted cationic microbubbles (TCMBs) by synthesizing cationic microbubbles conjugated to an intercellular adhesion molecule-1 (ICAM-1) antibody, and then to use the TCMBs to deliver the angiopoietin-1 (Ang-1) gene into infarcted heart tissue using ultrasound-mediated microbubble destruction. It was hypothesized that the TCMBs would accumulate in higher numbers than non-targeted cationic microbubbles (CMBs) in the infarcted heart, and would therefore increase the efficiency of targeted Ang-1 gene transfection and promote angiogenesis. The results of the study demonstrated that the ability of TCMBs to target inflammatory endothelial cells was 18.4-fold higher than that of the CMBs in vitro. The accumulation of TCMBs was greater than that of CMBs in TNF-α-stimulated human umbilical cord veins, indicated by a 212% higher acoustic intensity. In vivo, the TCMBs specifically accumulated in the myocardial infarct area in a rabbit model. Three days after ultrasound microbubble-mediated gene transfection, Ang-1 protein expression in the TCMB group was 2.7-fold higher than that of the CMB group. Angiogenesis, the thickness of the infarct region and the heart function of the TCMB group were all significantly improved compared with those in the CMB and control groups at 4 weeks following gene transfection (all P<0.01). Therefore, the results of the current study demonstrate that ultrasound-mediated TCMB destruction effectively delivered the Ang-1 gene to the infarcted myocardium, resulting in improved cardiac morphology and function in the animal model. Ultrasound-mediated TCMB destruction is a promising strategy for improving gene therapy in the future.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Ultrasound Imaging, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qing Deng
- Department of Ultrasound Imaging, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bo Hu
- Department of Ultrasound Imaging, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yi-Jia Wang
- Department of Ultrasound Imaging, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jin-Ling Chen
- Department of Ultrasound Imaging, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jing-Jing Cui
- Department of Ultrasound Imaging, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Sheng Cao
- Department of Ultrasound Imaging, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hong-Ning Song
- Department of Ultrasound Imaging, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
15
|
Mousavizadeh R, Scott A, Lu A, Ardekani GS, Behzad H, Lundgreen K, Ghaffari M, McCormack RG, Duronio V. Angiopoietin-like 4 promotes angiogenesis in the tendon and is increased in cyclically loaded tendon fibroblasts. J Physiol 2016; 594:2971-83. [PMID: 26670924 PMCID: PMC4887665 DOI: 10.1113/jp271752] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/10/2015] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS Angiopoietin-like 4 (ANGPTL4) modulates tendon neovascularization. Cyclic loading stimulates the activity of transforming growth factor-β and hypoxia-inducible factor 1α and thereby increases the expression and release of ANGPTL4 from human tendon cells. Targeting ANGPTL4 and its regulatory pathways is a potential avenue for regulating tendon vascularization to improve tendon healing or adaptation. ABSTRACT The mechanisms that regulate angiogenic activity in injured or mechanically loaded tendons are poorly understood. The present study examined the potential role of angiopoietin-like 4 (ANGPTL4) in the angiogenic response of tendons subjected to repetitive mechanical loading or injury. Cyclic stretching of human tendon fibroblasts stimulated the expression and release of ANGPTL4 protein via transforming growth factor-β (TGF-β) and hypoxia-inducible factor 1α (HIF-1α) signalling, and the released ANGPTL4 was pro-angiogenic. Angiogenic activity was increased following ANGPTL4 injection into mouse patellar tendons, whereas the patellar tendons of ANGPTL4 knockout mice displayed reduced angiogenesis following injury. In human rotator cuff tendons, the expression of ANGPTL4 was correlated with the density of tendon endothelial cells. To our knowledge, this is the first study characterizing a role of ANGPTL4 in the tendon. ANGPTL4 may assist in the regulation of vascularity in the injured or mechanically loaded tendon. TGF-β and HIF-1α comprise two signalling pathways that modulate the expression of ANGPTL4 by mechanically stimulated tendon fibroblasts and, in the future, these could be manipulated to influence tendon healing or adaptation.
Collapse
Affiliation(s)
- Rouhollah Mousavizadeh
- Jack Bell Research Centre, Department of Medicine, University of British Columbia, Vancouver, Canada
- Department of Physical Therapy, University of British Columbia, Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Alex Scott
- Department of Physical Therapy, University of British Columbia, Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Alex Lu
- Department of Physical Therapy, University of British Columbia, Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Gholamreza S Ardekani
- Jack Bell Research Centre, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Hayedeh Behzad
- Department of Physical Therapy, University of British Columbia, Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Kirsten Lundgreen
- Department of Orthopaedic Surgery, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Mazyar Ghaffari
- Jack Bell Research Centre, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Robert G McCormack
- Department of Orthopedic Surgery, University of British Columbia, Vancouver, Canada
| | - Vincent Duronio
- Jack Bell Research Centre, Department of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
16
|
Mancinelli R, Glaser S, Francis H, Carpino G, Franchitto A, Vetuschi A, Sferra R, Pannarale L, Venter J, Meng F, Alpini G, Onori P, Gaudio E. Ischemia reperfusion of the hepatic artery induces the functional damage of large bile ducts by changes in the expression of angiogenic factors. Am J Physiol Gastrointest Liver Physiol 2015; 309:G865-73. [PMID: 26451003 PMCID: PMC4669349 DOI: 10.1152/ajpgi.00015.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 09/08/2015] [Indexed: 02/06/2023]
Abstract
Liver transplantation and cholangiocarcinoma induce biliary dysfunction following ischemia reperfusion (IR). The function of the intrahepatic biliary tree is regulated by both autocrine and paracrine factors. The aim of the study was to demonstrate that IR-induced damage of cholangiocytes is associated with altered expression of biliary angiogenic factors. Normal and bile duct ligation rats underwent 24-h sham or hepatic reperfusion after 30 min of transient occlusion of the hepatic artery (HAIR) or portal vein (PVIR) before collecting liver blocks and cholangiocyte RNA or protein. We evaluated liver histology, biliary apoptosis, proliferation and expression of VEGF-A/C, VEGFR-2/3, Ang-1/2, and Tie-1/2 in liver sections and isolated small and large cholangiocytes. Normal rat intrahepatic cholangiocyte cultures (NRICC) were maintained under standard conditions in normoxic or under a hypoxic atmosphere for 4 h and then transferred to normal conditions for selected times. Subsequently, we measured changes in biliary proliferation and apoptosis and the expression of VEGF-A/C and VEGFR-2/3. In vivo, HAIR (but not PVIR) induced damage of large bile ducts and decreased proliferation and secretin-stimulated cAMP levels. HAIR-induced damage of large bile ducts was associated with increased expression of VEGF-A/C, VEGFR-2/3, Ang-1/2, and Tie-1/2. In vitro, under hypoxic conditions, there was increased apoptosis and reduced proliferation of NRICC concomitant with enhanced expression of VEGF-A/C and VEGFR-2/3. The functional damage of large bile ducts by HAIR and hypoxia is associated with increased expression of angiogenic factors in small cholangiocytes, presumably due to a compensatory mechanism in response to biliary damage.
Collapse
Affiliation(s)
- Romina Mancinelli
- 1Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, Rome, Italy;
| | - Shannon Glaser
- 2Research, Central Texas Veterans Health Care System, Temple, Texas; ,3Scott & White Digestive Disease Research Center, Baylor Scott & White, Temple, Texas; ,4Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center, College of Medicine, Temple, Texas;
| | - Heather Francis
- 2Research, Central Texas Veterans Health Care System, Temple, Texas; ,3Scott & White Digestive Disease Research Center, Baylor Scott & White, Temple, Texas; ,4Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center, College of Medicine, Temple, Texas;
| | - Guido Carpino
- 1Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, Rome, Italy;
| | - Antonio Franchitto
- 1Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, Rome, Italy; ,6Eleonora Lorillard Spencer Cenci Foundation, Rome, Italy
| | - Antonella Vetuschi
- 5Department of Biotechnological and Applied Clinical Sciences, University of L′Aquila, L′Aquila, Italy;
| | - Roberta Sferra
- 5Department of Biotechnological and Applied Clinical Sciences, University of L′Aquila, L′Aquila, Italy;
| | - Luigi Pannarale
- 1Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, Rome, Italy;
| | - Julie Venter
- 4Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center, College of Medicine, Temple, Texas;
| | - Fanyin Meng
- 2Research, Central Texas Veterans Health Care System, Temple, Texas; ,3Scott & White Digestive Disease Research Center, Baylor Scott & White, Temple, Texas; ,4Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center, College of Medicine, Temple, Texas;
| | - Gianfranco Alpini
- 2Research, Central Texas Veterans Health Care System, Temple, Texas; ,3Scott & White Digestive Disease Research Center, Baylor Scott & White, Temple, Texas; ,4Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center, College of Medicine, Temple, Texas;
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, Rome, Italy;
| | - Eugenio Gaudio
- 1Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, Rome, Italy;
| |
Collapse
|
17
|
Angiopoietin-like-2: a multifaceted protein with physiological and pathophysiological properties. Expert Rev Mol Med 2014; 16:e17. [PMID: 25417860 DOI: 10.1017/erm.2014.19] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Angptl2 is a multifaceted protein, displaying both physiological and pathological functions, in which scientific and clinical interest is growing exponentially within the past few years. Its physiological functions are not well understood, but angptl2 was first acknowledged for its pro-angiogenic and antiapoptotic capacities. In addition, angptl2 can be considered a growth factor, since it increases survival and expansion of hematopoietic stem cells and may promote vasculogenesis. Finally, angptl2 has an important, but largely unrecognised, physiological role: in the cytosol, angptl2 binds to type 1A angiotensin II receptors and induces their recycling, with recovery of the receptor signal functions. Despite these important physiological properties, angptl2 is better acknowledged for its deleterious pro-inflammatory properties and its contribution in multiple chronic diseases such as cancer, diabetes, atherosclerosis, metabolic disorders and many other chronic diseases. This review aims at presenting an updated description of both the beneficial and deleterious biological properties of angptl2, in addition to its molecular signalling pathways and transcriptional regulation. The multiplicity of diseases in which angptl2 contributes makes it a new highly relevant clinical therapeutic target.
Collapse
|
18
|
Parri M, Pietrovito L, Grandi A, Campagnoli S, De Camilli E, Bianchini F, Marchiò S, Bussolino F, Jin B, Sarmientos P, Grandi G, Viale G, Pileri P, Chiarugi P, Grifantini R. Angiopoietin-like 7, a novel pro-angiogenetic factor over-expressed in cancer. Angiogenesis 2014; 17:881-96. [PMID: 24903490 DOI: 10.1007/s10456-014-9435-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/22/2014] [Indexed: 12/21/2022]
Abstract
Angiopoietin-like (ANGPTL) proteins are secreted proteins showing structural similarity to members of the angiopoietin family. Some ANGPTL proteins possess pleiotropic activities, being involved in cancer lipid, glucose energy metabolisms, and angiogenesis. ANGPTL7 is the less characterized member of the family whose functional role is only marginally known. In this study, we provide experimental evidences that ANGPTL7 is over-expressed in different human cancers. To understand the role played by ANGPTL7 in tumor biology, we asked whether ANGPTL7 is endogenously expressed by malignant cells or in response to environmental stimuli. We found that ANGPTL7 is marginally expressed under standard growth condition while it is specifically up-regulated by hypoxia. Interestingly, the protein is secreted and partially associated with the exosomal fraction, suggesting that it could be found in the systemic circulation of oncologic patients and act in an endocrine way. Moreover, we found that ANGPTL7 exerts a pro-angiogenetic effect on human differentiated endothelial cells by stimulating their proliferation, motility, invasiveness, and capability to form capillary-like networks while it does not stimulate progenitor endothelial cells. Finally, we showed that ANGPTL7 promotes vascularization in vivo in the mouse Matrigel sponge assay, thereby accrediting this molecule as a pro-angiogenic factor.
Collapse
Affiliation(s)
- Matteo Parri
- Externautics SpA, Via Fiorentina 1, 53100, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mousavizadeh R, Khosravi S, Behzad H, McCormack RG, Duronio V, Scott A. Cyclic strain alters the expression and release of angiogenic factors by human tendon cells. PLoS One 2014; 9:e97356. [PMID: 24824595 PMCID: PMC4019633 DOI: 10.1371/journal.pone.0097356] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 04/17/2014] [Indexed: 01/31/2023] Open
Abstract
Angiogenesis is associated with the tissue changes underlying chronic overuse tendinopathy. We hypothesized that repetitive, cyclic loading of human tendon cells would lead to increased expression and activity of angiogenic factors. We subjected isolated human tendon cells to overuse tensile loading using an in vitro model (1 Hz, 10% equibiaxial strain). We found that mechanically stimulated human tendon cells released factors that promoted in vitro proliferation and tube formation by human umbilical vein endothelial cells (HUVEC). In response to cyclic strain, there was a transient increase in the expression of several angiogenic genes including ANGPTL4, FGF-2, COX-2, SPHK1, TGF-alpha, VEGF-A and VEGF-C, with no change in anti-angiogenic genes (BAI1, SERPINF1, THBS1 and 2, TIMP1-3). Cyclic strain also resulted in the extracellular release of ANGPTL4 protein by tendon cells. Our study is the first report demonstrating the induction of ANGPTL4 mRNA and release of ANGPTL4 protein in response to cyclic strain. Tenocytes may contribute to the upregulation of angiogenesis during the development of overuse tendinopathy.
Collapse
Affiliation(s)
- Rouhollah Mousavizadeh
- Department of Medicine, University of British Columbia, Vancouver, Canada
- Department of Physical Therapy, University of British Columbia, Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Shahram Khosravi
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada
| | - Hayedeh Behzad
- Department of Physical Therapy, University of British Columbia, Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Robert G. McCormack
- Department of Orthopedic Surgery, University of British Columbia, Vancouver, Canada
| | - Vincent Duronio
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Alex Scott
- Department of Physical Therapy, University of British Columbia, Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, Canada
| |
Collapse
|
20
|
Kang JX, Liu A. The role of the tissue omega-6/omega-3 fatty acid ratio in regulating tumor angiogenesis. Cancer Metastasis Rev 2013; 32:201-10. [PMID: 23090260 DOI: 10.1007/s10555-012-9401-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenesis is a necessary step in tumor growth and metastasis. It is well established that the metabolites of omega-6 and omega-3 fatty acids, which must be obtained through the diet and cannot be synthesized de novo in mammals, have differential effects on cellular processes. Omega-6 fatty acid (n-6 FA)-derived metabolites promote angiogenesis by increasing growth factor expression whereas omega-3 fatty acids (n-3 FA) have anti-angiogenic and antitumor properties. However, most studies thus far have failed to account for the role of the n-6 FA/n-3 FA ratio in angiogenesis and instead examined the absolute levels of n-6 and n-3 FA. This review highlights the biochemical interactions between n-6 and n-3 FA and focuses on how the n-6/n-3 FA ratio in tissues modulates tumor angiogenesis. We suggest that future work should consider the n-6/n-3 FA ratio to be a key element in experimental design and analysis. Furthermore, we recommend that clinical interventions should aim to both reduce n-6 metabolites and simultaneously increase n-3 FA intake.
Collapse
|
21
|
Angiopoietins modulate endothelial adaptation, glomerular and podocyte hypertrophy after uninephrectomy. PLoS One 2013; 8:e82592. [PMID: 24367525 PMCID: PMC3867364 DOI: 10.1371/journal.pone.0082592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 11/05/2013] [Indexed: 01/08/2023] Open
Abstract
Glomerular capillary remodeling is an essential process in the development of glomerular hypertrophy. Angiopoietins, which are important regulators in angiogenesis, plays a role in the development of glomerulus during embryogenesis. Here, we evaluated the influence of angiopoietin on glomerular components and hypertrophy after uninephrectomy in adult male BALB/c mice. The actions of angiopoietin 1 or 2 were systemically antagonized by the subcutaneous administration of antagonists. We observed that the angiopoietin system was activated after uninephrectomy, and that the blockade of angiopoietin 1 or 2 decreased the activation of the angiopoietin receptor--tyrosine kinase with Ig and EGF homology domains-2--and attenuated the development of glomerular and podocyte hypertrophy. The increase in endothelial density staining (anti-CD31) following uninephrectomy was also reversed by angiopoietin 1 or 2 blockades. Glomerular basement thickness and foot process width were observed to decrease in the angiopoietin blockade groups. These changes were associated with the down regulation of the expression of genes for the glomerular matrix and basement membrane, including collagen type IV α1, collagen type IV α2, collagen type IV α5, and laminin α5. Thus, angiopoietin 1 or 2 may play an important role in the development of glomerular hypertrophy after uninephrectomy. A blockade of the angiopoietin system not only influenced the endothelium but also the podocyte, leading to diminished gene expression and morphological changes after uninephrectomy.
Collapse
|
22
|
Fatty acid-induced angiogenesis in first trimester placental trophoblast cells: Possible roles of cellular fatty acid-binding proteins. Life Sci 2013; 93:755-62. [DOI: 10.1016/j.lfs.2013.09.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 08/31/2013] [Accepted: 09/23/2013] [Indexed: 12/11/2022]
|
23
|
Morell CM, Fabris L, Strazzabosco M. Vascular biology of the biliary epithelium. J Gastroenterol Hepatol 2013; 28 Suppl 1:26-32. [PMID: 23855292 PMCID: PMC3721432 DOI: 10.1111/jgh.12022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2012] [Indexed: 01/13/2023]
Abstract
Cholangiocytes are involved in a variety of processes essential for liver pathophysiology. To meet their demanding metabolic and functional needs, bile ducts are nourished by their own arterial supply, the peribiliary plexus. This capillary network originates from the hepatic artery and is strictly arranged around the intrahepatic bile ducts. Biliary and vascular structures are linked by a close anatomic and functional association necessary for liver development, normal organ physiology, and liver repair. This strong association is finely regulated by a range of angiogenic signals, enabling the cross talk between cholangiocytes and the different vascular cell types. This review will briefly illustrate the "vascular" properties of cholangiocytes, their underlying molecular mechanisms and the relevant pathophysiological settings.
Collapse
Affiliation(s)
- Carola M. Morell
- Department of Surgery and Interdisciplinary Medicine, University of Milano-Bicocca, Milan, Italy
| | - Luca Fabris
- Department of Surgery and Interdisciplinary Medicine, University of Milano-Bicocca, Milan, Italy,Department of Surgery, Oncology and Gastroenterology, Università di Padova, Padova, Italy
| | - Mario Strazzabosco
- Department of Surgery and Interdisciplinary Medicine, University of Milano-Bicocca, Milan, Italy,Liver Center & Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven CT, USA
| |
Collapse
|
24
|
Farhat N, Thorin-Trescases N, Mamarbachi M, Villeneuve L, Yu C, Martel C, Duquette N, Gayda M, Nigam A, Juneau M, Allen BG, Thorin E. Angiopoietin-like 2 promotes atherogenesis in mice. J Am Heart Assoc 2013; 2:e000201. [PMID: 23666461 PMCID: PMC3698785 DOI: 10.1161/jaha.113.000201] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Angiopoietin like-2 (angptl2), a proinflammatory protein, is overexpressed in endothelial cells (ECs) from patients with coronary artery disease (CAD). Whether angptl2 contributes to atherogenesis is unknown. We tested the hypothesis that angptl2 promotes inflammation and leukocyte adhesion onto ECs, thereby accelerating atherogenesis in preatherosclerotic dyslipidemic mice. METHODS AND RESULTS In ECs freshly isolated from the aorta, basal expression of TNF-α and IL-6 mRNA was higher in 3-month-old severely dyslipidemic mice (LDLr(-/-); hApoB100(+/+) [ATX]) than in control healthy wild-type (WT) mice (P<0.05) and was increased in both groups by exogenous angptl2 (100 nmol/L). Angptl2 stimulated the adhesion of leukocytes ex vivo on the native aortic endothelium of ATX, but not WT mice, in association with higher expression of ICAM-1 and P-selectin in ECs (P<0.05). Antibodies against these endothelial adhesion molecules prevented leukocyte adhesion. Intravenous administration of angptl2 for 1 month in preatherosclerotic 3-month-old ATX mice increased (P<0.05) total cholesterol and LDL-cholesterol levels, strongly induced (P<0.05) the expression of endothelial proinflammatory cytokines and adhesion molecules while accelerating atherosclerotic lesion formation by 10-fold (P<0.05). Plasma and aortic tissue levels of angptl2 increased (P<0.05) with age and were higher in 6- and 12-month-old ATX mice than in age-matched WT mice. Angptl2 accumulated to high levels in the atherosclerotic lesions (P<0.05). Finally, angptl2 was greatly expressed (P<0.05) in ECs cultured from CAD patients, and circulating angptl2 levels were 6-fold higher in CAD patients compared with age-matched healthy volunteers. CONCLUSIONS Angptl2 contributes to the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Nada Farhat
- Department of Pharmacology, Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
D'Souza SS, Scherzinger-Laude K, Simon M, Salimath BP, Rössler J. Angiopoietin-2 inhibition using siRNA or the peptide antagonist L1-10 results in antitumor activity in human neuroblastoma. J Cancer Res Clin Oncol 2012; 138:2017-26. [PMID: 22777681 DOI: 10.1007/s00432-012-1282-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 06/22/2012] [Indexed: 12/17/2022]
Abstract
PURPOSE The angiopoietin/Tie-2 system has been identified as a key role player in tumor angiogenesis. We investigated whether angiopoietin-2 could be a promising target in human neuroblastoma. METHODS Angiopoietin-2 down-regulation by siRNA or shRNA was evaluated in vitro in Kelly cells. Angiopoietin-2 shRNA-transfected Kelly cells were tested in a chorioallantoic membrane (CAM) assay to evaluate tumor growth and microvessel density. The effects of L1-10, a peptide-Fc fusion molecule blocking angiopoietin-2/Tie-2 interaction, administered 3 times/week were assessed in a murine neuroblastoma xenograft model. RESULTS Angiopoietin-2 down-regulation by siRNA or shRNA in Kelly cells inhibited cell proliferation and migration. In vivo growth and microvessel density of angiopoietin-2 shRNA-transfected Kelly cells in the CAM assay were reduced. Therapy of advanced tumors with L1-10 did not stop tumor progression. However, starting L1-10 treatment at the same time as neuroblastoma cell injection significantly inhibited tumor growth (vehicule: 903 ± 160 mm(3); L1-10: 270 ± 152 mm(3) after 26 days; P < 0.05). Microvessel density was reduced in both L1-10-treated tumors, whereas expression of angiopoietin-2 and VEGF-A did not change. CONCLUSION This first demonstration of beneficial angiopoietin-2 inhibition in neuroblastoma offers an additional approach for future therapy strategies, especially by using L1-10 in the setting of minimal residual disease.
Collapse
Affiliation(s)
- Saritha Sandra D'Souza
- Clinic IV: Pediatric Hematology and Oncology, Center of Pediatrics and Adolescent Medicine, University Medical Hospital, Mathildenstrasse 1, 79106, Freiburg, Germany
| | | | | | | | | |
Collapse
|
26
|
Noll JE, Williams SA, Purton LE, Zannettino ACW. Tug of war in the haematopoietic stem cell niche: do myeloma plasma cells compete for the HSC niche? Blood Cancer J 2012; 2:e91. [PMID: 22983434 PMCID: PMC3461708 DOI: 10.1038/bcj.2012.38] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In the adult mammal, normal haematopoiesis occurs predominantly in the bone marrow, where primitive haematopoietic stem cells (HSC) and their progeny reside in specialised microenvironments. The bone marrow microenvironment contains specific anatomical areas (termed niches) that are highly specialised for the development of certain blood cell types, for example HSCs. The HSC niche provides important cell–cell interactions and signalling molecules that regulate HSC self-renewal and differentiation processes. These same signals and interactions are also important in the progression of haematological malignancies, such as multiple myeloma (MM). This review provides an overview of the bone marrow microenvironment and its involvement in normal, physiological HSC maintenance and plasma cell growth throughout MM disease progression.
Collapse
Affiliation(s)
- J E Noll
- Myeloma Research Laboratory, Bone and Cancer Research Laboratories, Department of Haematology, Centre for Cancer Biology, Adelaide, South Australia, Australia
| | | | | | | |
Collapse
|
27
|
Cerri RLA, Thompson IM, Kim IH, Ealy AD, Hansen PJ, Staples CR, Li JL, Santos JEP, Thatcher WW. Effects of lactation and pregnancy on gene expression of endometrium of Holstein cows at day 17 of the estrous cycle or pregnancy. J Dairy Sci 2012; 95:5657-75. [PMID: 22884349 PMCID: PMC7094660 DOI: 10.3168/jds.2011-5114] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 05/29/2012] [Indexed: 01/08/2023]
Abstract
Objectives were to determine effects of lactation and pregnancy on endometrial gene expression on d 17 of the estrous cycle and pregnancy. Heifers (n = 33) were assigned randomly after parturition to lactating (L, n = 17) or nonlactating (NL, n = 16) groups. Cows were subjected to an ovulation synchronization program for a timed artificial insemination (TAI); 10 cows in L and 12 in NL were inseminated. Slaughter occurred 17 d after the day equivalent to TAI, and intercaruncular endometrial tissues were collected. Gene expression was determined by DNA microarray analysis for pregnant (L, n = 8; NL, n = 6) and noninseminated cyclic (L, n = 7; NL, n = 4) cows. Differentially expressed genes were selected with a P-value <0.01 and absolute expression >40. In addition, a fold effect >1.5 was used as a criterion for genes affected by pregnancy. In total, 210 genes were differentially regulated by lactation (136 downregulated and 74 upregulated), and 702 genes were differentially regulated by pregnancy (407 downregulated and 295 upregulated). The interaction effect of pregnancy and lactation affected 61 genes. Genes up- and downregulated in pregnant cows were associated with several gene ontology terms, such as defense response and interferon regulatory factor, cell adhesion, and extracellular matrix. The gene ontology analyses of up- and downregulated genes of lactating cows revealed terms related to immunoglobulin-like fold, immune response, COMM domain, and non-membrane-bounded organelle. Several genes upregulated by lactation, such as IGHG1, IGLL1, IGK, and TRD, were related to immune function, particularly for B cells and γδ T cells. Developmental genes related to limb and neural development and glucose homeostasis (e.g., DKK1, RELN, PDK4) were downregulated by lactation, whereas an interaction was also detected for RELN. The stated genes associated with immune function and developmental genes expressed in the endometrium affected by lactational state are possible candidate genes for interventions to improve fertility of lactating dairy cows.
Collapse
Affiliation(s)
- R L A Cerri
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ren G, Kim JY, Smas CM. Identification of RIFL, a novel adipocyte-enriched insulin target gene with a role in lipid metabolism. Am J Physiol Endocrinol Metab 2012; 303:E334-51. [PMID: 22569073 PMCID: PMC3423120 DOI: 10.1152/ajpendo.00084.2012] [Citation(s) in RCA: 241] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To identify new genes that are important in fat metabolism, we utilized the Lexicon-Genentech knockout database of genes encoding transmembrane and secreted factors and whole murine genome transcriptional profiling data that we generated for 3T3-L1 in vitro adipogenesis. Cross-referencing null models evidencing metabolic phenotypes with genes induced in adipogenesis led to identification of a new gene, which we named RIFL (refeeding induced fat and liver). RIFL-null mice have serum triglyceride levels approximately one-third of wild type. RIFL transcript is induced >100-fold during 3T3-L1 adipogenesis and is also increased markedly during adipogenesis of murine and human primary preadipocytes. siRNA-mediated knockdown of RIFL during 3T3-L1 adipogenesis results in an ~35% decrease in adipocyte triglyceride content. Murine RIFL transcript is highly enriched in white and brown adipose tissue and liver. Fractionation of WAT reveals that RIFL transcript is exclusive to adipocytes with a lack of expression in stromal-vascular cells. Nutritional and hormonal studies are consistent with a prolipogenic function for RIFL. There is evidence of an approximately eightfold increase in RIFL transcript level in WAT in ob/ob mice compared with wild-type mice. RIFL transcript level in WAT and liver is increased ~80- and 12-fold, respectively, following refeeding of fasted mice. Treatment of 3T3-L1 adipocytes with insulin increases RIFL transcript ≤35-fold, whereas agents that stimulate lipolysis downregulate RIFL. Interestingly, the 198-amino acid RIFL protein is predicted to be secreted and shows ~30% overall conservation with the NH(2)-terminal half of angiopoietin-like 3, a liver-secreted protein that impacts lipid metabolism. In summary, our data suggest that RIFL is an important new regulator of lipid metabolism.
Collapse
Affiliation(s)
- Gang Ren
- Department of Biochemistry and Cancer Biology and Center for Diabetes and Endocrine Research, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | | | | |
Collapse
|
29
|
Chittiboina P, Ganta V, Monceaux CP, Scott LK, Nanda A, Alexander JS. Angiopoietins as promising biomarkers and potential therapeutic targets in brain injury. ACTA ACUST UNITED AC 2012; 20:15-21. [PMID: 22633746 DOI: 10.1016/j.pathophys.2012.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Traumatic brain injury (TBI) and sub-arachnoid hemorrhage (SAH) are major causes of long-term disability, mortality, and enormous economic costs to society. The full spectrum of neurological damage created by TBI or SAH is not usually manifested at the time of injury, but evolves gradually over the course of hours to days (or weeks) following these injuries. Angiopoietins, important regulators of vascular structure and function, are hallmark indicators of vascular injury and may therefore represent promising targets in the treatment of SAH and TBI. In animal models and human tissues, normal intracerebral and pial vessels show strong expression of Angiopoietin-1 (Ang-1), but only minimal expression or presentation of Angiopoietin-2 (Ang-2). After several types of neurotrauma, the ratios of Ang-1 and Ang-2 expression in brain microvessel are disturbed and appear to contribute to the remarkable loss of blood-brain barrier (BBB) in these injuries. Angiopoietins levels, and perhaps more importantly, Angiopoietin ratios (1:2) may have novel and important diagnostic and prognostic uses in TBI and SAH brain injury. Ang-1/2 evaluation in plasma, serum and cerebrospinal fluid may provide new therapeutic modalities which can modify 'secondary' forms of brain injury after TBI and SAH.
Collapse
Affiliation(s)
- Prashant Chittiboina
- Department of Neurosurgery, LSUHSC-Shreveport, Shreveport, LA 71130, United States
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Pericytes are cells of mesenchymal origin that are intimately involved in the development and stabilization of vascular networks. Novel studies of their role in inflammation have identified that pericytes are not only major contributors to the activated matrix depositing myofibroblast populations seen in progressive renal fibrosis but perhaps even more importantly, the detachment of renal pericytes from the vasculature contributes to the microvasculature rarefaction and subsequent hypoxia associated with chronic kidney disease. In this review, our current understanding of the functioning of renal pericytes will be considered and set in the context of the wider literature that is currently available on this neglected population of cells.
Collapse
|
31
|
Erythropoietin, but not the correction of anemia alone, protects from chronic kidney allograft injury. Kidney Int 2012; 81:903-18. [DOI: 10.1038/ki.2011.473] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
32
|
Mahoney AW, Podgorski GJ, Flann NS. Multiobjective optimization based-approach for discovering novel cancer therapies. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2012; 9:169-184. [PMID: 20479506 DOI: 10.1109/tcbb.2010.39] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Solid tumors must recruit new blood vessels for growth and maintenance. Discovering drugs that block tumor-induced development of new blood vessels (angiogenesis) is an important approach in cancer treatment. The complexity of angiogenesis presents both challenges and opportunities for cancer therapies. Intuitive approaches, such as blocking VegF activity, have yielded important therapies. But there maybe opportunities to alter nonintuitive targets either alone or in combination. This paper describes the development of a high-fidelity simulation of angiogenesis and uses this as the basis for a parallel search-based approach for the discovery of novel potential cancer treatments that inhibit blood vessel growth. Discovering new therapies is viewed as a multiobjective combinatorial optimization over two competing objectives: minimizing the estimated cost of practically developing the intervention while minimizing the simulated oxygen provided to the tumor by angiogenesis. Results show the effectiveness of the search process by finding interventions that are currently in use, and more interestingly, discovering potential new approaches that are nonintuitive yet effective.
Collapse
|
33
|
Energy restriction and exercise modulate angiopoietins and vascular endothelial growth factor expression in the cavernous tissue of high-fat diet-fed rats. Asian J Androl 2011; 14:635-42. [PMID: 22138901 DOI: 10.1038/aja.2011.131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The purpose of the current study was to evaluate the effect of a high-fat (HF) diet, energy restriction and exercise on the expression of vascular endothelial growth factor (VEGF), angiopoietin (Ang) 1 and 2, and their receptors in rat corpus cavernosum (CC). Male Wistar rats were fed ad libitum with an HF diet for 8 or 16 weeks. After 8 weeks of the HF diet, a group of rats was subjected to energy restriction with or without exercise for 8 weeks. Control animals had free access to standard diet for the same period. After euthanasia, blood was collected and the penises removed for immunofluorescence assays (VEGF, VEGF receptor (VEGFR) 1 and 2, Ang1, Ang2 and Tie2) and semiquantification of VEGF, VEGFR1, VEGFR2, Ang1, Ang2, Tie2, endothelial nitric oxide synthase (eNOS) and Akt/phospho-Akt by Western blotting. HF diet-fed rats exhibited lower high-density lipoprotein cholesterol (HDL-c) levels, higher systolic blood pressure and an increased atherogenic index. A significant increase in Ang2 expression in the CC was verified and coupled to a decrease in VEGF and VEGFRs. The Akt pathway was activated by the HF diet. Energy restriction and exercise increased eNOS expression and restored most HF diet-induced modifications except for VEGFR2 expression. These results emphasize the role of diet on vascular function regulation, demonstrating that cavernous imbalance of VEGF/VEGFRs and Angs/Tie2 systems occurs before serum lipid changes and obesity onset, antedating structural atherosclerotic features.
Collapse
|
34
|
Vieira FA, Gregório SF, Ferraresso S, Thorne MAS, Costa R, Milan M, Bargelloni L, Clark MS, Canario AVM, Power DM. Skin healing and scale regeneration in fed and unfed sea bream, Sparus auratus. BMC Genomics 2011; 12:490. [PMID: 21981800 PMCID: PMC3199283 DOI: 10.1186/1471-2164-12-490] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 10/07/2011] [Indexed: 02/01/2023] Open
Abstract
Background Fish scales are an important reservoir of calcium and phosphorus and together with the skin function as an integrated barrier against environmental changes and external aggressors. Histological studies have revealed that the skin and scales regenerate rapidly in fish when they are lost or damaged. In the present manuscript the histological and molecular changes underlying skin and scale regeneration in fed and fasted sea bream (Sparus auratus) were studied using a microarray 3 and 7 days after scale removal to provide a comprehensive molecular understanding of the early stages of these processes. Results Histological analysis of skin/scales revealed 3 days after scale removal re-epithelisation and formation of the scale pocket had occurred and 53 and 109 genes showed significant up or down-regulation, respectively. Genes significantly up-regulated were involved in cell cycle regulation, cell proliferation and adhesion, immune response and antioxidant activities. 7 days after scale removal a thin regenerated scale was visible and only minor changes in gene expression occurred. In animals that were fasted to deplete mineral availability the expression profiles centred on maintaining energy homeostasis. The utilisation of fasting as a treatment emphasised the competing whole animal physiological requirements with regard to barrier repair, infection control and energy homeostasis. Conclusions The identification of numerous genes involved in the mitotic checkpoint and cell proliferation indicate that the experimental procedure may be useful for understanding cell proliferation and control in vertebrates within the context of the whole animal physiology. In response to skin damage genes of immune surveillance were up-regulated along with others involved in tissue regeneration required to rapidly re-establish barrier function. Additionally, candidate fish genes were identified that may be involved in cytoskeletal re-modelling, mineralization and stem cells, which are of potential use in aquaculture and fish husbandry, as they may impact on the ability of the fish to produce structural proteins, such as muscle, efficiently.
Collapse
Affiliation(s)
- Florbela A Vieira
- Comparative and Molecular Endocrinology Group, Centre for Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Fuxe J, Tabruyn S, Colton K, Zaid H, Adams A, Baluk P, Lashnits E, Morisada T, Le T, O'Brien S, Epstein DM, Koh GY, McDonald DM. Pericyte requirement for anti-leak action of angiopoietin-1 and vascular remodeling in sustained inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2897-909. [PMID: 21550017 DOI: 10.1016/j.ajpath.2011.02.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 02/02/2011] [Accepted: 02/08/2011] [Indexed: 11/30/2022]
Abstract
Blood vessel leakiness is an early, transient event in acute inflammation but can also persist as vessels undergo remodeling in sustained inflammation. Angiopoietin/Tie2 signaling can reduce the leakiness through changes in endothelial cells. The role of pericytes in this action has been unknown. We used the selective PDGF-B-blocking oligonucleotide aptamer AX102 to determine whether disruption of pericyte-endothelial crosstalk alters vascular leakiness or remodeling in the airways of mice under four different conditions: i) baseline, ii) acute inflammation induced by bradykinin, iii) sustained inflammation after 7-day infection by the respiratory pathogen Mycoplasma pulmonis, or iv) leakage after bradykinin challenge in the presence of vascular stabilization by the angiopoietin-1 (Ang1) mimic COMP-Ang1 for 7 days. AX102 reduced pericyte coverage but did not alter the leakage of microspheres from tracheal blood vessels at baseline or after bradykinin; however, AX102 exaggerated leakage at 7 days after M. pulmonis infection and increased vascular remodeling and disease severity at 14 days. AX102 also abolished the antileakage effect of COMP-Ang1 at 7 days. Together, these findings show that pericyte contributions to endothelial stability have greater dependence on PDGF-B during the development of sustained inflammation, when pericyte dynamics accompany vascular remodeling, than under baseline conditions or in acute inflammation. The findings also show that the antileakage action of Ang1 requires PDGF-dependent actions of pericytes in maintaining endothelial stability.
Collapse
Affiliation(s)
- Jonas Fuxe
- Department of Anatomy, Cardiovascular Research Institute, Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Masters KS. Covalent Growth Factor Immobilization Strategies for Tissue Repair and Regeneration. Macromol Biosci 2011; 11:1149-63. [DOI: 10.1002/mabi.201000505] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/28/2011] [Indexed: 12/23/2022]
|
37
|
Abstract
This review shall familiarize the readers with various fundamental aspects of angiogenesis. Angiogenesis is a feature of a limited number of physiological processes like wound healing, ovulation, development of the corpus luteum, embryogenesis, lactating breast, during immune response, and during Inflammation. It is driven by a cocktail of growth factors and pro-angiogenic cytokines and is tempered by an equally diverse group of inhibitors of neovascularization. The properties and biological functions of angiogenic growth factors such as VEGF, FGF-2, nitric oxide, MMP, angiopoietin, TGF-β as well as various inhibitors such as angiostatin, endostatin, thrombospondin, canstatin, DII4, PEDF are discussed in this review with respect to their impact on angiogenic process. In recent years, it has become increasingly evident that excessive, insufficient, or abnormal angiogenesis contributes to the pathogenesis of many more disorders. A long list of disorders is characterized or caused by excessive or insufficient angiogenesis whereas several congenital or inherited diseases are also caused by abnormal vascular remodeling. It may be possible in the future to develop specific anti-angiogenic agents that offer a potential therapy for cancer and angiogenic diseases.
Collapse
Affiliation(s)
- Shraddha V Bhadada
- Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Chharodi, Ahmedabad-382 481, Gujarat, India.
| | | | | |
Collapse
|
38
|
Abstract
In most cholangiopathies, liver diseases of different etiologies in which the biliary epithelium is the primary target in the pathogenic sequence, the central mechanism involves inflammation. Inflammation, characterized by pleomorphic peribiliary infiltrate containing fibroblasts, macrophages, lymphocytes, as well as endothelial cells and pericytes, is associated to the emergence of "reactive cholangiocytes." These biliary cells do not possess bile secretory functions, are in contiguity with terminal cholangioles, and are of a less-differentiated phenotype. They have acquired several mesenchymal properties, including motility and ability to secrete a vast number of proinflammatory chemo/cytokines and growth factors along with de novo expression of a rich receptor machinery. These functional properties enable reactive cholangiocytes to establish intimate contacts and to mutually exchange a variety of paracrine signals with the different mesenchymal cell types populating the portal infiltrate. The extensive crosstalk between the epithelial and mesenchymal compartments is the driver of liver repair mechanisms in cholangiopathies, ultimately evolving toward portal fibrosis. Herein, the authors first review the properties of the different cell types involved in their interaction, and then analyze the underlying molecular mechanisms as they relate to liver repair in cholangiopathies.
Collapse
Affiliation(s)
- Luca Fabris
- Department of Surgical and Gastroenterological Sciences, University of Padua, Padova, Italy,Center for Liver Research (CeLiveR), Bergamo, Italy
| | - Mario Strazzabosco
- Center for Liver Research (CeLiveR), Bergamo, Italy,Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut,Department of Clinical Medicine, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
39
|
|
40
|
Chiu L, Radisic M, Vunjak-Novakovic G. Bioactive scaffolds for engineering vascularized cardiac tissues. Macromol Biosci 2010; 10:1286-301. [PMID: 20857391 PMCID: PMC3627738 DOI: 10.1002/mabi.201000202] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Functional vascularization is a key requirement for the development and function of most tissues, and most critically cardiac muscle. Rapid and irreversible loss of cardiomyocytes during cardiac infarction directly results from the lack of blood supply. Contractile cardiac grafts, engineered using cardiovascular cells in conjunction with biomaterial scaffolds, are an actively studied method for cardiac repair. In this article, we focus on biomaterial scaffolds designed to mediate the development and maturation of vascular networks, by immobilized growth factors. The interactive effects of multiple vasculogenic factors are discussed in the context of cardiac tissue engineering.
Collapse
Affiliation(s)
- Loraine Chiu
- University of Toronto, Department of Chemical Engineering and Applied Chemistry, 164 College Street, Room 407, Toronto, Ontario, Canada M5S 3G9
| | - Milica Radisic
- University of Toronto, Department of Chemical Engineering and Applied Chemistry, 164 College Street, Room 407, Toronto, Ontario, Canada M5S 3G9
| | - Gordana Vunjak-Novakovic
- Columbia University, Department of Biomedical Engineering, 622 west 168 Street, VC12=234, New York NY 10032, U.S.A
| |
Collapse
|
41
|
Abstract
During the development of the pulmonary vasculature in the fetus, many structural and functional changes occur to prepare the lung for the transition to air breathing. The development of the pulmonary circulation is genetically controlled by an array of mitogenic factors in a temporo-spatial order. With advancing gestation, pulmonary vessels acquire increased vasoreactivity. The fetal pulmonary vasculature is exposed to a low oxygen tension environment that promotes high intrinsic myogenic tone and high vasocontractility. At birth, a dramatic reduction in pulmonary arterial pressure and resistance occurs with an increase in oxygen tension and blood flow. The striking hemodynamic differences in the pulmonary circulation of the fetus and newborn are regulated by various factors and vasoactive agents. Among them, nitric oxide, endothelin-1, and prostaglandin I2 are mainly derived from endothelial cells and exert their effects via cGMP, cAMP, and Rho kinase signaling pathways. Alterations in these signaling pathways may lead to vascular remodeling, high vasocontractility, and persistent pulmonary hypertension of the newborn.
Collapse
Affiliation(s)
- Yuansheng Gao
- Department of Physiology and Pathophysiology, Peking University, Health Science Center, Beijing, China; and Department of Pediatrics, University of Illinois, College of Medicine at Chicago, Chicago, Illinois
| | - J. Usha Raj
- Department of Physiology and Pathophysiology, Peking University, Health Science Center, Beijing, China; and Department of Pediatrics, University of Illinois, College of Medicine at Chicago, Chicago, Illinois
| |
Collapse
|
42
|
Nakamura S, Matsumoto T, Sasaki JI, Egusa H, Lee KY, Nakano T, Sohmura T, Nakahira A. Effect of Calcium Ion Concentrations on Osteogenic Differentiation and Hematopoietic Stem Cell Niche-Related Protein Expression in Osteoblasts. Tissue Eng Part A 2010; 16:2467-73. [DOI: 10.1089/ten.tea.2009.0337] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Shinya Nakamura
- Department of Materials Science, Osaka Prefecture University, Sakai, Japan
| | - Takuya Matsumoto
- Department of Oromaxillofacial Regeneration, Osaka University, Sutia, Japan
| | - Jun-Ichi Sasaki
- Department of Oromaxillofacial Regeneration, Osaka University, Sutia, Japan
| | - Hiroshi Egusa
- Department of Oromaxillofacial Regeneration, Osaka University, Sutia, Japan
| | - Kuen Yong Lee
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
| | | | - Taiji Sohmura
- Department of Oromaxillofacial Regeneration, Osaka University, Sutia, Japan
| | - Atsushi Nakahira
- Department of Materials Science, Osaka Prefecture University, Sakai, Japan
| |
Collapse
|
43
|
Prado-Lopez S, Conesa A, Armiñán A, Martínez-Losa M, Escobedo-Lucea C, Gandia C, Tarazona S, Melguizo D, Blesa D, Montaner D, Sanz-González S, Sepúlveda P, Götz S, O'Connor JE, Moreno R, Dopazo J, Burks DJ, Stojkovic M. Hypoxia promotes efficient differentiation of human embryonic stem cells to functional endothelium. Stem Cells 2010; 28:407-18. [PMID: 20049902 DOI: 10.1002/stem.295] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Early development of mammalian embryos occurs in an environment of relative hypoxia. Nevertheless, human embryonic stem cells (hESC), which are derived from the inner cell mass of blastocyst, are routinely cultured under the same atmospheric conditions (21% O(2)) as somatic cells. We hypothesized that O(2) levels modulate gene expression and differentiation potential of hESC, and thus, we performed gene profiling of hESC maintained under normoxic or hypoxic (1% or 5% O(2)) conditions. Our analysis revealed that hypoxia downregulates expression of pluripotency markers in hESC but increases significantly the expression of genes associated with angio- and vasculogenesis including vascular endothelial growth factor and angiopoitein-like proteins. Consequently, we were able to efficiently differentiate hESC to functional endothelial cells (EC) by varying O(2) levels; after 24 hours at 5% O(2), more than 50% of cells were CD34+. Transplantation of resulting endothelial-like cells improved both systolic function and fractional shortening in a rodent model of myocardial infarction. Moreover, analysis of the infarcted zone revealed that transplanted EC reduced the area of fibrous scar tissue by 50%. Thus, use of hypoxic conditions to specify the endothelial lineage suggests a novel strategy for cellular therapies aimed at repair of damaged vasculature in pathologies such as cerebral ischemia and myocardial infarction.
Collapse
Affiliation(s)
- Sonia Prado-Lopez
- Cellular Reprogramming Laboratory, Avenida del Autopista del Saler 16, 46013 Valencia, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Choe JY, Park SH, Kim SK. Serum angiopoietin-1 level is increased in patients with Behçet's disease. Joint Bone Spine 2010; 77:340-4. [PMID: 20471887 DOI: 10.1016/j.jbspin.2010.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 01/27/2010] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Angiogenesis may be involved in the pathogenesis of Behçet's disease (BD). Some angiogenic factors such as vascular endothelial growth factor, monocyte chemoattractant protein-1, and endothelin-1 are significantly associated with BD. Here, we investigate whether Angiopoietin contributes to disease activity and clinical manifestations of BD. METHODS We recruited 59 consecutive patients with BD and sex- and age-matched 65 healthy control subjects for this study. We reviewed data regarding clinical features, erythrocyte sediment rate (ESR), and C-reactive protein (CRP) at the time of enrollment. Serum angiopoietin-1 and angiopoietin-2 were estimated by enzyme-linked immunosorbent assay. Statistical analyses were performed using the Student t test and Pearson's correlation coefficient analysis. RESULTS Levels of serum angiopoietin-1 are significantly increased in BD patients compared to controls (284.5+/-101.2 ng/ml of BD vs 237.1+/-76.4 ng/ml of controls, p=0.012). However, serum angiopoietin-2 levels are similar in both groups (974.2+/-679.3 pg/ml of BD vs 858.3+/-535.3 pg/ml of controls, p=0.562). Serum angiopoietin-1 expression is significantly elevated in patients with skin lesions (p=0.025) and positively correlated with disease duration (r=0.320, p=0.015). ESR levels are closely associated with serum angiopoietin-2 (r=0.306, p=0.018). CONCLUSION Angiopoiein-1 expression is enhanced in BD patients compared to controls. This preliminary study identifies that angiopoietin-1 may play an important role in the pathogenesis of BD.
Collapse
Affiliation(s)
- Jung-Yoon Choe
- Department of Internal Medicine, Arthritis & Autoimmunity Research Center, Catholic University of Daegu School of Medicine, 3056-6 Daemyung 4-Dong, Namgu, Daegu 705-718, South Korea
| | | | | |
Collapse
|
45
|
Abstract
Pericytes are smooth muscle-like cells found in close contact with the endothelium in capillaries, where they regulate the morphology and function of the vessels. During vessel formation, platelet-derived growth factor-BB (PDGF-BB) is required for the recruitment and differentiation of pericytes. Tumor vessels display abnormal morphology and increased endothelial proliferation, resulting in leaky, tortuous vessels that are often poorly perfused. These vessels typically display decreased pericyte density, and the tumor-associated pericytes often express abnormal markers and show abnormal morphology. Anti-angiogenic therapy targeting pro-angiogenic growth factor pathways has been applied to a broad range of solid tumors with varying results. Studies utilizing mouse models indicate that the presence of pericytes protect endothelial cells against inhibition of vascular endothelial growth factor (VEGF) signaling. Simultaneous inhibition of PDGF receptors on pericytes therefore improves the effect of VEGF inhibitors on endothelial cells and enhances anti-angiogenic therapy.
Collapse
Affiliation(s)
- Carina Hellberg
- Ludwig Institute for Cancer Research, Uppsala University, S-751 24, Uppsala, Sweden.
| | | | | |
Collapse
|
46
|
Chiu LLY, Radisic M. Scaffolds with covalently immobilized VEGF and Angiopoietin-1 for vascularization of engineered tissues. Biomaterials 2010; 31:226-41. [PMID: 19800684 DOI: 10.1016/j.biomaterials.2009.09.039] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 09/07/2009] [Indexed: 11/24/2022]
Abstract
The aim of this study was to engineer a biomaterial capable of supporting vascularization in vitro and in vivo. We covalently immobilized vascular endothelial growth factor (VEGF) and Angiopoietin-1 (Ang1) onto three-dimensional porous collagen scaffolds using 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) chemistry. Over both 3 and 7 days in vitro, seeded endothelial cells (ECs) had increased proliferation on scaffolds with immobilized VEGF and/or Ang1 compared to unmodified scaffolds and soluble growth factor controls. Notably, the group with co-immobilized VEGF and Ang1 showed significantly higher cell number (P=0.0079), higher overall lactate production rate (P=0.0044) and higher overall glucose consumption rate (P=0.0034) at Day 3, compared to its corresponding soluble control for which growth factors were added to culture medium. By Day 7, hematoxylin and eosin, live/dead, CD31, and von Willebrand factor staining all showed improved tube formation by ECs when cultivated on scaffolds with co-immobilized growth factors. Interestingly, scaffolds with co-immobilized VEGF and Ang1 showed increased EC infiltration in the chorioallantoic membrane (CAM) assay, compared to scaffolds with independently immobilized VEGF/Ang1. This study presents an alternative method for promoting the formation of vascular structures, via covalent immobilization of angiogenic growth factors that are more stable than soluble ones and have a localized effect.
Collapse
Affiliation(s)
- Loraine L Y Chiu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, Ontario M5S 3E5, Canada
| | | |
Collapse
|
47
|
Park JY, Kim JH, Choi YJ, Hwang KC, Cho SK, Park HH, Paik SS, Kim T, Park C, Lee HT, Seo HG, Park SB, Hwang S, Kim JH. Comparative proteomic analysis of malformed umbilical cords from somatic cell nuclear transfer-derived piglets: implications for early postnatal death. BMC Genomics 2009; 10:511. [PMID: 19889237 PMCID: PMC2783166 DOI: 10.1186/1471-2164-10-511] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 11/05/2009] [Indexed: 02/02/2023] Open
Abstract
Background Somatic cell nuclear transfer (scNT)-derived piglets have high rates of mortality, including stillbirth and postnatal death. Here, we examined severe malformed umbilical cords (MUC), as well as other organs, from nine scNT-derived term piglets. Results Microscopic analysis revealed complete occlusive thrombi and the absence of columnar epithelial layers in MUC (scNT-MUC) derived from scNT piglets. scNT-MUC had significantly lower expression levels of platelet endothelial cell adhesion molecule-1 (PECAM-1) and angiogenesis-related genes than umbilical cords of normal scNT piglets (scNT-N) that survived into adulthood. Endothelial cells derived from scNT-MUC migrated and formed tubules more slowly than endothelial cells from control umbilical cords or scNT-N. Proteomic analysis of scNT-MUC revealed significant down-regulation of proteins involved in the prevention of oxidative stress and the regulation of glycolysis and cell motility, while molecules involved in apoptosis were significantly up-regulated. Histomorphometric analysis revealed severe calcification in the kidneys and placenta, peliosis in the liver sinusoidal space, abnormal stromal cell proliferation in the lungs, and tubular degeneration in the kidneys in scNT piglets with MUC. Increased levels of apoptosis were also detected in organs derived from all scNT piglets with MUC. Conclusion These results suggest that MUC contribute to fetal malformations, preterm birth and low birth weight due to underlying molecular defects that result in hypoplastic umbilical arteries and/or placental insufficiency. The results of the current study demonstrate the effects of MUC on fetal growth and organ development in scNT-derived pigs, and provide important insight into the molecular mechanisms underlying angiogenesis during umbilical cord development.
Collapse
Affiliation(s)
- Jong-Yi Park
- Animal Resource Research Center, College of Animal Bioscience and Technology, KonKuk University, Seoul, South Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Pivotal role for beta-1 integrin in neurovascular remodelling after ischemic stroke. Exp Neurol 2009; 221:107-14. [PMID: 19837065 DOI: 10.1016/j.expneurol.2009.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 10/07/2009] [Accepted: 10/07/2009] [Indexed: 01/08/2023]
Abstract
beta1 integrin is a cell surface molecule that is critical for endothelial cell adhesion, migration and survival during angiogenesis. In the present study we employed in vivo and in vitro models to elucidate the role of beta1 integrin in vascular remodelling and stroke outcomes. At 24 h after cerebral ischemia and reperfusion (I/R), the ischemic cortex (ipsilateral area) exhibited modest beta1 integrin immunoreactivity and a robust increase was observed at 72 h. Double-label immunohistochemical analysis for beta1 integrin with neuronal (NeuN), microglial (Iba-1), astrocyte (GFAP), progenitor cell (Ng2) and blood vessel (collagen 4) markers showed that beta1 integrin expression only localized to blood vessels. In vitro studies using cultured endothelial cells and a beta1 integrin blocking antibody confirmed that beta1 integrin is required for endothelial cell migration, proliferation and blood vessel formation. In vivo studies in the cerebral I/R model using the beta1 integrin blocking antibody further confirmed that beta1 integrin signaling is involved in vascular formation and recovery following ischemic stroke. Finally, we found that beta1 integrin is critically involved in functional deficits and survival after a stroke. These results suggest that beta1 integrin plays important roles in neurovascular remodelling and functional outcomes following stroke, and that targeting the beta1 integrin signalling may provide a novel strategy for modulating angiogenesis in ischemic stroke and other pathological conditions.
Collapse
|
49
|
Falcón BL, Hashizume H, Koumoutsakos P, Chou J, Bready JV, Coxon A, Oliner JD, McDonald DM. Contrasting actions of selective inhibitors of angiopoietin-1 and angiopoietin-2 on the normalization of tumor blood vessels. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:2159-70. [PMID: 19815705 DOI: 10.2353/ajpath.2009.090391] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Angiopoietin-1 (Ang1) and angiopoietin-2 (Ang2) have complex actions in angiogenesis and vascular remodeling due to their effects on Tie2 receptor signaling. Ang2 blocks Ang1-mediated activation of Tie2 in endothelial cells under certain conditions but is a Tie2 receptor agonist in others. We examined the effects of selective inhibitors of Ang1 (mL4-3) or Ang2 (L1-7[N]), alone or in combination, on the vasculature of human Colo205 tumors in mice. The Ang2 inhibitor decreased the overall abundance of tumor blood vessels by reducing tumor growth and keeping vascular density constant. After inhibition of Ang2, tumor vessels had many features of normal blood vessels (normalization), as evidenced by junctional accumulation of vascular endothelial-cadherin, junctional adhesion molecule-A, and platelet/endothelial cell adhesion molecule-1 in endothelial cells, increased pericyte coverage, reduced endothelial sprouting, and remodeling into smaller, more uniform vessels. The Ang1 inhibitor by itself had little noticeable effect on the tumor vasculature. However, when administered with the Ang2 inhibitor, the Ang1 inhibitor prevented tumor vessel normalization, but not the reduction in tumor vascularity produced by the Ang2 inhibitor. These findings are consistent with a model whereby inhibition of Ang2 leads to normalization of tumor blood vessels by permitting the unopposed action of Ang1, but decreases tumor vascularity primarily by blocking Ang2 actions.
Collapse
Affiliation(s)
- Beverly L Falcón
- Cardiovascular Research Institute, University of California, San Francisco, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Apostolakis S, Lip GYH, Shantsila E. Monocytes in heart failure: relationship to a deteriorating immune overreaction or a desperate attempt for tissue repair? Cardiovasc Res 2009; 85:649-60. [PMID: 19805399 DOI: 10.1093/cvr/cvp327] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Monocytes play an important role in immune defence, inflammation, and tissue remodelling. Nevertheless, the role of monocytes in cardiovascular disease is obscure. Indeed, monocytes infiltrate dysfunctional tissue and augment tissue damage and are actively involved in tissue regeneration and healing. In support of the latter, recent studies have provided data on the functional and structural plasticity of monocytes. Monocytes are also actively involved in processes associated with tissue regeneration such as angiogenesis and vasculogenesis, either by producing pro-angiogenic factors or even by evolving to structural components of the vascular wall. This review article provides an overview on whether monocytes represent deteriorating immune overreaction in heart failure (HF), or a desperate attempt for tissue repair or physiological compensation in the failing heart. Perhaps, it is time to reconsider our attitude towards monocytes and consider more 'monocyte activation' rather than 'monocyte suppression' as a potential therapeutic target in HF.
Collapse
Affiliation(s)
- Stavros Apostolakis
- Haemostasis Thrombosis and Vascular Biology Unit, University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham B18 7QH, UK
| | | | | |
Collapse
|