1
|
Khan MS, Fatima M, Wahab S, Khalid M, Kesharwani P. Gallic acid loaded self-nano emulsifying hydrogel-based drug delivery system against onychomycosis. Nanomedicine (Lond) 2024; 19:2065-2083. [PMID: 39143900 PMCID: PMC11485813 DOI: 10.1080/17435889.2024.2386923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
Aim: To developed and investigate gallic acid (GA) loaded self-nanoemulsifying drug delivery systems (SNEDDS) for treating onychomycosis via transungual route.Materials & methods: The SNEDDS were prepared by direct dispersion technique and were evaluated for characteristics parameters using Fourier transform infrared, differential scanning calorimetry, confocal microscopy, transmission electron microscopy and zeta sizer. Furthermore, the safety of prepared formulation was evaluated via Hen's egg test-chorioallantoic membrane study and stability was confirmed using different parameters. Also, its effectiveness was evaluated against fungal strain Trichophyton mentagrophytes.Results: The SNEDDS displayed a particle size of 199.8 ± 4.21 nm and a zeta potential; of -22.75 ± 2.09 mV. Drug release study illustrated a sustained release pattern with a release of 70.34 ± 0.20% over a period of 24 h. The penetration across the nail plate was found to be 1.59 ± 0.002 µg/mg and 0.97 ± 0.001 µg/mg for GA loaded SNEDDS and GA solution respectively. An irritation score of 0.52 ± 0.005 and 3.84 ± 0.001 was reported for GA loaded SNEDDS hydrogel and GA solution, indicating a decrease in the drug's irritation potential from slightly irritating to non irritating due to its entrapment within the SNEDDS.Conclusion: GA loaded SNEDDS has potential to address limitations of conventional treatments, enhancing the drug's efficacy and reducing the likelihood of resistance in the treatment of Onychomycosis.
Collapse
Affiliation(s)
- Mohammad Sameer Khan
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mahak Fatima
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha62529, Saudi Arabia
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
2
|
Uronnachi E, Nakpheng T, Gugu T, Srichana T. Formulation and Antimycotic Evaluation of Colloidal Itraconazole-Loaded Metered Dose Sprays for Treating Superficial Mycoses. AAPS PharmSciTech 2024; 25:156. [PMID: 38981986 DOI: 10.1208/s12249-024-02879-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/21/2024] [Indexed: 07/11/2024] Open
Abstract
Commercial topical formulations containing itraconazole (poorly water soluble), for mycotic infections, have poor penetration to infection sites beneath the nails and skin thereby necessitating oral administration. To improve penetration, colloidal solutions of itraconazole (G1-G4) containing Poloxamer 188, tween 80, ethanol, and propylene glycol were prepared and incorporated into HFA-134-containing sprays. Formulations were characterized using particle size, drug content, and Fourier-transform infrared spectroscopy (FTIR). In vitro permeation studies were performed using Franz diffusion cells for 8 h. Antimycotic activity on Candida albicans and Trichophyton rubrum was performed using broth micro-dilution and flow cytometry, while cytotoxicity was tested on HaCaT cell lines. Particle size ranged from 39.35-116.80 nm. FTIR and drug content revealed that G1 was the most stable formulation (optimized formulation). In vitro release over 2 h was 45% for G1 and 34% for the cream. There was a twofold increase in skin permeation, fivefold intradermal retention, and a sevenfold increase in nail penetration of G1 over the cream. Minimum fungicidal concentrations (MFC) against C. albicans were 0.156 and 0.313 µg/mL for G1 and cream, respectively. The formulations showed optimum killing kinetics after 48 h. MFC values against T. rubrum were 0.312 and 0.625 µg/mL for the G1 and cream, respectively. Transmission electron microscopy revealed organelle destruction and cell leakage for G1 in both organisms and penetration of keratin layers to destroy T. rubrum. Cytotoxicity evaluation of G1 showed relative safety for skin cells. The G1 formulation showed superior skin permeation, nail penetration, and fungicidal activity compared with the cream formulation.
Collapse
Affiliation(s)
- Emmanuel Uronnachi
- Drug Delivery Systems Excellence Center and Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Agulu, Anambra State, Nigeria
| | - Titpawan Nakpheng
- Drug Delivery Systems Excellence Center and Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand
| | - Thaddeus Gugu
- Drug Delivery Systems Excellence Center and Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Teerapol Srichana
- Drug Delivery Systems Excellence Center and Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand.
| |
Collapse
|
3
|
Ismailovi N, Kıyan HT, Öztürk AA. A Novel Phytotherapy Application: Preparation, Characterization, Antioxidant Activities and Determination of Anti-inflammatory Effects by In vivo HET-CAM Assay of Chitosan-based DDSs Containing Endemic Helichrysum pamphylicum P.H. Davis & Kupicha Methanolic Extract. Curr Drug Deliv 2024; 21:901-916. [PMID: 37018530 PMCID: PMC11071655 DOI: 10.2174/1567201820666230328122504] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND Numerous pharmaceutical applications for chitosan, a polysaccharide made from the shells of crustaceans by deacetylating chitin that occurs naturally, are currently being researched. Chitosan, a natural polymer, is successfully used to prepare many drug-carrier systems, such as gel, film, nanoparticle, and wound dressing. OBJECTIVE Preparing chitosan gels without external crosslinkers is less toxic and environmentally friendly. METHODS Chitosan-based gels containing Helichrysum pamphylicum P.H. Davis & Kupicha methanolic extract (HP) were produced successfully. RESULTS The F9-HP coded gel prepared with high molecular weight chitosan was chosen as the optimum formulation in terms of pH and rheological properties. The amount of HP was found to be 98.83% ± 0.19 in the F9-HP coded formulation. The HP release from the F9-HP coded formula was determined to be slower and 9 hours prolonged release compared to pure HP. It was determined that HP release from F9-HP coded formulation with the DDSolver program was by anomalous (non-fickian) diffusion mechanism. The F9-HP coded formulation significantly showed DPPH free radical scavenger, ABTS•+ cation decolorizing and metal chelating antioxidant activity while weakly reducing antioxidant potential. According to the HET-CAM scores, strong anti-inflammatory activity was obtained by the F9-HP coded gel at a dose of 20 μg.embryo-1 (p<0.05 compared with SDS). CONCLUSION In conclusion, it can be said that chitosan-based gels containing HP, which can be used in both antioxidant and anti-inflammatory treatment, were successfully formulated and characterized.
Collapse
Affiliation(s)
- Nurlan Ismailovi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Graduate School of Health Sciences, Eskişehir, Türkiye
| | - H. Tuba Kıyan
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskişehir, Türkiye
| | - A. Alper Öztürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Eskişehir, Türkiye
| |
Collapse
|
4
|
Abd-Elsalam WH, Abouelatta SM. Contemporary Techniques and Potential Transungual Drug Delivery Nanosystems for The Treatment of Onychomycosis. AAPS PharmSciTech 2023; 24:150. [PMID: 37421509 DOI: 10.1208/s12249-023-02603-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/04/2023] [Indexed: 07/10/2023] Open
Abstract
The humanoid nail is considered an exceptional protective barrier that is formed mainly from keratin. Onychomycosis is the cause of 50% of nail infections that is generally caused by dermatophytes. Firstly, the infection was regarded as a cosmetic problem but because of the tenacious nature of onychomycosis and its relapses, these infections have attracted medical attention. The first line of therapy was the oral antifungal agents which were proven to be effective; nevertheless, they exhibited hepato-toxic side effects, alongside drug interactions. Following, the opportunity was shifted to the topical remedies, as onychomycosis is rather superficial, yet this route is hindered by the keratinized layers in the nail plate. A potential alternative to overcome the obstacle was applying different mechanical, physical, and chemical methods to boost the penetration of drugs through the nail plate. Unfortunately, these methods might be expensive, require an expert to be completed, or even be followed by pain or more serious side effects. Furthermore, topical formulations such as nail lacquers and patches do not provide enough sustaining effects. Recently, newer therapies such as nanovesicles, nanoparticles, and nanoemulsions have emerged for the treatment of onychomycosis that provided effective treatment with possibly no side effects. This review states the treatment strategies such as mechanical, physical, and chemical methods, and highlights various innovative dosage forms and nanosystems developed in the last 10 years with a focus on advanced findings regarding formulation systems. Furthermore, it demonstrates the natural bioactives and their formulation as nanosystems, and the most relevant clinical outcomes.
Collapse
Affiliation(s)
- Wessam H Abd-Elsalam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Samar M Abouelatta
- Department of Pharmaceutics, Faculty of Pharmacy, Ahram Candian University, 6 October, Cairo, Egypt
| |
Collapse
|
5
|
Nair AB, Aldhubiab B, Shah J, Jacob S, Attimarad M, Sreeharsha N, Venugopala KN, Joseph A, Morsy MA. Design, Development, and Evaluation of Constant Voltage Iontophoresis for the Transungual Delivery of Efinaconazole. Pharmaceutics 2023; 15:pharmaceutics15051422. [PMID: 37242664 DOI: 10.3390/pharmaceutics15051422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
The efficacy of topical antifungal therapy in onychomycosis has been hindered by the failure of the antimycotic to permeate the nail plate. This research aims to design and develop a transungual system for the effective delivery of efinaconazole utilizing constant voltage iontophoresis. Seven prototype drug-loaded hydrogel formulations (E1-E7) were prepared to assess the influence of solvent (ethanol) and cosolvent (Labrasol®) on transungual delivery. Optimization was performed to evaluate the effect of three independent variables; voltage, solvent-to-cosolvent ratio, and penetration enhancer (PEG 400) concentration on critical quality attributes (CQAs), such as drug permeation and loading into the nail. The selected hydrogel product was characterized for pharmaceutical properties, efinaconazole release from the nail, and antifungal activity. Preliminary data indicates ethanol, Labrasol®, and voltage influence the transungual delivery of efinaconazole. Optimization design indicates a significant impact by applied voltage (p-0.0001) and enhancer concentration (p-0.0004) on the CQAs. Excellent correlation between selected independent variables and CQAs was confirmed by the high desirability value (0.9427). A significant (p < 0.0001) enhancement in the permeation (~78.59 µg/cm2) and drug loading (3.24 µg/mg) was noticed in the optimized transungual delivery with 10.5 V. FTIR spectral data indicates no interaction between the drug and excipients, while the DSC thermograms confirmed the amorphous state of the drug in the formulation. Iontophoresis produces a drug depot in the nail that releases above the minimum inhibitory concentration level for an extended period, potentially reducing the need for frequent topical treatment. Antifungal studies further substantiate the release data and have shown remarkable inhibition of Trichophyton mentagrophyte. Overall, the promising results obtained here demonstrate the prospective of this non-invasive method for the effective transungual delivery of efinaconazole, which could improve the treatment of onychomycosis.
Collapse
Affiliation(s)
- Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4000, South Africa
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Mohamed A Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| |
Collapse
|
6
|
Agrawal V, Patel R, Patel M. Design, characterization, and evaluation of efinaconazole loaded poly(D, L-lactide-co-glycolide) nanocapsules for targeted treatment of onychomycosis. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
7
|
Itraconazole and Difluorinated-Curcumin Containing Chitosan Nanoparticle Loaded Hydrogel for Amelioration of Onychomycosis. Biomimetics (Basel) 2022; 7:biomimetics7040206. [PMID: 36412734 PMCID: PMC9680304 DOI: 10.3390/biomimetics7040206] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Onychomycosis is a nail infection caused by a fungus, Trichophyton mentagrophytes, that is responsible for major nail infections. The best method suited for treating such infections generally includes a topical remedy. However, conventional oral or topical formulations are associated with various limitations. Therefore, a more efficient and compatible formulation is developed in this study. The primary objective of the current study is to formulate and evaluate chitosan nanoparticle-based hydrogel for ameliorating onychomycosis. The sole purpose of this research was to increase the permeation of the lipophilic drug itraconazole and difluorinated curcumin, and its synergistic antifungal activity was also evaluated for the first time. Both in vitro and ex vivo drug release evaluations confirmed the sustained release of both drugs from the hydrogel, which is a prerequisite for treating onychomycosis. The results overall highlighted the promising activity of a synergistic approach that could be implemented for the treatment of onychomycosis. The hydrogel-based formulation serves as an effective method of delivery of drugs across the layers of the skin, resulting from its hydrating characteristics.
Collapse
|
8
|
Antifungal Nail Lacquer for Enhanced Transungual Delivery of Econazole Nitrate. Pharmaceutics 2022; 14:pharmaceutics14102204. [PMID: 36297639 PMCID: PMC9607990 DOI: 10.3390/pharmaceutics14102204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
The fungal disease of the nail, onychomycosis, which is also the most prevalent nail disturbance, demands effective topical treatment options considering the possible adverse effects of systemic antifungal therapy. The current work is focused on development of an adhesive and resistant, drug-delivering and permeation-enhancing polymeric film containing econazole nitrate (ECN) for topical antifungal treatment. The development of the lacquer formulation was guided by the Quality by Design approach to achieve the critical quality attributes needed to obtain the product of desired quality. Eudragit RSPO at 10% w/w was found to be the ideal adhesive polymer for the application and an optimal permeation-enhancing lacquer formulation was achieved by the optimization of other formulation excipients, such as plasticizer and the solvent system. Additionally, novel experimental enhancements introduced to the research included refined D50 drying time and drying rate tests for lacquer characterization as well as a multi-mechanism permeation-enhancing pre-treatment. Moreover, a practical implication was provided by a handwashing simulation designed to test the performance of the lacquer during actual use. In vitro drug release testing and ex vivo nail permeation testing demonstrated that the optimized nail lacquer performed better than control lacquer lacking the permeation enhancer by achieving a faster and sustained delivery of ECN. It can be concluded that this is a promising drug delivery system for topical antifungal treatment of onychomycotic nails, and the novel characterization techniques may be adapted for similar formulations in the future.
Collapse
|
9
|
Garoufalis MG. Total Dystrophic Onychomycosis Successfully Treated with Efinaconazole Topical Solution in Times of Coronavirus Disease of 2019: A Case Study. J Am Podiatr Med Assoc 2022; 112:21-050. [PMID: 34698843 DOI: 10.7547/21-050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Toenail onychomycosis is a common condition that is equally challenging for podiatrists and patients. This case study documents a 26-year-old woman with bilateral total dystrophic onychomycosis of at least 5 years' duration. She had previously failed to respond to treatment with ciclopirox nail lacquer 8% and, despite hiding her condition with nail polish, was suffering from embarrassment, distress, and low self-esteem. At initial consultation, 100% of both great toenails was affected. After discussion of all treatment options, the patient opted for topical efinaconazole 10% solution, once daily for 48 weeks. Significant improvement was noted at the first (4-week) assessment period. This improvement was maintained through each subsequent virtual consultation, and complete cure was seen at a 30-week follow-up visit. To the author's knowledge, this is the first published report on the use of efinaconazole in total dystrophic onychomycosis. It suggests that the product may be effective in patients with even the most severe and treatment-recalcitrant disease, who are unwilling or unable to tolerate systemic antifungal therapy.
Collapse
Affiliation(s)
- Matthew G Garoufalis
- *Professional Foot Care Specialists PC, 5241 S Cicero Ave, Chicago, IL 60632. (E-mail:)
| |
Collapse
|
10
|
Nair AB, Al-Dhubiab BE, Shah J, Gorain B, Jacob S, Attimarad M, Sreeharsha N, Venugopala KN, Morsy MA. Constant Voltage Iontophoresis Technique to Deliver Terbinafine via Transungual Delivery System: Formulation Optimization Using Box-Behnken Design and In Vitro Evaluation. Pharmaceutics 2021; 13:pharmaceutics13101692. [PMID: 34683985 PMCID: PMC8538220 DOI: 10.3390/pharmaceutics13101692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
Topical therapy of antifungals is primarily restricted due to the low innate transport of drugs through the thick multi-layered keratinized nail plate. The objective of this investigation was to develop a gel formulation, and to optimize and evaluate the transungual delivery of terbinafine using the constant voltage iontophoresis technique. Statistical analysis was performed using Box–Behnken design to optimize the transungual delivery of terbinafine by examining crucial variables namely concentration of polyethylene glycol, voltage, and duration of application (2–6 h). Optimization data in batches (F1–F17) demonstrated that chemical enhancer, applied voltage, and application time have influenced terbinafine nail delivery. Higher ex vivo permeation and drug accumulation into the nail tissue were noticed in the optimized batch (F8) when compared with other batches (F1–F17). A greater amount of terbinafine was released across the nails when the drug was accumulated by iontophoresis than the passive counterpart. A remarkably higher zone of inhibition was observed in nails with greater drug accumulation due to iontophoresis, as compared to the passive process. The results here demonstrate that the optimized formulation with low voltage iontophoresis could be a viable and alternative tool in the transungual delivery of terbinafine, which in turn could improve the success rate of topical nail therapy in onychomycosis.
Collapse
Affiliation(s)
- Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (B.E.A.-D.); (M.A.); (N.S.); (K.N.V.); (M.A.M.)
- Correspondence: ; Tel.: +966-536-219-868
| | - Bandar E. Al-Dhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (B.E.A.-D.); (M.A.); (N.S.); (K.N.V.); (M.A.M.)
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
- Centre for Drug Delivery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (B.E.A.-D.); (M.A.); (N.S.); (K.N.V.); (M.A.M.)
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (B.E.A.-D.); (M.A.); (N.S.); (K.N.V.); (M.A.M.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (B.E.A.-D.); (M.A.); (N.S.); (K.N.V.); (M.A.M.)
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4000, South Africa
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (B.E.A.-D.); (M.A.); (N.S.); (K.N.V.); (M.A.M.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| |
Collapse
|
11
|
Nakamura A, Hirakawa S, Nagai H, Inagaki K. A comparative study between two antifungal agents, Luliconazole and Efinaconazole, of their preventive effects in a Trichophyton-infected guinea pig onychomycosis model. Med Mycol 2021; 59:289-295. [PMID: 33539539 PMCID: PMC7939111 DOI: 10.1093/mmy/myaa111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 12/26/2022] Open
Abstract
An efficacious period of two topical antifungal drugs was compared in a Trichophyton mentagrophytes-infected onychomycosis model in guinea pigs treated with antifungal drugs prior to infection. Luliconazole 5% (LLCZ) and efinaconazole 10% (EFCZ) test solutions were applied to the animals’ nails once daily for 2 weeks followed by a nontreatment period of 2, 4, and 8 weeks. After each nontreatment period, the nails were artificially infected by the fungus. Drug efficacy was quantitatively evaluated by qPCR and histopathological examination of the nails collected following a 4-week post-infection period. The fungal infection was confirmed in the untreated group. Both LLCZ and EFCZ prevented fungal infection in the treated groups with the nontreatment period of 2 weeks. After the nontreatment period of 4 weeks, no infection was observed in the LLCZ-treated group; however, infection into the nail surface and fungal invasion into the nail bed were observed in the EFCZ-treated group. After the nontreatment period of 8 weeks, fungi were found in the nail surface and nail bed in some nails treated with EFCZ; however, no infection was observed in the nail bed of the LLCZ-treated group. The results suggest that LLCZ possesses longer-lasting antifungal effect in nails of the guinea pigs than EFCZ, and that this animal model could be useful for translational research between preclinical and clinical studies to evaluate the pharmacological efficacy of antifungal drugs to treat onychomycosis. This experimentally shown longer-lasting preventive effects of LLCZ could also decrease the likelihoods of onychomycosis recurrence clinically.
Collapse
Affiliation(s)
- Akihiro Nakamura
- Research Center, Nihon Nohyaku Co., Ltd., Kawachi-Nagano, Osaka, Japan
| | - Satoko Hirakawa
- Research Center, Nihon Nohyaku Co., Ltd., Kawachi-Nagano, Osaka, Japan
| | - Hiroaki Nagai
- Research Center, Nihon Nohyaku Co., Ltd., Kawachi-Nagano, Osaka, Japan
| | - Katsuhiro Inagaki
- Research Center, Nihon Nohyaku Co., Ltd., Kawachi-Nagano, Osaka, Japan
| |
Collapse
|
12
|
Subedi L, Song SY, Jha SK, Lee SH, Pangeni R, Koo KT, Kim BJ, Cho SS, Park JW. Preparation of Topical Itraconazole with Enhanced Skin/Nail Permeability and In Vivo Antifungal Efficacy against Superficial Mycosis. Pharmaceutics 2021; 13:pharmaceutics13050622. [PMID: 33925457 PMCID: PMC8145258 DOI: 10.3390/pharmaceutics13050622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, a stable and highly skin-permeable topical delivery system for itraconazole (ITZ) was designed to provide effective treatment against superficial mycosis. Herein, ITZ was incorporated into a solution composed of ethanol, benzyl alcohol, hydrochloric acid, Transcutol P, and cyclomethicone as a delivery vehicle, solubilizer, protonating agent, permeation enhancer, and spreading agent, respectively. At 72 h, the optimal topical ITZ formulation (ITZ–TF#11) exhibited 135% enhanced skin permeability, which led to increases in drug deposition in the stratum corneum, epidermis, and dermis of 479%, 739%, and 2024%, respectively, compared with the deposition of 1% ITZ in ethanol (control). Moreover, on day 7, ITZ–TF#11 demonstrated 2.09- and 2.30-fold enhanced nail flux and drug deposition, compared with the control. At a dose of 40 mg/kg/day, ITZ–TF#11 showed 323% greater lesion recovery, a 165% lower mean erythema severity score, and a 37% lower mean logarithm of viable fungal cells in skin in the treated area, compared with mice that received oral ITZ at the same dose. Overall, the findings imply that ITZ–TF#11 is a superior alternative to oral ITZ for treatment of superficial mycosis.
Collapse
Affiliation(s)
- Laxman Subedi
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Korea; (L.S.); (S.-Y.S.); (S.K.J.); (S.-H.L.)
| | - Seung-Yub Song
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Korea; (L.S.); (S.-Y.S.); (S.K.J.); (S.-H.L.)
| | - Saurav Kumar Jha
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Korea; (L.S.); (S.-Y.S.); (S.K.J.); (S.-H.L.)
| | - Sung-Ho Lee
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Korea; (L.S.); (S.-Y.S.); (S.K.J.); (S.-H.L.)
| | - Rudra Pangeni
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Korea;
| | | | - Beum Joon Kim
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul 06973, Korea;
| | - Seung-Sik Cho
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Korea; (L.S.); (S.-Y.S.); (S.K.J.); (S.-H.L.)
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Korea;
- Correspondence: (S.-S.C.); (J.W.P.); Tel.: +82-61-450-2687 (S.-S.C.); +82-61-450-2704 (J.W.P.)
| | - Jin Woo Park
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Korea; (L.S.); (S.-Y.S.); (S.K.J.); (S.-H.L.)
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Korea;
- Correspondence: (S.-S.C.); (J.W.P.); Tel.: +82-61-450-2687 (S.-S.C.); +82-61-450-2704 (J.W.P.)
| |
Collapse
|
13
|
Agrawal V, Patel R, Patel M, Thanki K, Mishra S. Design and evaluation of microemulsion-based efinaconazole formulations for targeted treatment of onychomycosis through transungual route: Ex vivo and nail clipping studies. Colloids Surf B Biointerfaces 2021; 201:111652. [PMID: 33740733 DOI: 10.1016/j.colsurfb.2021.111652] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/01/2021] [Accepted: 02/16/2021] [Indexed: 11/18/2022]
Abstract
The onychomycosis treatment remains a big challenge for onychologist due to the shorter nail residence time of topical formulations and the lack of availability of novel formulations in markets for new generation antifungal drugs. The objective of this work was to design, develop, optimize, and evaluate microemulsion formulations for effective delivery of efinaconazole through transungual route in onychomycosis treatment. Capmul® MCM (Glyceryl Caprylate/Caprate) as oil, Labrasol® (caprylocaproyl polyoxyl-8 glycerides) as a surfactant, and Transcutol® P (diethylene glycol monoethyl ether) as co-surfactant exhibited higher solubility of efinaconazole and surfactant-cosurfactant mixture (Smix) in a ratio of 1:1 rendered higher microemulsion region in the pseudo-ternary phase diagram. The optimized microemulsion formulation containing 6%w/w oil phase, 22.5%w/w surfactant, 22.5%w/w co-surfactant, and 49%w/w demineralized water was converted into gel formulation using 1.0%w/w Carbopol® 934 P gelling agent and evaluated for stability of 6 months. The optimized microemulsion formulation globule size was less than 100 nm. The ex vivo permeation confirmed improved permeation of efinaconazole from microemulsion formulations (346.36±12.90μgcm-2) in comparison to reference formulation without observing any lag in drug permeation through the nail plate. The in vitro antifungal study data indicated increased antifungal efficacy relative to efinaconazole topical solution against Trichophyton rubrum, Trichophyton mentagrophytes, and Candida albicans species. Further, an in vitro cell cytotoxicity study exhibited no toxic effect for any excipients used in the formulation while applied on nail cells. Hence, the efinaconazole loaded microemulsion formulations could be considered as an effective therapy in the treatment of onychomycosis.
Collapse
Affiliation(s)
- Vikas Agrawal
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, 388421, Gujarat, India
| | - Rashmin Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, 388421, Gujarat, India.
| | - Mrunali Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, 388421, Gujarat, India
| | - Kaushik Thanki
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Room 13-4-421B, Universitetsparken 2, Copenhagen ɸ, 2100, Denmark
| | - Sandip Mishra
- Amneal Pharmaceutical Pvt Ltd., Ahmedabad, Gujarat, India
| |
Collapse
|
14
|
Effect of Penetration Enhancers on Toenail Delivery of Efinaconazole from Hydroalcoholic Preparations. Molecules 2021; 26:molecules26061650. [PMID: 33809569 PMCID: PMC8000921 DOI: 10.3390/molecules26061650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/23/2021] [Accepted: 03/09/2021] [Indexed: 12/28/2022] Open
Abstract
The incorporation of permeation enhancers in topical preparations has been recognized as a simple and valuable approach to improve the penetration of antifungal agents into toenails. In this study, to improve the toenail delivery of efinaconazole (EFN), a triazole derivative for onychomycosis treatment, topical solutions containing different penetration enhancers were designed, and the permeation profiles were evaluated using bovine hoof models. In an in vitro permeation study in a Franz diffusion cell, hydroalcoholic solutions (HSs) containing lipophilic enhancers, particularly prepared with propylene glycol dicaprylocaprate (Labrafac PG), had 41% higher penetration than the HS base. Moreover, the combination of hydroxypropyl-β-cyclodextrin with Labrafac PG further facilitated the penetration of EFN across the hoof membrane. In addition, this novel topical solution prepared with both lipophilic and hydrophilic enhancers was physicochemically stable, with no drug degradation under ambient conditions (25 °C, for 10 months). Therefore, this HS system can be a promising tool for enhancing the toenail permeability and therapeutic efficacy of EFN.
Collapse
|
15
|
Davies-Strickleton H, Cook J, Hannam S, Bennett R, Gibbs A, Edwards D, Ridden C, Ridden J, Cook D. Assessment of the nail penetration of antifungal agents, with different physico-chemical properties. PLoS One 2020; 15:e0229414. [PMID: 32107486 PMCID: PMC7046211 DOI: 10.1371/journal.pone.0229414] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/05/2020] [Indexed: 12/25/2022] Open
Abstract
Onychomycosis, or fungal nail infection, is a common fungal infection largely caused by dermatophyte fungi, such as Trichophyton rubrum or Trichophyton mentagrophytes, which affects a significant number of people. Treatment is either through oral antifungal medicines, which are efficacious but have significant safety concerns, or with topical antifungal treatments that require long treatment regimens and have only limited efficacy. Thus, an efficacious topical therapy remains an unmet medical need. Among the barriers to topical delivery through the nail are the physico-chemical properties of the antifungal drugs. Here, we explore the ability of a range of antifungal compounds with different hydrophilicities to penetrate the nail. Human nail discs were clamped within static diffusion (Franz) cells and dosed with equimolar concentrations of antifungal drugs. Using LC-MS/MS we quantified the amount of drug that passed through the nail disc and that which remained associated with the nail. Our data identified increased drug flux through the nail for the more hydrophilic compounds (caffeine as a hydrophilic control and fluconazole, with LogP -0.07 and 0.5, respectively), while less hydrophilic efinaconazole, amorolfine and terbinafine (LogP 2.7, 5.6 and 5.9 respectively) had much lower flux through the nail. On the other hand, hydrophilicity alone did not account for the amount of drug associated with/bound to the nail itself. While there are other factors that are likely to combine to dictate nail penetration, this work supports earlier studies that implicate compound hydrophilicity as a critical factor for nail penetration.
Collapse
Affiliation(s)
| | - Julie Cook
- Blueberry Therapeutics Limited, Alderley Park, Alderley Edge, Cheshire, United Kingdom
| | - Sally Hannam
- Alderley Analytical Limited, Alderley Park, Alderley Edge, Cheshire, United Kingdom
| | - Rhys Bennett
- Alderley Analytical Limited, Alderley Park, Alderley Edge, Cheshire, United Kingdom
| | - Alan Gibbs
- Alderley Analytical Limited, Alderley Park, Alderley Edge, Cheshire, United Kingdom
| | - David Edwards
- Blueberry Therapeutics Limited, Alderley Park, Alderley Edge, Cheshire, United Kingdom
| | - Christine Ridden
- Blueberry Therapeutics Limited, Alderley Park, Alderley Edge, Cheshire, United Kingdom
| | - John Ridden
- Blueberry Therapeutics Limited, Alderley Park, Alderley Edge, Cheshire, United Kingdom
| | - David Cook
- Blueberry Therapeutics Limited, Alderley Park, Alderley Edge, Cheshire, United Kingdom
- * E-mail:
| |
Collapse
|