1
|
Hu Y, Chen X, Zhao Q, Li G, Zhang H, Ma Z, Yu H, Zeng Q, Zhang H, Xu D. Berberine improves cardiac insufficiency through AMPK/PGC-1α signaling-mediated mitochondrial homeostasis and apoptosis in HFpEF mice. Int Immunopharmacol 2025; 155:114613. [PMID: 40222275 DOI: 10.1016/j.intimp.2025.114613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/23/2025] [Accepted: 03/31/2025] [Indexed: 04/15/2025]
Abstract
BACKGROUND Heart failure (HF) with preserved ejection fraction (HFpEF) accounts for approximately half of cases of HF and is frequently clinically underdiagnosed. Although new therapies continue to emerge, determining optimal treatment strategies persists as a key clinical dilemma. Berberine(BBR), an isoquinoline alkaloid, is known to attenuate HF with reduced ejection fraction. PURPOSE In this study, we explored the cardiovascular benefits of BBR in diastolic dysfunction associated with HFpEF, both in vitro and in vivo. METHODS In vivo, adult male mice were fed with chow or a high-fat diet (60 % calories from lard) with L-NAME (0.5 g/L in drinking water) for 15 weeks. During the last 4 weeks, BBR (100 mg/Kg/d and 200 mg/Kg/d) was administered orally. Rat cardiac myoblast H9C2 cells were pretreated with BBR for 2 h, followed by exposure to palmitic acid (PA, 100 μM) for 24 h. RESULTS Exposure to a high-fat stimulation led to p-AMPK and PGC-1α downregulation, apoptotic cascade activation, elevated mt-ROS production, and disruption of mitochondrial homeostasis both in vivo and in vitro. Notably, BBR intervention elevated the expressions of p-AMPK and PGC-1α, inhibited apoptotic reaction, reduced mt-ROS, ameliorated TFAM/NRF1-mediated mitochondrial biogenesis disorder, alleviated mitochondrial impairment, and improved cardiac function. On the other hand, AMPK knockdown abolished the beneficial impact of BBR. Collectively, our findings underscored the cardioprotective role of BBR in maintaining mitochondrial homeostasis and preventing apoptosis, achieved through the modulation of the AMPK/PGC-1α pathway. CONCLUSIONS In summary, BBR possesses protective activity against cardiac insufficiency in HFpEF by maintaining mitochondrial homeostasis and inhibiting apoptosis.
Collapse
Affiliation(s)
- Yingchun Hu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xiaoyu Chen
- Department of Nephrology, Rheumatism and Immunology, Chongqing Jiulongpo People's Hospital, Chongqing 400050, China
| | - Qiming Zhao
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Guohao Li
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Hao Zhang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Zhuang Ma
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Hao Yu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Qingchun Zeng
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Hanping Zhang
- Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Dingli Xu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China.
| |
Collapse
|
2
|
Wu M, Li D, Qiu F, Nie H, Fang R, Zhong Z, Yang H, Lin X, Wang X, Wen H, Gong L, Meng P. Aging aggravates cognitive dysfunction in spontaneously hypertensive rats by inducing cerebral microvascular endothelial dysfunction. PLoS One 2025; 20:e0316383. [PMID: 40080509 PMCID: PMC11906062 DOI: 10.1371/journal.pone.0316383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/10/2024] [Indexed: 03/15/2025] Open
Abstract
Hypertension in the elderly can seriously lead to cerebral microvascular damage and promote the development of vascular cognitive impairment. While endothelial function is crucial in cerebral microvascular protection, it is unclear whether aging exacerbates hypertension-induced cognitive dysfunction through endothelial dysfunction. In this study, we injected D-galactose (D-gal) into 24 spontaneous hypertension rats (SHR) and 24 Wistar-Kyoto rats (WKY) for 12 weeks to induce aging. Firstly, the results of behavioral experiments showed that compared with WKY and SHRs injected with D-gal for 0 week, SHRs injected with D-gal for 12 weeks had more severe cognitive dysfunction and memory impairment. Subsequently, the pathological results showed that the pathological changes of brain microvessels and their structural and functional damage were more significant. After that, the results of molecular experiments showed enormous changes in endothelial damage indicators (nitric oxide (NO), endothelin (ET-1), platelet endothelial cell adhesion molecule-1(CD31) and endothelial tight junction protein), aggravation of blood-brain barrier (BBB) damage, microglial activation and upregulation of pro-inflammatory cytokines. Ultimately, the combination treatment of nimodipine and butylphthalide in WKY and SHRs injected with D-gal for 12 weeks showed that the two drugs could hugely improve the cognitive dysfunction in SHRs. In summary, we elaborated that aging exacerbates cognitive dysfunction in SHRs, which may be due to cerebral microvascular endothelial dysfunction, and even BBB damage and neuroinflammation, while the combination of nimodipine and butylphthalide can improve cognitive dysfunction in SHRs, providing a theoretical basis for the treatment of aging and hypertension-related diseases.
Collapse
Affiliation(s)
- Mei Wu
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Dandan Li
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Feng Qiu
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Huifang Nie
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Rui Fang
- Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Ziyan Zhong
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hui Yang
- First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xiaoyuan Lin
- First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xiangyuan Wang
- First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hongbo Wen
- Yiyang Central Hospital, Yiyang, Hunan, China
| | - Lijun Gong
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Pan Meng
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
3
|
Zhang W, Guo S, Dou J, Zhang X, Shi F, Zhang C, Zhang H, Lan X, Su Y. Berberine and its derivatives: mechanisms of action in myocardial vascular endothelial injury - a review. Front Pharmacol 2025; 16:1543697. [PMID: 40103596 PMCID: PMC11914797 DOI: 10.3389/fphar.2025.1543697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/31/2025] [Indexed: 03/20/2025] Open
Abstract
Myocardial vascular endothelial injury serves as a crucial inducer of cardiovascular diseases. Mechanisms such as endoplasmic reticulum stress, apoptosis, inflammation, oxidative stress, autophagy, platelet dysfunction, and gut microbiota imbalance are intimately linked to this condition. Berberine and its derivatives have demonstrated potential in modulating these mechanisms. This article reviews the pathogenesis of endothelial injury in myocardial vessels, the pharmacological effects of berberine and its derivatives, particularly their interactions with targets implicated in vascular endothelial injury. Furthermore, it discusses clinical applications, methods to enhance bioavailability, and toxicity concerns, aiming to lay a foundation for the development of BBR as a therapeutic agent for cardiovascular diseases.
Collapse
Affiliation(s)
- Wenhui Zhang
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Siyi Guo
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinjin Dou
- Department of Cardiovascular, The Fourth Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xiwu Zhang
- Experimental Training Centre, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Fan Shi
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Chun Zhang
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Huxiao Zhang
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xiaodong Lan
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yi Su
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Jang KW, Hur J, Lee DW, Kim SR. Metabolic Syndrome, Kidney-Related Adiposity, and Kidney Microcirculation: Unraveling the Damage. Biomedicines 2024; 12:2706. [PMID: 39767613 PMCID: PMC11673429 DOI: 10.3390/biomedicines12122706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 01/03/2025] Open
Abstract
Metabolic syndrome (MetS) is a cluster of interrelated risk factors, including insulin resistance, hypertension, dyslipidemia, and visceral adiposity, all of which contribute to kidney microvascular injury and the progression of chronic kidney disease (CKD). However, the specific impact of each component of MetS on kidney microcirculation remains unclear. Given the increasing prevalence of obesity, understanding how visceral fat-particularly fat surrounding the kidneys-affects kidney microcirculation is critical. This review examines the consequences of visceral obesity and other components of MetS on renal microcirculation. These kidney-related fat deposits can contribute to the mechanical compression of renal vasculature, promote inflammation and oxidative stress, and induce endothelial dysfunction, all of which accelerate kidney damage. Each factor of MetS initiates a series of hemodynamic and metabolic disturbances that impair kidney microcirculation, leading to vascular remodeling and microvascular rarefaction. The review concludes by discussing therapeutic strategies targeting the individual components of MetS, which have shown promise in alleviating inflammation and oxidative stress. Integrated approaches that address both of the components of MetS and kidney-related adiposity may improve renal outcomes and slow the progression of CKD.
Collapse
Affiliation(s)
- Kyu Won Jang
- Division of Nephrology and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (K.W.J.); (J.H.); (D.W.L.)
| | - Jin Hur
- Division of Nephrology and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (K.W.J.); (J.H.); (D.W.L.)
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Dong Won Lee
- Division of Nephrology and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (K.W.J.); (J.H.); (D.W.L.)
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Seo Rin Kim
- Division of Nephrology and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (K.W.J.); (J.H.); (D.W.L.)
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| |
Collapse
|
5
|
Cui Y, Zhou Q, Jin M, Jiang S, Shang P, Dong X, Li L. Research progress on pharmacological effects and bioavailability of berberine. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8485-8514. [PMID: 38888754 DOI: 10.1007/s00210-024-03199-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024]
Abstract
Berberine (BBR), a benzylisoquinoline alkaloid obtained from natural medicines such as coptidis rhizoma, has a wide range of pharmacological activities such as protecting the nervous system, protecting the cardiovascular system, anti-inflammatory, antidiabetic, antihyperlipidemic, antitumor, antibacterial, and antidiarrheal. However, factors such as poor solubility, low permeability, P-glycoprotein (P-gp) efflux, and hepatic-intestinal metabolism result in BBR having a low bioavailability (< 1%), which restricts its application in clinical settings. Therefore, improving its bioavailability is a prerequisite for its clinical applications. This review summarizes the various pharmacological effects of BBR and analyzes the main reasons for its poor bioavailability. It introduces methods to improve the bioavailability of BBR through the use of absorption enhancers and P-gp inhibitors, structural modification of BBR, and preparation of BBR salts and cocrystals as well as the development of new formulations and focuses on the bioavailability study of the new formulations of BBR. The research of BBR was also prospected in order to provide reference for the further research of BBR.
Collapse
Affiliation(s)
- Yulong Cui
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Quanying Zhou
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Min Jin
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Siqi Jiang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peizhao Shang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaofan Dong
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lingjun Li
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
6
|
Jin Z, Lan Y, Li J, Wang P, Xiong X. The role of Chinese herbal medicine in the regulation of oxidative stress in treating hypertension: from therapeutics to mechanisms. Chin Med 2024; 19:150. [PMID: 39468572 PMCID: PMC11520704 DOI: 10.1186/s13020-024-01022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Although the pathogenesis of essential hypertension is not clear, a large number of studies have shown that oxidative stress plays an important role in the occurrence and development of hypertension and target organ damage. PURPOSE This paper systematically summarizes the relationship between oxidative stress and hypertension, and explores the potential mechanisms of Chinese herbal medicine (CHM) in the regulation of oxidative stress in hypertension, aiming to establish a scientific basis for the treatment of hypertension with CHM. METHODS To review the efficacy and mechanism by which CHM treat hypertension through targeting oxidative stress, data were searched from PubMed, EMBASE, the Cochrane Central Register of Controlled Trials, the Chinese National Knowledge Infrastructure, the VIP Information Database, the Chinese Biomedical Literature Database, and the Wanfang Database from their inception up to January 2024. NPs were classified and summarized by their mechanisms of action. RESULTS In hypertension, the oxidative stress pathway of the body is abnormally activated, and the antioxidant system is inhibited, leading to the imbalance between the oxidative and antioxidative capacity. Meanwhile, excessive production of reactive oxygen species can lead to endothelial damage and vascular dysfunction, resulting in inflammation and immune response, thereby promoting the development of hypertension and damaging the heart, brain, kidneys, blood vessels, and other target organs. Numerous studies suggested that inhibiting oxidative stress may be the potential therapeutic target for hypertension. In recent years, the clinical advantages of traditional Chinese medicine (TCM) in the treatment of hypertension have gradually attracted attention. TCM, including active ingredients of CHM, single Chinese herb, TCM classic formula and traditional Chinese patent medicine, can not only reduce blood pressure, improve clinical symptoms, but also improve oxidative stress, thus extensively affect vascular endothelium, renin-angiotensin-aldosterone system, sympathetic nervous system, target organ damage, as well as insulin resistance, hyperlipidemia, hyperhomocysteinemia and other pathological mechanisms and hypertension related risk factors. CONCLUSIONS CHM display a beneficial multi-target, multi-component, overall and comprehensive regulation characteristics, and have potential value for clinical application in the treatment of hypertension by regulating the level of oxidative stress.
Collapse
Affiliation(s)
- Zixuan Jin
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China
| | - Yu Lan
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China
| | - Junying Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China
| | - Pengqian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xingjiang Xiong
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
7
|
Kim JY, Kim CW, Oh SY, Jang S, Yetunde OZ, Kim BA, Hong SH, Kim I. Akkermansia muciniphila extracellular vesicles have a protective effect against hypertension. Hypertens Res 2024; 47:1642-1653. [PMID: 38503939 DOI: 10.1038/s41440-024-01627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/14/2024] [Accepted: 02/18/2024] [Indexed: 03/21/2024]
Abstract
Akkermansia muciniphila (Am) shows a beneficial role as a probiotic in the treatment of metabolic syndrome. However, the mechanism remains to be elucidated. We tested the hypothesis that Am extracellular vesicles (AmEVs) have a protective effect against hypertension. Extracellular vesicles purified from anaerobically cultured Am were characterized by nanoparticle tracking analysis, transmission electron microscopy, and silver stain after sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). AmEVs (1.0 × 1010 log particles/L) or vehicles were added into organ baths to induce vasorelaxation. In addition, AmEVs (1.0 × 108 or 1.0 × 109 particles/kg) or vehicles were injected into the tail veins of Wistar-Kyoto rats (WKYs) and spontaneously hypertensive rats (SHRs) weekly for 4 weeks. Peripheral blood mononuclear cells (PBMCs) and splenocytes isolated from both rat strains were analyzed by flow cytometry, RT-qPCR, and western blot. AmEVs affected neither vascular contraction nor endothelial relaxation in thoracic aortas. Moreover, AmEVs protected against the development of hypertension in SHRs without a serious adverse reaction. Additionally, AmEVs increased the population of T regulatory (Treg) cells and tended to reduce proinflammatory cytokines. These results indicate that AmEVs have a protective effect against hypertension without a serious adverse reaction. Therefore, it is foreseen that AmEVs may be utilized as a novel therapeutic for the treatment of hypertension.
Collapse
Affiliation(s)
- Jee Young Kim
- Department of Pharmacology, Kyungpook National University, Daegu, 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Cheong-Wun Kim
- Department of Pharmacology, Kyungpook National University, Daegu, 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Su Young Oh
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Sungmin Jang
- Department of Pharmacology, Kyungpook National University, Daegu, 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Olarinoye Zainab Yetunde
- Department of Pharmacology, Kyungpook National University, Daegu, 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Bo A Kim
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Su-Hyung Hong
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, 41944, Republic of Korea.
| | - Inkyeom Kim
- Department of Pharmacology, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea.
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
8
|
Gonçalves TAF, Lima VS, de Almeida AJPO, de Arruda AV, Veras ACMF, Lima TT, Soares EMC, Santos ACD, Vasconcelos MECD, de Almeida Feitosa MS, Veras RC, de Medeiros IA. Carvacrol Improves Vascular Function in Hypertensive Animals by Modulating Endothelial Progenitor Cells. Nutrients 2023; 15:3032. [PMID: 37447358 DOI: 10.3390/nu15133032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Carvacrol, a phenolic monoterpene, has diverse biological activities, highlighting its antioxidant and antihypertensive capacity. However, there is little evidence demonstrating its influence on vascular regeneration. Therefore, we evaluated the modulation of carvacrol on endothelial repair induced by endothelial progenitor cells (EPC) in hypertension. Twelve-week-old spontaneously hypertensive rats (SHR) were treated with a vehicle, carvacrol (50 or 100 mg/kg/day), or resveratrol (10 mg/kg/day) orally for four weeks. Wistar Kyoto (WKY) rats were used as the normotensive controls. Their systolic blood pressure (SBP) was measured weekly through the tail cuff. The EPCs were isolated from the bone marrow and peripherical circulation and were quantified by flow cytometry. The functionality of the EPC was evaluated after cultivation through the quantification of colony-forming units (CFU), evaluation of eNOS, intracellular detection of reactive oxygen species (ROS), and evaluation of senescence. The superior mesenteric artery was isolated to evaluate the quantification of ROS, CD34, and CD31. Treatment with carvacrol induced EPC migration, increased CFU formation and eNOS expression and activity, and reduced ROS and senescence. In addition, carvacrol reduced vascular ROS and increased CD31 and CD34 expression. This study showed that treatment with carvacrol improved the functionality of EPC, contributing to the reduction of endothelial dysfunction.
Collapse
Affiliation(s)
| | - Viviane Silva Lima
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58059-900, PB, Brazil
| | | | - Alinne Villar de Arruda
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58059-900, PB, Brazil
| | | | - Thaís Trajano Lima
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58059-900, PB, Brazil
| | | | | | | | | | - Robson Cavalcante Veras
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58059-900, PB, Brazil
| | - Isac Almeida de Medeiros
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58059-900, PB, Brazil
| |
Collapse
|
9
|
Zhao H, Wang L, Zhang L, Zhao H. Phytochemicals targeting lncRNAs: A novel direction for neuroprotection in neurological disorders. Biomed Pharmacother 2023; 162:114692. [PMID: 37058817 DOI: 10.1016/j.biopha.2023.114692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023] Open
Abstract
Neurological disorders with various etiologies impacting the nervous system are prevalent in clinical practice. Long non-coding RNA (lncRNA) molecules are functional RNA molecules exceeding 200 nucleotides in length that do not encode proteins, but participate in essential activities. Research indicates that lncRNAs may contribute to the pathogenesis of neurological disorders, and may be potential targets for their treatment. Phytochemicals in traditional Chinese herbal medicine (CHM) have been found to exert neuroprotective effects by targeting lncRNAs and regulating gene expression and various signaling pathways. We aim to establish the development status and neuroprotective mechanism of phytochemicals that target lncRNAs through a thorough literature review. A total of 369 articles were retrieved through manual and electronic searches of PubMed, Web of Science, Scopus and CNKI databases from inception to September 2022. The search utilized combinations of natural products, lncRNAs, neurological disorders, and neuroprotective effects as keywords. The included studies, a total of 31 preclinical trials, were critically reviewed to present the current situation and the progress in phytochemical-targeted lncRNAs in neuroprotection. Phytochemicals have demonstrated neuroprotective effects in preclinical studies of various neurological disorders by regulating lncRNAs. These disorders include arteriosclerotic ischemia-reperfusion injury, ischemic/hemorrhagic stroke, Alzheimer's disease, Parkinson's disease, glioma, peripheral nerve injury, post-stroke depression, and depression. Several phytochemicals exert neuroprotective roles through mechanisms such as anti-inflammatory, antioxidant, anti-apoptosis, autophagy regulation, and antagonism of Aβ-induced neurotoxicity. Some phytochemicals targeted lncRNAs and served a neuroprotective role by regulating microRNA and mRNA expression. The emergence of lncRNAs as pathological regulators provides a novel direction for the study of phytochemicals in CHM. Elucidating the mechanism of phytochemicals regulating lncRNAs will help to identify new therapeutic targets and promote their application in precision medicine.
Collapse
Affiliation(s)
- Hang Zhao
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Lin Wang
- Department of Emergency medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Lijuan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| | - Hongyu Zhao
- Department of Emergency medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
10
|
Liu YF, Wang HH, Geng YH, Han L, Tu SH, Wang H. Advances of berberine against metabolic syndrome-associated kidney disease: Regarding effect and mechanism. Front Pharmacol 2023; 14:1112088. [PMID: 36814494 PMCID: PMC9939707 DOI: 10.3389/fphar.2023.1112088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/17/2023] [Indexed: 02/09/2023] Open
Abstract
The prevalence of metabolic syndrome (MetS) is drastically growing worldwide, resulting in MetS-associated kidney disease. According to traditional theories, preventing blood pressure, lipid, glycose, and obesity and improving insulin resistance (IR), a couple of medications are required for MetS. It not only lowers patients' compliance but also elevates adverse reactions. Accordingly, we attempted to seek answers from complementary and alternative medicine. Ultimately, berberine (BBR) was chosen due to its efficacy and safety on MetS through multi-pathways and multi-targets. The effects and mechanisms of BBR on obesity, IR, diabetic nephropathy, hypertension, hyperlipidemia, and hyperuricemia were elaborated. In addition, the overall properties of BBR and interventions for various kidney diseases were also collected. However, more clinical trials are expected to further identify the beneficial effects of BBR.
Collapse
Affiliation(s)
- Ya-Fei Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan-Huan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yin-Hong Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liang Han
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sheng-Hao Tu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Wang
- Nephrology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
11
|
Liu TH, Xie T, Bai ZY, Liang QE, Xie PC, Xue YZ, Xiao Y, Chen LG. The Important Role of TaohongSiwu Decoction in Gut Microbial Modulation in Response to High-Salt Diet-Induced Hypertensive Mice. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221118199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
TaohongSiwu decoction (THSWD), a traditional Chinese recipe, has been widely used to treat hypertension since ancient times. However, the mechanisms of its action are still unclear. Herein, we aimed to explore the gut microbial activity of THSWD in high-salt diet-induced hypertensive mice. Eight percent high-salt (NaCl) diet was used to induce hypertension for 4 weeks in a mouse model. Meanwhile, THSWD was used to intervene in the high-salt diet-induced mice, and the efficacy was evaluated by different parameters. Here, we found that THSWD significantly restored blood pressure compared with the model group. Moreover, THSWD effectively protected endothelial function by significantly upregulating the level of nitric oxide (NO) and downregulating the level of endothelin-1 (ET-1), angiotensin I (AngI), and vascular endothelial growth factor (VEGF) in serum compared with the model group. Notably, THSWD significantly upregulated the relative abundance of Dubosiella and downregulated that of Cyanobium_PCC-6307 and DNF00809 at the genus level compared with the model group. The results of PCA and microbial distance calculation further exhibited that THSWD treatment resulted in significant regulation of the microbial community. Furthermore, compared with the model group, THSWD increased the level of vitamin k2 (VK2) in serum. These findings indicate that THSWD could protect blood pressure and endothelial function by regulating gut microbiota and promoting microbial metabolite VK2. These results show the important role of THSWD in regulating the gut microbiota in response to high-salt diet-induced mice.
Collapse
Affiliation(s)
- Tian-hao Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
- College of Chinese Medicine, Jinan University, Guangzhou, China
| | - Ting Xie
- College of Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhen-yu Bai
- College of Chinese Medicine, Jinan University, Guangzhou, China
| | - Qiu-er Liang
- College of Chinese Medicine, Jinan University, Guangzhou, China
| | - Peng-cheng Xie
- College of Chinese Medicine, Jinan University, Guangzhou, China
| | - Yu-zheng Xue
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Ya Xiao
- College of Chinese Medicine, Jinan University, Guangzhou, China
| | - Li-guo Chen
- College of Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
12
|
The Ameliorative Effect of Berberine on Vascular Calcification by Inhibiting Endoplasmic Reticulum Stress. J Cardiovasc Pharmacol 2022; 80:294-304. [PMID: 35580317 DOI: 10.1097/fjc.0000000000001303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/24/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT Vascular calcification (VC), which currently cannot be prevented or treated, is an independent risk factor for cardiovascular events. We aimed to investigate the ameliorative effect of berberine on VC via the activation of Akt signaling and inhibition of endoplasmic reticulum stress (ERS). The VC model was induced by high-dose Vitamin D 3 in rats and beta-glycerophosphate in primary vascular smooth muscle cells of rat aortas, which were evaluated by Alizarin red staining to determine the calcium content and alkaline phosphatase activity. ERS was determined by the levels of GRP78 and CHOP, whereas that of the Akt signaling pathway was determined by the levels of phosphorylated Akt and GSK3β. VC was significantly ameliorated by berberine treatment in vivo and in vitro, and the inhibition of ERS and the activation of the Akt/GSK3 signaling pathway. In the vascular smooth muscle cells of primary rats, tunicamycin, an ERS activator, blocked the ameliorative effect of berberine on VC and ERS, but not the activation of Akt/GSK3. The ameliorative effects of berberine on VC, ERS, and the Akt signaling pathway were all prevented by inhibitor IV. Four-phenylbutyric acid, an ERS inhibitor, can restore the ameliorative effect of berberine on VC and ERS that was blocked by inhibitor IV. Our results are the first to demonstrate the ameliorative effect of VC that was mediated by the activation of the Akt signaling pathway and inhibition of ERS. These results may provide a new pharmaceutical candidate for the prevention and treatment of VC.
Collapse
|
13
|
Yan D, Sun Y, Zhou X, Si W, Liu J, Li M, Wu M. Regulatory effect of gut microbes on blood pressure. Animal Model Exp Med 2022; 5:513-531. [PMID: 35880388 PMCID: PMC9773315 DOI: 10.1002/ame2.12233] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/25/2022] [Indexed: 12/30/2022] Open
Abstract
Hypertension is an important global public health issue because of its high morbidity as well as the increased risk of other diseases. Recent studies have indicated that the development of hypertension is related to the dysbiosis of the gut microbiota in both animals and humans. In this review, we outline the interaction between gut microbiota and hypertension, including gut microbial changes in hypertension, the effect of microbial dysbiosis on blood pressure (BP), indicators of gut microbial dysbiosis in hypertension, and the microbial genera that affect BP at the taxonomic level. For example, increases in Lactobacillus, Roseburia, Coprococcus, Akkermansia, and Bifidobacterium are associated with reduced BP, while increases in Streptococcus, Blautia, and Prevotella are associated with elevated BP. Furthermore, we describe the potential mechanisms involved in the regulation between gut microbiota and hypertension. Finally, we summarize the commonly used treatments of hypertension that are based on gut microbes, including fecal microbiota transfer, probiotics and prebiotics, antibiotics, and dietary supplements. This review aims to find novel potential genera for improving hypertension and give a direction for future studies on gut microbiota in hypertension.
Collapse
Affiliation(s)
- Dong Yan
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical SciencesXinxiang Medical UniversityXinxiangChina
| | - Ye Sun
- Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| | - Xiaoyue Zhou
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical SciencesXinxiang Medical UniversityXinxiangChina
| | - Wenhao Si
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical SciencesXinxiang Medical UniversityXinxiangChina,Department of Dermatologythe First Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
| | - Jieyu Liu
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical SciencesXinxiang Medical UniversityXinxiangChina
| | - Min Li
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical SciencesXinxiang Medical UniversityXinxiangChina
| | - Minna Wu
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical SciencesXinxiang Medical UniversityXinxiangChina
| |
Collapse
|
14
|
Ai X, Yu P, Peng L, Luo L, Liu J, Li S, Lai X, Luan F, Meng X. Berberine: A Review of its Pharmacokinetics Properties and Therapeutic Potentials in Diverse Vascular Diseases. Front Pharmacol 2022; 12:762654. [PMID: 35370628 PMCID: PMC8964367 DOI: 10.3389/fphar.2021.762654] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
Traditional Chinese medicine plays a significant role in the treatment of various diseases and has attracted increasing attention for clinical applications. Vascular diseases affecting vasculature in the heart, cerebrovascular disease, atherosclerosis, and diabetic complications have compromised quality of life for affected individuals and increase the burden on health care services. Berberine, a naturally occurring isoquinoline alkaloid form Rhizoma coptidis, is widely used in China as a folk medicine for its antibacterial and anti-inflammatory properties. Promisingly, an increasing number of studies have identified several cellular and molecular targets for berberine, indicating its potential as an alternative therapeutic strategy for vascular diseases, as well as providing novel evidence that supports the therapeutic potential of berberine to combat vascular diseases. The purpose of this review is to comprehensively and systematically describe the evidence for berberine as a therapeutic agent in vascular diseases, including its pharmacological effects, molecular mechanisms, and pharmacokinetics. According to data published so far, berberine shows remarkable anti-inflammatory, antioxidant, antiapoptotic, and antiautophagic activity via the regulation of multiple signaling pathways, including AMP-activated protein kinase (AMPK), nuclear factor κB (NF-κB), mitogen-activated protein kinase silent information regulator 1 (SIRT-1), hypoxia-inducible factor 1α (HIF-1α), vascular endothelial growth factor phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), janus kinase 2 (JAK-2), Ca2+ channels, and endoplasmic reticulum stress. Moreover, we discuss the existing limitations of berberine in the treatment of vascular diseases, and give corresponding measures. In addition, we propose some research perspectives and challenges, and provide a solid evidence base from which further studies can excavate novel effective drugs from Chinese medicine monomers.
Collapse
Affiliation(s)
- Xiaopeng Ai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Peiling Yu
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lixia Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liuling Luo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengqian Li
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xianrong Lai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Luan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
15
|
Yates AG, Pink RC, Erdbrügger U, Siljander PR, Dellar ER, Pantazi P, Akbar N, Cooke WR, Vatish M, Dias‐Neto E, Anthony DC, Couch Y. In sickness and in health: The functional role of extracellular vesicles in physiology and pathology in vivo: Part II: Pathology: Part II: Pathology. J Extracell Vesicles 2022; 11:e12190. [PMID: 35041301 PMCID: PMC8765328 DOI: 10.1002/jev2.12190] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/03/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
It is clear from Part I of this series that extracellular vesicles (EVs) play a critical role in maintaining the homeostasis of most, if not all, normal physiological systems. However, the majority of our knowledge about EV signalling has come from studying them in disease. Indeed, EVs have consistently been associated with propagating disease pathophysiology. The analysis of EVs in biofluids, obtained in the clinic, has been an essential of the work to improve our understanding of their role in disease. However, to interfere with EV signalling for therapeutic gain, a more fundamental understanding of the mechanisms by which they contribute to pathogenic processes is required. Only by discovering how the EV populations in different biofluids change-size, number, and physicochemical composition-in clinical samples, may we then begin to unravel their functional roles in translational models in vitro and in vivo, which can then feedback to the clinic. In Part II of this review series, the functional role of EVs in pathology and disease will be discussed, with a focus on in vivo evidence and their potential to be used as both biomarkers and points of therapeutic intervention.
Collapse
Affiliation(s)
- Abi G. Yates
- Department of PharmacologyUniversity of OxfordOxfordUK
- School of Biomedical SciencesFaculty of MedicineUniversity of QueenslandSt LuciaAustralia
| | - Ryan C. Pink
- Department of Biological and Medical SciencesFaculty of Health and Life SciencesOxford Brookes UniversityOxfordUK
| | - Uta Erdbrügger
- Department of Medicine, Division of NephrologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Pia R‐M. Siljander
- Molecular and Integrative Biosciences Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Elizabeth R. Dellar
- Department of Biological and Medical SciencesFaculty of Health and Life SciencesOxford Brookes UniversityOxfordUK
| | - Paschalia Pantazi
- Department of Biological and Medical SciencesFaculty of Health and Life SciencesOxford Brookes UniversityOxfordUK
| | - Naveed Akbar
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - William R. Cooke
- Nuffield Department of Women's and Reproductive HealthJohn Radcliffe Hospital, HeadingtonOxfordUK
| | - Manu Vatish
- Nuffield Department of Women's and Reproductive HealthJohn Radcliffe Hospital, HeadingtonOxfordUK
| | - Emmanuel Dias‐Neto
- Laboratory of Medical Genomics. A.C. Camargo Cancer CentreSão PauloBrazil
- Laboratory of Neurosciences (LIM‐27) Institute of PsychiatrySão Paulo Medical SchoolSão PauloBrazil
| | | | - Yvonne Couch
- Acute Stroke Programme ‐ Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
16
|
Wang Z, Wu F, Zhou Q, Qiu Y, Zhang J, Tu Q, Zhou Z, Shao Y, Xu S, Wang Y, Tao J. Berberine Improves Vascular Dysfunction by Inhibiting Trimethylamine-N-oxide via Regulating the Gut Microbiota in Angiotensin II-Induced Hypertensive Mice. Front Microbiol 2022; 13:814855. [PMID: 35350612 PMCID: PMC8957906 DOI: 10.3389/fmicb.2022.814855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/15/2022] [Indexed: 01/14/2023] Open
Abstract
Berberine (BBR) has been demonstrated to exert cardiovascular protective effects by regulating gut microbiota. However, few studies examine the effect of BBR on the gut microbiota in hypertension. This study aims to investigate the role of BBR in regulating microbial alterations and vascular function in hypertension. C57BL/6 J mice were infused with Ang II (0.8 mg/kg/day) via osmotic minipumps and treated with BBR (150 mg/kg/day) or choline (1%) for 4 weeks. Blood pressure was detected by tail-cuff measurement once a week. Abdominal aorta pulse wave velocity (PWV) and endothelium dependent vasodilatation were measured to evaluate vascular function. Vascular remodeling was assessed by histological staining of aortic tissue. The fecal microbiota was profiled using 16S ribosomal DNA (rDNA) sequencing. Plasma trimethylamine (TMA)/trimethylamine-N-oxide (TMAO) and hepatic FMO3 expression were measured. We found that BBR treatment significantly alleviated the elevated blood pressure, vascular dysfunction, and pathological remodeling in Ang II-induced hypertensive mice, while choline treatment aggravated hypertension-related vascular dysfunction. 16S rDNA gene sequencing results showed that BBR treatment altered gut microbiota composition (reduced the Firmicutes/Bacteroidetes (F/B) ratio and increased the abundances of Lactobacillus). Moreover, BBR inhibited FMO3 expression and plasma TMA/TMAO production in hypertensive mice. TMAO treatment increased the apoptosis and oxidative stress of human aortic endothelial cells (HAECs) and aggravated Ang II-induced HAECs dysfunction in vitro. These results indicate that the protective effect of BBR in hypertension might be attributed (at least partially) to the inhibition of TMAO production via regulating the gut microbiota.
Collapse
Affiliation(s)
- Zhichao Wang
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fang Wu
- Institute of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qianbing Zhou
- Department of Stomatology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yumin Qiu
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianning Zhang
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiang Tu
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhe Zhou
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yijia Shao
- Institute of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shiyue Xu
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Shiyue Xu,
| | - Yan Wang
- Institute of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Yan Wang,
| | - Jun Tao
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Institute of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Jun Tao,
| |
Collapse
|
17
|
Rui R, Yang H, Liu Y, Zhou Y, Xu X, Li C, Liu S. Effects of Berberine on Atherosclerosis. Front Pharmacol 2021; 12:764175. [PMID: 34899318 PMCID: PMC8661030 DOI: 10.3389/fphar.2021.764175] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis is an epidemic across the globe[A1], and its morbidity and mortality remain high, involving various complications and poor prognoses. In atherosclerosis, endothelial cells (ECs) dysfunction, vascular smooth muscle cells (VSMCs) migration and proliferation, foam cell formation, and inflammatory cell recruitment contribute to disease progression. Vascular stem cells (VSCs) also play a critical role in the cardiovascular system. Important data showed that the simultaneous increase of proliferation and apoptosis of VSMCs is the main cause of graft vein stenosis, suggesting that inhibition of VSMCs proliferation and apoptosis simultaneously is an important strategy for the treatment of atherosclerotic stenosis. Complementary and alternative medicine use among patients with cardiovascular disease (CVD) is growing. Berberine is an extract of Chinese traditional herbs that is known for its antimicrobial and anti-inflammatory effects in the digestive system. Its underlying anti-CVD mechanisms are currently attracting interest, and its pharmacological actions, such as antioxidation, regulation of neurotransmitters and enzymes, and cholesterol-lowering effects, have been substantiated. Recent studying found that berberine could inhibit both the proliferation and apoptosis of VSMCs induced by mechanical stretch stress simultaneously, which suggests that berberine might be an excellent drug to treat atherosclerosis. This review will focus on the recent progress of the effect of berberine on vascular cells, especially VSMCs, to provide important data and a new perspective for the application of berberine in anti-atherosclerosis.
Collapse
Affiliation(s)
- Rui Rui
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Haolan Yang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yanke Liu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yue Zhou
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xudong Xu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chaohong Li
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shuying Liu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Song Y, Bai Z, Zhang Y, Chen J, Chen M, Zhang Y, Zhang X, Mai H, Wang B, Lin Y, Gu S. Protective effects of endothelial progenitor cell microvesicles on Ang II‑induced rat kidney cell injury. Mol Med Rep 2021; 25:4. [PMID: 34738620 PMCID: PMC8600403 DOI: 10.3892/mmr.2021.12520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/14/2021] [Indexed: 12/29/2022] Open
Abstract
Chronic hypertension can lead to kidney damage, known as hypertensive nephropathy or hypertensive nephrosclerosis. Further understanding of the molecular mechanisms via which hypertensive nephropathy develops is essential for effective diagnosis and treatment. The present study investigated the mechanisms by which endothelial progenitor cells (EPCs) repair primary rat kidney cells (PRKs). ELISA, Cell Counting Kit-8 and flow cytometry assays were used to analyze the effects of EPCs or EPC-MVs on the oxidative stress, inflammation, cell proliferation, apoptosis and cycle of PRKs induced by AngII. A PRK injury model was established using angiotensin II (Ang II). After Ang II induction, PRK proliferation was decreased, apoptosis was increased and the cell cycle was blocked at the G1 phase before entering the S phase. It was found that the levels of reactive oxygen species and malondialdehyde were increased, while the levels of glutathione peroxidase and superoxide dismutase were decreased. Moreover, the levels of the inflammatory cytokines IL-1β, IL-6 and TNF-α were significantly increased. Thus, Ang II damaged PRKs by stimulating oxidative stress and promoting the inflammatory response. However, when PRKs were co-cultured with EPCs, the damage induced by Ang II was significantly reduced. The current study collected the microvesicles (MVs) secreted by EPCs and co-cultured them with Ang II-induced PRKs, and identified that EPC-MVs retained their protective effect on PRKs. In conclusion, EPCs protect PRKs from Ang II-induced damage via secreted MVs.
Collapse
Affiliation(s)
- Yanling Song
- Department of General Practice, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Zhenbing Bai
- Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Yuanyuan Zhang
- Department of Cardiology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Juming Chen
- Department of General Practice, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Minghui Chen
- Department of General Practice, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Yunbo Zhang
- Department of General Practice, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Xiaodian Zhang
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Huade Mai
- Department of General Practice, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Bingshu Wang
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Yunyun Lin
- Department of General Practice, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Shenhong Gu
- Department of General Practice, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| |
Collapse
|
19
|
Li C, Lin L, Zhang L, Xu R, Chen X, Ji J, Li Y. Long noncoding RNA p21 enhances autophagy to alleviate endothelial progenitor cells damage and promote endothelial repair in hypertension through SESN2/AMPK/TSC2 pathway. Pharmacol Res 2021; 173:105920. [PMID: 34601081 DOI: 10.1016/j.phrs.2021.105920] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022]
Abstract
Vascular damage of hypertension has been the focus of hypertension treatment, and endothelial progenitor cells (EPCs) play an important role in the repair of vascular endothelial damage. Functional damage and decreased number of EPCs are observed in the peripheral circulation of hypertensive patients, but its mechanism is not yet elucidated. Here, we show that the number of EPCs in hypertensive patients is significantly lower than that of normal population, and the cell function decreases with a higher proportion of EPCs at later stages. A decrease in autophagy is responsible for the senescence and damage of EPCs induced by AngII. Moreover, lncRNA-p21 plays a critical regulator role in EPCs' senescence and dysfunction. Furthermore, lncRNA-p21 activates SESN2/AMPK/TSC2 pathway by promoting the transcriptional activity of p53 and enhances autophagy to protect against AngII-induced EPC damage. The data provide evidence that a reversal of decreased autophagy serves as the protective mechanism of EPC injury in hypertensive patients, and lncRNA-p21 is a new therapeutic target for vascular endothelial repair in hypertension.
Collapse
Affiliation(s)
- Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lin Lin
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lei Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ran Xu
- Tianqiao District People's Hospital, Jinan 250031, China
| | - Xiaoqing Chen
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jingkang Ji
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yunlun Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250000, China.
| |
Collapse
|
20
|
Zhou J, Chen S, Ren J, Zou H, Liu Y, Chen Y, Qiu Y, Zhuang W, Tao J, Yang J. Association of enhanced circulating trimethylamine N-oxide with vascular endothelial dysfunction in periodontitis patients. J Periodontol 2021; 93:770-779. [PMID: 34472093 DOI: 10.1002/jper.21-0159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/22/2021] [Accepted: 08/10/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Accumulating evidences indicate that periodontitis is closely associated with endothelial dysfunction. Trimethylamine-N-oxide (TMAO), a harmful microbiota generated metabolite, has been implicated as a nontraditional risk factor for impaired endothelial function. However, whether increased circulating levels of TMAO in periodontitis patients induces endothelial dysfunction remains unknown. METHODS Patients with periodontitis and periodontally healthy controls were enrolled. Periodontal inflamed surface area (PISA) was calculated to assess the inflammatory burden posed by periodontitis. The circulating TMAO was measured by high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). Vascular endothelial function including peripheral endothelial progenitor cells (EPCs), brachial arterial flow-mediated vasodilation (FMD), and brachial-ankle pulse wave velocity (baPWV) were assessed. We also isolated and cultured EPCs from participants' peripheral blood to investigate the effect of TMAO on EPC functions in vitro. RESULTS One hundred and twenty two patients with Stage III-IV periodontitis and 81 healthy controls were included. Patients with periodontitis presented elevated TMAO (P = 0.002), lower EPCs (P = 0.025), and declined FMD levels (P = 0.005). The TMAO concentrations were correlated with reduced circulating EPCs and FMD levels. Moreover, TMAO can injury EPCs function in vitro, and may induce cell pyroptosis via Bax/caspase-3/GSDME pathway. CONCLUSIONS The present study demonstrates for the first time that circulating TMAO levels are increased in patients with Stage III-IV periodontitis, and correlated with vascular endothelial dysfunction. These findings may provide a novel insight into the mechanism of vascular endothelial dysfunction in patient with periodontitis via TMAO-downregulated EPC functions.
Collapse
Affiliation(s)
- Jiamin Zhou
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shan Chen
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jing Ren
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Huiqiong Zou
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yafang Liu
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yanbin Chen
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yumin Qiu
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Weijie Zhuang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Jun Tao
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Junying Yang
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
21
|
Influence of Dietary Components and Traditional Chinese Medicine on Hypertension: A Potential Role for Gut Microbiota. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5563073. [PMID: 33986817 PMCID: PMC8079198 DOI: 10.1155/2021/5563073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/10/2021] [Accepted: 04/10/2021] [Indexed: 12/11/2022]
Abstract
Hypertension (HTN) is an important worldwide public health issue affecting human health. The pathogenesis of HTN involves complex factors such as genetics, external environment, diet, and the gut microbial dysbiosis. The gut microbiota, as a medium of diet and drug metabolism, is closely correlated to host's health and disease (including HTN). Literatures were randomly collected from various databases including PubMed, ScienceDirect, Google Scholar, and China National Knowledge Infrastructure (CNKI). In this review, we elucidate the relationship between HTN and gut microbiota, as well as concerning the effects of different dietary components, diet-derived microbial metabolites, and traditional Chinese medicine (TCM) on intestinal flora. These studies have shown that diet and TCM can regulate and balance the intestinal flora, which are inclined to increasing the abundance of Akkermansia, Bifidobacterium, and Bacteroides and reducing the ratio of Firmicutes and Bacteroidetes. Moreover, monitoring the dynamic change of gut microflora may indicate patient prognosis and personalized response to treatment. This review aims to provide novel perspectives and potential personalized interventions for future HTN management from the perspective of gut microbiota.
Collapse
|
22
|
Cai Y, Xin Q, Lu J, Miao Y, Lin Q, Cong W, Chen K. A New Therapeutic Candidate for Cardiovascular Diseases: Berberine. Front Pharmacol 2021; 12:631100. [PMID: 33815112 PMCID: PMC8010184 DOI: 10.3389/fphar.2021.631100] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of death in the world. However, due to the limited effectiveness and potential adverse effects of current treatments, the long-term prognosis of CVD patients is still discouraging. In recent years, several studies have found that berberine (BBR) has broad application prospects in the prevention and treatment of CVD. Due to its effectiveness and safety for gastroenteritis and diarrhea caused by bacterial infections, BBR has been widely used in China and other Asian countries since the middle of the last century. The development of pharmacology also provides evidence for the multi-targets of BBR in treating CVD. Researches on CVD, such as arrhythmia, atherosclerosis, dyslipidemia, hypertension, ischemic heart disease, myocarditis and cardiomyopathy, heart failure, etc., revealed the cardiovascular protective mechanisms of BBR. This review systematically summarizes the pharmacological research progress of BBR in the treatment of CVD in recent years, confirming that BBR is a promising therapeutic option for CVD.
Collapse
Affiliation(s)
- Yun Cai
- Doctoral Candidate, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Qiqi Xin
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Jinjin Lu
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yu Miao
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Qian Lin
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Weihong Cong
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Keji Chen
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| |
Collapse
|
23
|
Abstract
Extracellular vesicles (EVs) have received considerable attention in biological and clinical research due to their ability to mediate cell-to-cell communication. Based on their size and secretory origin, EVs are categorized as exosomes, microvesicles, and apoptotic bodies. Increasing number of studies highlight the contribution of EVs in the regulation of a wide range of normal cellular physiological processes, including waste scavenging, cellular stress reduction, intercellular communication, immune regulation, and cellular homeostasis modulation. Altered circulating EV level, expression pattern, or content in plasma of patients with cardiovascular disease (CVD) may serve as diagnostic and prognostic biomarkers in diverse cardiovascular pathologies. Due to their inherent characteristics and physiological functions, EVs, in turn, have become potential candidates as therapeutic agents. In this review, we discuss the evolving understanding of the role of EVs in CVD, summarize the current knowledge of EV-mediated regulatory mechanisms, and highlight potential strategies for the diagnosis and therapy of CVD. We also attempt to look into the future that may advance our understanding of the role of EVs in the pathogenesis of CVD and provide novel insights into the field of translational medicine.
Collapse
Affiliation(s)
- Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| | - Xue Zou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology and Chongqing Key Laboratory for Hypertension Research, Chongqing, PR China
| | - Pedro A Jose
- Division of Renal Disease & Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology and Chongqing Key Laboratory for Hypertension Research, Chongqing, PR China; State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Heart Center of Fujian Province, Union Hospital, Fujian Medical University, Fuzhou, PR China.
| |
Collapse
|
24
|
Tan N, Zhang Y, Zhang Y, Li L, Zong Y, Han W, Liu L. Berberine ameliorates vascular dysfunction by a global modulation of lncRNA and mRNA expression profiles in hypertensive mouse aortae. PLoS One 2021; 16:e0247621. [PMID: 33621262 PMCID: PMC7901729 DOI: 10.1371/journal.pone.0247621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
Objective The current study investigated the mechanism underlying the therapeutic effects of berberine in the vasculature in hypertension. Methods Angiotensin II (Ang II)-loaded osmotic pumps were implanted in C57BL/6J mice with or without berberine administration. Mouse aortae were suspended in myograph for force measurement. Microarray technology were performed to analyze expression profiles of lncRNAs and mRNAs in the aortae. These dysregulated expressions were then validated by qRT-PCR. LncRNA-mRNA co-expression network was constructed to reveal the specific relationships. Results Ang Ⅱ resulted in a significant increase in the blood pressure of mice, which was suppressed by berberine. The impaired endothelium-dependent aortic relaxation was restored in hypertensive mice. Microarray data revealed that 578 lncRNAs and 554 mRNAs were up-regulated, while 320 lncRNAs and 377 mRNAs were down-regulated in the aortae by Ang Ⅱ; both were reversed by berberine treatment. qRT-PCR validation results of differentially expressed genes (14 lncRNAs and 6 mRNAs) were completely consistent with the microarray data. GO analysis showed that these verified differentially expressed genes were significantly enriched in terms of “cellular process”, “biological regulation” and “regulation of biological process”, whilst KEGG analysis identified vascular function-related pathways including cAMP signaling pathway, cGMP-PKG signaling pathway, and calcium signaling pathway etc. Importantly, we observed that lncRNA ENSMUST00000144849, ENSMUST00000155383, and AK041185 were majorly expressed in endothelial cells. Conclusion The present results suggest that the five lncRNAs ENSMUST00000144849, NR_028422, ENSMUST00000155383, AK041185, and uc.335+ might serve critical regulatory roles in hypertensive vasculature by targeting pivotal mRNAs and subsequently affecting vascular function-related pathways. Moreover, these lncRNAs were modulated by berberine, therefore providing the novel potential therapeutic targets of berberine in hypertension. Furthermore, lncRNA ENSMUST00000144849, ENSMUST00000155383, and AK041185 might be involved in the preservation of vascular endothelial cell function.
Collapse
Affiliation(s)
- Na Tan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yi Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yan Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Li Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yi Zong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Wenwen Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Limei Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- * E-mail:
| |
Collapse
|
25
|
Liu ZZ, Jose PA, Yang J, Zeng C. Importance of extracellular vesicles in hypertension. Exp Biol Med (Maywood) 2021; 246:342-353. [PMID: 33517775 DOI: 10.1177/1535370220974600] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hypertension affects approximately 1.13 billion adults worldwide and is the leading global risk factor for cardiovascular, cerebrovascular, and kidney diseases. There is emerging evidence that extracellular vesicles participate in the development and progression of hypertension. Extracellular vesicles are membrane-enclosed structures released from nearly all types of eukaryotic cells. During their formation, extracellular vesicles incorporate various parent cell components, including proteins, lipids, and nucleic acids that can be transferred to recipient cells. Extracellular vesicles mediate cell-to-cell communication in a variety of physiological and pathophysiological processes. Therefore, studying the role of circulating and urinary extracellular vesicles in hypertension has the potential to identify novel noninvasive biomarkers and therapeutic targets of different hypertension phenotypes. This review discusses the classification and biogenesis of three EV subcategories (exosomes, microvesicles, and apoptotic bodies) and provides a summary of recent discoveries in the potential impact of extracellular vesicles on hypertension with a specific focus on their role in the blood pressure regulation by organs-artery and kidney, as well as renin-angiotensin-system.
Collapse
Affiliation(s)
- Zhi Z Liu
- Cardiovascular Research Center of Chongqing College, Department of Cardiology of Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 400714, P.R. China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400042, P. R. China
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, P.R. China
| | - Chunyu Zeng
- Cardiovascular Research Center of Chongqing College, Department of Cardiology of Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 400714, P.R. China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400042, P. R. China.,Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
26
|
Zhou H, Wang H, Shi N, Wu F. Potential Protective Effects of the Water-Soluble Chinese Propolis on Hypertension Induced by High-Salt Intake. Clin Transl Sci 2020; 13:907-915. [PMID: 32112504 PMCID: PMC7938408 DOI: 10.1111/cts.12770] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
High‐salt (HS) intake is closely associated with the ignition and progression of hypertension. The mechanisms might be involved in endothelial dysfunction, nitric oxide deficiency, oxidative stress, and proinflammatory cytokines. Propolis is widely used as a natural antioxidant and is a well‐known functional food for its biological activities, which includes anti‐inflammation, antimicrobial, and liver detoxification. In this study, we successfully replicated a HS diet‐induced hypertensive rat model. We found that in the long‐term HS diet group, the myocardial function of the rats was altered and led to a significant decrease (around 49%) in heart function. However, doses of Chinese water‐soluble propolis (WSP) were found directly proportional (11%, 60%, 91%, respectively) to the myocardial function improvement in hypertensive rats. The results from the blood circulation test and hematoxylin‐eosin stains showed that propolis had protective effects on myocardial functions and blood vessels in hypertensive rats. Also, based on the results of western blot and polymerase chain reaction, WSP effectively regulated Nox2 and Nox4 levels and was responsible for a decrease in reactive oxygen species synthesis. Our findings demonstrate that Chinese WSP has a significant effect on the blood pressure of hypertensive rats and their cardiovascular functions that improved significantly. The improvement in the cardiovascular functions might be related to the process of anti‐oxidation, anti‐inflammation, and the improvements of the endothelial function in hypertensive rats.
Collapse
Affiliation(s)
- Hua Zhou
- Department of Physiology, Anhui Medical College, Hefei, Anhui, China
| | - Haihua Wang
- Department of Physiology, Wannan Medical College, Wuhu, Anhui, China
| | - Na Shi
- Department of Physiology, Wannan Medical College, Wuhu, Anhui, China
| | - Fang Wu
- Department of Physiology, Anhui Medical College, Hefei, Anhui, China
| |
Collapse
|