1
|
Ji CX, Zonias D, Djumaeva N, Cheng R, Salim K, Alikhani P, Oyelade T, Moore KP, Moreno JC, Mani AR. Identification and determination of the urinary metabolite of iodotyrosine invivo. Biochem Biophys Res Commun 2024; 735:150854. [PMID: 39442452 DOI: 10.1016/j.bbrc.2024.150854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Congenital hypothyroidism screening traditionally relies on detecting elevated thyroid-stimulating hormone levels, yet this approach may not detect a specific type of congenital hypothyroidism caused by iodotyrosine dehalogenase-1 (Dehal1) deficiency. The deficiency of this enzyme prevents the deiodination of mono-iodotyrosine (MIT) and di-iodotyrosine (DIT) in the process of iodine recycling. This underscores the potential use of iodotyrosine or its metabolites as non-invasive urinary biomarkers for early diagnosis of congenital hypothyroidism. However, the urinary metabolites of MIT/DIT have not yet been discovered. Thus, this study aimed to identify the urinary metabolites of iodotyrosine in experimental models. METHOD Gas chromatography mass spectrometry was used to identify the urinary metabolites of iodotyrosine following intraperitoneal injection of MIT in rats. An isotope dilution mass spectrometric assay was developed for assessment of identified metabolites. Urine samples from Dehal1 knockout mice were used to confirm the results. RESULTS We identified novel iodotyrosine metabolites, 3-iodo-4-hydroxyphenylacetic acid (IHPA), and 3,5-diiodo-4-hydroxyphenylacetic acid (Di-IHPA) as the primary urinary metabolites of MIT and DIT respectively. The concentrations of urinary IHPA and Di-IHPA were significantly higher in Dehal1 knockout mice. CONCLUSION Our findings suggest that IHPA is detected in larger quantities and may hold more clinical significance than previously identified biomarkers like MIT and DIT, making it a promising candidate for diagnosing congenital hypothyroidism or other conditions associated with iodine recycling inhibition.
Collapse
Affiliation(s)
- Cindy Xinyu Ji
- Institute for Liver and Digestive Health, UCL Division of Medicine, University College London, London, UK
| | - Danae Zonias
- Institute for Liver and Digestive Health, UCL Division of Medicine, University College London, London, UK
| | - Nafisa Djumaeva
- Institute for Liver and Digestive Health, UCL Division of Medicine, University College London, London, UK
| | - Ranchu Cheng
- Institute for Liver and Digestive Health, UCL Division of Medicine, University College London, London, UK
| | - Kawther Salim
- Institute for Liver and Digestive Health, UCL Division of Medicine, University College London, London, UK
| | - Pouya Alikhani
- Thyroid Molecular Laboratory, Institute for Medical and Molecular Genetics (INGEMM), La Paz University Hospital Research Institute (IdiPAZ), Autonomous University of Madrid, Madrid, Spain
| | - Tope Oyelade
- Institute for Liver and Digestive Health, UCL Division of Medicine, University College London, London, UK
| | - Kevin P Moore
- Institute for Liver and Digestive Health, UCL Division of Medicine, University College London, London, UK
| | - José C Moreno
- Thyroid Molecular Laboratory, Institute for Medical and Molecular Genetics (INGEMM), La Paz University Hospital Research Institute (IdiPAZ), Autonomous University of Madrid, Madrid, Spain
| | - Ali R Mani
- Institute for Liver and Digestive Health, UCL Division of Medicine, University College London, London, UK.
| |
Collapse
|
2
|
Bains AK, Naba A. Proteomic insights into the extracellular matrix: a focus on proteoforms and their implications in health and disease. Expert Rev Proteomics 2024; 21:463-481. [PMID: 39512072 PMCID: PMC11602344 DOI: 10.1080/14789450.2024.2427136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024]
Abstract
INTRODUCTION The extracellular matrix (ECM) is a highly organized and dynamic network of proteins and glycosaminoglycans that provides critical structural, mechanical, and biochemical support to cells. The functions of the ECM are directly influenced by the conformation of the proteins that compose it. ECM proteoforms, which can result from genetic, transcriptional, and/or post-translational modifications, adopt different conformations and, consequently, confer different structural properties and functionalities to the ECM in both physiological and pathological contexts. AREAS COVERED In this review, we discuss how bottom-up proteomics has been applied to identify, map, and quantify post-translational modifications (e.g. additions of chemical groups, proteolytic cleavage, or cross-links) and ECM proteoforms arising from alternative splicing or genetic variants. We further illustrate how proteoform-level information can be leveraged to gain novel insights into ECM protein structure and ECM functions in health and disease. EXPERT OPINION In the Expert opinion section, we discuss remaining challenges and opportunities with an emphasis on the importance of devising experimental and computational methods tailored to account for the unique biochemical properties of ECM proteins with the goal of increasing sequence coverage and, hence, accurate ECM proteoform identification.
Collapse
Affiliation(s)
- Amanpreet Kaur Bains
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, USA
- University of Illinois Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
3
|
Su Q, Xu B, Chen X, Rokita SE. Misregulation of bromotyrosine compromises fertility in male Drosophila. Proc Natl Acad Sci U S A 2024; 121:e2322501121. [PMID: 38748578 PMCID: PMC11126969 DOI: 10.1073/pnas.2322501121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/15/2024] [Indexed: 05/27/2024] Open
Abstract
Biological regulation often depends on reversible reactions such as phosphorylation, acylation, methylation, and glycosylation, but rarely halogenation. A notable exception is the iodination and deiodination of thyroid hormones. Here, we report detection of bromotyrosine and its subsequent debromination during Drosophila spermatogenesis. Bromotyrosine is not evident when Drosophila express a native flavin-dependent dehalogenase that is homologous to the enzyme responsible for iodide salvage from iodotyrosine in mammals. Deletion or suppression of the dehalogenase-encoding condet (cdt) gene in Drosophila allows bromotyrosine to accumulate with no detectable chloro- or iodotyrosine. The presence of bromotyrosine in the cdt mutant males disrupts sperm individualization and results in decreased fertility. Transgenic expression of the cdt gene in late-staged germ cells rescues this defect and enhances tolerance of male flies to bromotyrosine. These results are consistent with reversible halogenation affecting Drosophila spermatogenesis in a process that had previously eluded metabolomic, proteomic, and genomic analyses.
Collapse
Affiliation(s)
- Qi Su
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD21218
| | - Bing Xu
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD21218
| | - Xin Chen
- HHMI, The Johns Hopkins University, Baltimore, MD21218
- Department of Biology, The Johns Hopkins University, Baltimore, MD21218
| | - Steven E. Rokita
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD21218
| |
Collapse
|
4
|
Sattasathuchana P, Thengchaisri N, Minamoto Y, Minamoto T, Lidbury JA, Suchodolski JS, Steiner JM. Serum and Fecal 3-Bromotyrosine Concentrations in Dogs with Chronic Inflammatory Enteropathy: Clinical Parameters and Histopathological Changes. Animals (Basel) 2023; 13:2804. [PMID: 37685068 PMCID: PMC10486566 DOI: 10.3390/ani13172804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/02/2023] [Accepted: 09/03/2023] [Indexed: 09/10/2023] Open
Abstract
Chronic inflammatory enteropathies (CIEs) in dogs involve the infiltration of gastrointestinal tissue with inflammatory cells. This study aimed to assess the sensitivity of serum and fecal 3-bromotyrosine (3-BrY) concentrations in dogs with CIE. The difference in 3-BrY concentrations in dogs with different gastrointestinal (GI) pathological changes was also assessed. In total, 68 dogs with CIE were enrolled in the study. The median serum 3-BrY concentration was 3.3 µmol/L, while the median 3-day mean and maximum fecal 3-BrY concentrations were 38.9 and 63.2 mmol/g of feces, respectively. The median serum C-reactive protein concentration was 45.0 mg/L. The median 3-day mean and maximum fecal α1-proteinase inhibitor concentrations were 6.1 and 9 µg/g of feces, respectively. Increased 3-BrY concentrations were observed in 90.9% of CIE dogs based on serum concentrations, 75.8% based on mean fecal concentrations, and 69.4% based on maximum fecal concentrations. A weak correlation (ρ = 0.31, p < 0.0118) was found between serum CRP and serum 3-BrY concentrations. There was no correlation between the canine chronic enteropathy clinical activity index and serum or fecal 3-BrY concentrations (p > 0.05). Additionally, no significant difference in serum or fecal 3-BrY concentrations was found among CIE dogs with different GI pathological changes (p > 0.05). In conclusion, dogs with CIE have increased 3-BrY concentrations in serum and fecal samples. However, 3-BrY concentrations may not accurately indicate the severity of gastrointestinal inflammation.
Collapse
Affiliation(s)
- Panpicha Sattasathuchana
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Naris Thengchaisri
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Yasushi Minamoto
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (Y.M.); (T.M.); (J.A.L.); (J.S.S.); (J.M.S.)
| | - Tomomi Minamoto
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (Y.M.); (T.M.); (J.A.L.); (J.S.S.); (J.M.S.)
| | - Jonathan A. Lidbury
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (Y.M.); (T.M.); (J.A.L.); (J.S.S.); (J.M.S.)
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (Y.M.); (T.M.); (J.A.L.); (J.S.S.); (J.M.S.)
| | - Jörg M. Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (Y.M.); (T.M.); (J.A.L.); (J.S.S.); (J.M.S.)
| |
Collapse
|
5
|
The Predictive Role of Biomarkers and Genetics in Childhood Asthma Exacerbations. Int J Mol Sci 2021; 22:ijms22094651. [PMID: 33925009 PMCID: PMC8124320 DOI: 10.3390/ijms22094651] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/24/2022] Open
Abstract
Asthma exacerbations are associated with significant childhood morbidity and mortality. Recurrent asthma attacks contribute to progressive loss of lung function and can sometimes be fatal or near-fatal, even in mild asthma. Exacerbation prevention becomes a primary target in the management of all asthmatic patients. Our work reviews current advances on exacerbation predictive factors, focusing on the role of non-invasive biomarkers and genetics in order to identify subjects at higher risk of asthma attacks. Easy-to-perform tests are necessary in children; therefore, interest has increased on samples like exhaled breath condensate, urine and saliva. The variability of biomarker levels suggests the use of seriate measurements and composite markers. Genetic predisposition to childhood asthma onset has been largely investigated. Recent studies highlighted the influence of single nucleotide polymorphisms even on exacerbation susceptibility, through involvement of both intrinsic mechanisms and gene-environment interaction. The role of molecular and genetic aspects in exacerbation prediction supports an individual-shaped approach, in which follow-up planning and therapy optimization take into account not only the severity degree, but also the risk of recurrent exacerbations. Further efforts should be made to improve and validate the application of biomarkers and genomics in clinical settings.
Collapse
|
6
|
The Metabolomics of Childhood Atopic Diseases: A Comprehensive Pathway-Specific Review. Metabolites 2020; 10:metabo10120511. [PMID: 33339279 PMCID: PMC7767195 DOI: 10.3390/metabo10120511] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Asthma, allergic rhinitis, food allergy, and atopic dermatitis are common childhood diseases with several different underlying mechanisms, i.e., endotypes of disease. Metabolomics has the potential to identify disease endotypes, which could beneficially promote personalized prevention and treatment. Here, we summarize the findings from metabolomics studies of children with atopic diseases focusing on tyrosine and tryptophan metabolism, lipids (particularly, sphingolipids), polyunsaturated fatty acids, microbially derived metabolites (particularly, short-chain fatty acids), and bile acids. We included 25 studies: 23 examined asthma or wheezing, five examined allergy endpoints, and two focused on atopic dermatitis. Of the 25 studies, 20 reported findings in the pathways of interest with findings for asthma in all pathways and for allergy and atopic dermatitis in most pathways except tyrosine metabolism and short-chain fatty acids, respectively. Particularly, tyrosine, 3-hydroxyphenylacetic acid, N-acetyltyrosine, tryptophan, indolelactic acid, 5-hydroxyindoleacetic acid, p-Cresol sulfate, taurocholic acid, taurochenodeoxycholic acid, glycohyocholic acid, glycocholic acid, and docosapentaenoate n-6 were identified in at least two studies. This pathway-specific review provides a comprehensive overview of the existing evidence from metabolomics studies of childhood atopic diseases. The altered metabolic pathways uncover some of the underlying biochemical mechanisms leading to these common childhood disorders, which may become of potential value in clinical practice.
Collapse
|
7
|
Simultaneous LC-MS/MS-Based Quantification of Free 3-Nitro-l-tyrosine, 3-Chloro-l-tyrosine, and 3-Bromo-l-tyrosine in Plasma of Colorectal Cancer Patients during Early Postoperative Period. Molecules 2020; 25:molecules25215158. [PMID: 33167555 PMCID: PMC7663926 DOI: 10.3390/molecules25215158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 12/12/2022] Open
Abstract
Quantification with satisfactory specificity and sensitivity of free 3-Nitro-l-tyrosine (3-NT), 3-Chloro-l-tyrosine (3-CT), and 3-Bromo-l-tyrosine (3-BT) in biological samples as potential inflammation, oxidative stress, and cancer biomarkers is analytically challenging. We aimed at developing a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method for their simultaneous analysis without an extract purification step by solid-phase extraction. Validation of the developed method yielded the following limits of detection (LOD) and quantification (LOQ) for 3-NT, 3-BT, and 3-CT: 0.030, 0.026, 0.030 ng/mL (LODs) and 0.100, 0.096, 0.098 ng/mL (LOQs). Coefficients of variation for all metabolites and tested concentrations were <10% and accuracy was within 95-105%. Method applicability was tested on colorectal cancer patients during the perioperative period. All metabolites were significantly higher in cancer patients than healthy controls. The 3-NT was significantly lower in advanced cancer and 3-BT showed a similar tendency. Dynamics of 3-BT in the early postoperative period were affected by type of surgery and presence of surgical site infections. In conclusion, a sensitive and specific LC-MS/MS method for simultaneous quantification of free 3-NT, 3-BT, and 3-CT in human plasma has been developed.
Collapse
|