1
|
Santos G, Delgado E, Silva B, Braz BS, Gonçalves L. Topical Ocular Drug Delivery: The Impact of Permeation Enhancers. Pharmaceutics 2025; 17:447. [PMID: 40284442 PMCID: PMC12030643 DOI: 10.3390/pharmaceutics17040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Topical ophthalmic drug delivery targeting the posterior segment of the eye has become a key area of interest due to its non-invasive nature, safety, ease of application, patient compliance, and cost-effectiveness. However, achievement of effective drug bioavailability in the posterior ocular segment is a significant challenge due to unique ocular barriers, including precorneal factors and anatomical barriers, like the cornea, the conjunctiva, and the sclera. Successful ocular drug delivery systems require increased precorneal residence time and improved corneal penetration to enhance intraocular bioavailability. A promising strategy to overcome these barriers is incorporating drug penetration enhancers (DPEs) into formulations. These compounds facilitate drug delivery by improving permeability across otherwise impermeable or poorly permeable membranes. At the ocular level, they act through three primary mechanisms: breaking tear film stability by interfering with the mucous layer; disrupting membrane components such as phospholipids and proteins; and loosening epithelial cellular junctions. DPEs offer significant potential to improve bioavailability and therapeutic outcomes, particularly for drugs targeting the posterior segment of the eye. This review is focused on analyzing the current literature regarding the use of penetration enhancers in topical ocular drug delivery, highlighting their mechanisms of action and potential to revolutionize ophthalmic treatments.
Collapse
Affiliation(s)
- Gonçalo Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- CIISA—Centro de Investigação Interdisciplinar em Saúde Animal, Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (E.D.); (B.S.); (B.S.B.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Esmeralda Delgado
- CIISA—Centro de Investigação Interdisciplinar em Saúde Animal, Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (E.D.); (B.S.); (B.S.B.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Beatriz Silva
- CIISA—Centro de Investigação Interdisciplinar em Saúde Animal, Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (E.D.); (B.S.); (B.S.B.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Berta São Braz
- CIISA—Centro de Investigação Interdisciplinar em Saúde Animal, Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (E.D.); (B.S.); (B.S.B.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| |
Collapse
|
2
|
Ljubica J, Dukovski BJ, Krtalić I, Juretić M, Kučuk MS, Petriček I, Špoljarić D, Bočkor L, Kocbek P, Hafner A, Pepić I, Lovrić J. Overcoming barriers in formulating practically insoluble loteprednol etabonate in ophthalmic nanoemulsion. Eur J Pharm Sci 2025; 209:107077. [PMID: 40113103 DOI: 10.1016/j.ejps.2025.107077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/15/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Loteprednol etabonate (LE) is a soft corticosteroid recently approved for the short-term treatment of signs and symptoms of dry eye disease. LE is available on the market as a suspension, which can release only limited amount of dissolved corticosteroid after application at the ocular surface. This study is focused on the development of an oil-in-water nanoemulsion (NE) to effectively deliver dissolved LE to the ocular surface, in order to promote its absorption. We newly developed an extended-throughput 3D model of the corneal epithelium for biocompatibility study, and an innovative approach to investigate the effect of biorelevant dilution on LE release from the NE oil phase. Castor oil, Capryol® 90, Kolliphor® EL and Soluplus® were selected as NE excipients based on their potential to dissolve LE. Design of experiments was successfully employed to develop biocompatible and physically stable NE with high LE content (0.15 %, w/w) and retention efficiency (87 % after 10 months of storage at room temperature). LE retention within oil droplets (above 90 % of the initial LE content) despite biorelevant dilution simulating tear turnover suggests the potential for direct LE absorption from the NE oil droplets into the lipophilic corneal epithelium. The results obtained encourage the extension of the studies in terms of in vitro permeability and in vivo eye-related bioavailability assessment to prove the potential of the proposed LE formulation.
Collapse
Affiliation(s)
- Josip Ljubica
- University of Zagreb Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Bisera Jurišić Dukovski
- University of Zagreb Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, 10000 Zagreb, Croatia; PLIVA Croatia Ltd, TEVA Member Group, Baruna Filipovića 25, 10000 Zagreb, Croatia
| | - Iva Krtalić
- PLIVA Croatia Ltd, TEVA Member Group, Baruna Filipovića 25, 10000 Zagreb, Croatia
| | - Marina Juretić
- PLIVA Croatia Ltd, TEVA Member Group, Baruna Filipovića 25, 10000 Zagreb, Croatia
| | | | - Igor Petriček
- University Hospital Centre Zagreb, Mije Kišpatića 12, 10000 Zagreb, Croatia
| | - Drago Špoljarić
- Visage Technologies d.o.o., Ul. Ivana Lučića 2a, 10000 Zagreb, Croatia
| | - Luka Bočkor
- Institute for Anthropological Research, Gajeva ul. 32, 10000 Zagreb, Croatia
| | - Petra Kocbek
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Anita Hafner
- University of Zagreb Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Ivan Pepić
- University of Zagreb Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Jasmina Lovrić
- University of Zagreb Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, 10000 Zagreb, Croatia.
| |
Collapse
|
3
|
Zhu Y, Liu Y, Wang Y, Chen T, Ma X, Li J, Wang D. Development of a Temperature and pH Dual-Sensitive In-Situ Gel for Treating Allergic Conjunctivitis. AAPS PharmSciTech 2024; 25:223. [PMID: 39322789 DOI: 10.1208/s12249-024-02931-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024] Open
Abstract
The purpose of this study was to improve the efficacy of olopatadine hydrochloride (OT) in treating allergic conjunctivitis (AC). To achieve this goal, we developed an eye formulation without antimicrobial agents using a temperature-pH dual-sensitive in situ gel technology combined with heat sterilization. Various types of carbomers were evaluated and their optimal doses determined. The prescription containing poloxamer 407 (P407) and poloxamer 188 (P188) was optimized using central composite design for response surface methodology (CCD-RSM). The final optimized dual-sensitive in situ gel (TP-gel) consisted of 0.1% olopatadine hydrochloride, 18.80% P407, 0.40% P188, 0.30% Pemulen™TR-1(TR-1), 4.0% mannitol, and 0.08% Tri(hydroxymethyl)aminomethane(Tris).Sterilization was performed at a temperature of 121℃ for a duration of 20 min. Experimental results showed that TP-gel had good safety profile and remained on the ocular surface for approximately (65.83 ± 8.79) minutes, which is four times longer than eye drops. The expression levels of IL-13, IL-17, and OVA-IgE in mouse ocular tissues with allergic conjunctivitis treated with TP-gel were significantly reduced. This suggests that TP-gel has the potential to be an effective treatment method for allergic conjunctivitis.
Collapse
Affiliation(s)
- Yanpeng Zhu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Yinghui Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Yongyue Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Tingting Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Xuerui Ma
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Ji Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China.
| | - Dongkai Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China.
| |
Collapse
|
4
|
Adisuri DS, Madhavan P, Chong PP, Nathan S. Antifungal Activity of Piperine-based Nanoemulsion Against Candida spp. via In Vitro Broth Microdilution Assay. J Pharm Sci 2024; 113:2843-2850. [PMID: 39004416 DOI: 10.1016/j.xphs.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
Candidemia leaves a trail of approximately 750,000 cases yearly, with a morbidity rate of up to 30%. While Candida albicans still ranks as the most predominantly isolated Candida species, C. glabrata comes in second, with a death rate of 40-50%. Although infections by Candida spp are commonly treated with azoles, the side effects and rise in resistance against it has significantly limited its clinical usage. The current study aims to address the insolubility of piperine and provide an alternative treatment to Candida infection by formulating a stable piperine-loaded O/W nanoemulsion, comprised of Cremophor RH40, Transcutol HP and Capryol 90 as surfactant, co-surfactant, and oil, respectively. Characterization with zetasizer showed the droplet size, polydispersity (PDI) and zetapotential value of the nanoemulsion to be 24.37 nm, 0.453 and -21.10 mV, respectively, with no observable physical changes such as phase separation from thermostability tests. FTIR peaks confirms presence of piperine within the nanoemulsion and TEM imaging visualized the droplet shape and further confirms the droplet size range of 20-24 nm. The MIC90 value of the piperine-loaded nanoemulsion determined with in vitro broth microdilution assay was approximately 20-50% lower than that of the pure piperine in DMSO, at a range of 0.8-2.0 mg/mL across all Candida spp. tested. Overall, the study showed that piperine can be formulated into a stable nanoemulsion, which significantly enhances its antifungal activity compared to piperine in DMSO.
Collapse
Affiliation(s)
- Diajeng Sekar Adisuri
- School of Medicine, Taylor's University Lakeside Campus, Subang Jaya 47500, Malaysia; Digital Health and Medical Advancement Impact Lab, Taylor's University, No.1, Jalan Taylor's. Subang Jaya, 47500 Selangor, Malaysia
| | - Priya Madhavan
- School of Medicine, Taylor's University Lakeside Campus, Subang Jaya 47500, Malaysia; Digital Health and Medical Advancement Impact Lab, Taylor's University, No.1, Jalan Taylor's. Subang Jaya, 47500 Selangor, Malaysia.
| | - Pei Pei Chong
- School of Biosciences, Taylor's University Lakeside Campus, 47500 Subang Jaya, Malaysia; Digital Health and Medical Advancement Impact Lab, Taylor's University, No.1, Jalan Taylor's. Subang Jaya, 47500 Selangor, Malaysia
| | - Sheila Nathan
- School of Biosciences and Biotechnology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
5
|
Wei W, Cao H, Shen D, Sun X, Jia Z, Zhang M. Antioxidant Carbon Dots Nanozyme Loaded in Thermosensitive in situ Hydrogel System for Efficient Dry Eye Disease Treatment. Int J Nanomedicine 2024; 19:4045-4060. [PMID: 38736656 PMCID: PMC11088389 DOI: 10.2147/ijn.s456613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/30/2024] [Indexed: 05/14/2024] Open
Abstract
Purpose Dry eye disease (DED) is a multifactorial ocular surface disease with a rising incidence. Therefore, it is urgent to construct a reliable and efficient drug delivery system for DED treatment. Methods In this work, we loaded C-dots nanozyme into a thermosensitive in situ gel to create C-dots@Gel, presenting a promising composite ocular drug delivery system to manage DED. Results This composite ocular drug delivery system (C-dots@Gel) demonstrated the ability to enhance adherence to the corneal surface and extend the ocular surface retention time, thereby enhancing bioavailability. Furthermore, no discernible ocular surface irritation or systemic toxicity was observed. In the DED mouse model induced by benzalkonium chloride (BAC), it was verified that C-dots@Gel effectively mitigated DED by stabilizing the tear film, prolonging tear secretion, repairing corneal surface damage, and augmenting the population of conjunctival goblet cells. Conclusion Compared to conventional dosage forms (C-dots), the C-dots@Gel could prolong exhibited enhanced retention time on the ocular surface and increased bioavailability, resulting in a satisfactory therapeutic outcome for DED.
Collapse
Affiliation(s)
- Wei Wei
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, 710061, People’s Republic of China
- Xi’an No.1 Hospital, Shaanxi Institute of Ophthalmology, Shaanxi Key Laboratory of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, First Affiliated Hospital of Northwestern University, Xi’an, Shaanxi, 710002, People’s Republic of China
| | - Haili Cao
- Xi’an No.1 Hospital, Shaanxi Institute of Ophthalmology, Shaanxi Key Laboratory of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, First Affiliated Hospital of Northwestern University, Xi’an, Shaanxi, 710002, People’s Republic of China
| | - Di Shen
- Xi’an No.1 Hospital, Shaanxi Institute of Ophthalmology, Shaanxi Key Laboratory of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, First Affiliated Hospital of Northwestern University, Xi’an, Shaanxi, 710002, People’s Republic of China
| | - Xiyu Sun
- Xi’an No.1 Hospital, Shaanxi Institute of Ophthalmology, Shaanxi Key Laboratory of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, First Affiliated Hospital of Northwestern University, Xi’an, Shaanxi, 710002, People’s Republic of China
| | - Zhenzhen Jia
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, 710061, People’s Republic of China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, 710061, People’s Republic of China
| |
Collapse
|
6
|
Adısanoğlu P, Özgüney I. Development and Characterization of Thermosensitive and Bioadhesive Ophthalmic Formulations Containing Flurbiprofen Solid Dispersions. Gels 2024; 10:267. [PMID: 38667685 PMCID: PMC11049017 DOI: 10.3390/gels10040267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
In this study, we aimed to develop thermosensitive and bioadhesive in situ gelling systems containing solid dispersions of flurbiprofen (FB-SDs) using poloxamer 407 (P407) and 188 (P188) for ophthalmic delivery. FB-SDs were prepared with the melt method using P407, characterized by solubility, stability, SEM, DSC, TGA, and XRD analyses. Various formulations of poloxamer mixtures and FB-SDs were prepared using the cold method and P407/P188 (15/26.5%), which gels between 32 and 35 °C, was selected to develop an ophthalmic in situ gelling system. Bioadhesive polymers Carbopol 934P (CP) or carboxymethyl cellulose (CMC) were added in three concentrations (0.2, 0.4, and 0.6% (w/w)). Gelation temperature and time, mechanical properties, flow properties, and viscosity values were determined. The in vitro release rate, release kinetics, and the release mechanism of flurbiprofen (FB) from the ophthalmic formulations were analyzed. The results showed that FB-SDs' solubility in water increased 332-fold compared with FB. The oscillation study results indicated that increasing bioadhesive polymer concentrations decreased gelation temperature and time, and formulations containing CP gel at lower temperatures and in a shorter time. All formulations except F3 and F4 showed Newtonion flow under non-physiological conditions, while all formulations exhibited non-Newtonion pseudoplastic flow under physiological conditions. Viscosity values increased with an increase in bioadhesive polymer concertation at physiological conditions. Texture profile analysis (TPA) showed that CP-containing formulations had higher hardness, compressibility, and adhesiveness, and the gel structure of formulation F4, containing 0.6% CP, exhibited the greatest hardness, compressibility, and adhesiveness. In vitro drug release studies indicated that CP and CMC had no effect below 0.6% concentration. Kinetic evaluation favored first-order and Hixson-Crowell kinetic models. Release mechanism analysis showed that the n values of the formulations were greater than 1 except for formulation F5, suggesting that FB might be released from the ophthalmic formulations by super case II type diffusion. When all the results of this study are evaluated, the in situ gelling formulations prepared with FB-SDs that contained P407/P188 (15/26.5%) and 0.2% CP or 0.2% CMC or 0.4 CMC% (F2, F5, and F6, respectively) could be promising formulations to prolong precorneal residence time and improve ocular bioavailability of FB.
Collapse
Affiliation(s)
| | - Işık Özgüney
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ege, 35100 Bornova, İzmir, Türkiye;
| |
Collapse
|
7
|
Whalen M, Akula M, McNamee SM, DeAngelis MM, Haider NB. Seeing the Future: A Review of Ocular Therapy. Bioengineering (Basel) 2024; 11:179. [PMID: 38391665 PMCID: PMC10886198 DOI: 10.3390/bioengineering11020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Ocular diseases present a unique challenge and opportunity for therapeutic development. The eye has distinct advantages as a therapy target given its accessibility, compartmentalization, immune privilege, and size. Various methodologies for therapeutic delivery in ocular diseases are under investigation that impact long-term efficacy, toxicity, invasiveness, and delivery range. While gene, cell, and antibody therapy and nanoparticle delivery directly treat regions that have been damaged by disease, they can be limited in the duration of the therapeutic delivery and have a focal effect. In contrast, contact lenses and ocular implants can more effectively achieve sustained and widespread delivery of therapies; however, they can increase dilution of therapeutics, which may result in reduced effectiveness. Current therapies either offer a sustained release or a broad therapeutic effect, and future directions should aim toward achieving both. This review discusses current ocular therapy delivery systems and their applications, mechanisms for delivering therapeutic products to ocular tissues, advantages and challenges associated with each delivery system, current approved therapies, and clinical trials. Future directions for the improvement in existing ocular therapies include combination therapies, such as combined cell and gene therapies, as well as AI-driven devices, such as cortical implants that directly transmit visual information to the cortex.
Collapse
Affiliation(s)
- Maiya Whalen
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | - Margaret M DeAngelis
- Department of Ophthalmology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Neena B Haider
- Shifa Precision, Boston, MA 02138, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02138, USA
| |
Collapse
|
8
|
Kumar V, Garg V, Saini N, Aggarwal N, Kumar H, Kumar D, Chopra H, Kamal MA, Dureja H. An Updated Review on Nanoemulsion: Factory for Food and Drug Delivery. Curr Pharm Biotechnol 2024; 25:2218-2252. [PMID: 38415490 DOI: 10.2174/0113892010267771240211124950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 02/29/2024]
Abstract
BACKGROUND A nanoemulsion is a colloidal system of small droplets dispersed in another liquid. It has attracted considerable attention due to its unique properties and various applications. Throughout this review, we provide an overview of nanoemulsions and how they can be applied to various applications such as drug delivery, food applications, and pesticide formulations. OBJECTIVE This updated review aims to comprehensively overview nanoemulsions and their applications as a versatile platform for drug delivery, food applications, and pesticide formulations. METHODS Research relevant scientific literature across various databases, including PubMed, Scopus, and Web of Science. Suitable keywords for this purpose include "nanoemulsion," "drug delivery," and "food applications." Ensure the search criteria include recent publications to ensure current knowledge is included. RESULTS Several benefits have been demonstrated in the delivery of drugs using nanoemulsions, including improved solubility, increased bioavailability, and controlled delivery. Nanoemulsions have improved some bioactive compounds in food applications, including vitamins and antioxidants. At the same time, pesticide formulations based on nanoemulsions have also improved solubility, shelf life, and effectiveness. CONCLUSION The versatility of nanoemulsions makes them ideal for drug delivery, food, and pesticide formulation applications. These products are highly soluble, bioavailable, and targeted, providing significant advantages. More research and development are required to implement nanoemulsion-based products on a commercial scale.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| | - Vandana Garg
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| | - Nakul Saini
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| | - Navidha Aggarwal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Harsh Kumar
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
- Vaish Institute of Pharmaceutical Education and Research, Rohtak, 124001, India
| | - Davinder Kumar
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Birulia, Bangladesh
- Enzymoics, Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW, 2770, Australia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| |
Collapse
|
9
|
Wang Q, Wu Z, Wang F, Zhang H, Gan L. Tacrolimus-Loaded Cationic Nanoemulsion In-Situ Gel System: In-Vitro Characterization and Performance in a Dry-Eye Rabbit Model. J Pharm Sci 2023; 112:2790-2798. [PMID: 37453530 DOI: 10.1016/j.xphs.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 07/18/2023]
Abstract
Dry eye disease (DED) is a highly prevalent ocular surface disease that affects life quality and reduces productivity at work. The purpose of this study is to improve the efficacy of tacrolimus (FK506) in the treatment of DED using the special eye surface retention properties of cationic nanoemulsion (CNE) modified by thermosensitive in-situ gel (ISG) (CNE-ISG). The precorneal retention of CNE-ISG containing 0.05% FK506 (50 min) was longer than that of CNE containing 0.05% FK506 (25 min) and commercial suspension containing 0.1% FK506 (Talymus®) (10 min). Successfully modeled dry-eye rabbits were treated with 0.05% CNE-ISG (twice/day), 0.05% CNE and 0.1% suspension (Talymus®) (thrice/day). Schirmer's tear secretion test showed no significant difference between the CNE-ISG group and the healthy group after 5 days of treatment (p > 0.05). The results of a tear ferning test (TFT) showed that the tear-fern-like crystal branches in the CNE-ISG group returned to normal after 5 days of treatment. Histological analysis showed that the number of goblet cells in the CNE-ISG group significantly increased. HET-CAM stimulation test showed that the CNE-ISG group had no ocular irritation. The above results indicated that CNE-ISG might be a promising delivery system and as an effective dosage form was employed for FK506 in the treatment of DED.
Collapse
Affiliation(s)
- Qiuhe Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zheng Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Feifei Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Hua Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Li Gan
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
10
|
Liu LC, Chen YH, Lu DW. Overview of Recent Advances in Nano-Based Ocular Drug Delivery. Int J Mol Sci 2023; 24:15352. [PMID: 37895032 PMCID: PMC10607833 DOI: 10.3390/ijms242015352] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Ocular diseases profoundly impact patients' vision and overall quality of life globally. However, effective ocular drug delivery presents formidable challenges within clinical pharmacology and biomaterial science, primarily due to the intricate anatomical and physiological barriers unique to the eye. In this comprehensive review, we aim to shed light on the anatomical and physiological features of the eye, emphasizing the natural barriers it presents to drug administration. Our goal is to provide a thorough overview of various characteristics inherent to each nano-based drug delivery system. These encompass nanomicelles, nanoparticles, nanosuspensions, nanoemulsions, microemulsions, nanofibers, dendrimers, liposomes, niosomes, nanowafers, contact lenses, hydrogels, microneedles, and innovative gene therapy approaches employing nano-based ocular delivery techniques. We delve into the biology and methodology of these systems, introducing their clinical applications over the past decade. Furthermore, we discuss the advantages and challenges illuminated by recent studies. While nano-based drug delivery systems for ophthalmic formulations are gaining increasing attention, further research is imperative to address potential safety and toxicity concerns.
Collapse
Affiliation(s)
| | | | - Da-Wen Lu
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (L.-C.L.); (Y.-H.C.)
| |
Collapse
|
11
|
Regu VPR, Behera D, Sunkara SP, Gohel V, Tripathy S, Swain RP, Subudhi BB. Ocular Delivery of Metformin for Sustained Release and in Vivo Efficacy. J Pharm Sci 2023; 112:2494-2505. [PMID: 37031863 DOI: 10.1016/j.xphs.2023.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
Metformin is known to lower inflammation, independent of its anti-diabetic action. Thus, topical metformin can be a therapeutic strategy for managing ocular inflammation associated with diabetes. To achieve this and address the issues of ocular retention and controlled release an in situ gel of metformin was developed. The formulations were prepared using sodium hyaluronate, hypromellose, and gellan gum. The composition was optimized by monitoring gelling time/capacity, viscosity, and mucoadhesion. MF5 was selected as the optimized formulation. It showed both chemical and physiological compatibility. It was found to be sterile and stable. MF5 exhibited sustained release of metformin for 8h that fitted best with zero-order kinetics. Further, the release mode was found to be close to the Korsmeyer-Peppas model. Supported by an ex vivo permeation study, it showed potential for prolonged action. It showed a significant reduction in ocular inflammation that was comparable to that of the standard drug. MF5 shows translational potential as a safe alternative to steroids for managing ocular inflammation.
Collapse
Affiliation(s)
- Vara Prasada Rao Regu
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India
| | - Dhananjay Behera
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India
| | - Sai Prathyusha Sunkara
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India
| | - Vinit Gohel
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India; ProCyto Labs Pvt Ltd., KIIT-TBI, Bhubaneswar, Odisha 751024, India
| | - Shyamalendu Tripathy
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India
| | - Ranjit Prasad Swain
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India
| | - Bharat Bhusan Subudhi
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India.
| |
Collapse
|
12
|
Tran VN, Strnad O, Šuman J, Veverková T, Sukupová A, Cejnar P, Hynek R, Kronusová O, Šach J, Kaštánek P, Ruml T, Viktorová J. Cannabidiol nanoemulsion for eye treatment - Anti-inflammatory, wound healing activity and its bioavailability using in vitro human corneal substitute. Int J Pharm 2023; 643:123202. [PMID: 37406946 DOI: 10.1016/j.ijpharm.2023.123202] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
Cannabidiol (CBD) is the non-psychoactive component of the plant Cannabis sativa (L.) that has great anti-inflammatory benefits and wound healing effects. However, its high lipophilicity, chemical instability, and extensive metabolism impair its bioavailability and clinical use. Here, we report on the preparation of a human cornea substitute in vitro and validate this substitute for the evaluation of drug penetration. CBD nanoemulsion was developed and evaluated for stability and biological activity. The physicochemical properties of CBD nanoemulsion were maintained during storage for 90 days under room conditions. In the scratch assay, nanoformulation showed significantly ameliorated wound closure rates compared to the control and pure CBD. Due to the lower cytotoxicity of nanoformulated CBD, a higher anti-inflammatory activity was demonstrated. Neither nanoemulsion nor pure CBD can penetrate the cornea after the four-hour apical treatment. For nanoemulsion, 94 % of the initial amount of CBD remained in the apical compartment while only 54 % of the original amount of pure CBD was detected in the apical medium, and 7 % in the cornea, the rest was most likely metabolized. In summary, the nanoemulsion developed in this study enhanced the stability and biological activity of CBD.
Collapse
Affiliation(s)
- Van Nguyen Tran
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic
| | - Ondřej Strnad
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic
| | - Jáchym Šuman
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic
| | - Tereza Veverková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic
| | - Adéla Sukupová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic
| | - Pavel Cejnar
- Department of Mathematics, Informatics and Cybernetics, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic
| | - Radovan Hynek
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic
| | - Olga Kronusová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; EcoFuel Laboratories Ltd., Ocelářská 392, 190 00 Prague 9, Czech Republic
| | - Josef Šach
- Department of Pathology, Third Faculty of Medicine, Teaching Hospital Královské Vinohrady Prague, Šrobárova 50, 100 34 Prague 10, Czech Republic
| | - Petr Kaštánek
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; EcoFuel Laboratories Ltd., Ocelářská 392, 190 00 Prague 9, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic
| | - Jitka Viktorová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic.
| |
Collapse
|
13
|
Li S, Chen L, Fu Y. Nanotechnology-based ocular drug delivery systems: recent advances and future prospects. J Nanobiotechnology 2023; 21:232. [PMID: 37480102 PMCID: PMC10362606 DOI: 10.1186/s12951-023-01992-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/09/2023] [Indexed: 07/23/2023] Open
Abstract
Ocular drug delivery has constantly challenged ophthalmologists and drug delivery scientists due to various anatomical and physiological barriers. Static and dynamic ocular barriers prevent the entry of exogenous substances and impede therapeutic agents' active absorption. This review elaborates on the anatomy of the eye and the associated constraints. Followed by an illustration of some common ocular diseases, including glaucoma and their current clinical therapies, emphasizing the significance of drug therapy in treating ocular diseases. Subsequently, advances in ocular drug delivery modalities, especially nanotechnology-based ocular drug delivery systems, are recommended, and some typical research is highlighted. Based on the related research, systematic and comprehensive characterizations of the nanocarriers are summarized, hoping to assist with future research. Besides, we summarize the nanotechnology-based ophthalmic drugs currently on the market or still in clinical trials and the recent patents of nanocarriers. Finally, inspired by current trends and therapeutic concepts, we provide an insight into the challenges faced by novel ocular drug delivery systems and further put forward directions for future research. We hope this review can provide inspiration and motivation for better design and development of novel ophthalmic formulations.
Collapse
Affiliation(s)
- Shiding Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Liangbo Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Yao Fu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| |
Collapse
|
14
|
Abla KK, Domiati S, El Majzoub R, Mehanna MM. Propranolol-Loaded Limonene-Based Microemulsion Thermo-Responsive Mucoadhesive Nasal Nanogel: Design, In Vitro Assessment, Ex Vivo Permeation, and Brain Biodistribution. Gels 2023; 9:491. [PMID: 37367161 DOI: 10.3390/gels9060491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
Propranolol is the first-line drug for managing migraine attacks. D-limonene is a citrus oil known for its neuroprotective mechanism. Thus, the current work aims to design a thermo-responsive intranasal limonene-based microemulsion mucoadhesive nanogel to improve propranolol efficacy. Microemulsion was fabricated using limonene and Gelucire® as the oily phase, Labrasol®, Labrafil®, and deionized water as the aqueous phase, and was characterized regarding its physicochemical features. The microemulsion was loaded in thermo-responsive nanogel and evaluated regarding its physical and chemical properties, in vitro release, and ex vivo permeability through sheep nasal tissues. Its safety profile was assessed via histopathological examination, and its capability to deliver propranolol effectively to rats' brains was examined using brain biodistribution analysis. Limonene-based microemulsion was of 133.7 ± 0.513 nm diametric size with unimodal size distribution and spheroidal shape. The nanogel showed ideal characteristics with good mucoadhesive properties and in vitro controlled release with 1.43-fold enhancement in ex vivo nasal permeability compared with the control gel. Furthermore, it displayed a safe profile as elucidated by the nasal histopathological features. The nanogel was able to improve propranolol brain availability with Cmax 970.3 ± 43.94 ng/g significantly higher than the control group (277.7 ± 29.71 ng/g) and with 382.4 % relative central availability, which confirms its potential for migraine management.
Collapse
Affiliation(s)
- Kawthar K Abla
- Pharmaceutical Nanotechnology Research Lab, Faculty of Pharmacy, Beirut Arab University, Beirut P.O. Box 11-5020, Lebanon
| | - Souraya Domiati
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Beirut Arab University, Beirut P.O. Box 11-5020, Lebanon
| | - Rania El Majzoub
- Department of Biomedical Sciences, Faculty of Pharmacy, Lebanese International University, Beirut P.O. Box 11-5020, Lebanon
| | - Mohammed M Mehanna
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
15
|
Tampucci S, Monti D, Burgalassi S, Terreni E, Paganini V, Di Gangi M, Chetoni P. Binary Polymeric Surfactant Mixtures for the Development of Novel Loteprednol Etabonate Nanomicellar Eyedrops. Pharmaceuticals (Basel) 2023; 16:864. [PMID: 37375811 DOI: 10.3390/ph16060864] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The treatment of several ocular inflammatory conditions affecting different areas of the ocular globe involves the administration of topical ophthalmic formulations containing corticosteroids. This research was aimed at evaluating the solubilising efficacy of 5.0% w/w of different binary mixtures of commercial amphiphilic polymeric surfactants with the purpose of obtaining nanomicellar solutions containing a high amount of loteprednol etabonate (LE). The selected LE-TPGS/HS nanomicelles, containing 0.253 mg/mL of the drug, had a small size (=13.57 nm) and uniform distribution (Polydispersity Index = 0.271), appeared completely transparent and perfectly filterable through 0.2 μm membrane filter, and remained stable up to 30 days at 4 °C. The critical micellar concentration (CMCTPGS/HS) was 0.0983 mM and the negative value of the interaction parameter between the polymeric-surfactant-building unit (βTPGS/HS = -0.1322) confirmed the ability of the polymeric surfactants to interact, favouring the dissolution of LE into nanomicelles. The disappearance of the endothermic peak of LE in the DSC analysis confirmed the interactions of LE with the polymeric surfactants. LE-TPGS/HS produced in vitro LE which sustained diffusion for 44 h (more than 40% of encapsulated LE). Furthermore, the lack of a significant cytotoxic effect on a sensitive corneal epithelial cell line makes it a candidate for further biological studies.
Collapse
Affiliation(s)
- Silvia Tampucci
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Italian Inter-University Center for the Promotion of the 3Rs in Teaching and Research, University of Pisa, 56122 Pisa, Italy
| | - Daniela Monti
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Italian Inter-University Center for the Promotion of the 3Rs in Teaching and Research, University of Pisa, 56122 Pisa, Italy
| | - Susi Burgalassi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Italian Inter-University Center for the Promotion of the 3Rs in Teaching and Research, University of Pisa, 56122 Pisa, Italy
| | | | | | | | - Patrizia Chetoni
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Italian Inter-University Center for the Promotion of the 3Rs in Teaching and Research, University of Pisa, 56122 Pisa, Italy
| |
Collapse
|
16
|
Umar AK. Stem Cell's Secretome Delivery Systems. Adv Pharm Bull 2023; 13:244-258. [PMID: 37342369 PMCID: PMC10278206 DOI: 10.34172/apb.2023.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 10/05/2021] [Accepted: 12/31/2021] [Indexed: 09/01/2023] Open
Abstract
Stem cells' secretome contains biomolecules that are ready to give therapeutic activities. However, the biomolecules should not be administered directly because of their in vivo instability. They can be degraded by enzymes or seep into other tissues. There have been some advancements in localized and stabilized secretome delivery systems, which have increased their effectiveness. Fibrous, in situ, or viscoelastic hydrogel, sponge-scaffold, bead powder/ suspension, and bio-mimetic coating can maintain secretome retention in the target tissue and prolong the therapy by sustained release. Porosity, young's modulus, surface charge, interfacial interaction, particle size, adhesiveness, water absorption ability, in situ gel/film, and viscoelasticity of the preparation significantly affect the quality, quantity, and efficacy of the secretome. Therefore, the dosage forms, base materials, and characteristics of each system need to be examined to develop a more optimal secretome delivery system. This article discusses the clinical obstacles and potential solutions for secretome delivery, characterization of delivery systems, and devices used or potentially used in secretome delivery for therapeutic applications. This article concludes that secretome delivery for various organ therapies necessitates the use of different delivery systems and bases. Coating, muco-, and cell-adhesive systems are required for systemic delivery and to prevent metabolism. The lyophilized form is required for inhalational delivery, and the lipophilic system can deliver secretomes across the blood-brain barrier. Nano-sized encapsulation and surface-modified systems can deliver secretome to the liver and kidney. These dosage forms can be administered using devices such as a sprayer, eye drop, inhaler, syringe, and implant to improve their efficacy through dosing, direct delivery to target tissues, preserving stability and sterility, and reducing the immune response.
Collapse
Affiliation(s)
- Abd. Kakhar Umar
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| |
Collapse
|
17
|
Vikash B, Shashi, Pandey NK, Kumar B, Wadhwa S, Goutam U, Alam A, Al-Otaibi F, Chaubey P, Mustafa G, Gupta G, Dua K, Singh SK. Formulation and evaluation of ocular self-nanoemulsifying drug delivery system of brimonidine tartrate. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
18
|
Choudhari M, Nayak K, Nagai N, Nakazawa Y, Khunt D, Misra M. Role of mucoadhesive agent in ocular delivery of ganciclovir microemulsion: cytotoxicity evaluation in vitro and ex vivo. Int Ophthalmol 2022; 43:1153-1167. [PMID: 36156180 DOI: 10.1007/s10792-022-02514-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/11/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE The aim of the present study was to investigate increase in delivery of drug upon formulation as mucoadhesive microemulsion system and further to investigate possibility of any cytotoxic effects using such formulation. MATERIAL AND METHODS Considering hydrophilic and small molecular nature of the drug, it was attempted to be formulated as microemulsion, by using pseudo ternary phase diagram method. Thus, three types of microemulsions were prepared; oil in water, water in oil type and chitosan-coated microemulsion. These microemulsions were characterized for several physicochemical properties like size, zeta potential, Polydispersity index, and compared for in vitro cell viability and ex vivo corneal irritation study. RESULTS All three microemulsions were quite stable, transparent and homogenous systems. They showed similar drug release pattern, but highest ex vivo goat corneal permeation was observed with Chitosan coated microemulsion when compared with ganciclovir solution. CONCLUSION All microemulsions were found to be non-irritant in in vitro cell viability assay and ex vivo corneal irritation study, indicating the potential of using such systems for delivery of drug to eye.
Collapse
Affiliation(s)
- Manisha Choudhari
- Department of Pharmaceutics, NIPER-Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Kritika Nayak
- Department of Pharmaceutics, NIPER-Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Noriaki Nagai
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Yosuke Nakazawa
- Faculty of Pharmacy, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Dignesh Khunt
- Department of Pharmaceutics, NIPER-Ahmedabad, Gandhinagar, Gujarat, 382355, India.,Department of Pharmaceutics, Graduate School of Pharmacy, Gujarat Technical University, Gandhinagar Campus, Gandhinagar, Gujarat, 382028, India
| | - Manju Misra
- Department of Pharmaceutics, NIPER-Ahmedabad, Gandhinagar, Gujarat, 382355, India. .,Department of Pharmaceutics, Graduate School of Pharmacy, Gujarat Technical University, Gandhinagar Campus, Gandhinagar, Gujarat, 382028, India.
| |
Collapse
|
19
|
Optimization of Lipid Nanoparticles by Response Surface Methodology to Improve the Ocular Delivery of Diosmin: Characterization and In-Vitro Anti-Inflammatory Assessment. Pharmaceutics 2022; 14:pharmaceutics14091961. [PMID: 36145708 PMCID: PMC9506089 DOI: 10.3390/pharmaceutics14091961] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022] Open
Abstract
Diosmin is a flavonoid with a great variety of biological activities including antioxidant and anti-inflammatory ones. Its cytoprotective effect in retinal pigment epithelium cells under high glucose conditions makes it a potential support in the treatment of diabetic retinopathy. Despite its benefits, poor solubility in water reduces its potential for therapeutic use, making it the biggest biopharmaceutical challenge. The design of diosmin-loaded nanocarriers for topical ophthalmic application represents a novelty that has not been yet explored. For this purpose, the response surface methodology (RSM) was used to optimize nanostructured lipid carriers (NLCs), compatible for ocular administration, to encapsulate diosmin and improve its physicochemical issues. NLCs were prepared by a simple and scalable technique: a melt emulsification method followed by ultrasonication. The experimental design was composed of four independent variables (solid lipid concentration, liquid lipid concentration, surfactant concentration and type of solid lipid). The effect of the factors was assessed on NLC size and PDI (responses) by analysis of variance (ANOVA). The optimized formulation was selected according to the desirability function (0.993). Diosmin at two different concentrations (80 and 160 µM) was encapsulated into NLCs. Drug-loaded nanocarriers (D-NLCs) were subjected to a physicochemical and technological investigation revealing a mean particle size of 83.58 ± 0.77 nm and 82.21 ± 1.12 nm, respectively for the D-NLC formulation prepared with diosmin at the concentration of 80 µM or 160 µM, and a net negative surface charge (−18.5 ± 0.60 and −18.0 ± 1.18, respectively for the two batches). The formulations were analyzed in terms of pH (6.5), viscosity, and adjusted for osmolarity, making them more compatible with the ocular environment. Subsequently, stability studies were carried out to assess D-NLC behavior under different storage conditions up to 60 days, indicating a good stability of NLC samples at room temperature. In-vitro studies on ARPE-19 cells confirmed the cytocompatibility of NLCs with retinal epithelium. The effect of D-NLCs was also evaluated in-vitro on a model of retinal inflammation, demonstrating the cytoprotective effect of D-NLCs at various concentrations. RSM was found to be a reliable model to optimize NLCs for diosmin encapsulation.
Collapse
|
20
|
In situ gelling microemulsion for topical ocular delivery of moxifloxacin and betamethasone. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Mihailovici R, Croitoriu A, Nedeff F, Nedeff V, Ochiuz L, Vasincu D, Popa O, Agop M, Moraru A, Costin D, Costuleanu M, Verestiuc L. Drug-Loaded Polymeric Particulated Systems for Ophthalmic Drugs Release. Molecules 2022; 27:molecules27144512. [PMID: 35889383 PMCID: PMC9323211 DOI: 10.3390/molecules27144512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/05/2023] Open
Abstract
Drug delivery to the anterior or posterior segments of the eye is a major challenge due to the protection barriers and removal mechanisms associated with the unique anatomical and physiological nature of the ocular system. The paper presents the preparation and characterization of drug-loaded polymeric particulated systems based on pre-emulsion coated with biodegradable polymers. Low molecular weight biopolymers (chitosan, sodium hyaluronate and heparin sodium) were selected due to their ability to attach polymer chains to the surface of the growing system. The particulated systems with dimensions of 190–270 nm and a zeta potential varying from −37 mV to +24 mV depending on the biopolymer charges have been obtained. Current studies show that particles release drugs (dexamethasone/pilocarpine/bevacizumab) in a safe and effective manner, maintaining therapeutic concentration for a longer period of time. An extensive modeling study was performed in order to evaluate the drug release profile from the prepared systems. In a multifractal paradigm of motion, nonlinear behaviors of a drug delivery system are analyzed in the fractal theory of motion, in order to correlate the drug structure with polymer. Then, the functionality of a SL(2R) type ”hidden symmetry” implies, through a Riccati type gauge, different ”synchronization modes” (period doubling, damped oscillations, quasi-periodicity and intermittency) during the drug release process. Among these, a special mode of Kink type, better reflects the empirical data. The fractal study indicated more complex interactions between the angiogenesis inhibitor Bevacizumab and polymeric structure.
Collapse
Affiliation(s)
- Ruxandra Mihailovici
- Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (R.M.); (A.C.); (D.C.); (M.C.)
| | - Alexandra Croitoriu
- Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (R.M.); (A.C.); (D.C.); (M.C.)
- Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Florin Nedeff
- Department of Industrial Systems Engineering and Management, Faculty of Engineering, “Vasile Alecsandri” University of Bacau, 600115 Bacau, Romania
- Correspondence: (F.N.); (M.A.); (A.M.)
| | - Valentin Nedeff
- Department of Environmental Engineering and Mechanical Engineering, Faculty of Engineering, “Vasile Alecsandri” University of Bacau, 600115 Bacau, Romania;
| | - Lacramioara Ochiuz
- Department of Pharmaceutical and Biotechnological Drug Industry, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Decebal Vasincu
- Department of Natural, Bioactive and Biocompatible Polymers, Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania;
| | - Ovidiu Popa
- Department of Emergency Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Maricel Agop
- Department of Physics, “Gh. Asachi” Technical University of Iasi, 700050 Iasi, Romania
- Romanian Scientists Academy, 050094 Bucharest, Romania
- Correspondence: (F.N.); (M.A.); (A.M.)
| | - Andreea Moraru
- Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (R.M.); (A.C.); (D.C.); (M.C.)
- Correspondence: (F.N.); (M.A.); (A.M.)
| | - Danut Costin
- Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (R.M.); (A.C.); (D.C.); (M.C.)
| | - Marcel Costuleanu
- Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (R.M.); (A.C.); (D.C.); (M.C.)
| | - Liliana Verestiuc
- Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| |
Collapse
|
22
|
Fernandes AR, Vidal LB, Sánchez-López E, Dos Santos T, Granja PL, Silva AM, Garcia ML, Souto EB. Customized cationic nanoemulsions loading triamcinolone acetonide for corneal neovascularization secondary to inflammatory processes. Int J Pharm 2022; 623:121938. [PMID: 35728716 DOI: 10.1016/j.ijpharm.2022.121938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022]
Abstract
Customized cationic oil-in-water nanoemulsions (NEs) have been produced to improve the bioavailability of poorly water-soluble drugs, such as triamcinolone acetonide (TA). TA is a synthetic glucocorticoid with anti-inflammatory and antiangiogenic therapeutic properties and it is widely used as an effective treatment in ocular disorders. In this work, TA-NEs were characterized using two different custom-made cationic surfactants, showing a high positive surface charge favouring corneal penetration and a particle size below 300 nm. Both TA-NE formulations demonstrated to be stable at 4 °C during the first months of storage. Furthermore, TA-NEs were able to produce antiangiogenic effects in chicken membranes. The TA-NEs safety profile was evaluated using in vitro and in vivo ocular tolerance tests. Out of the two formulations, the one showing no irritant effects was screened in vivo demonstrating capacity to ameliorate ocular inflammation in New Zealand rabbits significantly, specially to reduce the risk of ocular inflammation processes, with antiangiogenic activity, and can therefore be exploited as a suitable formulation to avoid inflammatory reactions upon ocular surgical procedures, such as cataracts.
Collapse
Affiliation(s)
- Ana R Fernandes
- i3s - Institute for Research & Innovation in Health, University of Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Biomedical Engineering Institute, University of Porto, Alfredo Allen 208, 4200-135 Porto, Portugal; Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal; Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Lorena B Vidal
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain; Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034 Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Tiago Dos Santos
- i3s - Institute for Research & Innovation in Health, University of Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Biomedical Engineering Institute, University of Porto, Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Pedro L Granja
- i3s - Institute for Research & Innovation in Health, University of Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Biomedical Engineering Institute, University of Porto, Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Amelia M Silva
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal; Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal.
| | - Maria L Garcia
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy of University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal; REQUIMTE/UCIBIO, Faculty of Pharmacy of University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
23
|
Fatimah SF, Lukitaningsih E, Martien R, Nugroho AK. Bibliometric analysis of articles on nanoemulsion and/or in-situ gel for ocular drug delivery system published during the 2011–2021 period. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e82847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The bibliometric data were extracted from the Scopus database to investigate the conceptual framework of ocular nanoemulsion and/or in-situ gel drug delivery system using “ocular” AND “nanoemulsion” OR “in-situ gel” keywords. The data were evaluated with RStudio and VOSviewer program.
The results reveal that the publication trends tend to increase continually. India is the most impactful country, and the most constructive institution is Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University. International Journal of Pharmaceutics is the top influential source. Ali A is the most prolific author. The title of the most impactful article was In-situ gelling systems based on Pluronic F127/Pluronic F68 formulations for ocular drug delivery”. “Controlled release” is the most popular keyword.
These results provide insights for stimulating research collaborations and revealing open issues of controlled-release ocular preparation to overcome an ocular barrier and enhance patient compliance.
Collapse
|
24
|
Luo Q, Yang J, Xu H, Shi J, Liang Z, Zhang R, Lu P, Pu G, Zhao N, Zhang J. Sorafenib-loaded nanostructured lipid carriers for topical ocular therapy of corneal neovascularization: development, in-vitro and in vivo study. Drug Deliv 2022; 29:837-855. [PMID: 35277107 PMCID: PMC8920403 DOI: 10.1080/10717544.2022.2048134] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Sorafenib (SRB), a multikinase inhibitor, is effective in reducing experimental corneal neovascularization (CNV) after oral administration; however, its therapeutic use in ocular surface disorders is restricted due to poor solubility and limited bioavailability. This study aimed to develop and optimize SRB-loaded nanostructured lipid carriers (SRB-NLCs) for topical ocular delivery by a central composite design response surface methodology (CCD-RSM). It was spherical and uniform in morphology with an average particle size of 111.87 ± 0.93 nm and a narrow size distribution. The in vitro drug release from the released SRB-NLC formulation was well fitted to Korsmeyer Peppas release kinetics. The cell counting kit-8 (CCK-8) cell viability assay demonstrated that SRB-NLC was not obviously cytotoxic to human corneal epithelial cells (HCECs). An in vivo ocular irritation test showed that SRB-NLC was well tolerated by rabbit eyes. Ocular pharmacokinetics revealed 6.79-fold and 1.24-fold increase in the area under concentration-time curves (AUC0-12h) over 12 h in rabbit cornea and conjunctiva, respectively, treated with one dose of SRB-NLC compared with those treated with SRB suspension. Moreover, SRB-NLC (0.05% SRB) and dexamethasone (0.025%) similarly suppressed corneal neovascularization in mice. In conclusion, the optimized SRB-NLC formulation demonstrated excellent physicochemical properties and good tolerance, sustained release, and enhanced ocular bioavailability. It is safe and potentially effective for the treatment of corneal neovascularization.
Collapse
Affiliation(s)
- Qing Luo
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Jingjing Yang
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Haohang Xu
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Jieran Shi
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Zhen Liang
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Rui Zhang
- Department of Ophthalmology, Henan University People’s Hospital, Zhengzhou, China
| | - Ping Lu
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Guojuan Pu
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Ningmin Zhao
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Junjie Zhang
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| |
Collapse
|
25
|
Peng C, Kuang L, Zhao J, Ross AE, Wang Z, Ciolino JB. Bibliometric and visualized analysis of ocular drug delivery from 2001 to 2020. J Control Release 2022; 345:625-645. [PMID: 35321827 DOI: 10.1016/j.jconrel.2022.03.031] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To perform a bibliometric analysis in the field of ocular drug delivery research to characterize the current international trends and to present visual representations of the past and emerging trends on ocular drug delivery research over the past decade. METHOD In this cross-sectional study, a bibliometric analysis of data retrieved and extracted from the Web of Science Core Collection (WoSCC) database was performed to analyze evolution and theme trends on ocular drug delivery research from January 1, 2001, to December 31, 2020. A total of 4334 articles on ocular drug delivery were evaluated for specific characteristics, such as publication year, journals, authors, institutions, countries/regions, references, and keywords. Co-authorship analysis, co-occurrence analysis, co-citation analysis, and network visualization were constructed by VOSviewer. Some important subtopics identified by bibliometric characterization were further discussed and reviewed. RESULTS From 2001 to 2020, the annual global publications increased by 746.15%, from 52 to 440. International Journal of Pharmaceutics published the most manuscripts (250 publications) and produced the highest citations (9509 citations), followed by Investigative Ophthalmology & Visual Science (202 publications) and Journal of Ocular Pharmacology and Therapeutics (136 publications). The United States (1289 publications, 31,512 citations), the University of Florida (82 publications, 2986 citations), and Chauhan, Anuj (52 publications, 2354 citations) were the most productive and impactful institution, country, and author respectively. The co-occurrence cluster analysis of the top 100 keywords form five clusters: (1) micro/nano ocular drug delivery systems; (2) the treatment of inflammation and posterior diseases; (3) macroscopic ocular drug delivery systems/devices; (4) the characteristics of drug delivery systems; (5) and the ocular drug delivery for glaucoma treatment. Diabetic macular edema, anti-VEGF, ranibizumab, bevacizumab, micelles and latanoprost, were the latest high-frequency keywords, indicating the emerging frontiers of ocular drug delivery. Further discussions into the subtopics were provided to assist researchers to determine the range of research topics and plan research direction. CONCLUSIONS Over the last two decades there has been a progressive increase in the number of publications and citations on research related to ocular drug delivery across many countries, institutions, and authors. The present study sheds light on current trends, global collaboration patterns, basic knowledge, research hotspots, and emerging frontiers of ocular drug delivery. Novel solutions for ocular drug delivery and the treatment of inflammation and posterior diseases were the major themes over the last 20 years.
Collapse
|
26
|
Jacob S, Nair AB, Shah J, Gupta S, Boddu SHS, Sreeharsha N, Joseph A, Shinu P, Morsy MA. Lipid Nanoparticles as a Promising Drug Delivery Carrier for Topical Ocular Therapy-An Overview on Recent Advances. Pharmaceutics 2022; 14:533. [PMID: 35335909 PMCID: PMC8955373 DOI: 10.3390/pharmaceutics14030533] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
Due to complicated anatomical and physical properties, targeted drug delivery to ocular tissues continues to be a key challenge for formulation scientists. Various attempts are currently being made to improve the in vivo performance of therapeutic molecules by encapsulating them in various nanocarrier systems or devices and administering them via invasive/non-invasive or minimally invasive drug administration methods. Biocompatible and biodegradable lipid nanoparticles have emerged as a potential alternative to conventional ocular drug delivery systems to overcome various ocular barriers. Lipid-based nanocarrier systems led to major technological advancements and therapeutic advantages during the last few decades of ocular therapy, such as high precorneal residence time, sustained drug release profile, minimum dosing frequency, decreased drug toxicity, targeted site delivery, and, therefore, an improvement in ocular bioavailability. In addition, such formulations can be given as fine dispersion in patient-friendly droppable preparation without causing blurred vision and ocular sensitivity reactions. The unique advantages of lipid nanoparticles, namely, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, and liposomes in intraocular targeted administration of various therapeutic drugs are extensively discussed. Ongoing and completed clinical trials of various liposome-based formulations and various characterization techniques designed for nanoemulsion in ocular delivery are tabulated. This review also describes diverse solid lipid nanoparticle preparation methods, procedures, advantages, and limitations. Functionalization approaches to overcome the drawbacks of lipid nanoparticles, as well as the exploration of new functional additives with the potential to improve the penetration of macromolecular pharmaceuticals, would quickly progress the challenging field of ocular drug delivery systems.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.); (M.A.M.)
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana 133203, India;
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates;
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.); (M.A.M.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.); (M.A.M.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| |
Collapse
|
27
|
Kassem AA, Salama A, Mohsen AM. Formulation and optimization of cationic nanoemulsions for enhanced ocular delivery of dorzolamide hydrochloride using Box-Behnken design: In vitro and in vivo assessments. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Kassaee SN, Mahboobian MM. Besifloxacin-loaded ocular nanoemulsions: design, formulation and efficacy evaluation. Drug Deliv Transl Res 2022; 12:229-239. [PMID: 33575973 DOI: 10.1007/s13346-021-00902-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
The purpose of this study was to develop and evaluate nanoemulsions (NEs) containing besifloxacin for ocular drug delivery. Pseudo ternary phase diagrams were constructed using Triacetin (oil), Cremophor® RH 40 (surfactant), and Transcutol®P (co-surfactant) to identify NE regions. Six formulations were developed by low-energy emulsification method and then evaluated for size, refractive index, pH, osmolality, viscosity, and drug release. After accelerated physical stability and bovine conrneal permeation studies, NE2 was chosen as optimized formulation forantimicrobial efficacy, and hen's egg test-chorioallantoic membrane (HET-CAM) tests. The particle size of optimum NE was 14 nm with a narrow size distribution. Moreover, other physicochemical characterizations were in the acceptable range for ocular administration. Besifloxacin-loaded NEs demonstrated sustained release pattern and 1.7-fold higher permeation compared with the control suspension in the ex vivo transcorneal permeation study. HET-CAM test indicated no irritation, and HL% revealed no damage to the tissue, so the optimum NE is well tolerated by the eye. In vitro antimicrobial evaluation, showed comparative efficacy of lower drug-loaded NE (0.2%) versus 0.6% besifloxacin suspension (equal concentration to commercial besifloxacin eye drop). In conclusion, besifloxacin-loaded NEs could be considered as a suitable alternative to the marketed suspension for treating bacterial eyeinfections.
Collapse
Affiliation(s)
- Seyedeh Negin Kassaee
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Mehdi Mahboobian
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
29
|
Kadukkattil Ramanunny A, Singh SK, Wadhwa S, Gulati M, Kapoor B, Khursheed R, Kuppusamy G, Dua K, Dureja H, Chellappan DK, Jha NK, Gupta PK, Vishwas S. Overcoming hydrolytic degradation challenges in topical delivery: non-aqueous nano-emulsions. Expert Opin Drug Deliv 2021; 19:23-45. [PMID: 34913772 DOI: 10.1080/17425247.2022.2019218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Non-aqueous nano-emulsions (NANEs) are colloidal lipid-based dispersions with nano-sized droplets formed by mixing two immiscible phases, none of which happens to be an aqueous phase. Their ability to incorporate water and oxygen sensitive drugs without any susceptibility to degradation makes them the optimum dosage form for such candidates. In NANEs, polar liquids or polyols replace the aqueous phase while surfactants remain same as used in conventional emulsions. They are a part of the nano-emulsion family albeit with substantial difference in composition and application. AREAS COVERED The present review provides a brief insight into the strategies of loading water-sensitive drugs into NANEs. Further advancement in these anhydrous systems with the use of solid particulate surfactants in the form of Pickering emulsions is also discussed. EXPERT OPINION NANEs offer a unique platform for delivering water-sensitive drugs by loading them in anhydrous formulation. The biggest advantage of NANEs vis-à-vis the other nano-cargos is that they can also be prepared without using equipment-intensive techniques. However, the use of NANEs in drug delivery is quite limited. Looking at the small number of studies available in this direction, a need for further research in this field is required to explore this delivery system further.
Collapse
Affiliation(s)
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, India.,Centre of Excellence in Nanoscience & Technology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Australia.,Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (Set), Sharda University, Greater Noida, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
30
|
Development and Characterization of Nanoemulsions for Ophthalmic Applications: Role of Cationic Surfactants. MATERIALS 2021; 14:ma14247541. [PMID: 34947136 PMCID: PMC8706710 DOI: 10.3390/ma14247541] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022]
Abstract
The eye is a very complex organ comprising several physiological and physical barriers that compromise drug absorption into deeper layers. Nanoemulsions are promising delivery systems to be used in ocular drug delivery due to their innumerous advantages, such as high retention time onto the site of application and the modified release profile of loaded drugs, thereby contributing to increasing the bioavailability of drugs for the treatment of eye diseases, in particular those affecting the posterior segment. In this review, we address the main factors that govern the development of a suitable nanoemulsion formulation for eye administration to increase the patient’s compliance to the treatment. Appropriate lipid composition and type of surfactants (with a special emphasis on cationic compounds) are discussed, together with manufacturing techniques and characterization methods that are instrumental for the development of appropriate ophthalmic nanoemulsions.
Collapse
|
31
|
Yang B, Li G, Liu J, Li X, Zhang S, Sun F, Liu W. Nanotechnology for Age-Related Macular Degeneration. Pharmaceutics 2021; 13:pharmaceutics13122035. [PMID: 34959316 PMCID: PMC8705006 DOI: 10.3390/pharmaceutics13122035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/04/2021] [Accepted: 11/22/2021] [Indexed: 01/12/2023] Open
Abstract
Age-related macular degeneration (AMD) is a degenerative eye disease that is the leading cause of irreversible vision loss in people 50 years and older. Today, the most common treatment for AMD involves repeated intravitreal injections of anti-vascular endothelial growth factor (VEGF) drugs. However, the existing expensive therapies not only cannot cure this disease, they also produce a variety of side effects. For example, the number of injections increases the cumulative risk of endophthalmitis and other complications. Today, a single intravitreal injection of gene therapy products can greatly reduce the burden of treatment and improve visual effects. In addition, the latest innovations in nanotherapy provide the best drug delivery alternative for the treatment of AMD. In this review, we discuss the development of nano-drug delivery systems and gene therapy strategies for AMD in recent years. In addition, we discuss some novel targeting strategies and the potential application of these delivery methods in the treatment of AMD. Finally, we also propose that the combination of CRISPR/Cas9 technology with a new non-viral delivery system may be promising as a therapeutic strategy for the treatment of AMD.
Collapse
Affiliation(s)
- Bo Yang
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun 130012, China;
- School of Life Sciences, Jilin University, Changchun 130012, China; (G.L.); (J.L.); (X.L.); (S.Z.); (F.S.)
| | - Ge Li
- School of Life Sciences, Jilin University, Changchun 130012, China; (G.L.); (J.L.); (X.L.); (S.Z.); (F.S.)
| | - Jiaxin Liu
- School of Life Sciences, Jilin University, Changchun 130012, China; (G.L.); (J.L.); (X.L.); (S.Z.); (F.S.)
| | - Xiangyu Li
- School of Life Sciences, Jilin University, Changchun 130012, China; (G.L.); (J.L.); (X.L.); (S.Z.); (F.S.)
| | - Shixin Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China; (G.L.); (J.L.); (X.L.); (S.Z.); (F.S.)
| | - Fengying Sun
- School of Life Sciences, Jilin University, Changchun 130012, China; (G.L.); (J.L.); (X.L.); (S.Z.); (F.S.)
| | - Wenhua Liu
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun 130012, China;
- Correspondence:
| |
Collapse
|
32
|
Enhanced topical corticosteroids delivery to the eye: A trade-off in strategy choice. J Control Release 2021; 339:91-113. [PMID: 34560157 DOI: 10.1016/j.jconrel.2021.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/19/2022]
Abstract
Topical corticosteroids are the primary treatment of ocular inflammation caused by surgery, injury, or other conditions. Drug pre-corneal residence time, drug water solubility, and drug corneal permeability coefficient are the major factors that determine the ocular drug bioavailability after topical administration. Although growing research successfully enhanced local delivery of corticosteroids utilizing various strategies, rational and dynamic approaches to strategy selection are still lacking. Within this review, an overview of the various strategies as well as their performance in retention, solubility, and permeability coefficient of corticosteroids are provided. On this basis, the tradeoff of strategy selection is discussed, which may shed light on the rational choice and application of ophthalmic delivery enhancement strategies.
Collapse
|
33
|
DHAHIR RK, AL-NIMA AM, AL-BAZZAZ F. Nanoemulsions as Ophthalmic Drug Delivery Systems. Turk J Pharm Sci 2021; 18:652-664. [PMID: 34708428 PMCID: PMC8562122 DOI: 10.4274/tjps.galenos.2020.59319] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/22/2020] [Indexed: 12/19/2022]
Abstract
Nanoemulsions are liquid-in-liquid dispersion with a droplet size of about 100 nm. They have a transparent appearance, high rate of bioavailability, and increased shelf life. Nanoemulsions mainly consist of oil, water, surfactant, and cosurfactant and can be prepared by high- and low-energy methods. Diluted nanoemulsions are utilized for the delivery of ophthalmic drugs due to their capability to penetrate the deep layers of the ocular structure, provide a sustained release effect, and reduce the frequency of administration and side effects. These nanoemulsions are subjected to certain tests, such as safety, stability, pH profile, rheological studies, and so on. Cationic nanoemulsions are prepared for topical ophthalmic delivery of active ingredients from cationic agents to increase the drug residence time on the ocular surface, reducing their clearance from the ocular surface and improving drug bioavailability. This review article summarizes the main characteristics of nanoemulsions, ophthalmic nanoemulsions, and cationic nanoemulsions and their components, methods of preparation, and the evaluation parameters for ophthalmic nanoemulsions.
Collapse
Affiliation(s)
- Rasha Khalid DHAHIR
- Department of Pharmaceutics, College of Pharmacy, University of Mosul, Mosul, Iraq
| | | | - Fadia AL-BAZZAZ
- Department of Pharmaceutics, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
34
|
Gawin-Mikołajewicz A, Nartowski KP, Dyba AJ, Gołkowska AM, Malec K, Karolewicz B. Ophthalmic Nanoemulsions: From Composition to Technological Processes and Quality Control. Mol Pharm 2021; 18:3719-3740. [PMID: 34533317 PMCID: PMC8493553 DOI: 10.1021/acs.molpharmaceut.1c00650] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022]
Abstract
Nanoemulsions are considered as the most promising solution to improve the delivery of ophthalmic drugs. The design of ophthalmic nanoemulsions requires an extensive understanding of pharmaceutical as well as technological aspects related to the selection of excipients and formulation processes. This Review aims at providing the readers with a comprehensive summary of possible compositions of nanoemulsions, methods for their formulation (both laboratory and industrial), and differences between technological approaches, along with an extensive outline of the research methods enabling the confirmation of in vitro properties, pharmaceutical performance, and biological activity of the obtained product. The composition of the formulation has a major influence on the properties of the final product obtained with low-energy emulsification methods. Increasing interest in high-energy emulsification methods is a consequence of their scalability important from the industrial perspective. Considering the high-energy emulsification methods, both the composition and conditions of the process (e.g., device power level, pressure, temperature, homogenization time, or number of cycles) are important for the properties and stability of nanoemulsions. It is advisible to determine the effect of each parameter on the quality of the product to establish the optimal process parameters' range which, in turn, results in a more reproducible and efficient production.
Collapse
Affiliation(s)
| | - Karol P. Nartowski
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| | - Aleksandra J. Dyba
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| | - Anna M. Gołkowska
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| | - Katarzyna Malec
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| | - Bożena Karolewicz
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| |
Collapse
|
35
|
Cassano R, Di Gioia ML, Trombino S. Gel-Based Materials for Ophthalmic Drug Delivery. Gels 2021; 7:gels7030130. [PMID: 34563016 PMCID: PMC8482217 DOI: 10.3390/gels7030130] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022] Open
Abstract
The most common route of administration of ophthalmic drugs is the topical route because it is convenient, non-invasive, and accessible to all patients. Unfortunately, drugs administered topically are not able to reach effective concentrations. Moreover, their bioavailability must be improved to decrease the frequency of administrations and their side effects, and to increase their therapeutic efficiency. For this purpose, in recent decades, particular attention has been given to the possibility of developing prolonged-release forms that are able to increase the precorneal residence time and decrease the loss of the drug due to tearing. Among these forms, gel-based materials have been studied as an ideal delivery system because they are an extremely versatile class with numerous prospective applications in ophthalmology. These materials are used in gel eye drops, in situ gelling formulations, intravitreal injections, and therapeutic contact lenses. This review is intended to describe gel-based materials and their main applications in ophthalmology.
Collapse
|
36
|
Tavakoli M, Mahboobian MM, Nouri F, Mohammadi M. Studying the ophthalmic toxicity potential of developed ketoconazole loaded nanoemulsion in situ gel formulation for ophthalmic administration. Toxicol Mech Methods 2021; 31:572-580. [PMID: 34126859 DOI: 10.1080/15376516.2021.1941461] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Ocular fungal infections are one of the essential reasons for vision loss, especially in developing countries for tropical regions. Ketoconazole (KZ), a broad-spectrum antifungal drug, is a lipophilic compound and practically insoluble in water. Since topical ophthalmic drug delivery confronts low bioavailability, an in situ gel formulation is designed to improve the residence time and consequently the bioavailability. Safety of the developed formulation as a carrier for ophthalmic drug delivery was measured using three different methods: MTT assay for measuring cell viability in which the human retinal pigmentation epithelial cells (RPE) were used, HET-CAM as a borderline method between in vivo and in vitro techniques for investigating the irritation potential of the chosen formulation which was done by adding formulation directly on the CAM surface and visually monitoring the vessels in terms of irritation reactions, and finally the modified Draize test for evaluating tolerability of the selected formulation on eyes. According to our results from the MTT test, cell viability for KZ-NE in situ gel formulation at 0.1% concentration was acceptable. The results obtained from the HET-CAM investigation didn't show any sign of vessel injury on the CAM surface for prepared formulation. Additionally, during 24 hours, the developed formulation was tolerable by rabbit eyes. Regarding our results, KZ-NE in situ gel formulation was non-irritant and non-toxic and can be well-tolerated and presented as an applicable vehicle for ophthalmic delivery of the anti-fungal drug.
Collapse
Affiliation(s)
- Mohammad Tavakoli
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Mehdi Mahboobian
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Nouri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
37
|
Dennyson Savariraj A, Salih A, Alam F, Elsherif M, AlQattan B, Khan AA, Yetisen AK, Butt H. Ophthalmic Sensors and Drug Delivery. ACS Sens 2021; 6:2046-2076. [PMID: 34043907 PMCID: PMC8294612 DOI: 10.1021/acssensors.1c00370] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022]
Abstract
Advances in multifunctional materials and technologies have allowed contact lenses to serve as wearable devices for continuous monitoring of physiological parameters and delivering drugs for ocular diseases. Since the tear fluids comprise a library of biomarkers, direct measurement of different parameters such as concentration of glucose, urea, proteins, nitrite, and chloride ions, intraocular pressure (IOP), corneal temperature, and pH can be carried out non-invasively using contact lens sensors. Microfluidic contact lens sensor based colorimetric sensing and liquid control mechanisms enable the wearers to perform self-examinations at home using smartphones. Furthermore, drug-laden contact lenses have emerged as delivery platforms using a low dosage of drugs with extended residence time and increased ocular bioavailability. This review provides an overview of contact lenses for ocular diagnostics and drug delivery applications. The designs, working principles, and sensing mechanisms of sensors and drug delivery systems are reviewed. The potential applications of contact lenses in point-of-care diagnostics and personalized medicine, along with the significance of integrating multiplexed sensing units together with drug delivery systems, have also been discussed.
Collapse
Affiliation(s)
| | - Ahmed Salih
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Fahad Alam
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Mohamed Elsherif
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Bader AlQattan
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ammar A. Khan
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, United Kingdom
| | - Ali K. Yetisen
- Department
of Physics, Lahore University of Management
Sciences, Lahore Cantonment 54792, Lahore, Pakistan
| | - Haider Butt
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
38
|
Samimi MS, Mahboobian MM, Mohammadi M. Ocular toxicity assessment of nanoemulsion in-situ gel formulation of fluconazole. Hum Exp Toxicol 2021; 40:2039-2047. [PMID: 34036827 DOI: 10.1177/09603271211017314] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE Fluconazole is an effective anti-fungal drug. Due to the limitations of fluconazole, such as poor water solubility and consequently low ocular bioavailability, an optimized fluconazole nanoemulsion in-situ gel formulation (temperature-sensitive) was developed. METHODS AND MATERIALS To verify formulation's safety for ophthalmic use, preparation was tested for potential ocular toxicity using a cell viability assay on retinal cells. The hen's egg test-chorioallantoic membrane (HET-CAM), as a borderline test between in vivo and in vitro techniques, was chosen for investigating the irritation potential of the formulation. HET-CAM test was done by adding the formulation directly to the CAM surface and monitoring the vessels visually in terms of irritation reactions. Eye tolerance was determined using the modified Draize test. RESULTS Viability assay on retinal cells displayed that fluconazole nanoemulsion in-situ gel formulation was non-toxic and can be safely used in the eye at concentrations of 0.1% and 0.5%. HET-CAM and Draize tests revealed that optimized formulation of fluconazole did not result in any irritation and was considered non-irritant and well-tolerated for ocular use. CONCLUSION Regarding to the findings of the three mentioned methods, fluconazole nanoemulsion in-situ gel formulation is harmless and as a proper and safe alternative, can be considered for ocular delivery of fluconazole in the future.
Collapse
Affiliation(s)
- M S Samimi
- Department of Pharmacology and Toxicology, School of Pharmacy, 48430Hamadan University of Medical Sciences, Hamadan, Iran
| | - M M Mahboobian
- Department of Pharmaceutics, School of Pharmacy, 48430Hamadan University of Medical Sciences, Hamadan, Iran
| | - M Mohammadi
- Department of Pharmacology and Toxicology, School of Pharmacy, 48430Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
39
|
Mohammadi M, Elahimehr Z, Mahboobian MM. Acyclovir-Loaded Nanoemulsions: Preparation, Characterization and Irritancy Studies for Ophthalmic Delivery. Curr Eye Res 2021; 46:1646-1652. [PMID: 33979552 DOI: 10.1080/02713683.2021.1929328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Objective: The main goal of the present work was to develop and evaluate nanoemulsions (NEs) containing acyclovir (ACV) for ophthalmic drug delivery.Method: Firstly, component screening was performed by determining ACV solubility in various oils, surfactants, and co-surfactants. Different NE formulations were developed based on pseudo-ternary phase diagrams, and physicochemical assets were evaluated. Selected formulations were subjected to the drug release efficacy, stability studies, and ex-vivo trans-corneal permeation test. The safety of NEs was investigated by the modified Draize test and hen's egg test-chorioallantoic membrane (HET-CAM).Results: Based on the solubility studies, Tween 20, Triacetin, and Tramsectol®P were chosen to prepare NE formulations. Developed NEs showed desirable physiochemical properties, including a droplet size of less than 15 nm. Selected formulations (F1 and F2) exhibited a sustained drug release pattern compared to the control group (P < .001). ACV penetration from F1 and F2 to the excised bovine cornea was 2.85 and 2.9-fold more than the control, respectively. Furthermore, HET-CAM and modified Draize test confirmed that F1 and F2 were safe for ocular administration.Conclusion: Present investigation revealed that ACV-loaded NEs could be effective, and safe platform for ophthalmic delivery of ACV.
Collapse
Affiliation(s)
- Mojdeh Mohammadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zohreh Elahimehr
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Mehdi Mahboobian
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
40
|
Khurana B, Arora D, Narang RK. FbD Supported Development and In Vitro Evaluation of Carbomer based Resveratrol Loaded Topical Antipsoriatic Nanoemulgel for its Targeted Skin Delivery. Pharm Nanotechnol 2020; 8:91-107. [PMID: 31995028 DOI: 10.2174/2211738508666200129160027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/03/2020] [Accepted: 01/14/2020] [Indexed: 01/23/2023]
Abstract
BACKGROUND Resveratrol is a wonder therapy for the treatment of several skin disorders, including psoriasis, but its skin permeation limits its applications. OBJECTIVE The present work dealt with optimizing and formulating resveratrol loaded vitamin E based nanoemulsion and carbomer based nanoemulgel intended for topical application in the treatment of plaque psoriasis. The major objective of this study was to achieve the quality target product profile with respect to enhanced skin permeation and superior skin deposition of the formulated nanoemulgel to achieve the superlative therapeutic advantages. METHODS Formulation by design (FbD) approach was employed to optimize varied critical material attributes such as the concentration of oil and Smix to achieve the desired quality characteristics. Carbomer based nanoemulgel was formulated and evaluated. RESULTS Optimized formulation was having globule size (168.3 ± 4.98 nm), percentage cumulative permeation (4.81 ± 0.65%), permeation flux (7.62 ± 0.39 μg hr-1cm-2), and skin deposition (668.65 ± 11.98 μg cm-2). Nanoemulgel was found to have optimum physical properties in terms of viscosity, spreadability, pH and physical stability. The extent of skin deposition was approximately 6.682 times higher while the permeation enhancement ratio was around 2.872 as compared to conventional formulation indicating its higher skin targeting abilities, which was further ratified by Confocal Laser Scanning Microscopy results. CONCLUSION Nanoemulgel formulated by the current FbD approach has enhanced skin permeation and skin deposition properties as compared to conventional carbomer gel. Thus, it could augment the therapeutic benefits of encapsulated bioactive in the treatment of several skin disorders like psoriasis.
Collapse
Affiliation(s)
- Bharat Khurana
- Department of Pharmacy, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab India.,Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Daisy Arora
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Raj K Narang
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
41
|
Sharma DS, Wadhwa S, Gulati M, Kadukkattil Ramanunny A, Awasthi A, Singh SK, Khursheed R, Corrie L, Chitranshi N, Gupta VK, Vishwas S. Recent advances in intraocular and novel drug delivery systems for the treatment of diabetic retinopathy. Expert Opin Drug Deliv 2020; 18:553-576. [PMID: 33143473 DOI: 10.1080/17425247.2021.1846518] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction: Diabetic retinopathy (DR) is associated with damage to the retinal blood vessels that lead eventually to vision loss. The existing treatments of DR are invasive, expensive, and cumbersome. To overcome challenges associated with existing therapies, various intraocular sustained release and novel drug delivery systems (NDDS) have been explored.Areas covered: The review discusses recently developed intraocular devices for sustained release of drugs as well as novel noninvasive drug delivery systems that have met a varying degree of success in local delivery of drugs to retinal circulation.Expert opinion: The intraocular devices have got very good success in providing sustained release of drugs in patients. The development of NDDS and their application through the ocular route has certainly provided an edge to treat DR over existing therapies such as anti-VEGF administration but their success rate is quite low. Moreover, most of them have proved to be effective only in animal models. In addition, the extent of targeting the drug to the retina still remains variable and unpredictable. The toxicity aspect of the NDDS has generally been neglected. In order to have successful commercialization of nanotechnology-based innovations well-designed clinical research studies need to be conducted to evaluate their clinical superiority over that of the existing formulations.
Collapse
Affiliation(s)
- Deep Shikha Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | | | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Nitin Chitranshi
- Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Australia
| | - Vivek Kumar Gupta
- Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Australia
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
42
|
Mehanna MM, Mneimneh AT, Abed El Jalil K. Levofloxacin-loaded naturally occurring monoterpene-based nanoemulgel: a feasible efficient system to circumvent MRSA ocular infections. Drug Dev Ind Pharm 2020; 46:1787-1799. [PMID: 32896171 DOI: 10.1080/03639045.2020.1821048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 07/17/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022]
Abstract
Staphylococcus aureus is a leading cause of ocular keratitis worldwide, and the upsurge of Methicillin-resistant Staphylococcus Aureus (MRSA) strains necessitated the development of new antimicrobial agents. D-limonene is the major constituent of oil extracted from citrus peel, which has been utilized for its gastroprotective, antifungal, antitumor, and antibacterial effects. The present study aimed to develop an effective in-situ ocular limonene-based nanoemulgel to enhance the efficacy of fluoroquinolones against MRSA associated ocular biofilm infection. The nanoemulsion composed of limonene, Tween®80, propylene glycol at a ratio of 5:4:1 loaded with levofloxacin. The formulated levofloxacin-loaded limonene-based nanoemulsion physiochemical properties namely; droplet size, polydispersity index, zeta potential, and in-vitro drug release were studied and stability over three months was assessed. Furthermore, in-vitro antimicrobial susceptibility was investigated on biofilm-forming MRSA strain through kinetics of killing and biofilm assay. The in-situ nanoemulgel ocular irritation was studied by HET-CAM test. The results demonstrated that levofloxacin-loaded limonene-based nanoemulsion had a particle size of 119 ± 0.321 nm with improved eradicating efficacy of MRSA biofilm, where the MIC of the loaded nanoemulgel was 3.12 mg/ml significantly less than that of drug alone (6.25 mg/ml). HET-CAM test showed no signs of hemorrhage, coagulation, or lysis for the loaded nanoemulgel same as sodium chloride solution (negative control) where its irritation score was zero compared to 9.87 for the positive irritant group (1%w/v sodium lauryl sulfate). In conclusion, the current investigation provided a strong foundation for further studies of limonene nanoemulgel as a potential complementary therapeutic agent against resistant bacterial strains.
Collapse
Affiliation(s)
- Mohammed M Mehanna
- Pharmaceutical Technology Department, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
- Industrial Pharmacy Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Amina Tarek Mneimneh
- Pharmaceutical Technology Department, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Khaled Abed El Jalil
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| |
Collapse
|
43
|
Singh M, Bharadwaj S, Lee KE, Kang SG. Therapeutic nanoemulsions in ophthalmic drug administration: Concept in formulations and characterization techniques for ocular drug delivery. J Control Release 2020; 328:895-916. [PMID: 33069743 DOI: 10.1016/j.jconrel.2020.10.025] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/29/2022]
Abstract
The eye is the specialized part of the body and is comprised of numerous physiological ocular barriers that limit the drug absorption at the action site. Regardless of various efforts, efficient topical ophthalmic drug delivery remains unsolved, and thus, it is extremely necessary to advance the contemporary treatments of ocular disorders affecting the anterior and posterior cavities. Nowadays, the advent of nanotechnology-based multicomponent nanoemulsions for ophthalmic drug delivery has gained popularity due to the enhancement of ocular penetrability, improve bioavailability, increase solubility, and stability of lipophilic drugs. Nanoemulsions offer the sustained/controlled drug release and increase residence time which depend on viscosity, compositions, and stabilization process, etc.; hence, decrease the instillation frequency and improve patient compliance. Further, due to the nanosized of nanoemulsions, the sterilization process is easy as conventional solutions and cause no blur vision. The review aims to summarizes the various ocular barriers, manufacturing techniques, possible mechanisms to the retention and deep penetration into the eye, and appropriate excipients with their under-lying selection principles to prevent destabilization of nanoemulsions. This review also discusses the characterization parameters of ocular drug delivery to spike the interest of those contemplating a foray in this field. Here, in short, nanoemulsions are abridged with concepts to design clinically advantageous ocular drug delivery.
Collapse
Affiliation(s)
- Mahendra Singh
- Molecular Genetics Laboratory, Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Shiv Bharadwaj
- Molecular Genetics Laboratory, Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Kyung Eun Lee
- Molecular Genetics Laboratory, Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Stemforce, 313 Institute of Industrial Technology, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Sang Gu Kang
- Molecular Genetics Laboratory, Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
44
|
Das B, Chattopadhyay D, Rana D. The gamut of perspectives, challenges, and recent trends for in situ hydrogels: a smart ophthalmic drug delivery vehicle. Biomater Sci 2020; 8:4665-4691. [PMID: 32760957 DOI: 10.1039/d0bm00532k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymers have a major role in the controlled delivery of pharmaceutical compounds to a targeted portion of the body. In this quest, a high priority research area is the targeted delivery of ophthalmic drugs to the interior regions of the eyes. Due to their complex anatomical/biochemical nature. This necessitates an advanced drug delivery cargo that could administer a therapeutic agent to the targeted location by evading various obstacles. The ongoing focus is to design an ophthalmic formulation by coupling it with a smart in situ forming polymeric hydrogel. These smart macromolecules have an array of unique theranostic properties and can utilize the in vivo biological parameters as a stimulus to change their macromolecular state from liquid to gel. The fast gelling hydrogel improves the corneal contact time, facilitates sustained drug release, resists the burst-out effect, and assists drug permeability to anterior regions. This review summarizes the rationale, scientific objectives, properties, and classification of the biologically important in situ hydrogels in the niche of ophthalmic drug delivery. The current trends and prospectives of the array of stimulus-responsive polymers, copolymers, and nanomaterials are discussed broadly. The crucial biointerfacial attributes with pros and cons are reviewed by investigating the effect of the nature of polymers as well as the ratio/percentage of additives and copolymers that influence the overall performance.
Collapse
Affiliation(s)
- Beauty Das
- Department of Polymer Science & Technology, University of Calcutta, 92 A.P.C. Road, Calcutta 700009, India.
| | | | | |
Collapse
|
45
|
Talaei S, Mahboobian MM, Mohammadi M. Investigating the ocular toxicity potential and therapeutic efficiency of in situ gel nanoemulsion formulations of brinzolamide. Toxicol Res (Camb) 2020; 9:578-587. [PMID: 32905229 DOI: 10.1093/toxres/tfaa066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/27/2020] [Accepted: 07/27/2020] [Indexed: 01/09/2023] Open
Abstract
Glaucoma is an ocular disease i.e. more common in older adults with elevated intraocular pressure and a serious threat to vision if it is not controlled. Due to the limitations regarding the conventional form of brinzolamide (Azopt®), two optimum formulations of in situ gel nanoemulsion were developed. To ensure the safety and efficacy of developed formulations for ocular drug delivery, the current study was designed. MTT assay was carried out on the human retinal pigmentation epithelial cells. To investigate the irritation potential of the chosen formulations, hen's egg test-chorioallantoic membrane as a borderline test between in vivo and in vitro methods has been done. The modified Draize method was utilized to evaluate eye tolerance against the selected formulations. Intraocular pressure was measured by applying the prepared formulations to the eyes of normotensive albino rabbits in order to assess the therapeutic efficacy. Based on MTT test, cell viability for NE-2 at 0.1% and NE-1 at 0.1 and 0.5% concentrations was acceptable. The results of the hen's egg test-chorioallantoic membrane test indicated no sign of vessel injury on the chorioallantoic membrane surface for both formulations. Also, during 24 h, both formulations were well-tolerated by rabbit eyes. The pharmacodynamics effects of formulations had no difference or were even higher than that of suspension in case of adding lower concentration (0.5%) of brinzolamide to the formulations. With regard to the results of the mentioned methods, our advanced formulations were effective, safe, and well-tolerated, thus can be introduced as an appropriate vehicle for ocular delivery of brinzolamide.
Collapse
Affiliation(s)
- Sima Talaei
- Department of Toxicology and Pharmacology, School of Pharmacy, Hamadan University of Medical Sciences, Shahid Fahmideh Boulevard, Hamadan 6517838678, Iran
| | - Mohammad Mehdi Mahboobian
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Shahid Fahmideh Boulevard, Hamadan 6517838678, Iran
| | - Mojdeh Mohammadi
- Department of Toxicology and Pharmacology, School of Pharmacy, Hamadan University of Medical Sciences, Shahid Fahmideh Boulevard, Hamadan 6517838678, Iran
| |
Collapse
|
46
|
Gorantla S, Rapalli VK, Waghule T, Singh PP, Dubey SK, Saha RN, Singhvi G. Nanocarriers for ocular drug delivery: current status and translational opportunity. RSC Adv 2020; 10:27835-27855. [PMID: 35516960 PMCID: PMC9055630 DOI: 10.1039/d0ra04971a] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Ocular diseases have a significant effect on vision and quality of life. Drug delivery to ocular tissues is a challenge to formulation scientists. The major barriers to delivering drugs to the anterior and posterior segments include physiological barriers (nasolacrimal drainage, blinking), anatomical barriers (static and dynamic), efflux pumps and metabolic barriers. The static barriers comprise the different layers of the cornea, sclera, and blood-aqueous barriers whereas dynamic barriers involve conjunctival blood flow, lymphatic clearance and tear drainage. The tight junctions of the blood-retinal barrier (BRB) restrict systemically administered drugs from entering the retina. Nanocarriers have been found to be effective at overcoming the issues associated with conventional ophthalmic dosage forms. Various nanocarriers, including nanodispersion systems, nanomicelles, lipidic nanocarriers, polymeric nanoparticles, liposomes, niosomes, and dendrimers, have been investigated for improved permeation and effective targeted drug delivery to various ophthalmic sites. In this review, various nanomedicines and their application for ophthalmic delivery of therapeutics are discussed. Additionally, scale-up and clinical status are also addressed to understand the current scenario for ophthalmic drug delivery.
Collapse
Affiliation(s)
- Srividya Gorantla
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus Rajasthan India 333031
| | - Vamshi Krishna Rapalli
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus Rajasthan India 333031
| | - Tejashree Waghule
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus Rajasthan India 333031
| | - Prem Prakash Singh
- Formulation Development, Slayback Pharma India LLP Hyderabad Telangana 500072 India
| | - Sunil Kumar Dubey
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus Rajasthan India 333031
| | - Ranendra N Saha
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus Rajasthan India 333031
- Birla Institute of Technology & Science (BITS) Pilani, Dubai Campus UAE
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus Rajasthan India 333031
| |
Collapse
|
47
|
Mazet R, Yaméogo JBG, Wouessidjewe D, Choisnard L, Gèze A. Recent Advances in the Design of Topical Ophthalmic Delivery Systems in the Treatment of Ocular Surface Inflammation and Their Biopharmaceutical Evaluation. Pharmaceutics 2020; 12:pharmaceutics12060570. [PMID: 32575411 PMCID: PMC7356360 DOI: 10.3390/pharmaceutics12060570] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022] Open
Abstract
Ocular inflammation is one of the most common symptom of eye disorders and diseases. The therapeutic management of this inflammation must be rapid and effective in order to avoid deleterious effects for the eye and the vision. Steroidal (SAID) and non-steroidal (NSAID) anti-inflammatory drugs and immunosuppressive agents have been shown to be effective in treating inflammation of the ocular surface of the eye by topical administration. However, it is well established that the anatomical and physiological ocular barriers are limiting factors for drug penetration. In addition, such drugs are generally characterized by a very low aqueous solubility, resulting in low bioavailability as only 1% to 5% of the applied drug permeates the cornea. The present review gives an updated insight on the conventional formulations used in the treatment of ocular inflammation, i.e., ointments, eye drops, solutions, suspensions, gels, and emulsions, based on the commercial products available on the US, European, and French markets. Additionally, sophisticated formulations and innovative ocular drug delivery systems will be discussed. Promising results are presented with micro- and nanoparticulated systems, or combined strategies with polymers and colloidal systems, which offer a synergy in bioavailability and sustained release. Finally, different tools allowing the physical characterization of all these delivery systems, as well as in vitro, ex vivo, and in vivo evaluations, will be considered with regards to the safety, the tolerance, and the efficiency of the drug products.
Collapse
Affiliation(s)
- Roseline Mazet
- DPM, UMR CNRS 5063, ICMG FR 2607, Faculty of Pharmacy, University of Grenoble Alpes, 38400 St Martin d’Hères, France; (R.M.); (D.W.); (L.C.)
- Grenoble University Hospital, 38043 Grenoble, France
| | | | - Denis Wouessidjewe
- DPM, UMR CNRS 5063, ICMG FR 2607, Faculty of Pharmacy, University of Grenoble Alpes, 38400 St Martin d’Hères, France; (R.M.); (D.W.); (L.C.)
| | - Luc Choisnard
- DPM, UMR CNRS 5063, ICMG FR 2607, Faculty of Pharmacy, University of Grenoble Alpes, 38400 St Martin d’Hères, France; (R.M.); (D.W.); (L.C.)
| | - Annabelle Gèze
- DPM, UMR CNRS 5063, ICMG FR 2607, Faculty of Pharmacy, University of Grenoble Alpes, 38400 St Martin d’Hères, France; (R.M.); (D.W.); (L.C.)
- Correspondence: ; Tel.: +33-476-63-53-01
| |
Collapse
|
48
|
Ismail A, Nasr M, Sammour O. Nanoemulsion as a feasible and biocompatible carrier for ocular delivery of travoprost: Improved pharmacokinetic/pharmacodynamic properties. Int J Pharm 2020; 583:119402. [PMID: 32387308 DOI: 10.1016/j.ijpharm.2020.119402] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 12/12/2022]
Abstract
Travoprost is a synthetic prostaglandin F2α analogue used in treatment of glaucoma. Due to its water insolubility and oily nature, novel delivery systems need to be developed to enhance its bioavailability, and sustain its release. In the current work, travoprost nanoemulsion was explored as a novel carrier prepared using low energy technique. Results showed that travoprost nanoemulsions exhibited suitable nanodroplet size, zeta potential, pH, refractive index, controlled release, as well as sufficient stability under accelerated conditions. In vivo studies delineated the enhanced absorption of travoprost nanoemulsion compared to the marketed eye drops Travatan®, as proven by the higher Cmax and AUC of the former, and its prolonged intraocular pressure reduction time. Moreover, the nanoemulsion formulation was proven safe and non-irritant to ocular surfaces. Therefore, it can be suggested that travoprost nanoemulsion is a promising ocular delivery system for glaucoma treatment.
Collapse
Affiliation(s)
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Omaima Sammour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
49
|
Gorantla S, Waghule T, Rapalli VK, Singh PP, Dubey SK, Saha RN, Singhvi G. Advanced Hydrogels Based Drug Delivery Systems for Ophthalmic Delivery. ACTA ACUST UNITED AC 2020; 13:291-300. [DOI: 10.2174/1872211314666200108094851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/19/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
Hydrogels are aqueous gels composed of cross-linked networks of hydrophilic polymers. Stimuli-responsive based hydrogels have gained focus over the past 20 years for treating ophthalmic diseases. Different stimuli-responsive mechanisms are involved in forming polymer hydrogel networks, including change in temperature, pH, ions, and others including light, thrombin, pressure, antigen, and glucose-responsive. Incorporation of nanocarriers with these smart stimuli-responsive drug delivery systems that can extend the duration of action by increasing ocular bioavailability and reducing the dosing frequency. This review will focus on the hydrogel drug delivery systems highlighting the gelling mechanisms and emerging stimuli-responsive hydrogels from preformed gels, nanogels, and the role of advanced 3D printed hydrogels in vision-threatening diseases like age-related macular degeneration and retinitis pigmentosa. It also provides insight into the limitations of hydrogels along with the safety and biocompatibility of the hydrogel drug delivery systems.
Collapse
Affiliation(s)
- Srividya Gorantla
- Department of Pharmacy, Birla Institute of Technology & Science (BITS), Pilani, Pilani Campus, Rajasthan 333031, India
| | - Tejashree Waghule
- Department of Pharmacy, Birla Institute of Technology & Science (BITS), Pilani, Pilani Campus, Rajasthan 333031, India
| | - Vamshi Krishna Rapalli
- Department of Pharmacy, Birla Institute of Technology & Science (BITS), Pilani, Pilani Campus, Rajasthan 333031, India
| | - Prem Prakash Singh
- Formulation development, Slayback Pharma India LLP, Hyderabad, Telangana-500072, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology & Science (BITS), Pilani, Pilani Campus, Rajasthan 333031, India
| | - Ranendra Narayan Saha
- Birla Institute of Technology & Science (BITS) - Pilani, Dubai Campus, United Arab Emirates
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology & Science (BITS), Pilani, Pilani Campus, Rajasthan 333031, India
| |
Collapse
|
50
|
Jumelle C, Gholizadeh S, Annabi N, Dana R. Advances and limitations of drug delivery systems formulated as eye drops. J Control Release 2020; 321:1-22. [PMID: 32027938 DOI: 10.1016/j.jconrel.2020.01.057] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/12/2022]
Abstract
Topical instillation of eye drops remains the most common and easiest route of ocular drug administration, representing the treatment of choice for many ocular diseases. Nevertheless, low ocular bioavailability of topically applied drug molecules can considerably limit their efficacy. Over the last several decades, numerous drug delivery systems (DDS) have been developed in order to improve drug bioavailability on the ocular surfaces. This review systematically covers the most recent advances of DDS applicable by topical instillation, that have shown better performance in in vivo models compared to standard eye drop formulations. These delivery systems are based on in situ forming gels, nanoparticles and combinations of both. Most of the DDS have been developed using natural or synthetic polymers. Polymers offer many advantageous properties for designing advanced DDS including biocompatibility, gelation properties and/or mucoadhesiveness. However, despite the high number of studies published over the last decade, there are several limitations for clinical translation of DDS. This review article focuses on the recent advances for the development of ocular drug delivery systems. In addtion, the potential challenges for commercialization of new DDS are presented.
Collapse
Affiliation(s)
- Clotilde Jumelle
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Shima Gholizadeh
- Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, USA
| | - Nasim Annabi
- Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, CA, USA.
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|