1
|
Li H, Chen X, Rao S, Zhou M, Lu J, Liang D, Zhu B, Meng L, Lin J, Ding X, Zhang Q, Hu D. Recent development of micro-nano carriers for oral antineoplastic drug delivery. Mater Today Bio 2025; 30:101445. [PMID: 39866789 PMCID: PMC11762190 DOI: 10.1016/j.mtbio.2025.101445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/17/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025] Open
Abstract
Chemotherapy is widely recognized as a highly efficacious modality for cancer treatment, involving the administration of chemotherapeutic agents to target and eradicate tumor cells. Currently, oral administration stands as the prevailing and widely utilized method of delivering chemotherapy drugs. However, the majority of anti-tumor medications exhibit limited solubility and permeability, and poor stability in harsh gastrointestinal environments, thereby impeding their therapeutic efficacy for chemotherapy. Therefore, more and more micro-nano drug delivery carriers have been developed and used to effectively deliver anti-cancer drugs, which can overcome physiological barriers, facilitate oral administration, and ultimately improve drug efficacy. In this paper, we first discuss the effects of various biological barriers on micro-nano drug carriers and oral administration approach. Then, the development of micro-nano drug carriers based on various biomedical components, such as micelles, dendrimers, hydrogels, liposomes, inorganic nanoparticles, etc. were introduced. Finally, the current dilemma and the potential of oral drug delivery for clinical treatment were discussed. The primary objective of this review is to introduce various oral delivery methods and serve as a point of reference for the advancement of novel oral delivery carriers, with the ultimate goal of informing the development of future clinical applications.
Collapse
Affiliation(s)
- Hongzheng Li
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Xiang Chen
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Shangrui Rao
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Minyu Zhou
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jianhua Lu
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Danna Liang
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Bingzi Zhu
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Letian Meng
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ji Lin
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiaoya Ding
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Qingfei Zhang
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Danhong Hu
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| |
Collapse
|
2
|
Wang Y, Wang J, Huang C, Ding Y, Lv L, Zhu Y, Chen N, Zhao Y, Yao Q, Zhou S, Chen M, Zhu Q, Li L, Chen F. M1 macrophage-membrane-cloaked paclitaxel/β-elemene nanoparticles targeting cervical cancer for enhanced therapy. Int J Pharm X 2024; 8:100276. [PMID: 39263001 PMCID: PMC11387591 DOI: 10.1016/j.ijpx.2024.100276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 09/13/2024] Open
Abstract
Cervical cancer is a leading cause of cancer-related mortality in females worldwide, necessitating urgent solutions for effective treatment. Paclitaxel (PTX), a natural diterpene alkaloid compound, has the ability to inhibit mitosis and induce programmed apoptosis in tumor cells. However, its toxicity and drug resistance limit its efficacy in certain cervical cancer patients. β-elemene (β-ELE) can reverse multidrug resistance by inhibiting ATP-binding cassette transporters, thereby enhancing chemotherapy drug retention. Therefore, we propose a combination therapy using PTX/β-ELE to improve chemotherapy sensitivity. To enhance targeted drug delivery, we developed M1-macrophage-membrane-coated nanoparticles (M1@PLGA/PTX/β-ELE) for co-delivery of PTX&β-ELE. Through both in vitro and in vivo cervical cancer models, we demonstrated that M1@PLGA/PTX/β-ELE effectively suppressed tumor progression and polarization of tumor-associated macrophages. Furthermore, H&E staining confirmed the high therapeutic biosafety of M1@PLGA/PTX/β-ELE as there was no significant damage observed in major organs throughout the entire therapeutic process. Overall, this study presents a targeted biomimetic nanoplatform and combinatorial strategy that synergistically enhances chemosensitivity in malignant tumors.
Collapse
Affiliation(s)
- Yi Wang
- Taizhou Women and Children's Hospital of Wenzhou Medical University, Taizhou, China
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jiakun Wang
- Taizhou Women and Children's Hospital of Wenzhou Medical University, Taizhou, China
| | - Chengbo Huang
- Taizhou Women and Children's Hospital of Wenzhou Medical University, Taizhou, China
| | - Yang Ding
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Leyao Lv
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yuhao Zhu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Nuo Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yingyi Zhao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Shengjie Zhou
- Taizhou Women and Children's Hospital of Wenzhou Medical University, Taizhou, China
| | - Mei Chen
- Taizhou Women and Children's Hospital of Wenzhou Medical University, Taizhou, China
| | - Qibing Zhu
- Taizhou Women and Children's Hospital of Wenzhou Medical University, Taizhou, China
| | - Lifeng Li
- Taizhou Women and Children's Hospital of Wenzhou Medical University, Taizhou, China
| | - Fengyun Chen
- Taizhou Women and Children's Hospital of Wenzhou Medical University, Taizhou, China
| |
Collapse
|
3
|
Zhou X, Zhang P, Yang Y, Shi W, Liu L, Lai Z, Zhang X, Pan P, Li L, Du J, Qian H, Cui S. Highly Potent and Intestine Specific P-Glycoprotein Inhibitor to Enable Oral Delivery of Taxol. Angew Chem Int Ed Engl 2024; 63:e202412649. [PMID: 39137118 DOI: 10.1002/anie.202412649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/29/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
Taxol is widely used in cancer chemotherapy; however, the oral absorption of Taxol remains a formidable challenge. Since the intestinal p-glycoprotein (P-gp) mediated drug efflux is one of the primary causes, the development of P-gp inhibitor is emerging as a promising strategy to realize Taxol's oral delivery. Because P-gp exists in many tissues, the non-selective P-gp inhibitors would lead to toxicity. Correspondingly, a potent and intestine specific P-gp inhibitor would be an ideal solution to boost the oral absorption of Taxol and avoid exogenous toxicity. Herein, we would like to report a highly potent and intestine specific P-gp inhibitor to enable oral delivery of Taxol in high efficiency. Through a multicomponent reaction and post-modification, various benzofuran-fused-piperidine derivatives were achieved and the biological evaluation identified 16 c with potent P-gp inhibitory activity. Notably, 16 c was intestine specific and showed almost none absorption (F=0.82 %), but possessing higher efficacy than Encequidar to improve the oral absorption of Taxol. In MDA-MB-231 xenograft model, the oral administration of Taxol and 16 c showed high therapeutic efficiency and low toxicity, thus providing a valuable chemotherapy strategy.
Collapse
MESH Headings
- Paclitaxel/administration & dosage
- Paclitaxel/chemistry
- Paclitaxel/pharmacology
- Paclitaxel/pharmacokinetics
- Humans
- Administration, Oral
- Animals
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Mice
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/administration & dosage
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacokinetics
- Cell Line, Tumor
- Molecular Structure
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Xianjing Zhou
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Ping Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Yuyan Yang
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Wei Shi
- Center of Drug Discovery, State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Lei Liu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zhencheng Lai
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xing Zhang
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Peichen Pan
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Lan Li
- Department of Gastroenterology, T, he First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Juan Du
- Department of Gastroenterology, T, he First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Sunliang Cui
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
4
|
Zhang LZ, Du RJ, Wang D, Qin J, Yu C, Zhang L, Zhu HD. Enteral Route Nanomedicine for Cancer Therapy. Int J Nanomedicine 2024; 19:9889-9919. [PMID: 39351000 PMCID: PMC11439897 DOI: 10.2147/ijn.s482329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
With the in-depth knowledge of the pathological and physiological characteristics of the intestinal barrier-portal vein/intestinal lymphatic vessels-systemic circulation axis, oral targeted drug delivery is frequently being renewed. With many advantages, such as high safety, convenient administration, and good patient compliance, many researchers have begun to explore targeted drug delivery from intravenous injections to oral administration. Over the past few decades, the fields of materials science and nanomedicine have produced various drug delivery platforms that hold great potential in overcoming the multiple barriers associated with oral drug delivery. However, the oral transport of particles into the systemic circulation is extremely difficult due to immune rejection and biochemical invasion in the intestine, which limits absorption and entry into the bloodstream. The feasibility of the oral delivery of targeted drugs to sites outside the gastrointestinal tract (GIT) is unknown. This article reviews the biological barriers to drug absorption, the in vivo fate and transport mechanisms of drug carriers, the theoretical basis for oral administration, and the impact of carrier structural evolution on oral administration to achieve this goal. Finally, this article reviews the characteristics of different nano-delivery systems that can enhance the bioavailability of oral therapeutics and highlights their applications in the efficient creation of oral anticancer nanomedicines.
Collapse
Affiliation(s)
- Lin-Zhu Zhang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Rui-Jie Du
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Duo Wang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Juan Qin
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Chao Yu
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Lei Zhang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Hai-Dong Zhu
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
5
|
Cho H, Huh KM, Cho HJ, Kim B, Shim MS, Cho YY, Lee JY, Lee HS, Kwon YJ, Kang HC. Beyond nanoparticle-based oral drug delivery: transporter-mediated absorption and disease targeting. Biomater Sci 2024; 12:3045-3067. [PMID: 38712883 DOI: 10.1039/d4bm00313f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Various strategies at the microscale/nanoscale have been developed to improve oral absorption of therapeutics. Among them, gastrointestinal (GI)-transporter/receptor-mediated nanosized drug delivery systems (NDDSs) have drawn attention due to their many benefits, such as improved water solubility, improved chemical/physical stability, improved oral absorption, and improved targetability of their payloads. Their therapeutic potential in disease animal models (e.g., solid tumors, virus-infected lungs, metastasis, diabetes, and so on) has been investigated, and could be expanded to disease targeting after systemic/lymphatic circulation, although the detailed paths and mechanisms of endocytosis, endosomal escape, intracellular trafficking, and exocytosis through the epithelial cell lining in the GI tract are still unclear. Thus, this review summarizes and discusses potential GI transporters/receptors, their absorption and distribution, in vivo studies, and potential sequential targeting (e.g., oral absorption and disease targeting in organs/tissues).
Collapse
Affiliation(s)
- Hana Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| | - Kang Moo Huh
- Department of Polymer Science and Engineering & Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyun Ji Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| | - Bogeon Kim
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Yong-Yeon Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
- Regulated Cell Death (RCD) Control Material Research Institute, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Joo Young Lee
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
- Regulated Cell Death (RCD) Control Material Research Institute, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Hye Suk Lee
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
- Regulated Cell Death (RCD) Control Material Research Institute, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| | - Han Chang Kang
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
- Regulated Cell Death (RCD) Control Material Research Institute, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| |
Collapse
|
6
|
Zhang P, Chen Z, Zhou L, Gao J, Zheng H, Lin H, Zhu G, Qin X, Cao W. Carboxymethyl cellulose and carboxymethyl chitosan-based composite nanogel as a stable delivery vehicle for oyster peptides: Characterization, absorption and transport mechanism. Food Chem 2024; 442:138464. [PMID: 38245988 DOI: 10.1016/j.foodchem.2024.138464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 01/06/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
An oyster peptide (OPs)-loaded composite nanogel based on carboxymethyl cellulose and carboxymethyl chitosan (CMC@CMCS@OPs) was prepared, and the characterization, absorption and transport mechanism were further investigated. CMC@CMCS@OPs, a dense spherical microstructure with a diameter of ∼64 nm, which enhanced the thermal and digestive stabilities of individual OPs and improved its retention rate of hypoglycemic activity in vitro. The swelling response and in-vitro release profiles showed that CMC@CMCS@OPs could help OPs achieve targeted and controlled release in the intestine. In addition, CMC@CMCS@OPs had no cytotoxicity on Caco-2 cells, and its apparent permeability coefficients increased 4.70-7.45 times compared with OPs, with the absorption rate increased by 129.38 %. Moreover, the transcytosis of CMC@CMCS@OPs nanogel occurred primarily through the macropinocytosis pathway, endocytosis pathway and intestinal efflux transporter-mediated efflux. Altogether, these results suggested that CMC@CMCS@OPs nanogel could be as an effective OPs delivery device for enhancing its stability and absorption.
Collapse
Affiliation(s)
- Pei Zhang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhongqin Chen
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Longjian Zhou
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jialong Gao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Huina Zheng
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Haisheng Lin
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Guoping Zhu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoming Qin
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Wenhong Cao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
7
|
Li W, Zhang Y, Zhao J, Yang T, Xie J. L-carnitine modified nanoparticles target the OCTN2 transporter to improve the oral absorption of jujuboside B. Eur J Pharm Biopharm 2024; 196:114185. [PMID: 38280469 DOI: 10.1016/j.ejpb.2024.114185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/11/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
As a bioactive saponin derived from the seeds of Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. F. Chow, jujuboside B (JuB) shows great potential in anti-anxiety, anti-depression and improving learning and memory function. However, its oral bioavailability is very poor. In this study, a novel drug-loading nanoparticles system was prepared with polyethylene glycol and polylactic-co-glycolic acid copolymer (PEG-PLGA), and further modified with L-carnitine (LC) to target intestinal organic cation/carnitine transporter 2 (OCTN2) to improve the oral absorption of JuB. Under the optimized preparation conditions, the particle sizes of obtained JuB-PEG-PLGA nanoparticles (B-NPs) and LC modified B-NPs (LC-B-NPs) were 110.67 ± 11.37 nm and 134.00 ± 2.00 nm with the entrapment efficiency (EE%) 73.46 ± 1.26 % and 76.01 ± 2.10 %, respectively. The pharmacokinetics in SD rats showed that B-NPs and LC-B-NPs increased the bioavailability of JuB to 134.33 % and 159.04 % respectively. In Caco-2 cell model, the prepared nanoparticles significantly increased cell uptake of JuB, which verified the pharmacokinetic results. The absorption of LC-B-NPs mainly depended on OCTN2 transporter, and Na+ played an important role. Caveolin and clathrin were involved in the endocytosis of the two nanoparticles. In conclusion, both B-NPs and LC-B-NPs can improve the oral absorption of JuB, and the modification of LC can effectively target the OCTN2 transporter.
Collapse
Affiliation(s)
- Wei Li
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, People's Republic of China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Yanqing Zhang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, People's Republic of China.
| | - Jing Zhao
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, People's Republic of China
| | - Tan Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Junbo Xie
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.
| |
Collapse
|
8
|
Zhang Y, Wang Y, Li X, Nie D, Liu C, Gan Y. Ligand-modified nanocarriers for oral drug delivery: Challenges, rational design, and applications. J Control Release 2022; 352:813-832. [PMID: 36368493 DOI: 10.1016/j.jconrel.2022.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/15/2022]
Abstract
Ligand-modified nanocarriers (LMNCs) specific to their targets have attracted increasing interest for enhanced oral drug delivery in recent decades. Although the design of LMNCs for enhanced endocytosis and improved exposure of the loaded drugs through the oral route has received abundant attention, it remains unclear how the design influences their transcellular process, especially the key factors affecting their functions. This review discusses the extracellular and cellular barriers to orally administered LMNCs in the gastrointestinal (GI) tract and new discoveries regarding the GI protein corona and the sequential transport barriers that impede the preplanned movements of LMNCs after oral administration. Furthermore, innovative progress in considering key factors (including target selection, ligand properties, and other important factors) in the rational design of LMNCs for oral drug delivery is presented. In particular, some factors that endow LMNCs with efficient transcytosis rather than only endocytosis are highlighted. Finally, the prospects of orally administered LMNCs in disease therapy for the enhanced oral/local bioavailability of active pharmaceutical ingredients, as well as emerging delivery routes, such as lymphatic drug delivery and systemic location-specific drug release based on oral transcellular LMNCs, are discussed.
Collapse
Affiliation(s)
- Yaqi Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaying Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Nie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Gan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China.
| |
Collapse
|
9
|
Ren Y, Wu W, Zhang X. The feasibility of oral targeted drug delivery: gut immune to particulates? Acta Pharm Sin B 2022. [DOI: 10.1016/j.apsb.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
10
|
Wang X, Zheng Y, Qiu L, Ouyang H, Xu X, Xu W, Zhang Y, Xu W. Evaluation and antitumor mechanism of functionalized chitosan-based polymeric micelles for oral delivery of paclitaxel. Int J Pharm 2022; 625:122138. [PMID: 36029990 DOI: 10.1016/j.ijpharm.2022.122138] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/30/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022]
Abstract
D-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS)-modified carboxymethyl chitosan-rhein (TCR) polymeric micelles (PMs) self-assembled by TCR conjugate were constructed for oral delivery of paclitaxel (PTX). PTX-loaded TCR PMs with a drug loading capacity of 47.52 ± 1.65 % significantly improved the intestinal absorption and oral bioavailability of PTX. TCR PMs loaded with PTX displayed time- and concentration-dependent cytotoxicity in Caco-2, MCF-7 and Taxol-resistant MCF-7 (MCF-7/Taxol) cells. In MCF-7/Taxol cells, PTX-loaded TCR PMs promoted apoptosis and changed cell cycle, and TCR conjugate exhibited a P-gp inhibition ability and caused ATP depletion. Moreover, confocal imaging of intestinal sections, Caco-2 cell uptake assay and in vivo bioimaging using environmental response fluorescence probe suggested that TCR PMs loaded with drugs can be absorbed as a whole through the intestinal epithelium after oral administration, enter systemic circulation, and then get to the tumor site. Remarkably, PTX-loaded TCR PMs displayed a significant antitumor effect in H22 tumor xenograft mice and the MCF-7 or MCF-7/Taxol xenograft zebrafish model, which was related to the inhibitory function of TCR conjugate for P-gp activity and P-gp and MDR1 expression. Functionalized TCR PMs are expected to improve the oral therapeutic efficacy of poorly water-soluble antitumor drugs and treat drug-resistant tumors.
Collapse
Affiliation(s)
- Xiaoying Wang
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Yaling Zheng
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Liangzhen Qiu
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Huizhi Ouyang
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Xueya Xu
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Wen Xu
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Yuqin Zhang
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Wei Xu
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| |
Collapse
|
11
|
Liu W, Han Y, Xin X, Chen L, Liu Y, Liu C, Zhang X, Jin M, Jin J, Gao Z, Huang W. Biomimetic and temporal-controlled nanocarriers with ileum transporter targeting for achieving oral administration of chemotherapeutic drugs. J Nanobiotechnology 2022; 20:281. [PMID: 35705976 PMCID: PMC9199201 DOI: 10.1186/s12951-022-01460-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/11/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Oral chemotherapy is preferred for patients with cancer owing to its multiple advantages, including convenience, better patient compliance, and improved safety. Nevertheless, various physical barriers exist in this route that hamper the development of oral chemotherapeutic formulations, including destruction of drugs in the gastrointestinal tract (GIT), low permeability in enterocytes, and short residence time in the intestine. To overcome these limitations, it is necessary to design an efficient oral drug delivery system with high efficacy and improved safety. RESULTS Herein, we designed novel glycocholic acid (GCA)-functionalized double layer nanoparticles (GCA-NPs), which can act via an endogenous pathway and in a temporally controlled manner in the intestine, to enhance the oral bioavailability of hydrophobic chemotherapeutic drugs such as paclitaxel (PTX). GCA-NPs were composed of quercetin (Qu)-modified liposomes (QL) coated with GCA-chitosan oligosaccharide conjugate (GCOS). The GCA-NPs thus prepared showed prolonged intestinal retention time and good GIT stability due to the presence of chitosan oligosaccharide (COS) and enhanced active transportation via intestinal apical sodium-dependent bile acid transporter (ASBT) due to the presence of GCA. GCA-NPs also efficiently inhibited intestinal P-gp induced by Qu. PTX-loaded GCA-NPs (PTX@GCA-NPs) had a particle size of 84 nm and an entrapment efficiency of 98% with good stability. As a result, the oral bioavailability of PTX was increased 19-fold compared to that of oral Taxol® at the same dose. Oral PTX@GCA-NPs displayed superior antitumor efficacy and better safety than Taxol® when administered intravenously. CONCLUSIONS Our novel drug delivery system showed remarkable efficacy in overcoming multiple limitations and is a promising carrier for oral delivery of multiple drugs, which addresses several challenges in oral delivery in the clinical context.
Collapse
Affiliation(s)
- Wei Liu
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China ,grid.506261.60000 0001 0706 7839Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China
| | - Ying Han
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China ,grid.506261.60000 0001 0706 7839Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China
| | - Xin Xin
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China ,grid.506261.60000 0001 0706 7839Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China
| | - Liqing Chen
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China ,grid.506261.60000 0001 0706 7839Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China
| | - Yanhong Liu
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China ,grid.506261.60000 0001 0706 7839Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China
| | - Chao Liu
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China ,grid.506261.60000 0001 0706 7839Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China
| | - Xintong Zhang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China ,grid.506261.60000 0001 0706 7839Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China
| | - Mingji Jin
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China ,grid.506261.60000 0001 0706 7839Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China
| | - Jingzhe Jin
- Department of Oncology, The First Hospital of Dandong City, Dandong, Liaoning 118000 People’s Republic of China
| | - Zhonggao Gao
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China ,grid.506261.60000 0001 0706 7839Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China
| | - Wei Huang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China ,grid.506261.60000 0001 0706 7839Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China
| |
Collapse
|
12
|
Pednekar DD, Liguori MA, Marques CNH, Zhang T, Zhang N, Zhou Z, Amoako K, Gu H. From Static to Dynamic: A Review on the Role of Mucus Heterogeneity in Particle and Microbial Transport. ACS Biomater Sci Eng 2022; 8:2825-2848. [PMID: 35696291 DOI: 10.1021/acsbiomaterials.2c00182] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mucus layers (McLs) are on the front line of the human defense system that protect us from foreign abiotic/biotic particles (e.g., airborne virus SARS-CoV-2) and lubricates our organs. Recently, the impact of McLs on human health (e.g., nutrient absorption and drug delivery) and diseases (e.g., infections and cancers) has been studied extensively, yet their mechanisms are still not fully understood due to their high variety among organs and individuals. We characterize these variances as the heterogeneity of McLs, which lies in the thickness, composition, and physiology, making the systematic research on the roles of McLs in human health and diseases very challenging. To advance mucosal organoids and develop effective drug delivery systems, a comprehensive understanding of McLs' heterogeneity and how it impacts mucus physiology is urgently needed. When the role of airway mucus in the penetration and transmission of coronavirus (CoV) is considered, this understanding may also enable a better explanation and prediction of the CoV's behavior. Hence, in this Review, we summarize the variances of McLs among organs, health conditions, and experimental settings as well as recent advances in experimental measurements, data analysis, and model development for simulations.
Collapse
Affiliation(s)
- Dipesh Dinanath Pednekar
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Madison A Liguori
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | | | - Teng Zhang
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, New York 13244, United States.,BioInspired Syracuse, Syracuse University, Syracuse, New York 13244, United States
| | - Nan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zejian Zhou
- Department of Electrical and Computer Engineering and Computer Science, University of New Haven, West Haven, Connecticut 06516, United States
| | - Kagya Amoako
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Huan Gu
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| |
Collapse
|
13
|
Du J, Zong L, Li M, Yu K, Qiao Y, Yuan Q, Pu X. Two-Pronged Anti-Tumor Therapy by a New Polymer-Paclitaxel Conjugate Micelle with an Anti-Multidrug Resistance Effect. Int J Nanomedicine 2022; 17:1323-1341. [PMID: 35345783 PMCID: PMC8957348 DOI: 10.2147/ijn.s348598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Cancerous tumors are still a major disease that threatens human life, with tumor multidrug resistance (MDR) being one of the main reasons for the failure of chemotherapy. Thus, reversing tumor MDR has become a research focus of medical scientists. Methods Here, a reduction-sensitive polymer prodrug micelle, mPEG-DCA-SS-PTX (PDSP), was manufactured with a new polymer inhibitor of drug resistance as a carrier to overcome MDR and improve the anti-tumor effect of PTX. Results The PDSP micelles display good stability, double-responsive drug release, and excellent biocompatibility. The PDSP micelles reduced the cytotoxicity of PTX to normal HL-7702 cells and enhanced that to SMMC-7721 and MCF-7 cells in vitro. Improved sensitivity of A549/ADR to PDSP was also observed in vitro. Furthermore, in vivo experiments show reduced systemic toxicity and enhanced therapeutic efficacy of PTX to H22 subcutaneous tumor-bearing mice. Conclusion This work proves that the reduction-sensitive polymer prodrug micelles carried by the new polymer inhibitor can be used as an alternative delivery system to target tumors and reverse MDR for paclitaxel and other tumor-resistant drugs.
Collapse
Affiliation(s)
- Juan Du
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, People’s Republic of China
| | - Lanlan Zong
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Mengmeng Li
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Keke Yu
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Yonghui Qiao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Qi Yuan
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Xiaohui Pu
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| |
Collapse
|
14
|
Huang H, Lou Z, Zheng S, Wu J, Yao Q, Chen R, Kou L, Chen D. Intra-articular drug delivery systems for osteoarthritis therapy: shifting from sustained release to enhancing penetration into cartilage. Drug Deliv 2022; 29:767-791. [PMID: 35261301 PMCID: PMC8920370 DOI: 10.1080/10717544.2022.2048130] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a progressive chronic inflammation that leads to cartilage degeneration. OA Patients are commonly given pharmacological treatment, but the available treatments are not sufficiently effective. The development of sustained-release drug delivery systems (DDSs) for OA may be an attractive strategy to prevent rapid drug clearance and improve the half-life of a drug at the joint cavity. Such delivery systems will improve the therapeutic effects of anti-inflammatory effects in the joint cavity. Whereas, for disease-modifying OA drugs (DMOADs) which target chondrocytes or act on mesenchymal stem cells (MSCs), the cartilage-permeable DDSs are required to maximize their efficacy. This review provides an overview of joint structure in healthy and pathological conditions, introduces the advances of the sustained-release DDSs and the permeable DDSs, and discusses the rational design of the permeable DDSs for OA treatment. We hope that the ideas generated in this review will promote the development of effective OA drugs in the future.
Collapse
Affiliation(s)
- Huirong Huang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zijian Lou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shimin Zheng
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianing Wu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ruijie Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Daosen Chen
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
15
|
Yao Q, Shi Y, Xia X, Tang Y, Jiang X, Zheng YW, Zhang H, Chen R, Kou L. Bioadhesive hydrogel comprising bilirubin/β-cyclodextrin inclusion complexes promote diabetic wound healing. PHARMACEUTICAL BIOLOGY 2021; 59:1139-1149. [PMID: 34425063 PMCID: PMC8386728 DOI: 10.1080/13880209.2021.1964543] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
CONTEXT Chronic non-healing diabetic wound therapy is an important clinical challenge. Manipulating the release of bioactive factors from an adhesive hydrogel is an effective approach to repair chronic wounds. As an endogenous antioxidant, bilirubin (BR) has been shown to promote wound healing. Nonetheless, its application is limited by its low water solubility and oxidative degradation. OBJECTIVE This study developed a bilirubin-based formulation for diabetic wound healing. MATERIALS AND METHODS Bilirubin was incorporated into β-CD-based inclusion complex (BR/β-CD) which was then loaded into a bioadhesive hydrogel matrix (BR/β-CD/SGP). Scratch wound assays were performed to examine the in vitro pro-healing activity of BR/β-CD/SGP (25 μg/mL of BR). Wounds of diabetic or non-diabetic rats were covered with BR or BR/β-CD/SGP hydrogels (1 mg/mL of BR) and changed every day for a period of 7 or 21 days. Histological assays were conducted to evaluate the in vivo effect of BR/β-CD/SGP. RESULTS Compared to untreated (18.7%) and BR (55.2%) groups, wound closure was more pronounced (65.0%) in BR/β-CD/SGP group. In diabetic rats, the wound length in BR/β-CD/SGP group was smaller throughout the experimental period than untreated groups. Moreover, BR/β-CD/SGP decreased TNF-α levels to 7.7% on day 3, and elevated collagen deposition and VEGF expression to 11.9- and 8.2-fold on day 14. The therapeutic effects of BR/β-CD/SGP were much better than those of the BR group. Similar observations were made in the non-diabetic model. DISCUSSION AND CONCLUSION BR/β-CD/SGP promotes wound healing and tissue remodelling in both diabetic and non-diabetic rats, indicating an ideal wound-dressing agent.
Collapse
Affiliation(s)
- Qing Yao
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yannan Shi
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xing Xia
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yingying Tang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xue Jiang
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ya-Wen Zheng
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hailin Zhang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Children’s Respiration Disease, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Ruijie Chen 109 Xueyuan West Road, Wenzhou325027, China
| | - Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- CONTACT Longfa Kou
| |
Collapse
|
16
|
Kou L, Jiang X, Tang Y, Xia X, Li Y, Cai A, Zheng H, Zhang H, Ganapathy V, Yao Q, Chen R. Resetting amino acid metabolism of cancer cells by ATB 0,+-targeted nanoparticles for enhanced anticancer therapy. Bioact Mater 2021; 9:15-28. [PMID: 34820552 PMCID: PMC8586589 DOI: 10.1016/j.bioactmat.2021.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 02/06/2023] Open
Abstract
Reprogramed cellular metabolism is one of the most significant hallmarks of cancer. All cancer cells exhibit increased demand for specific amino acids, and become dependent on either an exogenous supply or upregulated de novo synthesis. The resultant enhanced availability of amino acids supports the reprogramed metabolic pathways and fuels the malignant growth and metastasis of cancers by providing energy and critical metabolic intermediates, facilitating anabolism, and activating signaling networks related to cell proliferation and growth. Therefore, pharmacologic blockade of amino acid entry into cancer cells is likely to have a detrimental effect on cancer cell growth. Here we developed a nanoplatform (LJ@Trp-NPs) to therapeutically target two transporters, SLC6A14 (ATB0,+) and SLC7A5 (LAT1), that are known to be essential for the sustenance of amino acid metabolism in most cancers. The LJ@Trp-NPs uses tryptophan to guide SLC6A14-targeted delivery of JPH203, a high-affinity inhibitor of SLC7A5. In the process, SLC6A14 is also down-regulated. We tested the ability of this strategy to synergize with the anticancer efficacy of lapatinib, an inhibitor of EGFR/HER1/HER2-assocated kinase. These studies show that blockade of amino acid entry amplifies the anticancer effect of lapatinib via interference with mTOR signaling, promotion of apoptosis, and suppression of cell proliferation and metastasis. This represents the first study to evaluate the impact of amino acid starvation on the anticancer efficacy of widely used kinase inhibitor. Blockade of amino acid uptake synergizes Lapatinib for enhanced anticancer therapy. Tryptophan-conjugated nanoparticles target SLC6A14 for precise cancer drug delivery. SLC6A14 was downregulated in the uptake of SLC6A14-targeted nanoparticles. JPH203 inhibits SLC7A5 to deactivate mTOR signaling. Nanoparticle block amino acid delivery to starve cancer cells.
Collapse
Affiliation(s)
- Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xinyu Jiang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yingying Tang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xing Xia
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yingtao Li
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Department of Children's Respiration Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Aimin Cai
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Hailun Zheng
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Hailin Zhang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Department of Children's Respiration Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Vadivel Ganapathy
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Qing Yao
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
17
|
Klimak M, Nims RJ, Pferdehirt L, Collins KH, Harasymowicz NS, Oswald SJ, Setton LA, Guilak F. Immunoengineering the next generation of arthritis therapies. Acta Biomater 2021; 133:74-86. [PMID: 33823324 DOI: 10.1016/j.actbio.2021.03.062] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/08/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022]
Abstract
Immunoengineering continues to revolutionize healthcare, generating new approaches for treating previously intractable diseases, particularly in regard to cancer immunotherapy. In joint diseases, such as osteoarthritis (OA) and rheumatoid arthritis (RA), biomaterials and anti-cytokine treatments have previously been at that forefront of therapeutic innovation. However, while many of the existing anti-cytokine treatments are successful for a subset of patients, these treatments can also pose severe risks, adverse events and off-target effects due to continuous delivery at high dosages or a lack of disease-specific targets. The inadequacy of these current treatments has motivated the development of new immunoengineering strategies that offer safer and more efficacious alternative therapies through the precise and controlled targeting of specific upstream immune responses, including direct and mechanistically-driven immunoengineering approaches. Advances in the understanding of the immunomodulatory pathways involved in musculoskeletal disease, in combination with the growing emphasis on personalized medicine, stress the need for carefully considering the delivery strategies and therapeutic targets when designing therapeutics to better treat RA and OA. Here, we focus on recent advances in biomaterial and cell-based immunomodulation, in combination with genetic engineering, for therapeutic applications in joint diseases. The application of immunoengineering principles to the study of joint disease will not only help to elucidate the mechanisms of disease pathogenesis but will also generate novel disease-specific therapeutics by harnessing cellular and biomaterial responses. STATEMENT OF SIGNIFICANCE: It is now apparent that joint diseases such as osteoarthritis and rheumatoid arthritis involve the immune system at both local (i.e., within the joint) and systemic levels. In this regard, targeting the immune system using both biomaterial-based or cellular approaches may generate new joint-specific treatment strategies that are well-controlled, safe, and efficacious. In this review, we focus on recent advances in immunoengineering that leverage biomaterials and/or genetically engineered cells for therapeutic applications in joint diseases. The application of such approaches, especially synergistic strategies that target multiple immunoregulatory pathways, has the potential to revolutionize our understanding, treatment, and prevention of joint diseases.
Collapse
Affiliation(s)
- Molly Klimak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Robert J Nims
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Lara Pferdehirt
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Kelsey H Collins
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Natalia S Harasymowicz
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Sara J Oswald
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Lori A Setton
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA.
| |
Collapse
|
18
|
Kou L, Jiang X, Lin X, Huang H, Wang J, Yao Q, Chen R. Matrix Metalloproteinase Inspired Therapeutic Strategies for Bone Diseases. Curr Pharm Biotechnol 2021; 22:451-467. [PMID: 32603279 DOI: 10.2174/1389201021666200630140735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/18/2020] [Accepted: 06/11/2020] [Indexed: 01/18/2023]
Abstract
Matrix Metalloproteinases (MMPs), as a family of zinc-containing enzymes, show the function of decomposing Extracellular Matrix (ECM) and participate in the physiological processes of cell migration, growth, inflammation, and metabolism. Clinical and experimental studies have indicated that MMPs play an essential role in tissue injury and repair as well as tumor diagnosis, metastasis, and prognosis. An increasing number of researchers have paid attention to their functions and mechanisms in bone health and diseases. The present review focuses on MMPs-inspired therapeutic strategies for the treatment of bone-related diseases. We introduce the role of MMPs in bone diseases, highlight the MMPs-inspired therapeutic options, and posit MMPs as a trigger for smart cell/drug delivery.
Collapse
Affiliation(s)
- Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinyu Jiang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinlu Lin
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huirong Huang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jun Wang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan, Wenzhou, China
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
19
|
Lou D, Lou Z, Lin Y, Shangguan H, Lin Y, Luo Q, Zhang H, Lin G, Chen R, Kou L, Bao S. ATB 0,+-targeted delivery of triptolide prodrugs for safer and more effective pancreatic cancer therapy. Bioorg Med Chem Lett 2020; 33:127728. [PMID: 33346010 DOI: 10.1016/j.bmcl.2020.127728] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022]
Abstract
Triptolide (TP) is a diterpene epoxide component extracted from Tripterygium wilfordii and has been shown to possess an impressive anticancer effect. However, TP has not yet entered any clinic trials due to the severe adverse effects that resulted from the off-target absorption and distribution found in animal studies. In this study, we designed and synthesized three amino acids (tryptophan, valine, and lysine) based TP prodrugs to target ATB0,+ which are highly expressed in pancreatic cancer cells for more effective pancreatic cancer therapy. The stability, uptake profiles, uptake mechanism, and cancer-killing ability were studied in vitro. All three prodrugs showed increased uptake and enhanced cytotoxicity in pancreatic cancer cells, but not in normal pancreatic cells. The difference in killing effect on normal and cancer cells was attributed to pancreatic cancer over-expressed ATB0,+-mediated uptake. Specifically, tryptophan-conjugated TP prodrug (TP-Trp) showed the highest uptake and the best cancer cell killing effect, considered as the best candidate. The present study provided the proof-of-concept of exploiting TP prodrug to target ATB0,+ for pancreatic cancer-selective delivery and treatment.
Collapse
Affiliation(s)
- Dan Lou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Wenzhou 325027, China
| | - Zijian Lou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Wenzhou 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325027, China
| | - Yuanzhen Lin
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Wenzhou 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325027, China
| | - Hao Shangguan
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Wenzhou 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325027, China
| | - Yujie Lin
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Wenzhou 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325027, China
| | - Qiuhua Luo
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Hailin Zhang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Wenzhou 325027, China; Department of Children's Respiration Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Guangyong Lin
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Wenzhou 325027, China
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Wenzhou 325027, China
| | - Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Wenzhou 325027, China.
| | - Shihui Bao
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Wenzhou 325027, China.
| |
Collapse
|
20
|
Kou L, Yao Q, Zhang H, Chu M, Bhutia YD, Chen R, Ganapathy V. Transporter-Targeted Nano-Sized Vehicles for Enhanced and Site-Specific Drug Delivery. Cancers (Basel) 2020; 12:E2837. [PMID: 33019627 PMCID: PMC7599460 DOI: 10.3390/cancers12102837] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Nano-devices are recognized as increasingly attractive to deliver therapeutics to target cells. The specificity of this approach can be improved by modifying the surface of the delivery vehicles such that they are recognized by the target cells. In the past, cell-surface receptors were exploited for this purpose, but plasma membrane transporters also hold similar potential. Selective transporters are often highly expressed in biological barriers (e.g., intestinal barrier, blood-brain barrier, and blood-retinal barrier) in a site-specific manner, and play a key role in the vectorial transfer of nutrients. Similarly, selective transporters are also overexpressed in the plasma membrane of specific cell types under pathological states to meet the biological needs demanded by such conditions. Nano-drug delivery systems could be strategically modified to make them recognizable by these transporters to enhance the transfer of drugs across the biological barriers or to selectively expose specific cell types to therapeutic drugs. Here, we provide a comprehensive review and detailed evaluation of the recent advances in the field of transporter-targeted nano-drug delivery systems. We specifically focus on areas related to intestinal absorption, transfer across blood-brain barrier, tumor-cell selective targeting, ocular drug delivery, identification of the transporters appropriate for this purpose, and details of the rationale for the approach.
Collapse
Affiliation(s)
- Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang 325027, China;
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Zhejiang 325027, China; (Q.Y.); (H.Z.); (M.C.)
| | - Qing Yao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Zhejiang 325027, China; (Q.Y.); (H.Z.); (M.C.)
- Department of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang 325035, China
| | - Hailin Zhang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Zhejiang 325027, China; (Q.Y.); (H.Z.); (M.C.)
- Department of Children’s Respiration Disease, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang 325027, China
| | - Maoping Chu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Zhejiang 325027, China; (Q.Y.); (H.Z.); (M.C.)
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang 325027, China
| | - Yangzom D. Bhutia
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang 325027, China;
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Zhejiang 325027, China; (Q.Y.); (H.Z.); (M.C.)
| | - Vadivel Ganapathy
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang 325027, China;
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Zhejiang 325027, China; (Q.Y.); (H.Z.); (M.C.)
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| |
Collapse
|
21
|
Console L, Scalise M, Mazza T, Pochini L, Galluccio M, Giangregorio N, Tonazzi A, Indiveri C. Carnitine Traffic in Cells. Link With Cancer. Front Cell Dev Biol 2020; 8:583850. [PMID: 33072764 PMCID: PMC7530336 DOI: 10.3389/fcell.2020.583850] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022] Open
Abstract
Metabolic flexibility is a peculiar hallmark of cancer cells. A growing number of observations reveal that tumors can utilize a wide range of substrates to sustain cell survival and proliferation. The diversity of carbon sources is indicative of metabolic heterogeneity not only across different types of cancer but also within those sharing a common origin. Apart from the well-assessed alteration in glucose and amino acid metabolisms, there are pieces of evidence that cancer cells display alterations of lipid metabolism as well; indeed, some tumors use fatty acid oxidation (FAO) as the main source of energy and express high levels of FAO enzymes. In this metabolic pathway, the cofactor carnitine is crucial since it serves as a “shuttle-molecule” to allow fatty acid acyl moieties entering the mitochondrial matrix where these molecules are oxidized via the β-oxidation pathway. This role, together with others played by carnitine in cell metabolism, underlies the fine regulation of carnitine traffic among different tissues and, within a cell, among different subcellular compartments. Specific membrane transporters mediate carnitine and carnitine derivatives flux across the cell membranes. Among the SLCs, the plasma membrane transporters OCTN2 (Organic cation transport novel 2 or SLC22A5), CT2 (Carnitine transporter 2 or SLC22A16), MCT9 (Monocarboxylate transporter 9 or SLC16A9) and ATB0, + [Sodium- and chloride-dependent neutral and basic amino acid transporter B(0+) or SLC6A14] together with the mitochondrial membrane transporter CAC (Mitochondrial carnitine/acylcarnitine carrier or SLC25A20) are the most acknowledged to mediate the flux of carnitine. The concerted action of these proteins creates a carnitine network that becomes relevant in the context of cancer metabolic rewiring. Therefore, molecular mechanisms underlying modulation of function and expression of carnitine transporters are dealt with furnishing some perspective for cancer treatment.
Collapse
Affiliation(s)
- Lara Console
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Tiziano Mazza
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Lorena Pochini
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Michele Galluccio
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Nicola Giangregorio
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy
| | - Annamaria Tonazzi
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy
| | - Cesare Indiveri
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy
| |
Collapse
|