1
|
Garuba WA, Barth BA, Imel AE, Sharma B. Machine learning-assisted surface-enhanced raman spectroscopy for the rapid determination of the glutathione redox ratio. Analyst 2025. [PMID: 40195691 DOI: 10.1039/d4an00978a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Rapid and accurate detection of glutathione in its reduced (GSH) and oxidized (GSSG) forms is essential for monitoring oxidative stress in biological systems. Oxidative stress is a key indicator of various diseases, and glutathione plays a vital role in maintaining the balance between oxidative and anti-oxidative processes. Surface-enhanced Raman spectroscopy (SERS) offers a highly sensitive and selective analytical approach for detecting biomolecules. However, complex biological matrices and molecules with similar chemical structure (such as GSH and GSSG) often result in overlapping vibrational signatures, making it challenging to quantify the GSH : GSSG ratio. To address this challenge, we integrated machine learning (ML) algorithms with SERS to accurately quantify the GSH : GSSG ratio in aqueous solutions. Three machine learning algorithms - support vector regression (SVR), extreme gradient boosting (XGBoost), and multilayer perceptron (MLP) were trained and evaluated using preprocessed SERS spectra of mixtures of various GSH : GSSG ratios. Among these models, MLP exhibits the highest accuracy and robustness with correlation coefficient for the test set (Q2) value of 0.966. This study highlights a practical protocol for leveraging machine learning and SERS to achieve rapid, and accurate determination of glutathione redox ratios.
Collapse
Affiliation(s)
- Wilson A Garuba
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA.
| | - Brian A Barth
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Adam E Imel
- University of Tennessee - Oak Ridge Innovation Institute, Knoxville, TN, 37996, USA
| | - Bhavya Sharma
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
2
|
Nakano H, Inoue S, Minegishi Y, Igarashi A, Tokairin Y, Yamauchi K, Kimura T, Nishiwaki M, Nemoto T, Otaki Y, Sato M, Sato K, Machida H, Yang S, Murano H, Watanabe M, Shibata Y. Effect of hyperhomocysteinemia on a murine model of smoke-induced pulmonary emphysema. Sci Rep 2022; 12:12968. [PMID: 35902671 PMCID: PMC9334265 DOI: 10.1038/s41598-022-16767-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/15/2022] [Indexed: 11/15/2022] Open
Abstract
Hyperhomocysteinemia was reported to enhance endoplasmic reticulum (ER) stress and subsequent apoptosis in several cells. However, the precise mechanisms of smoking susceptibility associated with hyperhomocysteinemia has not been fully elucidated. This study included 7- to 9-week-old C57BL6 male mice induced with hyperhomocysteinemia and were exposed to cigarette smoke (CS). A549 cells (human alveolar epithelial cell line) were cultured with homocysteine and were exposed to cigarette smoke extract (CSE) to observe cell viability and expression of proteins related to the ER stress. After 6 months of CS exposure, pulmonary emphysema was more severely induced in the group under the condition of hyperhomocysteinemia compared to that in the control group. The apoptotic A549 cells increased as homocysteine concentration increased and that was enhanced by CSE. Protein expression levels of ER stress markers were significantly increased after simultaneous stimulation. Notably, vitamin B12 and folate supplementation improved ER stress after simultaneous stimulation of A549 cells. In this study, we showed that hyperhomocysteinemia exacerbates CS exposure-induced emphysema in mice, suggesting that hyperhomocysteinemia and CS stimulation enhance ER stress and subsequent induced apoptosis in alveolar epithelial cells. It was suggested that there is a synergistic effect between homocysteine and CS.
Collapse
Affiliation(s)
- Hiroshi Nakano
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Sumito Inoue
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan.
| | - Yukihiro Minegishi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Akira Igarashi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Yoshikane Tokairin
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Keiko Yamauchi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Tomomi Kimura
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Michiko Nishiwaki
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Takako Nemoto
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Yoichiro Otaki
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Masamichi Sato
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Kento Sato
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Hiroyoshi Machida
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Sujeong Yang
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Hiroaki Murano
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Masafumi Watanabe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Yoko Shibata
- Department of Pulmonary Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
3
|
De Cunto G, Cavarra E, Bartalesi B, Lucattelli M, Lungarella G. Innate Immunity and Cell Surface Receptors in the Pathogenesis of COPD: Insights from Mouse Smoking Models. Int J Chron Obstruct Pulmon Dis 2020; 15:1143-1154. [PMID: 32547002 PMCID: PMC7246326 DOI: 10.2147/copd.s246219] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/03/2020] [Indexed: 12/23/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is mainly associated with smoking habit. Inflammation is the major initiating process whereby neutrophils and monocytes are attracted into the lung microenvironment by external stimuli present in tobacco leaves and in cigarette smoke, which promote chemotaxis, adhesion, phagocytosis, release of superoxide anions and enzyme granule contents. A minority of smokers develops COPD and different molecular factors, which contribute to the onset of the disease, have been put forward. After many years of research, the pathogenesis of COPD is still an object of debate. In vivo models of cigarette smoke-induced COPD may help to unravel cellular and molecular mechanisms underlying the pathogenesis of COPD. The mouse represents the most favored animal choice with regard to the study of immune mechanisms due to its genetic and physiological similarities to humans, the availability of a large variability of inbred strains, the presence in the species of several genetic disorders analogous to those in man, and finally on the possibility to create models “made-to-measure” by genetic manipulation. The review outlines the different response of mouse strains to cigarette smoke used in COPD studies while retaining a strong focus on their relatability to human patients. These studies reveal the importance of innate immunity and cell surface receptors in the pathogenesis of pulmonary injury induced by cigarette smoking. They further advance the way in which we use wild type or genetically manipulated strains to improve our overall understanding of a multifaceted disease such as COPD. The structural and functional features, which have been found in the different strains of mice after chronic exposure to cigarette smoke, can be used in preclinical studies to develop effective new therapeutic agents for the different phenotypes in human COPD.
Collapse
Affiliation(s)
- Giovanna De Cunto
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Eleonora Cavarra
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Barbara Bartalesi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Monica Lucattelli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giuseppe Lungarella
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
4
|
De Cunto G, Bartalesi B, Cavarra E, Balzano E, Lungarella G, Lucattelli M. Ongoing Lung Inflammation and Disease Progression in Mice after Smoking Cessation: Beneficial Effects of Formyl-Peptide Receptor Blockade. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2195-2206. [PMID: 30031729 DOI: 10.1016/j.ajpath.2018.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/04/2018] [Accepted: 06/18/2018] [Indexed: 01/24/2023]
Abstract
The most important risk factor for chronic obstructive pulmonary disease (COPD) is cigarette smoking. Until now, smoking cessation (SC) is the only treatment effective in slowing down the progression of the disease. However, in many cases SC may only relieve the airflow obstruction and inflammatory response. Consequently, a persistent lung inflammation in ex-smokers is associated with progressive deterioration of respiratory functions. This is an increasingly important clinical problem whose mechanistic basis remains poorly understood. Available therapies do not adequately suppress inflammation and are not able to stop the vicious cycle that is at the basis of persistent inflammation. In addition, in mice after SC an ongoing inflammation and progressive lung deterioration is observed. After 4 months of smoke exposure mice show mild emphysematous changes. Lung inflammation is still present after SC, and emphysema progresses during the next 6-month period of observation. Destruction of alveolar walls is associated with airways remodeling (goblet cell metaplasia and peribronchiolar fibrosis). Modulation of formyl-peptide receptor signaling with antagonists mitigates inflammation and prevents deterioration of lung structures. This study suggests an important role for N-formylated peptides in the progression and exacerbation of COPD. Modulating formyl-peptide receptor signal should be explored as a potential new therapy for COPD.
Collapse
Affiliation(s)
- Giovanna De Cunto
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Barbara Bartalesi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Eleonora Cavarra
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Emilia Balzano
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giuseppe Lungarella
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Monica Lucattelli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.
| |
Collapse
|
5
|
Kaur G, Muthumalage T, Rahman I. Mechanisms of toxicity and biomarkers of flavoring and flavor enhancing chemicals in emerging tobacco and non-tobacco products. Toxicol Lett 2018; 288:143-155. [PMID: 29481849 PMCID: PMC6549714 DOI: 10.1016/j.toxlet.2018.02.025] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/19/2018] [Accepted: 02/21/2018] [Indexed: 01/11/2023]
Abstract
Tobacco products containing flavorings, such as electronic nicotine delivery devices (ENDS) or e-cigarettes, cigars/cigarillos, waterpipes, and heat-not-burn devices (iQOS) are continuously evolving. In addition to increasing the exposure of teenagers and adults to nicotine containing flavoring products and flavoring enhancers, chances of nicotine addiction through chronic use and abuse also increase. These flavorings are believed to be safe for ingestion, but little information is available about their effects on the lungs. In this review, we have discussed the in vitro and in vivo data on toxicity of flavoring chemicals in lung cells. We have further discussed the common flavoring agents, such as diacetyl and menthol, currently available detection methods, and the toxicological mechanisms associated with oxidative stress, inflammation, mucociliary clearance, and DNA damage in cells, mice, and humans. Finally, we present potential biomarkers that could be utilized for future risk assessment. This review provides crucial parameters important for evaluation of risk associated with flavoring agents and flavoring enhancers used in tobacco products and ENDS. Future studies can be designed to address the potential toxicity of inhaled flavorings and their biomarkers in users as well as in chronic exposure studies.
Collapse
Affiliation(s)
- Gurjot Kaur
- Human and Environmental Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Thivanka Muthumalage
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
6
|
Giustarini D, Colombo G, Garavaglia ML, Astori E, Portinaro NM, Reggiani F, Badalamenti S, Aloisi AM, Santucci A, Rossi R, Milzani A, Dalle-Donne I. Assessment of glutathione/glutathione disulphide ratio and S-glutathionylated proteins in human blood, solid tissues, and cultured cells. Free Radic Biol Med 2017; 112:360-375. [PMID: 28807817 DOI: 10.1016/j.freeradbiomed.2017.08.008] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/04/2017] [Accepted: 08/09/2017] [Indexed: 12/24/2022]
Abstract
Glutathione (GSH) is the major non-protein thiol in humans and other mammals, which is present in millimolar concentrations within cells, but at much lower concentrations in the blood plasma. GSH and GSH-related enzymes act both to prevent oxidative damage and to detoxify electrophiles. Under oxidative stress, two GSH molecules become linked by a disulphide bridge to form glutathione disulphide (GSSG). Therefore, assessment of the GSH/GSSG ratio may provide an estimation of cellular redox metabolism. Current evidence resulting from studies in human blood, solid tissues, and cultured cells suggests that GSH also plays a prominent role in protein redox regulation via S -glutathionylation, i.e., the conjugation of GSH to reactive protein cysteine residues. A number of methodologies that enable quantitative analysis of GSH/GSSG ratio and S-glutathionylated proteins (PSSG), as well as identification and visualization of PSSG in tissue sections or cultured cells are currently available. Here, we have considered the main methodologies applied for GSH, GSSG and PSSG detection in biological samples. This review paper provides an up-to-date critical overview of the application of the most relevant analytical, morphological, and proteomics approaches to detect and analyse GSH, GSSG and PSSG in mammalian samples as well as discusses their current limitations.
Collapse
Affiliation(s)
- Daniela Giustarini
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Graziano Colombo
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| | | | - Emanuela Astori
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Nicola Marcello Portinaro
- Clinica ortopedica e traumatologica, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Francesco Reggiani
- Nephrology and Dialysis Unit, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Salvatore Badalamenti
- Nephrology and Dialysis Unit, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Anna Maria Aloisi
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Ranieri Rossi
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Aldo Milzani
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Isabella Dalle-Donne
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy.
| |
Collapse
|
7
|
Strain differences in arsenic-induced oxidative lesion via arsenic biomethylation between C57BL/6J and 129X1/SvJ mice. Sci Rep 2017; 7:44424. [PMID: 28303940 PMCID: PMC5355880 DOI: 10.1038/srep44424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/07/2017] [Indexed: 12/11/2022] Open
Abstract
Arsenic is a common environmental and occupational toxicant with dramatic species differences in its susceptibility and metabolism. Mouse strain variability may provide a better understanding of the arsenic pathological profile but is largely unknown. Here we investigated oxidative lesion induced by acute arsenic exposure in the two frequently used mouse strains C57BL/6J and 129X1/SvJ in classical gene targeting technique. A dose of 5 mg/kg body weight arsenic led to a significant alteration of blood glutathione towards oxidized redox potential and increased hepatic malondialdehyde content in C57BL/6J mice, but not in 129X1/SvJ mice. Hepatic antioxidant enzymes were induced by arsenic in transcription in both strains and many were higher in C57BL/6J than 129X1/SvJ mice. Arsenic profiles in the liver, blood and urine and transcription of genes encoding enzymes involved in arsenic biomethylation all indicate a higher arsenic methylation capacity, which contributes to a faster hepatic arsenic excretion, in 129X1/SvJ mice than C57BL/6J mice. Taken together, C57BL/6J mice are more susceptible to oxidative hepatic injury compared with 129X1/SvJ mice after acute arsenic exposure, which is closely associated with arsenic methylation pattern of the two strains.
Collapse
|
8
|
El-Bialy BE, Abdeen EE, El-Borai NB, El-Diasty EM. Experimental Studies on Some Immunotoxicological Aspects of Aflatoxins Containing Diet and Protective Effect of Bee Pollen Dietary Supplement. Pak J Biol Sci 2016; 19:26-35. [PMID: 26930797 DOI: 10.3923/pjbs.2016.26.35] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Aflatoxins (AFs), widely distributed food-borne mycotoxins, affect quality and safety of food and cause economic losses in livestock. In this study, the protective effect of Bee Pollen (BP) against some immunotoxic hazards elucidated from eating of AFs-containing diet was investigated in Wistar rats. Rats were randomly classified intofour groups and treated for 30 days, Group 1; control negative, Group 2; Total AFs (3 mg kg(-1) basal diet), Group 3; BP (20 g kg(-1) basal diet) and Group 4; AFs+BP in basal diet. The immunoprotective effect of BP was revealed in terms of increasing (relative to levels seen in Group 2 rats that consumed the AFs diet) serum total protein and globulin levels, restored normal neutrophil (PMN)/lymphocyte ratio, increased PMN phagocytic activity and increased lymphocyte proliferative capacity. Also, the use of the BP reduced spleen H2O2 levels and increased GSH content while maintaining normal levels of NO formation. Histopathologic analysis showed thatthe AFs caused lymphocytic depletion in the spleen; however, BP induced lymphocytic hyperplasia and reduced the levels of AFs-inducible cellular exhaustion or depletion. These results provide evidence of a protective effect of BP against some immunotoxic actions induced in situ by consumption of AFs.
Collapse
|
9
|
Abstract
This protocol describes a procedure for determining glutathione (GSH) and glutathione disulfide (GSSG) concentrations in blood and other tissues. Artifactual oxidation to GSSG of 5-15% of the GSH found in a sample can occur during deproteination of biological samples with any of the commonly used acids, with consequent marked overestimation of GSSG. This can be prevented by derivatizing GSH with the alkylating agent N-ethylmaleimide (NEM) to form GS-NEM before acid deproteination, followed by back-extraction of excess NEM from the deproteinized samples with dichloromethane. GSSG concentration is then measured by spectrophotometry with the GSH recycling method, on the basis of conversion of GSSG to GSH by glutathione reductase and NADPH and reaction with 5,5'-dithiobis-(2-nitrobenzoic acid). GSH concentration is instead measured by either of two methods: by analysis of GS-NEM conjugates by HPLC in the same sample that is used to measure GSSG or, alternatively, by analysis of GSH by spectrophotometry (GSH recycling method) on one additional sample aliquot that has not been derivatized with NEM. The procedure can assay GSH and GSSG in blood and other tissues in 30 min or less.
Collapse
|
10
|
Giustarini D, Dalle-Donne I, Lorenzini S, Selvi E, Colombo G, Milzani A, Fanti P, Rossi R. Protein thiolation index (PTI) as a biomarker of oxidative stress. Free Radic Biol Med 2012; 53:907-15. [PMID: 22732185 DOI: 10.1016/j.freeradbiomed.2012.06.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 01/25/2023]
Abstract
Several biomarkers of oxidative stress have been proposed and used in clinical research but so far unreliable or, at least, controversial results have been obtained. Given the high susceptibility of sulfhydryl groups to oxidation, we here suggest the use of a protein thiolation index (PTI), i.e., the molar ratio between the sum of all low molecular mass thiols bound to plasma proteins (forming, as a whole, S-thiolated proteins) and protein free cysteinyl residues, as a suitable biomarker of oxidative stress. While titration of free thiols can be performed by a simple spectrophotometric procedure, accurate quantification of S-thiolated proteins is problematic and current methods require, in most cases, application of time-consuming chromatographic techniques, making their application to large-scale clinical studies difficult. Here we report a new spectrophotometric method which relies on the specific determination of low molecular mass thiols released from S-thiolated proteins after dithiothreitol reduction. These amino acids can be titrated by conjugation with ninhydrin which, reacting with primary and secondary amine groups, yields a deep blue-purple color, which can be spectrophotometrically revealed. PTI showed an age dependency with a near linear increase during aging in humans. In addition, PTI was significantly higher in patients suffering from alkaptonuria with respect to healthy controls, suggesting that increased prooxidant conditions occur in the blood of these subjects.
Collapse
Affiliation(s)
- Daniela Giustarini
- Department of Evolutionary Biology, Laboratory of Pharmacology and Toxicology, University of Siena, Via A. Moro 4, I-53100, Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|