1
|
Xing Y, Zhang H, Liu C, Liu C, Zhou Y. Spermidine Revives Aged Sorghum Seed Germination by Boosting Antioxidant Defense. Antioxidants (Basel) 2025; 14:349. [PMID: 40227429 PMCID: PMC11939325 DOI: 10.3390/antiox14030349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 04/15/2025] Open
Abstract
Seed aging has adverse effects on agricultural production, mainly because seed vigor is inhibited. Spermidine can improve seed vitality and germination ability to a certain extent and is essential for plant growth and plant response to stress. This study explored how spermidine counteracted aging effects on sorghum seed germination through antioxidant metabolism regulation. Aged seeds showed decreased vigor due to heightened reactive oxygen species (ROS) and diminished antioxidants. Applying spermidine notably enhanced aged seeds' germination and vigor by boosting antioxidant enzyme activity and curbing ROS. Integrated transcriptomic, proteomic, and metabolomic analyses demonstrated that the majority of differentially expressed genes following exogenous spermidine treatment in aged sorghum seeds were significantly enriched in pathways related to glutathione metabolism, phenylpropanoid, and flavonoid biosynthesis, resulting in increased expression of genes encoding peroxidase, chalcone synthase, and glutathione s-transferase. Exogenous spermidine facilitated the synthesis of peroxidases and glutathione transferases. Analysis of flavonoid pathway intermediates showed a notable increase in antioxidant metabolites like isoquercitrin, underscoring their role in oxidative stress resistance. This multi-omics strategy underscores Spd's role in boosting aged seeds' antioxidants, highlighting the molecular basis of seed aging and Spd's rejuvenating impact.
Collapse
Affiliation(s)
| | | | | | | | - Yufei Zhou
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China; (Y.X.); (H.Z.); (C.L.); (C.L.)
| |
Collapse
|
2
|
Zhang Y, Wang L, Li X, Wen H, Yu X, Wang Y. Synergistic effects of exogenous IAA and melatonin on seed priming and physiological biochemistry of three desert plants in saline-alkali soil. PLANT SIGNALING & BEHAVIOR 2024; 19:2379695. [PMID: 39074041 PMCID: PMC11290755 DOI: 10.1080/15592324.2024.2379695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/31/2024]
Abstract
To investigate the synergistic effect of IAA and melatonin (MT) on three plants to alleviate the effects of salt damage on plants, we aim to determine the optimal concentrations of exogenous hormone treatments that improve salinity resistance for each species. In this experiment, three desert plants, Sarcozygium xanthoxylon, Nitraria tangutorum, and Ammopiptanthus mongolicus, which are common in Wuhai City, were used as plant materials. Two time periods (12 h,24 h) of exogenous hormone IAA (100 μmol/L) and exogenous melatonin concentration (0, 100, 200, 300 μmol/L) were used to treat the three desert plants in saline soil under different conditions of exogenous IAA and exogenous melatonin. The results indicate that under different concentrations of exogenous IAA and melatonin, the germination rate and vigor of the three desert plant species in saline-alkaline soil improved. However, as the concentration of melatonin increased, the germination rate and vigor of these desert plants were inhibited. Whereas, plant height, root length, leaf length, fresh weight, dry weight, and root vigor of the three desert plants were alleviated under different conditions of exogenous IAA and exogenous melatonin. under the action of two exogenous hormones, the low concentration of melatonin decreased their malondialdehyde content and increased their proline content. As melatonin levels increased, the activity of antioxidant enzymes also rose initially, followed by a subsequent decline. This study highlights the synergistic effects of two exogenous hormones on the critical role of cell osmomodulators and antioxidant enzyme activity in combating salinity damage in three desert plants.
Collapse
Affiliation(s)
- Youwei Zhang
- Forestry College, Inner Mongolia Agricultural University, Hohhot, China
| | - Lei Wang
- Forestry College, Inner Mongolia Agricultural University, Hohhot, China
| | - Xuebo Li
- Forestry College, Inner Mongolia Agricultural University, Hohhot, China
| | - Hao Wen
- Forestry College, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiao Yu
- Forestry College, Inner Mongolia Agricultural University, Hohhot, China
| | - Yixuan Wang
- Forestry College, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
3
|
Su X, Li C, Yu Y, Li L, Wang L, Lu D, Zhao Y, Sun Y, Tan Z, Liang H. Comprehensive Transcriptomic and Physiological Insights into the Response of Root Growth Dynamics During the Germination of Diverse Sesame Varieties to Heat Stress. Curr Issues Mol Biol 2024; 46:13311-13327. [PMID: 39727922 PMCID: PMC11727563 DOI: 10.3390/cimb46120794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/16/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Heat stress constitutes a serious threat to sesame (Sesamum indicum L.). Root development during seed germination plays an essential role in plant growth and development. Nevertheless, the regulatory mechanisms underlying heat stress remain poorly understood. In this study, two sesame varieties differing in leaf heat tolerance (Zheng Taizhi 3 (heat-tolerant) and SP19 (heat-sensitive)) have been employed to investigate the impact of heat stress on root growth during germination. The results showed that heat stress significantly reduced the radicle length by 35.71% and 67.02% in Zheng Taizhi 3 and SP19, respectively, while germination rates remained unchanged. In addition, heat stress induced oxidative stress, as evidenced by increased reactive oxygen species (ROS) production, malondialdehyde (MDA) content, and reduced indole-3-acetic acid (IAA) content, accompanied by enhanced antioxidant enzyme activities, including those of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and the abscisic acid (ABA) content significantly increased in both varieties. However, the oxidation resistance in the roots of Zheng Taizhi 3 was enhanced compared to that of SP19 under heat stress, while IAA production was maintained and ABA content was reduced. A comparative transcriptome analysis identified 6164 and 6933 differentially expressed genes (DEGs) in Zheng Taizhi 3 and SP19, respectively, with 4346 overlapping DEGs. These DEGs included those related to stress tolerance, such as heat-shock proteins (HSPs), the antioxidant defense system, hormone signal transduction, and the biosynthetic pathway of phenylpropanoid. These findings provide insights into the physiological and molecular mechanisms underlying the adaptation of sesame to heat stress, which could inform breeding strategies for developing heat-tolerant sesame varieties.
Collapse
Affiliation(s)
- Xiaoyu Su
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (X.S.); (C.L.); (Y.Y.); (L.L.); (L.W.); (D.L.); (Y.Z.); (Y.S.)
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou 450002, China
| | - Chunming Li
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (X.S.); (C.L.); (Y.Y.); (L.L.); (L.W.); (D.L.); (Y.Z.); (Y.S.)
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou 450002, China
| | - Yongliang Yu
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (X.S.); (C.L.); (Y.Y.); (L.L.); (L.W.); (D.L.); (Y.Z.); (Y.S.)
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou 450002, China
| | - Lei Li
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (X.S.); (C.L.); (Y.Y.); (L.L.); (L.W.); (D.L.); (Y.Z.); (Y.S.)
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou 450002, China
| | - Lina Wang
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (X.S.); (C.L.); (Y.Y.); (L.L.); (L.W.); (D.L.); (Y.Z.); (Y.S.)
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou 450002, China
| | - Dandan Lu
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (X.S.); (C.L.); (Y.Y.); (L.L.); (L.W.); (D.L.); (Y.Z.); (Y.S.)
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou 450002, China
| | - Yulong Zhao
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (X.S.); (C.L.); (Y.Y.); (L.L.); (L.W.); (D.L.); (Y.Z.); (Y.S.)
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou 450002, China
| | - Yao Sun
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (X.S.); (C.L.); (Y.Y.); (L.L.); (L.W.); (D.L.); (Y.Z.); (Y.S.)
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou 450002, China
| | - Zhengwei Tan
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (X.S.); (C.L.); (Y.Y.); (L.L.); (L.W.); (D.L.); (Y.Z.); (Y.S.)
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou 450002, China
| | - Huizhen Liang
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (X.S.); (C.L.); (Y.Y.); (L.L.); (L.W.); (D.L.); (Y.Z.); (Y.S.)
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou 450002, China
| |
Collapse
|
4
|
Cao L, Fahim AM, Liang X, Fan S, Song Y, Liu H, Ye F, Ma C, Zhang D, Lu X. Melatonin Enhances Heat Tolerance via Increasing Antioxidant Enzyme Activities and Osmotic Regulatory Substances by Upregulating zmeno1 Expression in Maize ( Zea mays L.). Antioxidants (Basel) 2024; 13:1144. [PMID: 39334803 PMCID: PMC11429225 DOI: 10.3390/antiox13091144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Heat stress severely affects the yield and quality of maize. Melatonin (N-acetyl-5-methoxy-tryptamin, MT) plays an important role in various types of stress resistance in plants, including heat tolerance. Enolase (ENO, 2-phospho-D-glycerate hydrolyase) contributes to plant growth, development, and stress response. As of now, the molecular mechanisms by which MT and ENO1 affect heat tolerance are unknown. In our research, we have revealed that heat stress (H) and heat stress + MT (MH) treatment upregulate ZmENO1 expression levels by 15 and 20 times, respectively. ZmENO1 overexpression and mutant maize lines were created by transgenic and genome editing. These results illustrate that heat stress has a significant impact on the growth of maize at the seedling stage. However, ZmENO1-OE lines showed a lower degree of susceptibility to heat stress, whereas the mutant exhibited the most severe effects. Under heat stress, exogenous application of MT improves heat resistance in maize. The ZmENO1-OE lines exhibited the best growth and highest survival rate, while the zmeno1 mutants showed the least desirable results. Following treatment with H and MH, the level of MT in ZmENO1-OE lines exhibited the greatest increase and reached the maximum value, whereas the level of MT in the zmeno1 mutant was the lowest. Heat stress decreased the maize's relative water content and fresh weight, although ZmENO1-OE lines had the highest and zmeno1 mutants had the lowest. Heat stress led to an increase in the levels of MDA, hydrogen peroxide, and superoxide in all plants. Additionally, the ionic permeability and osmotic potential of the plants were significantly increased. However, the levels of MT were decreased in all plants, with the greatest decrease observed in the ZmENO1-OE lines. Interestingly, the zmeno1 mutant plants had the highest expression levels of MT. Heat stress-induced upregulation of ZmSOD, ZmPOD, ZmAPX, ZmCAT, ZmP5CS, and ZmProDH in all plants. However, the ZmENO1-OE lines exhibited the greatest increase in expression levels, while the zmeno1 mutants showed the lowest increase following MT spraying. The patterns of SOD, POD, APX, and CAT enzyme activity, as well as proline and soluble protein content, aligned with the variations in the expression levels of these genes. Our findings indicate that MT can upregulate the expression of the ZmENO1 gene. Upregulating the ZmENO1 gene resulted in elevated expression levels of ZmSOD, ZmPOD, ZmAPX, ZmCAT, ZmP5CS, and ZmProDH. This led to increased activity of antioxidant enzymes and higher levels of osmoregulatory substances. Consequently, it mitigated the cell membrane damage caused by heat stress and ultimately improved the heat resistance of maize. The results of this study provide genetic resources for molecular design breeding and lay a solid foundation for further exploring the molecular mechanism of MT regulation of heat stress tolerance in maize.
Collapse
Affiliation(s)
- Liru Cao
- The Shennong Laboratory, Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (L.C.); (X.L.); (S.F.); (Y.S.); (H.L.); (F.Y.); (C.M.); (D.Z.)
| | | | - Xiaohan Liang
- The Shennong Laboratory, Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (L.C.); (X.L.); (S.F.); (Y.S.); (H.L.); (F.Y.); (C.M.); (D.Z.)
| | - Senmiao Fan
- The Shennong Laboratory, Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (L.C.); (X.L.); (S.F.); (Y.S.); (H.L.); (F.Y.); (C.M.); (D.Z.)
| | - Yinghui Song
- The Shennong Laboratory, Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (L.C.); (X.L.); (S.F.); (Y.S.); (H.L.); (F.Y.); (C.M.); (D.Z.)
| | - Huafeng Liu
- The Shennong Laboratory, Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (L.C.); (X.L.); (S.F.); (Y.S.); (H.L.); (F.Y.); (C.M.); (D.Z.)
| | - Feiyu Ye
- The Shennong Laboratory, Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (L.C.); (X.L.); (S.F.); (Y.S.); (H.L.); (F.Y.); (C.M.); (D.Z.)
| | - Chenchen Ma
- The Shennong Laboratory, Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (L.C.); (X.L.); (S.F.); (Y.S.); (H.L.); (F.Y.); (C.M.); (D.Z.)
| | - Dongling Zhang
- The Shennong Laboratory, Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (L.C.); (X.L.); (S.F.); (Y.S.); (H.L.); (F.Y.); (C.M.); (D.Z.)
| | - Xiaomin Lu
- The Shennong Laboratory, Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (L.C.); (X.L.); (S.F.); (Y.S.); (H.L.); (F.Y.); (C.M.); (D.Z.)
| |
Collapse
|
5
|
Duan Y, Wang X, Jiao Y, Liu Y, Li Y, Song Y, Wang L, Tong X, Jiang Y, Wang S, Wang S. Elucidating the role of exogenous melatonin in mitigating alkaline stress in soybeans across different growth stages: a transcriptomic and metabolomic approach. BMC PLANT BIOLOGY 2024; 24:380. [PMID: 38720246 PMCID: PMC11077714 DOI: 10.1186/s12870-024-05101-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Soybean (Glycine max), a vital grain and oilseed crop, serves as a primary source of plant protein and oil. Soil salinization poses a significant threat to soybean planting, highlighting the urgency to improve soybean resilience and adaptability to saline stress. Melatonin, recently identified as a key plant growth regulator, plays crucial roles in plant growth, development, and responses to environmental stress. However, the potential of melatonin to mitigate alkali stress in soybeans and the underlying mechanisms remain unclear. RESULTS This study investigated the effects of exogenous melatonin on the soybean cultivar Zhonghuang 13 under alkaline stress. We employed physiological, biochemical, transcriptomic, and metabolomic analyses throughout both vegetative and pod-filling growth stages. Our findings demonstrate that melatonin significantly counteracts the detrimental effects of alkaline stress on soybean plants, promoting plant growth, photosynthesis, and antioxidant capacity. Transcriptomic analysis during both growth stages under alkaline stress, with and without melatonin treatment, identified 2,834 and 549 differentially expressed genes, respectively. These genes may play a vital role in regulating plant adaptation to abiotic stress. Notably, analysis of phytohormone biosynthesis pathways revealed altered expression of key genes, particularly in the ARF (auxin response factor), AUX/IAA (auxin/indole-3-acetic acid), and GH3 (Gretchen Hagen 3) families, during the early stress response. Metabolomic analysis during the pod-filling stage identified highly expressed metabolites responding to melatonin application, such as uteolin-7-O-(2''-O-rhamnosyl)rutinoside and Hederagenin-3-O-glucuronide-28-O-glucosyl(1,2)glucoside, which helped alleviate the damage caused by alkali stress. Furthermore, we identified 183 differentially expressed transcription factors, potentially playing a critical role in regulating plant adaptation to abiotic stress. Among these, the gene SoyZH13_04G073701 is particularly noteworthy as it regulates the key differentially expressed metabolite, the terpene metabolite Hederagenin-3-O-glucuronide-28-O-glucosyl(1,2)glucoside. WGCNA analysis identified this gene (SoyZH13_04G073701) as a hub gene, positively regulating the crucial differentially expressed metabolite of terpenoids, Hederagenin-3-O-glucuronide-28-O-glucosyl(1,2)glucoside. Our findings provide novel insights into how exogenous melatonin alleviates alkali stress in soybeans at different reproductive stages. CONCLUSIONS Integrating transcriptomic and metabolomic approaches, our study elucidates the mechanisms by which exogenous melatonin ameliorates the inhibitory effects of alkaline stress on soybean growth and development. This occurs through modulation of biosynthesis pathways for key compounds, including terpenes, flavonoids, and phenolics. Our findings provide initial mechanistic insights into how melatonin mitigates alkaline stress in soybeans, offering a foundation for molecular breeding strategies to enhance salt-alkali tolerance in this crop.
Collapse
Affiliation(s)
- Yajuan Duan
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, PR China
| | - Xianxu Wang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, PR China
| | - Yan Jiao
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, PR China
| | - Yangyang Liu
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, PR China
| | - Yue Li
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, PR China
| | - Yongze Song
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, PR China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, PR China
| | - Xiaohong Tong
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, PR China
| | - Yan Jiang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, PR China
| | - Shaodong Wang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, PR China.
| | - Sui Wang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, PR China.
| |
Collapse
|
6
|
Huang J, Liu Y, Xiao R, Yu T, Guo T, Wang H, Lv X, Li X, Zhu M, Li F. Exogenous melatonin alleviates nicosulfuron toxicity by regulating the growth, photosynthetic capacity, and antioxidative defense of sweet corn seedlings. PHOTOSYNTHETICA 2024; 62:58-70. [PMID: 39650638 PMCID: PMC11609774 DOI: 10.32615/ps.2024.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/10/2024] [Indexed: 12/11/2024]
Abstract
Improper use of nicosulfuron (NSF) may induce harmful effects on plants during weed control. Melatonin (MT) regulates photosynthetic and physiological processes in plants. This study aimed to explore the effects of MT on alleviating NSF toxicity by measuring the growth parameters, photosynthetic capacity, and antioxidative responses in sweet corn seedlings. Compared to NSF alone, exogenous MT increased chlorophyll content, transpiration rate, net photosynthetic rate, stomatal conductance, and maximum efficiency of PSII photochemistry, while reduced malondialdehyde, hydrogen peroxide, superoxide anion radical, and proline contents. Moreover, MT also increased the activity of ascorbate peroxidase and the expression levels of ZmAPX1, ZmAPX2, ZmALS1, and ZmCYP81A9. The inhibition of p-chlorophenylalanine inhibited the positive effects of MT on photosynthetic and physiological indexes. The results indicated that pretreatment with MT might effectively mitigate NSF toxicity in sweet corn seedlings.
Collapse
Affiliation(s)
- J.X. Huang
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| | - Y.B. Liu
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| | - R. Xiao
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| | - T. Yu
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| | - T. Guo
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| | - H.W. Wang
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| | - X.L. Lv
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| | - X.N. Li
- Liaoyuan Farmer Science and Technology Education Center, 136200 Liaoyuan, Jilin Province, China
| | - M. Zhu
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| | - F.H. Li
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| |
Collapse
|
7
|
Wang L, Tanveer M, Wang H, Arnao MB. Melatonin as a key regulator in seed germination under abiotic stress. J Pineal Res 2024; 76:e12937. [PMID: 38241678 DOI: 10.1111/jpi.12937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/21/2024]
Abstract
Seed germination (SG) is the first stage in a plant's life and has an immense importance in sustaining crop production. Abiotic stresses reduce SG by increasing the deterioration of seed quality, and reducing germination potential, and seed vigor. Thus, to achieve a sustainable level of crop yield, it is important to improve SG under abiotic stress conditions. Melatonin (MEL) is an important biomolecule that interplays in developmental processes and regulates many adaptive responses in plants, especially under abiotic stresses. Thus, this review specifically summarizes and discusses the mechanistic basis of MEL-mediated SG under abiotic stresses. MEL regulates SG by regulating some stress-specific responses and some common responses. For instance, MEL induced stress specific responses include the regulation of ionic homeostasis, and hydrolysis of storage proteins under salinity stress, regulation of C-repeat binding factors signaling under cold stress, starch metabolism under high temperature and heavy metal stress, and activation of aquaporins and accumulation of osmolytes under drought stress. On other hand, MEL mediated regulation of gibberellins biosynthesis and abscisic acid catabolism, redox homeostasis, and Ca2+ signaling are amongst the common responses. Nonetheless factors such as endogenous MEL contents, plant species, and growth conditions also influence above-mentioned responses. In conclusion, MEL regulates SG under abiotic stress conditions by interacting with different physiological mechanisms.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Mohsin Tanveer
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Hongling Wang
- CAS Research Center for Ecology and Environment of Central Asia, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Marino B Arnao
- Phytohormones & Plant Development Laboratory, Department of Plant Biology (Plant Physiology), University of Murcia, Murcia, Spain
| |
Collapse
|
8
|
Luo Y, Zhang Y, Le J, Li Q, Mou J, Deng S, Li J, Wang R, Deng Z, Liu J. Full-Length Transcriptome Sequencing Reveals the Molecular Mechanism of Metasequoia glyptostroboides Seed Responding to Aging. Antioxidants (Basel) 2023; 12:1353. [PMID: 37507893 PMCID: PMC10376015 DOI: 10.3390/antiox12071353] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Metasequoia glyptostroboides, Hu and W. C. Cheng, as the only surviving relict species of the Taxodiaceae Metasequoia genus, is a critically endangered and protected species in China. There is a risk of extinction due to the low vigor of M. glyptostroboides seeds, and the physiological mechanism of seed aging in M. glyptostroboides is not yet clear. In order to investigate the physiological and molecular mechanisms underlying the aging process of M. glyptostroboides seeds, we analyzed the antioxidant system and transcriptome at 0, 2, 4, 6, and 8 days after artificial accelerated aging treatment at 40 °C and 100% relative humidity. It was found that the germination percentage of fresh dried M. glyptostroboides seeds was 54 ± 5.29%, and significantly declined to 9.33 ± 1.88% after 6 days of aging, and then gradually decreased until the seed died on day 8. Superoxide dismutase (SOD) activity, ascorbic acid (AsA), glutathione (GSH) content and superoxide anion (O2·-) content and production rate significantly decreased, while malondialdehyde (MDA) and hydrogen peroxide (H2O2) content and glutathione peroxidase (GPX) and catalase (CAT) activity gradually increased during the aging process. A total of 42,189 unigenes were identified in the whole transcriptome, and 40,446 (95.86%) unigenes were annotated in at least one protein database. A total of 15,376 differentially expressed genes (DEGs) were obtained; KEGG enrichment analysis results revealed that seed aging may be mainly involved in the protein-processing pathways in endoplasmic reticulum, oxidative phosphorylation, and ascorbate and aldarate metabolism. Weighted gene co-expression network analysis (WGCNA) revealed that the dark magenta, orange, and medium purple modules were highly correlated with physiological indicators such as SOD, CAT, and GSH and further identified 40 hub genes such as Rboh, ACO, HSF, and CML as playing important roles in the antioxidant network of M. glyptostroboides seeds. These findings provide a broader perspective for studying the regulatory mechanism of seed aging and a large number of potential target genes for the breeding of other endangered gymnosperms.
Collapse
Affiliation(s)
- Yongjian Luo
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi 445000, China
- The Plant Germplasm Resources Laboratory, School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China
| | - Yixin Zhang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jingyu Le
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi 445000, China
- The Plant Germplasm Resources Laboratory, School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China
| | - Qing Li
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jiaolin Mou
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi 445000, China
- The Plant Germplasm Resources Laboratory, School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China
| | - Shiming Deng
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi 445000, China
- The Plant Germplasm Resources Laboratory, School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China
| | - Jitao Li
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi 445000, China
- The Plant Germplasm Resources Laboratory, School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China
| | - Ru Wang
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi 445000, China
- The Plant Germplasm Resources Laboratory, School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China
| | - Zhijun Deng
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi 445000, China
- The Plant Germplasm Resources Laboratory, School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China
| | - Jun Liu
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
9
|
Wang B, Yang R, Zhang Z, Huang S, Ji Z, Zheng W, Zhang H, Zhang Y, Feng F. Integration of miRNA and mRNA analysis reveals the role of ribosome in to anti-artificial aging in sweetcorn. Int J Biol Macromol 2023; 240:124434. [PMID: 37062384 DOI: 10.1016/j.ijbiomac.2023.124434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/03/2023] [Accepted: 03/31/2023] [Indexed: 04/18/2023]
Abstract
Sweetcorn is a kind of maize with high sugar content and has poor seed aging tolerance, which seriously limits its production. However, few studies have explored the artificial aging (AA) tolerance by miRNA-mRNA integration analysis in sweetcorn. Here, we characterized the physiological, biochemical and transcriptomic changes of two contrasting lines K62 and K107 treated with AA during time series. Both the germination indexes and antioxidant enzymes showed significant difference between two lines. The MDA content of AA-tolerant genotype K62 was significantly lower than that of K107 on the fourth and sixth day. Subsequently, 157 differentially expressed miRNAs (DEMIs) and 8878 differentially expressed mRNAs (DEMs) were identified by RNA-seq analysis under aging stress. The "ribosome" and "peroxisome" pathways were enriched to respond to aging stress, genes for both large units and small ribosomal subunits were significantly upregulated expressed and higher translation efficiency might exist in K62. Thirteen pairs of miRNA-target genes were obtained, and 8 miRNA-mRNA pairs might involve in ribosome protein and translation process. Our results elucidate the mechanism of sweetcorn response to AA at miRNA-mRNA level, and provide a new insight into sweetcorn AA response to stress.
Collapse
Affiliation(s)
- Bo Wang
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Ruichun Yang
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Zili Zhang
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Silin Huang
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Zhaoqian Ji
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Wenbo Zheng
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Huaxing Zhang
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Yafeng Zhang
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Faqiang Feng
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
10
|
Pan Y, Xu X, Li L, Sun Q, Wang Q, Huang H, Tong Z, Zhang J. Melatonin-mediated development and abiotic stress tolerance in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1100827. [PMID: 36778689 PMCID: PMC9909564 DOI: 10.3389/fpls.2023.1100827] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/02/2023] [Indexed: 05/13/2023]
Abstract
Melatonin is a multifunctional molecule that has been widely discovered in most plants. An increasing number of studies have shown that melatonin plays essential roles in plant growth and stress tolerance. It has been extensively applied to alleviate the harmful effects of abiotic stresses. In view of its role in regulating aspects of plant growth and development, we ponder and summarize the scientific discoveries about seed germination, root development, flowering, fruit maturation, and senescence. Under abiotic and biotic stresses, melatonin brings together many pathways to increase access to treatments for the symptoms of plants and to counteract the negative effects. It has the capacity to tackle regulation of the redox, plant hormone networks, and endogenous melatonin. Furthermore, the expression levels of several genes and the contents of diverse secondary metabolites, such as polyphenols, terpenoids, and alkaloids, were significantly altered. In this review, we intend to examine the actions of melatonin in plants from a broader perspective, explore the range of its physiological functions, and analyze the relationship between melatonin and other metabolites and metabolic pathways.
Collapse
Affiliation(s)
- Yue Pan
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Xiaoshan Xu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Lei Li
- Hunan Academy of Forestry, Changsha, Hunan, China
| | - Qinglin Sun
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Qiguang Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Huahong Huang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Zaikang Tong
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
- *Correspondence: Zaikang Tong, ; Junhong Zhang,
| | - Junhong Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
- *Correspondence: Zaikang Tong, ; Junhong Zhang,
| |
Collapse
|
11
|
Sun M, Sun S, Mao C, Zhang H, Ou C, Jia Z, Wang Y, Ma W, Li M, Jia S, Mao P. Dynamic Responses of Antioxidant and Glyoxalase Systems to Seed Aging Based on Full-Length Transcriptome in Oat (Avena sativa L.). Antioxidants (Basel) 2022; 11:antiox11020395. [PMID: 35204277 PMCID: PMC8869221 DOI: 10.3390/antiox11020395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 12/20/2022] Open
Abstract
Seed aging is a major challenge for food security, agronomic production, and germplasm conservation, and reactive oxygen species (ROS) and methylglyoxal (MG) are highly involved in the aging process. However, the regulatory mechanisms controlling the abundance of ROS and MG are not well characterized. To characterize dynamic response of antioxidant and glyoxalase systems during seed aging, oat (Avena sativa L.) aged seeds with a range of germination percentages were used to explore physiological parameters, biochemical parameters and relevant gene expression. A reference transcriptome based on PacBio sequencing generated 67,184 non-redundant full-length transcripts, with 59,050 annotated. Subsequently, eleven seed samples were used to investigate the dynamic response of respiration, ROS and MG accumulation, antioxidant enzymes and glyoxalase activity, and associated genes expression. The 48 indicators with high correlation coefficients were divided into six major response patterns, and were used for placing eleven seed samples into four groups, i.e., non-aged (Group N), higher vigor (Group H), medium vigor (Group M), and lower vigor (Group L). Finally, we proposed a putative model for aging response and self-detoxification mechanisms based on the four groups representing different aging levels. In addition, the outcomes of the study suggested the dysfunction of antioxidant and glyoxalase system, and the accumulation of ROS and MG definitely contribute to oat seed aging.
Collapse
|
12
|
Yu S, Zhu X, Yang H, Yu L, Zhang Y. A simple new method for aged seed utilization based on melatonin-mediated germination and antioxidant nutrient production. Sci Rep 2021; 11:5937. [PMID: 33723383 PMCID: PMC7971019 DOI: 10.1038/s41598-021-85541-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/26/2021] [Indexed: 11/15/2022] Open
Abstract
Seed deterioration, coupled with a decrease in nutrients, is unavoidable following long-term storage, and these seeds are therefore used as livestock fodder. Here, we developed a simple, rapid and efficient method of producing high amounts of antioxidants from deteriorated seeds via melatonin-induced germination. Legume seeds were subjected to high humidity at 55 °C for 12-36 h to obtain aged seeds with a 40% germination rate and severely reduced antioxidant nutrition (total phenolics content, ferric reducing power and 1,1-diphenyl-2-picryhydrazyl (DPPH) radical scavenging capacity). Aged seeds were then treated with 0.1 mM melatonin, resulting in the production of sprouts with a higher total phenolics content (fivefold), greater ferric reducing power (sevenfold) and greater DPPH radical scavenging capacity (twofold) compared to the aged seeds. These findings suggest that melatonin treatment efficiently converted aged seed reserve residues into antioxidant nutrients, providing an alternative use for deteriorated seeds in food production.
Collapse
Affiliation(s)
- Song Yu
- Heilongjiang Higher Educational Key Laboratory for Cold-Regional Crop Cultivation and Germplasm Improvement, Department of Agronomy, Heilongjiang Bayi Agricultural University, No. 2, Xinyang Road, High-Tech Development Zone of Daqing, Daqing, 163319, China
| | - Xuetian Zhu
- Heilongjiang Higher Educational Key Laboratory for Cold-Regional Crop Cultivation and Germplasm Improvement, Department of Agronomy, Heilongjiang Bayi Agricultural University, No. 2, Xinyang Road, High-Tech Development Zone of Daqing, Daqing, 163319, China
| | - Helin Yang
- Heilongjiang Higher Educational Key Laboratory for Cold-Regional Crop Cultivation and Germplasm Improvement, Department of Agronomy, Heilongjiang Bayi Agricultural University, No. 2, Xinyang Road, High-Tech Development Zone of Daqing, Daqing, 163319, China
| | - Lihe Yu
- Heilongjiang Higher Educational Key Laboratory for Cold-Regional Crop Cultivation and Germplasm Improvement, Department of Agronomy, Heilongjiang Bayi Agricultural University, No. 2, Xinyang Road, High-Tech Development Zone of Daqing, Daqing, 163319, China
| | - Yifei Zhang
- Heilongjiang Higher Educational Key Laboratory for Cold-Regional Crop Cultivation and Germplasm Improvement, Department of Agronomy, Heilongjiang Bayi Agricultural University, No. 2, Xinyang Road, High-Tech Development Zone of Daqing, Daqing, 163319, China.
| |
Collapse
|
13
|
Yan H, Mao P. Comparative Time-Course Physiological Responses and Proteomic Analysis of Melatonin Priming on Promoting Germination in Aged Oat ( Avena sativa L.) Seeds. Int J Mol Sci 2021; 22:ijms22020811. [PMID: 33467472 PMCID: PMC7830126 DOI: 10.3390/ijms22020811] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 01/25/2023] Open
Abstract
Melatonin priming is an effective strategy to improve the germination of aged oat (Avena sativa L.) seeds, but the mechanism involved in its time-course responses has remained largely unknown. In the present study, the phenotypic differences, ultrastructural changes, physiological characteristics, and proteomic profiles were examined in aged and melatonin-primed seed (with 10 μM melatonin treatment for 12, 24, and 36 h). Thus, 36 h priming (T36) had a better remediation effect on aged seeds, reflecting in the improved germinability and seedlings, relatively intact cell ultrastructures, and enhanced antioxidant capacity. Proteomic analysis revealed 201 differentially abundant proteins between aged and T36 seeds, of which 96 were up-accumulated. In melatonin-primed seeds, the restoration of membrane integrity by improved antioxidant capacity, which was affected by the stimulation of jasmonic acid synthesis via up-accumulation of 12-oxo-phytodienoic acid reductase, might be a candidate mechanism. Moreover, the relatively intact ultrastructures enabled amino acid metabolism and phenylpropanoid biosynthesis, which were closely associated with energy generation through intermediates of pyruvate, phosphoenolpyruvate, fumarate, and α-ketoglutarate, thus providing energy, active amino acids, and secondary metabolites necessary for germination improvement of aged seeds. These findings clarify the time-course related pathways associated with melatonin priming on promoting the germination of aged oat seeds.
Collapse
Affiliation(s)
- Huifang Yan
- Forage Seed Laboratory, China Agricultural University, Beijing 100193, China;
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Peisheng Mao
- Forage Seed Laboratory, China Agricultural University, Beijing 100193, China;
- Correspondence: ; Tel.: +86-010-62733311
| |
Collapse
|
14
|
Zhang K, Zhang Y, Sun J, Meng J, Tao J. Deterioration of orthodox seeds during ageing: Influencing factors, physiological alterations and the role of reactive oxygen species. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:475-485. [PMID: 33250322 DOI: 10.1016/j.plaphy.2020.11.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Seed viability is an important trait in agriculture which directly influences seedling emergence and crop yield. However, even when stored under optimal conditions, all seeds will eventually lose their viability. Our primary aims were to describe factors influencing seed deterioration, determine the morphological, physiological, and biochemical changes that occur during the process of seed ageing, and explore the mechanisms involved in seed deterioration. High relative humidity and high temperature are two factors that accelerate seed deterioration. As seeds age, frequently observed changes include membrane damage and the destruction of organelle structure, an increase in the loss of seed leachate, decreases of respiratory rates and ATP production, and a loss of enzymatic activity. These phenomena could be inter-related and reflect the general breakdown in cellular organization. Many processes can result in seed ageing; it is likely that oxidative damage caused by free radicals and reactive oxygen species (ROS) is primarily responsible. ROS can have vital interactions with any macromolecule of biological interest that result in damage to various cellular components caused by protein damage, lipid peroxidation, chromosomal abnormalities, and DNA lesions. Further, ROS may also cause programmed cell death by inducing the opening of mitochondrial permeability transition pores and the release of cytochrome C. Some repairs can occur in the early stages of imbibition, but repair processes fail if sufficient damage has been caused to critical functional components. As a result, a given seed will lose its viability and eventually fail to germinate in a relatively short time period.
Collapse
Affiliation(s)
- Keliang Zhang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, PR China
| | - Yin Zhang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, PR China
| | - Jing Sun
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, PR China
| | - Jiasong Meng
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, PR China
| | - Jun Tao
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
15
|
Yan H, Jia S, Mao P. Melatonin Priming Alleviates Aging-Induced Germination Inhibition by Regulating β-oxidation, Protein Translation, and Antioxidant Metabolism in Oat ( Avena sativa L.) Seeds. Int J Mol Sci 2020; 21:ijms21051898. [PMID: 32164355 PMCID: PMC7084597 DOI: 10.3390/ijms21051898] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/20/2022] Open
Abstract
Although melatonin has been reported to play an important role in regulating metabolic events under adverse stresses, its underlying mechanisms on germination in aged seeds remain unclear. This study was conducted to investigate the effect of melatonin priming (MP) on embryos of aged oat seeds in relation to germination, ultrastructural changes, antioxidant responses, and protein profiles. Proteomic analysis revealed, in total, 402 differentially expressed proteins (DEPs) in normal, aged, and aged + MP embryos. The downregulated DEPs in aged embryos were enriched in sucrose metabolism, glycolysis, β-oxidation of lipid, and protein synthesis. MP (200 μM) turned four downregulated DEPs into upregulated DEPs, among which, especially 3-ketoacyl-CoA thiolase-like protein (KATLP) involved in the β-oxidation pathway played a key role in maintaining TCA cycle stability and providing more energy for protein translation. Furthermore, it was found that MP enhanced antioxidant capacity in the ascorbate-glutathione (AsA-GSH) system, declined reactive oxygen species (ROS), and improved cell ultrastructure. These results indicated that the impaired germination and seedling growth of aged seeds could be rescued to a certain level by melatonin, predominantly depending on β-oxidation, protein translation, and antioxidant protection of AsA-GSH. This work reveals new insights into melatonin-mediated mechanisms from protein profiles that occur in embryos of oat seeds processed by both aging and priming.
Collapse
Affiliation(s)
- Huifang Yan
- Forage Seed Laboratory, China Agricultural University, Beijing 100193, China; (H.Y.); (S.J.)
- Grassland Agri-husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Shangang Jia
- Forage Seed Laboratory, China Agricultural University, Beijing 100193, China; (H.Y.); (S.J.)
- Key Laboratory of Pratacultural Science, Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Peisheng Mao
- Forage Seed Laboratory, China Agricultural University, Beijing 100193, China; (H.Y.); (S.J.)
- Key Laboratory of Pratacultural Science, Beijing Municipality, China Agricultural University, Beijing 100193, China
- Correspondence: ; Tel.: +86-010-62733311
| |
Collapse
|
16
|
Melatonin as a Chemical Substance or as Phytomelatonin Rich-Extracts for Use as Plant Protector and/or Biostimulant in Accordance with EC Legislation. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9100570] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is a ubiquitous molecule present in animals and plants, and also in bacteria and fungi. In plants, it has an important regulatory and protective role in the face of different stress situations in which it can be involved, mainly due to its immobility. Both in the presence of biotic and abiotic stressors, melatonin exerts protective action in which, through significant changes in gene expression, it activates a stress tolerance response. Its anti-stress role, along with other outstanding functions, suggests its possible use in active agricultural management. This review establishes considerations that are necessary for its possible authorization. The particular characteristics of this substance and its categorization as plant biostimulant are discussed, and also the different legal aspects within the framework of the European Community. The advantages and disadvantages are also described of two of its possible applications, as a plant protector or biostimulant, in accordance with legal provisions.
Collapse
|