1
|
Bernardo VS, Torres FF, Zucão ACA, Chaves NA, Santana ILR, da Silva DGH. Disrupted homeostasis in sickle cells: Expanding the comprehension of metabolism adaptation and related therapeutic strategies. Tissue Cell 2025; 93:102717. [PMID: 39805212 DOI: 10.1016/j.tice.2024.102717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/02/2024] [Accepted: 12/29/2024] [Indexed: 01/16/2025]
Abstract
Sickle cell disease (SCD) is a hereditary hemolytic anemia associated with the alteration of the membrane composition of the sickle erythrocytes, the loss of glycolysis, dysregulation of the pyruvate phosphatase pathway, and changes in nucleotide metabolism of the sickle red blood cell (RBC). This review provides a comprehensive overview of the impact of the presence of Hb S, which leads to the disruption of the normal RBC metabolism. The intricate interplay between the redox and energetic balance in erythrocytic cells, where the glycolysis, pentose phosphate pathway, and methemoglobin reductase pathways are all altered in sickle RBC, is a key focus. Moreover, this review summarizes the current knowledge about the disease-modifying agents and their action mechanisms based on the sickle RBC alterations previously mentioned (i.e., their association with beneficial effects on the sickle cells' membrane, to their RBCs' energy metabolism, and to their oxidative status). Therefore, providing a comprehensive understanding of how sickle cells cope with the disruption of metabolic homeostasis and the most promising therapeutic agents able to ameliorate the various consequences of abnormal sickle RBC alterations.
Collapse
Affiliation(s)
| | | | | | - Nayara Alves Chaves
- Department of Biology, Universidade Estadual Paulista (UNESP), São Paulo, Brazil
| | | | - Danilo Grünig Humberto da Silva
- Department of Biology, Universidade Estadual Paulista (UNESP), São Paulo, Brazil; Campus de Três Lagoas, Universidade Federal de Mato Grosso do Sul (CPTL/UFMS), Mato Grosso do Sul, Brazil.
| |
Collapse
|
2
|
Desai NJ, Gonzalez-Herrera AL, Malay S, Brown T, Owusu-Ansah A, Ahuja S. Influence of Weather on Sickle Cell Disease Vaso-Occlusive Episodes and Acute Chest Syndrome: A Nationwide Sample Analysis. Pediatr Blood Cancer 2025; 72:e31504. [PMID: 39763299 DOI: 10.1002/pbc.31504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/02/2024] [Accepted: 12/11/2024] [Indexed: 01/25/2025]
Abstract
BACKGROUND The clinical manifestations of sickle cell disease (SCD) result in significant morbidity and healthcare costs. The effect of weather as a risk factor for the development of vaso-occlusive episodes (VOEs) has been previously studied, although with variable results. The aim of our retrospective, nationwide study was to determine the association between weather patterns and pediatric VOE and acute chest syndrome (ACS). PROCEDURE Demographic and clinical data were obtained between 2015 and 2022 from the Pediatric Health Information System and merged with weather data from the National Climatic Data Center. RESULTS We observed a higher incidence of VOE and ACS admissions during the colder months. Results also revealed a negative association between VOE admissions and average temperature, whereas a positive association was found for ACS admissions. CONCLUSION Medical providers should continue to counsel patients with SCD to take appropriate precautions during cold weather.
Collapse
Affiliation(s)
- Neha J Desai
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Sindhoosha Malay
- Department of Pediatrics, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, Ohio, USA
| | - Tracie Brown
- Division of Pediatric Hematology & Oncology, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, Ohio, USA
| | - Amma Owusu-Ansah
- Division of Pediatric Hematology & Oncology, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, Ohio, USA
| | - Sanjay Ahuja
- Division of Pediatric Hematology & Oncology, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, Ohio, USA
| |
Collapse
|
3
|
Soni Z, Maheta D, Agrawal S, Frishman WH, Aronow WS. Sickle Cell Trait and Vascular Health: Insights into Complications and Management. Cardiol Rev 2025:00045415-990000000-00417. [PMID: 39932271 DOI: 10.1097/crd.0000000000000857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Sickle cell trait was once considered to benign hereditary condition, besides the association of renal medullary carcinoma, affecting red blood cells. The inherited disorder creates several health issues under various conditions, such as dehydration, hypoxia, or extreme physical exertion. Healthcare professionals and patients with the disorder should understand the importance of vascular complications in sickle cell traits. This article emphasizes the pathophysiology, epidemiology, and molecular basis of the sickle cell trait, which involves virtually every organ system and involves vascular endothelial dysfunction, cerebral vasculopathy, renal complications, cardiopulmonary manifestations, and splenic issues. Techniques of prevention and management strategies for quality-of-life improvement in the case of sickle cell trait are presented.
Collapse
Affiliation(s)
- Zeal Soni
- From the Department of Medicine, Smt. NHLMMC, Ahmedabad, India
| | | | - Siddharth Agrawal
- Department of Medicine, New York Medical College/Landmark Medical Center, Woonsocket, RI
| | | | - Wilbert S Aronow
- Departments of Cardiology and Medicine, New York Medical College and Westchester Medical Center, Valhalla, NY
| |
Collapse
|
4
|
Perez AM, Garcia-Guaqueta DP, Setty BN, Neri C, Torres AR. Children and Adolescents With Sickle Cell Disease and Skull Infarction: A Systematic Review. J Child Neurol 2024; 39:433-439. [PMID: 39228213 DOI: 10.1177/08830738241274352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
INTRODUCTION Skull infarction is an uncommonly reported complication of sickle cell disease. We aimed to characterize the clinical and imaging features of skull infarction in pediatric patients with sickle cell disease. METHODS We searched the PubMed database for case reports on skull bone infarction in pediatric patients with sickle cell disease. Out of 67 records retrieved, 15 met inclusion criteria, and a 16th case reported by the senior author was included. We extracted and analyzed clinical and imaging data. RESULTS The most common symptom at onset was headache (88%). Bilateral skull infarction (50%) and parietal bone involvement (82%) were frequent imaging findings. Epidural hematoma developed in 65% of the cases, 30% of patients required drainage, and exchange infusion was reported in 18%. No fatal outcomes were reported. CONCLUSIONS Skull infarction is a potentially severe complication of sickle cell disease presenting unique clinical challenges. Acute headaches should raise suspicion for this condition and may require additional investigation.
Collapse
Affiliation(s)
- Alexia M Perez
- Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | | | - Bindu N Setty
- Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Caitlin Neri
- Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Alcy R Torres
- Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
5
|
Igbineweka NE, van Loon JJWA. Gene-environmental influence of space and microgravity on red blood cells with sickle cell disease. NPJ Genom Med 2024; 9:44. [PMID: 39349487 PMCID: PMC11442622 DOI: 10.1038/s41525-024-00427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/09/2024] [Indexed: 10/02/2024] Open
Abstract
A fundamental question in human biology and for hematological disease is how do complex gene-environment interactions lead to individual disease outcome? This is no less the case for sickle cell disease (SCD), a monogenic disorder of Mendelian inheritance, both clinical course, severity, and treatment response, is variable amongst affected individuals. New insight and discovery often lie between the intersection of seemingly disparate disciplines. Recently, opportunities for space medicine have flourished and have offered a new paradigm for study. Two recent Nature papers have shown that hemolysis and oxidative stress play key mechanistic roles in erythrocyte pathogenesis during spaceflight. This paper reviews existing genetic and environmental modifiers of the sickle cell disease phenotype. It reviews evidence for erythrocyte pathology in microgravity environments and demonstrates why this may be relevant for the unique gene-environment interaction of the SCD phenotype. It also introduces the hematology and scientific community to methodological tools for evaluation in space and microgravity research. The increasing understanding of space biology may yield insight into gene-environment influences and new treatment paradigms in SCD and other hematological disease phenotypes.
Collapse
Affiliation(s)
- Norris E Igbineweka
- Imperial College London, Centre for Haematology, Department of Immunology & Inflammation, Commonwealth Building, Hammersmith Campus, Du Cane, London, W12 0NN, UK.
- Department of Haematology, King's College Hospital NHS Foundation Trust Denmark Hill, SE5 9RS, London, UK.
| | - Jack J W A van Loon
- Dutch Experiment Support Center (DESC), Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam Bone Center (ABC), Amsterdam UMC Location VU University Medical Center (VUmc) & Academic Centre for Dentistry Amsterdam (ACTA), Gustav Mahlerlaan 3004, 1081, LA Amsterdam, The Netherlands
- European Space Agency (ESA), European Space Research and Technology Centre (ESTEC), TEC-MMG, Keplerlaan 1, 2201, AZ Noordwijk, The Netherlands
| |
Collapse
|
6
|
Shah S, Alberts AH, Ngo TB, Lucke‐Wold B. Stroke in sickle cell patients, epidemiology, pathophysiology, systemic and surgical treatment options and prevention strategies. CLINICAL AND TRANSLATIONAL DISCOVERY 2024; 4. [DOI: 10.1002/ctd2.303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/05/2024] [Indexed: 01/08/2025]
Abstract
AbstractBackgroundA hereditary haemoglobinopathy known as sickle cell disease (SCD) affects over 100 000 people in the United States severely. Cerebrovascular disease is a prominent consequence of SCD. By the age of 30, 53% of patients have silent cerebral infarcts (SCIs) (a stroke that occurs without any obvious symptoms because it damages a small part of the brain that isn't responsible for any essential functions), and by the age of 40, 3.8% have overt strokes.Main bodyThe multidimensional burden of cerebrovascular illness in SCD is reviewed in detail in this article, which includes both clinical strokes and the frequently asymptomatic SCIs. The intricate pathophysiology of SCD and stroke is explored. With SCD, there are currently very few methods for preventing primary and secondary stroke; the most common ones are hydroxyurea and blood transfusion. Nevertheless, not enough research has been done on the possible contributions of anticoagulation and aspirin to strokes linked to SCD. Promising evidence is also highlighted in the study, suggesting that new drugs intended to treat SCD may be able to alleviate leg ulcers and renal impairment in addition to reducing unusually high transcranial Doppler flow velocity – a crucial component of cerebrovascular events. Given that these novel medications specifically target haemolysis and vaso‐occlusion, the two main causes of strokes in this population, more research is desperately needed to determine whether they are effective in avoiding strokes in people with SCD. The literature review also emphasizes how common healthcare inequities are and how they hinder advancements in SCD research and management in the United States.ConclusionTo successfully address these inequities, the evaluation recommends more funding for both SCD management and research, as well as for patient and clinician education. This multimodal viewpoint highlights the intricate terrain of cerebrovascular problems associated with SCD and the urgent need for all‐encompassing and fair strategies to improve patient outcomes and advance research.
Collapse
Affiliation(s)
- Siddharth Shah
- Department of Neurosurgery University of Florida Gainesville Florida USA
| | - Amelia H. Alberts
- Department of Neurosurgery University of Florida Gainesville Florida USA
| | - Tran B. Ngo
- Department of Neurosurgery University of Florida Gainesville Florida USA
| | - Brandon Lucke‐Wold
- Department of Neurosurgery University of Florida Gainesville Florida USA
| |
Collapse
|
7
|
Benwell CJ, Johnson RT, Taylor JAGE, Lambert J, Robinson SD. A proteomics approach to isolating neuropilin-dependent α5 integrin trafficking pathways: neuropilin 1 and 2 co-traffic α5 integrin through endosomal p120RasGAP to promote polarised fibronectin fibrillogenesis in endothelial cells. Commun Biol 2024; 7:629. [PMID: 38789481 PMCID: PMC11126613 DOI: 10.1038/s42003-024-06320-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Integrin trafficking to and from membrane adhesions is a crucial mechanism that dictates many aspects of a cell's behaviour, including motility, polarisation, and invasion. In endothelial cells (ECs), the intracellular traffic of α5 integrin is regulated by both neuropilin 1 (NRP1) and neuropilin 2 (NRP2), yet the redundancies in function between these co-receptors remain unclear. Moreover, the endocytic complexes that participate in NRP-directed traffic remain poorly annotated. Here we identify an important role for the GTPase-activating protein p120RasGAP in ECs, promoting the recycling of α5 integrin from early endosomes. Mechanistically, p120RasGAP enables transit of endocytosed α5 integrin-NRP1-NRP2 complexes to Rab11+ recycling endosomes, promoting cell polarisation and fibronectin (FN) fibrillogenesis. Silencing of both NRP receptors, or p120RasGAP, resulted in the accumulation of α5 integrin in early endosomes, a loss of α5 integrin from surface adhesions, and attenuated EC polarisation. Endothelial-specific deletion of both NRP1 and NRP2 in the postnatal retina recapitulated our in vitro findings, severely impairing FN fibrillogenesis and polarised sprouting. Our data assign an essential role for p120RasGAP during integrin traffic in ECs and support a hypothesis that NRP receptors co-traffic internalised cargoes. Importantly, we utilise comparative proteomics analyses to isolate a comprehensive map of NRP1-dependent and NRP2-dependent α5 integrin interactions in ECs.
Collapse
Affiliation(s)
- Christopher J Benwell
- Food Microbiome and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
| | - Robert T Johnson
- Food Microbiome and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - James A G E Taylor
- Food Microbiome and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Jordi Lambert
- Food Microbiome and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
- Section of Cardiorespiratory Medicine, University of Cambridge, VPD Heart & Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, Cambridge, UK
| | - Stephen D Robinson
- Food Microbiome and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|
8
|
Obeagu EI, Ubosi NI, Obeagu GU, Egba SI, Bluth MH. Understanding apoptosis in sickle cell anemia patients: Mechanisms and implications. Medicine (Baltimore) 2024; 103:e36898. [PMID: 38215146 PMCID: PMC10783340 DOI: 10.1097/md.0000000000036898] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 12/18/2023] [Indexed: 01/14/2024] Open
Abstract
Sickle cell anemia (SCA) is a hereditary blood disorder characterized by the presence of abnormal hemoglobin, leading to the formation of sickle-shaped red blood cells. While much research has focused on the molecular and cellular mechanisms underlying the pathophysiology of SCA, recent attention has turned to the role of apoptosis, or programmed cell death, in the disease progression. This review aims to elucidate the intricate mechanisms of apoptosis in SCA patients and explore its implications in disease severity, complications, and potential therapeutic interventions. Different research search engines such as PubMed central, Scopus, Web of Science, Google Scholar, ResearchGate, Academia Edu, etc were utilized in writing this paper. Apoptosis, a highly regulated cellular process, plays a crucial role in maintaining homeostasis by eliminating damaged or dysfunctional cells. In SCA, the imbalance between pro-apoptotic and anti-apoptotic signals contributes to increased erythrocyte apoptosis, exacerbating anemia and vaso-occlusive crises. Various factors, including oxidative stress, inflammation, and altered cell signaling pathways, converge to modulate the apoptotic response in SCA. Furthermore, the interaction between apoptotic cells and the vascular endothelium contributes to endothelial dysfunction, promoting the pathogenesis of vasculopathy and organ damage seen in SCA patients. In conclusion, unraveling the complexities of apoptosis in SCA provides valuable insights into the disease pathophysiology and offers novel avenues for therapeutic interventions.
Collapse
Affiliation(s)
| | - Nwanganga Ihuoma Ubosi
- Department of Public Health Sciences, Faculty of Health Sciences, National Open University of Nigeria, Headquarters, Jabi, Abuja, Nigeria
| | | | - Simeon Ikechukwu Egba
- Department of Biochemistry, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria
| | - Martin H. Bluth
- Department of Pathology, Division of Blood Transfusion Medicine, Maimonides Medical Center, Brooklyn, NY, USA
| |
Collapse
|
9
|
Rollé A, Vidal E, Laguette P, Garnier Y, Delta D, Martino F, Portecop P, Etienne-Julan M, Piednoir P, De Jong A, Romana M, Bernit E. Pain Control for Sickle Cell Crisis, a Novel Approach? A Retrospective Study. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2196. [PMID: 38138299 PMCID: PMC10744599 DOI: 10.3390/medicina59122196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
Background and Objectives: Pain management poses a significant challenge for patients experiencing vaso-occlusive crisis (VOC) in sickle cell disease (SCD). While opioid therapy is highly effective, its efficacy can be impeded by undesirable side effects. Local regional anesthesia (LRA), involving the deposition of a perineural anesthetic, provides a nociceptive blockade, local vasodilation and reduces the inflammatory response. However, the effectiveness of this therapeutic approach for VOC in SCD patients has been rarely reported up to now. The objective of this study was to assess the effectiveness of a single-shot local regional anesthesia (LRA) in reducing pain and consequently enhancing the management of severe vaso-occlusive crisis (VOC) in adults with sickle cell disease (SCD) unresponsive to conventional analgesic therapy. Materials and Methods: We first collected consecutive episodes of VOC in critical care (ICU and emergency room) for six months in 2022 in a French University hospital with a large population of sickle cell patients in the West Indies population. We also performed a systematic review of the use of LRA in SCD. The primary outcome was defined using a numeric pain score (NPS) and/or percentage of change in opioid use. Results: We enrolled nine SCD adults (28 years old, 4 females) for ten episodes of VOC in whom LRA was used for pain management. Opioid reduction within the first 24 h post block was -75% (50 to 96%). Similarly, the NPS decreased from 9/10 pre-block to 0-1/10 post-block. Five studies, including one case series with three patients and four case reports, employed peripheral nerve blocks for regional anesthesia. In general, local regional anesthesia (LRA) exhibited a reduction in pain and symptoms, along with a decrease in opioid consumption post-procedure. Conclusions: LRA improves pain scores, reduces opioid consumption in SCD patients with refractory pain, and may mitigate opioid-related side effects while facilitating the transition to oral analgesics. Furthermore, LRA is a safe and effective procedure.
Collapse
Affiliation(s)
- Amélie Rollé
- Anesthesiology and Intensive Care Department, University Hospital of La Guadeloupe, F-97139 Les Abymes, France; (E.V.); (P.L.); (F.M.); (P.P.)
- Université Paris Cité and Université des Antilles, INSERM, BIGR, F-75015 Paris, France; (Y.G.); (M.E.-J.); (M.R.)
| | - Elsa Vidal
- Anesthesiology and Intensive Care Department, University Hospital of La Guadeloupe, F-97139 Les Abymes, France; (E.V.); (P.L.); (F.M.); (P.P.)
| | - Pierre Laguette
- Anesthesiology and Intensive Care Department, University Hospital of La Guadeloupe, F-97139 Les Abymes, France; (E.V.); (P.L.); (F.M.); (P.P.)
| | - Yohann Garnier
- Université Paris Cité and Université des Antilles, INSERM, BIGR, F-75015 Paris, France; (Y.G.); (M.E.-J.); (M.R.)
| | - Delphine Delta
- West-Indies Faculty of Medicine, University of The French West-Indies, F-97157 Pointe à Pitre, France;
| | - Frédéric Martino
- Anesthesiology and Intensive Care Department, University Hospital of La Guadeloupe, F-97139 Les Abymes, France; (E.V.); (P.L.); (F.M.); (P.P.)
| | - Patrick Portecop
- Emergency Department, University Hospital of Guadeloupe, F-97100 Pointe à Pitre, France;
| | - Maryse Etienne-Julan
- Université Paris Cité and Université des Antilles, INSERM, BIGR, F-75015 Paris, France; (Y.G.); (M.E.-J.); (M.R.)
- Sickle Cell Disease Unit, Reference Centre for Sickle Cell Disease, Thalassemia and Other Red Cell Rare Diseases, CHU de la Guadeloupe, CEDEX, F-97159 Pointe à Pitre, France;
| | - Pascale Piednoir
- Anesthesiology and Intensive Care Department, University Hospital of La Guadeloupe, F-97139 Les Abymes, France; (E.V.); (P.L.); (F.M.); (P.P.)
| | - Audrey De Jong
- Anesthesia and Critical Care Department, Saint Eloi Teaching Hospital, University Montpellier 1, 80 Avenue Augustin Fliche, CEDEX 5, F-34295 Montpellier, France;
- Phymed Exp INSERM U1046, CNRS UMR 9214, F-34295 Montpellier, France
| | - Marc Romana
- Université Paris Cité and Université des Antilles, INSERM, BIGR, F-75015 Paris, France; (Y.G.); (M.E.-J.); (M.R.)
| | - Emmanuelle Bernit
- Sickle Cell Disease Unit, Reference Centre for Sickle Cell Disease, Thalassemia and Other Red Cell Rare Diseases, CHU de la Guadeloupe, CEDEX, F-97159 Pointe à Pitre, France;
| |
Collapse
|
10
|
Silva M, Faustino P. From Stress to Sick(le) and Back Again-Oxidative/Antioxidant Mechanisms, Genetic Modulation, and Cerebrovascular Disease in Children with Sickle Cell Anemia. Antioxidants (Basel) 2023; 12:1977. [PMID: 38001830 PMCID: PMC10669666 DOI: 10.3390/antiox12111977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Sickle cell anemia (SCA) is a genetic disease caused by the homozygosity of the HBB:c.20A>T mutation, which results in the production of hemoglobin S (HbS). In hypoxic conditions, HbS suffers autoxidation and polymerizes inside red blood cells, altering their morphology into a sickle shape, with increased rigidity and fragility. This triggers complex pathophysiological mechanisms, including inflammation, cell adhesion, oxidative stress, and vaso-occlusion, along with metabolic alterations and endocrine complications. SCA is phenotypically heterogeneous due to the modulation of both environmental and genetic factors. Pediatric cerebrovascular disease (CVD), namely ischemic stroke and silent cerebral infarctions, is one of the most impactful manifestations. In this review, we highlight the role of oxidative stress in the pathophysiology of pediatric CVD. Since oxidative stress is an interdependent mechanism in vasculopathy, occurring alongside (or as result of) endothelial dysfunction, cell adhesion, inflammation, chronic hemolysis, ischemia-reperfusion injury, and vaso-occlusion, a brief overview of the main mechanisms involved is included. Moreover, the genetic modulation of CVD in SCA is discussed. The knowledge of the intricate network of altered mechanisms in SCA, and how it is affected by different genetic factors, is fundamental for the identification of potential therapeutic targets, drug development, and patient-specific treatment alternatives.
Collapse
Affiliation(s)
- Marisa Silva
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisboa, Portugal;
| | - Paula Faustino
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisboa, Portugal;
- Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental (ISAMB), Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
11
|
Ranque B, Diaw M, Dembele AK, Lapoumeroulie C, Offredo L, Tessougue O, Gueye SM, Diallo D, Diop S, Colin-Aronovicz Y, Jouven X, Blanc-Brude O, Tharaux PL, Le Jeune S, Connes P, Romana M, Le Van Kim C. Association of haemolysis markers, blood viscosity and microcirculation function with organ damage in sickle cell disease in sub-Saharan Africa (the BIOCADRE study). Br J Haematol 2023; 203:319-326. [PMID: 37583261 DOI: 10.1111/bjh.19006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/27/2023] [Accepted: 07/18/2023] [Indexed: 08/17/2023]
Abstract
Sickle cell anaemia (SCA) is a monogenic disease with a highly variable clinical course. We aimed to investigate associations between microvascular function, haemolysis markers, blood viscosity and various types of SCA-related organ damage in a multicentric sub-Saharan African cohort of patients with SCA. In a cross-sectional study, we selected seven groups of adult patients with SS phenotype in Dakar and Bamako based on the following complications: leg ulcer, priapism, osteonecrosis, retinopathy, high tricuspid regurgitant jet velocity (TRV), macro-albuminuria or none. Clinical assessment, echocardiography, peripheral arterial tonometry, laboratory tests and blood viscosity measurement were performed. We explored statistical associations between the biological parameters and the six studied complications. Among 235 patients, 58 had high TRV, 46 osteonecrosis, 43 priapism, 33 leg ulcers, 31 retinopathy and 22 macroalbuminuria, whereas 36 had none of these complications. Multiple correspondence analysis revealed no cluster of complications. Lactate dehydrogenase levels were associated with high TRV, and blood viscosity was associated with retinopathy and the absence of macroalbuminuria. Despite extensive phenotyping of patients, no specific pattern of SCA-related complications was identified. New biomarkers are needed to predict SCA clinical expression to adapt patient management, especially in Africa, where healthcare resources are scarce.
Collapse
Affiliation(s)
- Brigitte Ranque
- Université Paris Cité, Inserm, UMR S970, PARCC, Paris, France
- Service de Médecine Interne, Hôpital Européen Georges Pompidou, Assistance Publique des Hôpitaux de Paris, Paris, France
- LABEX GREX, Université Paris Cité, Paris, France
| | - Mor Diaw
- Laboratoire de Physiologie et Explorations Fonctionnelles, Faculté de Médecine, Pharmacie et Odontologie Université Cheikh Anta Diop de Dakar, Dakar, Senegal
- Unité Mixte Internationale (UMI 3189), "Environnement, Santé, Sociétés" CNRS, UCAD, CNRST, USTTB, UGB, Dakar, Senegal
| | | | | | - Lucile Offredo
- Université Paris Cité, Inserm, UMR S970, PARCC, Paris, France
| | - Oumar Tessougue
- Centre de Recherche et de Lutte Contre la Drépanocytose (CRLD), Bamako, Mali
| | | | - Dapa Diallo
- Centre de Recherche et de Lutte Contre la Drépanocytose (CRLD), Bamako, Mali
| | - Saliou Diop
- Centre National de Transfusion Sanguine (CNTS), Dakar, Senegal
| | - Yves Colin-Aronovicz
- LABEX GREX, Université Paris Cité, Paris, France
- Université Paris Cité and Université des Antilles, Inserm, BIGR, Paris, France
| | - Xavier Jouven
- Université Paris Cité, Inserm, UMR S970, PARCC, Paris, France
- LABEX GREX, Université Paris Cité, Paris, France
| | - Olivier Blanc-Brude
- Université Paris Cité, Inserm, UMR S970, PARCC, Paris, France
- LABEX GREX, Université Paris Cité, Paris, France
| | - Pierre-Louis Tharaux
- Université Paris Cité, Inserm, UMR S970, PARCC, Paris, France
- LABEX GREX, Université Paris Cité, Paris, France
| | - Sylvain Le Jeune
- Université Paris Cité, Inserm, UMR S970, PARCC, Paris, France
- Service de Médecine Interne, Hôpital Avicenne, Bobigny, Assistance-Publique Hôpitaux de Paris, Paris, France
| | - Philippe Connes
- LABEX GREX, Université Paris Cité, Paris, France
- Université Lyon 1, Laboratoire LIBM EA7424, Equipe «Biologie Vasculaire et du Globule Rouge», COMUE, Lyon, France
| | - Marc Romana
- LABEX GREX, Université Paris Cité, Paris, France
- Université Paris Cité and Université des Antilles, Inserm, BIGR, Paris, France
| | - Caroline Le Van Kim
- LABEX GREX, Université Paris Cité, Paris, France
- Université Paris Cité and Université des Antilles, Inserm, BIGR, Paris, France
| |
Collapse
|
12
|
Hussain MS, Chaturvedi V. The Present Condition of Sickle Cell Disease: An Overview of Stem Cell Transplantation as a Cure. PHARMACEUTICAL FRONTS 2023; 05:e57-e63. [DOI: 10.1055/s-0043-1768918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
AbstractTreatment of sickle cell disease (SCD) remains largely palliative. While it can enhance living standards, persons having SCD still suffer from extreme sickling crises, end-organ destruction, and reduced life expectancy. Increasing research has resulted in the recognition and advancement of stem cell transplantation and gene therapy as possible solutions for SCDs. However, there have been various factors that have hindered their clinical application. The more advantageous of the two, stem cell transplantation, is constrained by a small donor pool, transplant difficulties, and eligibility requirements. The current article reviewed the literature on SCDs, current treatment options, and more particularly the progress of stem cell transplants. It outlined various challenges of stem cell transplant and proposed ways to increase the donor pool using alternative strategies and modifications of regimen conditioning with minimal transplant-related toxicities and associated complications.
Collapse
Affiliation(s)
- Md. Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, India
| | - Varunesh Chaturvedi
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, India
| |
Collapse
|
13
|
Abstract
While neutrophils are the main effectors of protective innate immune responses, they are also key players in inflammatory pathologies. Sickle cell disease (SCD) is a genetic blood disorder in which red blood cells (RBCs) are constantly destroyed in the circulation which generates a highly inflammatory environment that culminates in vascular occlusions. Vaso-occlusion is the hallmark of SCD and a predictor of disease severity. Neutrophils initiate and propagate SCD-related vaso-occlusion through adhesive interactions with the activated and dysfunctional endothelium, sickle RBCs, and platelets, leading to acute and chronic complications that progress to irreversible organ damage and ultimately death. The use of SCD humanized mouse models, in combination with in vivo imaging techniques, has emerged as a fundamental tool to understand the dynamics of neutrophils under complex inflammatory contexts and their contribution to vascular injury in SCD. In this review, we discuss the various mechanisms by which circulating neutrophils sense and respond to the wide range of stimuli present in the blood of SCD patients and mice. We argue that the central role of neutrophils in SCD can be rationalized to develop targets for the management of clinical complications in SCD patients.
Collapse
Affiliation(s)
- Lidiane S Torres
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Andrés Hidalgo
- Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
14
|
Chiang KC, Gupta A, Sundd P, Krishnamurti L. Thrombo-Inflammation in COVID-19 and Sickle Cell Disease: Two Faces of the Same Coin. Biomedicines 2023; 11:338. [PMID: 36830874 PMCID: PMC9953430 DOI: 10.3390/biomedicines11020338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/26/2023] Open
Abstract
People with sickle cell disease (SCD) are at greater risk of severe illness and death from respiratory infections, including COVID-19, than people without SCD (Centers for Disease Control and Prevention, USA). Vaso-occlusive crises (VOC) in SCD and severe SARS-CoV-2 infection are both characterized by thrombo-inflammation mediated by endothelial injury, complement activation, inflammatory lipid storm, platelet activation, platelet-leukocyte adhesion, and activation of the coagulation cascade. Notably, lipid mediators, including thromboxane A2, significantly increase in severe COVID-19 and SCD. In addition, the release of thromboxane A2 from endothelial cells and macrophages stimulates platelets to release microvesicles, which are harbingers of multicellular adhesion and thrombo-inflammation. Currently, there are limited therapeutic strategies targeting platelet-neutrophil activation and thrombo-inflammation in either SCD or COVID-19 during acute crisis. However, due to many similarities between the pathobiology of thrombo-inflammation in SCD and COVID-19, therapies targeting one disease may likely be effective in the other. Therefore, the preclinical and clinical research spurred by the COVID-19 pandemic, including clinical trials of anti-thrombotic agents, are potentially applicable to VOC. Here, we first outline the parallels between SCD and COVID-19; second, review the role of lipid mediators in the pathogenesis of these diseases; and lastly, examine the therapeutic targets and potential treatments for the two diseases.
Collapse
Affiliation(s)
| | - Ajay Gupta
- KARE Biosciences, Orange, CA 89128, USA
- Division of Nephrology, Hypertension and Kidney Transplantation, Department of Medicine, University of California Irvine (UCI) School of Medicine, Irvine, CA 92868, USA
| | - Prithu Sundd
- Vascular Medicine Institute and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Lakshmanan Krishnamurti
- Division of Pediatric Hematology-Oncology, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
15
|
Abi Rached NM, Gbotosho OT, Archer DR, Jones JA, Sterling MS, Hyacinth HI. Adhesion molecules and cerebral microvascular hemodynamic abnormalities in sickle cell disease. Front Neurol 2022; 13:976063. [PMID: 36570439 PMCID: PMC9767957 DOI: 10.3389/fneur.2022.976063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Cerebrovascular abnormalities are a common feature of sickle cell disease that may be associated with risk of vaso-occlusive pain crises, microinfarcts, and cognitive impairment. An activated endothelium and adhesion factors, VCAM-1 and P-selectin, are implicated in sickle cell vasculopathy, including abnormal hemodynamics and leukocyte adherence. This study examined the association between cerebral expression of these adhesion factors and cortical microvascular blood flow dynamics by using in-vivo two-photon microscopy. We also examined the impact of blood transfusion treatment on these markers of vasculopathy. Results showed that sickle cell mice had significantly higher maximum red blood cell (RBC) velocity (6.80 ± 0.25 mm/sec, p ≤ 0.01 vs. 5.35 ± 0.35 mm/sec) and more frequent blood flow reversals (18.04 ± 0.95 /min, p ≤ 0.01 vs. 13.59 ± 1.40 /min) in the cortical microvasculature compared to controls. In addition, sickle cell mice had a 2.6-fold (RFU/mm2) increase in expression of VCAM-1 and 17-fold (RFU/mm2) increase in expression of P-selectin compared to controls. This was accompanied by an increased frequency in leukocyte adherence (4.83 ± 0.57 /100 μm/min vs. 2.26 ± 0.37 /100 μm/min, p ≤ 0.001). We also found that microinfarcts identified in sickle cell mice were 50% larger than in controls. After blood transfusion, many of these parameters improved, as results demonstrated that sickle cell mice had a lower post-transfusion maximum RBC velocity (8.30 ± 0.98 mm/sec vs. 11.29 ± 0.95 mm/sec), lower frequency of blood flow reversals (12.80 ± 2.76 /min vs. 27.75 ± 2.09 /min), and fewer instances of leukocyte adherence compared to their pre-transfusion imaging time point (1.35 ± 0.32 /100 μm/min vs. 3.46 ± 0.58 /100 μm/min). Additionally, we found that blood transfusion was associated with lower expression of adhesion factors. Our results suggest that blood transfusion and adhesion factors, VCAM-1 and P-selectin, are potential therapeutic targets for addressing cerebrovascular pathology, such as vaso-occlusion, in sickle cell disease.
Collapse
Affiliation(s)
- Noor Mary Abi Rached
- Neuroscience and Behavioral Biology Undergraduate Program, Emory University, Atlanta, GA, United States
| | - Oluwabukola T. Gbotosho
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - David R. Archer
- Aflac Cancer and Blood Disorders Center, Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Jayre A. Jones
- Aflac Cancer and Blood Disorders Center, Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Morgan S. Sterling
- Aflac Cancer and Blood Disorders Center, Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Hyacinth I. Hyacinth
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
16
|
Sickle Cell Disease Pathophysiology and Related Molecular and Biophysical Biomarkers. Hematol Oncol Clin North Am 2022; 36:1077-1095. [DOI: 10.1016/j.hoc.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
An R, Gurkan UA. Emerging functional microfluidic assays for the study of thromboinflammation in sickle cell disease. Curr Opin Hematol 2022; 29:327-334. [PMID: 35916533 PMCID: PMC10440906 DOI: 10.1097/moh.0000000000000731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This review briefly summarizes the significant impact of thromboinflammation in sickle cell disease in relation to recent advances in biomarkers that are used in functional microfluidic assays. RECENT FINDINGS Sickle cell disease (SCD) is an inherited hemoglobinopathy that affects 100 000 Americans and millions worldwide. Patients with SCD exhibit chronic haemolysis, chronic inflammation and thrombosis, and vaso-occlusion, triggering various clinical complications, including organ damage and increased mortality and morbidity. Recent advances in functional microfluidic assays provide direct biomarkers of disease, including abnormal white blood cell and red blood cell adhesion, cell aggregation, endothelial degradation and contraction, and thrombus formation. SUMMARY Novel and emerging functional microfluidic assays are a promising and feasible strategy to comprehensively characterize thromboinflammatory reactions in SCD, which can be used for personalized risk assessment and tailored therapeutic decisions.
Collapse
Affiliation(s)
- Ran An
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Umut A. Gurkan
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
18
|
Palomarez A, Jha M, Medina Romero X, Horton RE. Cardiovascular consequences of sickle cell disease. BIOPHYSICS REVIEWS 2022; 3:031302. [PMID: 38505276 PMCID: PMC10903381 DOI: 10.1063/5.0094650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/11/2022] [Indexed: 03/21/2024]
Abstract
Sickle cell disease (SCD) is an inherited blood disorder caused by a single point mutation within the beta globin gene. As a result of this mutation, hemoglobin polymerizes under low oxygen conditions causing red blood cells to deform, become more adhesive, and increase in rigidity, which affects blood flow dynamics. This process leads to enhanced red blood cell interactions with the endothelium and contributes to vaso-occlusion formation. Although traditionally defined as a red blood cell disorder, individuals with SCD are affected by numerous clinical consequences including stroke, painful crisis episodes, bone infarctions, and several organ-specific complications. Elevated cardiac output, endothelium activation along with the sickling process, and the vaso-occlusion events pose strains on the cardiovascular system. We will present a review of the cardiovascular consequences of sickle cell disease and show connections with the vasculopathy related to SCD. We will also highlight biophysical properties and engineering tools that have been used to characterize the disease. Finally, we will discuss therapies for SCD and potential implications on SCD cardiomyopathy.
Collapse
Affiliation(s)
- Alexis Palomarez
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, Texas 77204, USA
| | - Manisha Jha
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, Texas 77204, USA
| | - Ximena Medina Romero
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, Texas 77204, USA
| | - Renita E. Horton
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, Texas 77204, USA
| |
Collapse
|
19
|
Elemo GN, Erukainure OL, Okafor JNC, Banerjee P, Preissner R, Nwachukwu Nicholas-Okpara VA, Atolani O, Omowunmi O, Ezeanyanaso CS, Awosika A, Shode F. Underutilized legumes, Cajanus cajan and Glycine max may bring about antisickling effect in sickle cell disease by modulation of redox homeostasis in sickled erythrocytes and alteration of its functional chemistry. J Food Biochem 2022; 46:e14322. [PMID: 35894096 DOI: 10.1111/jfbc.14322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 11/28/2022]
Abstract
The antisickling and anti-oxidative effect of the Cajanus cajan, Glycine max, and their blends were investigated in sickled erythrocytes. The powdered samples were analyzed for their nutritional and anti-nutritional constituents. Their aqueous extracts were analyzed for in vitro antioxidant activities. The extracts were incubated with sickled erythrocytes at 37°C for 6 hours and the antisickling effect examined via microscopic analysis. The blend was the most active and its incubated cells were subjected to anti-oxidative analysis which covers for GSH, SOD, catalase, and lipid peroxidation (LPO). Chemical functional group of the treated cells was analyzed with FTIR spectroscopy. The in silico binding of the predominant amino acid to hemoglobin was also investigated. An increased concentration of leucine was observed in the blend compared to that of C. cajan and G. max, respectively. Vitamins C, B6, and B9 were the only vitamins observed in the blend. Phytate and oxalate were present in all samples. All extracts displayed significant (p < .05) scavenging activities. Treatment with the blend exacerbated SOD and catalase activities as well as the GSH level, while suppressing LPO. FTIR analysis of the treated cells showed the presence of hydrophobic functional groups. Leucine was the predominant amino acid, and it showed a potent molecular interaction with HIS-87 residue of the alpha chain of 1HCO. C. cajan and G. max blend inhibited sickling activities of sickle erythrocytes, while concomitantly exacerbating their endogenous antioxidant enzymes activity and modification of the functional chemistry. PRACTICAL APPLICATIONS: Cajanus cajan and Glycine max are among the common underutilized legumes in Nigeria. Aside their nutritional properties, these legumes have been used from time immemorial for the treatment and management of various ailments. Sickle cell anemia is a class of hemoglobinopathy common in Sub-Saharan Africa. There have been concerns about its treatment owing to the increasing scourge of the disease coupled to the financial burden of its management. This study reports the ability of the potentials of the legumes to prevent sickling activities of sickled erythrocytes and the possible biochemical mechanism involved.
Collapse
Affiliation(s)
- Gloria N Elemo
- Nutraceutical Laboratories, Nutrition and Toxicology Division, Federal Institute of Industrial Research, Lagos, Nigeria.,Department of Chemical Sciences, Ajayi Crowther University, Oyo, Nigeria
| | - Ochuko L Erukainure
- Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | - Jane N C Okafor
- Nutraceutical Laboratories, Nutrition and Toxicology Division, Federal Institute of Industrial Research, Lagos, Nigeria
| | - Priyanka Banerjee
- Structural Bioinformatics Group, Institute for Physiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Robert Preissner
- Structural Bioinformatics Group, Institute for Physiology, Charité-University Medicine Berlin, Berlin, Germany
| | | | | | - Olusola Omowunmi
- Laboratory Management & Services, Federal Institute of Industrial Research, Lagos, Nigeria
| | - Chika S Ezeanyanaso
- Polymer & Textile Division, Federal Institute of Industrial Research, Lagos, Nigeria
| | | | - Francis Shode
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa.,Sholab Nutraceuticals (Pty) Ltd, Westville North, South Africa
| |
Collapse
|
20
|
Torres LS, Asada N, Weiss MJ, Trumpp A, Suda T, Scadden DT, Ito K. Recent advances in "sickle and niche" research - Tribute to Dr. Paul S Frenette. Stem Cell Reports 2022; 17:1509-1535. [PMID: 35830837 PMCID: PMC9287685 DOI: 10.1016/j.stemcr.2022.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 10/27/2022] Open
Abstract
In this retrospective, we review the two research topics that formed the basis of the outstanding career of Dr. Paul S. Frenette. In the first part, we focus on sickle cell disease (SCD). The defining feature of SCD is polymerization of the deoxygenated mutant hemoglobin, which leads to a vicious cycle of hemolysis and vaso-occlusion. We survey important discoveries in SCD pathophysiology that have led to recent advances in treatment of SCD. The second part focuses on the hematopoietic stem cell (HSC) niche, the complex microenvironment within the bone marrow that controls HSC function and homeostasis. We detail the cells that constitute this niche, and the factors that these cells use to exert control over hematopoiesis. Here, we trace the scientific paths of Dr. Frenette, highlight key aspects of his research, and identify his most important scientific contributions in both fields.
Collapse
Affiliation(s)
- Lidiane S Torres
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Noboru Asada
- Department of Hematology and Oncology, Okayama University Hospital, Okayama 700-8558, Japan
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69117 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Toshio Suda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - David T Scadden
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Einstein Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
21
|
Alabi OJ, Adegboyega FN, Olawoyin DS, Babatunde OA. Functional foods: promising therapeutics for Nigerian Children with sickle cell diseases. Heliyon 2022; 8:e09630. [PMID: 35677416 PMCID: PMC9167986 DOI: 10.1016/j.heliyon.2022.e09630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/30/2021] [Accepted: 05/26/2022] [Indexed: 11/21/2022] Open
Abstract
Sickle cell disease (SCD), also known as sickle cell anemia (SCA) is one of the structural hemoglobinopathies that occurs due to a single nucleotide mutation from GAG to GTG, which changes the amino acid of a β-globin chain of hemoglobin (Hb) from glutamate to valine. This singular mutation results to disorderliness in red blood cells (RBCs) with advent of changes in RBC morphology and other pathological conditions. In the 1980s, intermittent red blood cell transfusions, opioids, and penicillin prophylaxis were the only available therapy for SCA and were commonly reserved for acute, life threatening complications. So far, the US Food and Drug Administration (FDA) has granted a total of four drugs approval for the prophylaxis and treatment of the clinical complications of SCD. Due to limitations (adherence, safety, adverse effects) of existing therapies in the prophylaxis and treatment of SCD complications in Nigerian children and their inaccessibility to approved drugs, the present study discusses the therapeutic effects of readily available functional food as one of the therapies or an adjunct therapy to tackle the sickle cell crisis in Nigerian Children.
Collapse
Affiliation(s)
- Oladeji John Alabi
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Department of Biochemistry, Institute for Agriculture & Natural Sciences, College of Arts & Sciences, University of Nebraska-Lincoln, USA
| | - Fikayo Noah Adegboyega
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Department of Biotechnology, Egypt-Japan University of Science and Technology, Alexandria, Egypt
| | - Dolapo Samuel Olawoyin
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | | |
Collapse
|
22
|
Umar Z, Ilyas U, Nso N. Sickle Cell Disease and COVID-19 Infection: Importance of COVID-19 Testing and Approach to Management. Cureus 2022; 14:e23604. [PMID: 35494937 PMCID: PMC9051589 DOI: 10.7759/cureus.23604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 11/05/2022] Open
Abstract
Sickle cell disease is an autosomal recessive disorder resulting in the substitution of CTG by CAG in the sixth codon of the beta-globin gene. As a result of this, the hydrophilic glutamic acid residue is replaced by hydrophobic valine residue, leading to the formation of hemoglobin tetramer HBS. This alteration in the beta-globin chain makes the red blood cells prone to sickling, especially in the presence of risk factors such as stress, hypoxia, and infection. These sickled red blood cells have the tendency to adhere to the endothelium and lead to vessel occlusion and distal tissue ischemia. The recent coronavirus disease 2019 (COVID-19) outbreak has impacted millions across the globe, putting individuals with co-morbidities at particularly high risk, and patients with sickle cell disease are no exception. We present the case of a 47-year-old African American male presenting to the emergency department with subjective fevers and a two-day history of pain in the arms, legs, and chest. A diagnosed case of sickle cell disease, the patient was on hydromorphone for pain management but ran out of his medications a few weeks before presentation. On examination, the patient was saturating well with mild tenderness upon palpation of the arms, legs, and chest. On complete blood count, the patient had a hemoglobin of 11.3 g/dL and a white cell count of 13.1 x10(3)/mcL. The patient had a normal mean corpuscular volume with reticulocytosis, hypochromia, ovalocytosis, poikilocytosis, polychromasia, and target cells. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) polymerase chain reaction (PCR) was positive. The chest X-ray did not reveal any significant findings. He was admitted to the medicine floor for the management of sickle cell crisis and was placed under airborne and droplet precautions. The patient was started on hydromorphone for pain management and intravenous fluid hydration. On the second day of admission, the patient reported increasing shortness of breath. He was saturating 90% on room air and 94% on 2 liters of supplemental oxygen. The white blood cell count increased to 18.42 x10(3)/mcL and the chest X-ray revealed reticular densities with patchy alveolar opacities in the left lung. Given the decline in respiratory status, the patient was started on remdesivir. Over the course of his hospital stay, the patient's pain and respiratory status improved, with the patient saturating 97% on room air. He was discharged home with instructions to follow isolation precautions for at least two weeks, folic acid, and adequate pain management. An appointment was also scheduled for the patient to follow with a sickle cell nurse practitioner upon discharge.
Collapse
|
23
|
Shah NC, Bhoopatiraju S, Abraham A, Anderson E, Andreansky M, Bhatia M, Chaudhury S, Cuvelier GDE, Godder K, Grimley M, Hale G, Kamani N, Jacobsohn D, Ngwube A, Gilman AL, Skiles J, Yu LC, Shenoy S. Granulocyte Colony-Stimulating Factor is Safe and Well Tolerated following Allogeneic Transplantation in Patients with Sickle Cell Disease. Transplant Cell Ther 2021; 28:174.e1-174.e5. [PMID: 34958973 DOI: 10.1016/j.jtct.2021.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 10/19/2022]
Abstract
Granulocyte colony-stimulating factor (G-CSF) used after hematopoietic stem cell transplantation (HSCT) can enhance neutrophil recovery in patients rendered neutropenic by the preparative regimen. G-CSF is contraindicated in patients with sickle cell disease (SCD) as life-threatening complications can ensue in the presence of sickle vasculopathy. However, the safety profile of G-CSF after HSCT for SCD has not been previously described. We report clinical outcomes in the first 100 days post-HSCT in patients supported with G-CSF until neutrophil recovery on a clinical trial of reduced intensity transplantation for SCD. Patients (n=62) received G-CSF for a median of 9 days (range, 5-33) following transplant from the best available stem cell source. Preparation for transplant included a target hemoglobin S level of ≤45%. Neutrophil engraftment (ANC >0.5 × 103/mL) was achieved at a median of 13 days (range,10-34) and platelet engraftment (>50 × 103/mL) at a median of 19 days (range, 12-71). The median duration of inpatient hospitalization following stem cell infusion (day 0) was 21.5 days (range 11-33). No patient developed SCD related complications following G-CSF use. The most common organ toxicities encountered between G-CSF commencement (on day +7) and day +100 were anorexia (14), hypertension (11) and electrolyte imbalance requiring correction (9). Central nervous system related events were noted in 5 patients, all with pre-existing cerebral vasculopathy/moyamoya disease and attributed to reversible posterior leukoencephalopathy syndrome (RPLS) in the presence of calcineurin inhibitor therapy and hypertension. We conclude that G-CSF does not adversely impact SCD transplant recipients and can be safely used post-HSCT to enhance neutrophil recovery.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Geoff D E Cuvelier
- Manitoba Blood and Marrow Transplant Program, Cancer Care Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | | | | | | - Lolie C Yu
- Children's Hospital/LSUHSC, New Orleans, LA
| | | |
Collapse
|
24
|
Alkindi S, Al-Ghadani AR, Al-Zeheimi SR, Alkindi SY, Fawaz N, Ballas SK, Pathare AV. Predicting risk factors for thromboembolic complications in patients with sickle cell anaemia - lessons learned for prophylaxis. J Int Med Res 2021; 49:3000605211055385. [PMID: 34855536 PMCID: PMC8646795 DOI: 10.1177/03000605211055385] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Objective To assess the clinical and laboratory predictors of venous thromboembolism (VTE) in patients with sickle cell anaemia (SCA) and its relationship to morbidity and mortality. Methods This retrospective case–control study analysed data from patients with SCA that experienced VTE compared with matched control patients with SCA but no VTE (2:1 ratio). Results A total of 102 patients with SCA were enrolled (68 cases with VTE and 34 controls). Amongst the 68 cases (median age, 29.5 years), 26 (38.2%) presented with isolated pulmonary embolism (PE). A higher prevalence of splenectomy (73.5% versus 35.3%) was observed in the cases compared with the controls. A significantly higher prevalence of central venous catheter (CVC) insertion (42.6% versus 8.8%) was observed in the cases compared with the controls. High white blood cell counts, serum lactic dehydrogenase (LDH), bilirubin and C-reactive protein (CRP) and low haemoglobin (Hb) and HbF were significant risk factors for VTE. Forty-two cases (61.8%) developed acute chest syndrome, 10 (14.7%) had a stroke and seven (10.3%) died. Conclusions VTE in patients with SCA has a high impact on morbidity and mortality. PE was the leading presentation of VTE, with CVC insertion, high LDH, bilirubin, CRP and white blood cell counts along with low Hb and HbF constituting other significant risk factors.
Collapse
Affiliation(s)
- Salam Alkindi
- Department of Haematology, Sultan Qaboos University Hospital, Muscat, Oman.,College of Medicine & Health Sciences, Muscat, Oman
| | | | - Samah R Al-Zeheimi
- Department of Haematology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Said Y Alkindi
- Department of Internal Medicine, Al-Nahdha Hospital, Muscat, Oman
| | - Naglaa Fawaz
- Department of Haematology, Sultan Qaboos University Hospital, Muscat, Oman.,College of Medicine & Health Sciences, Muscat, Oman
| | - Samir K Ballas
- Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA, USA
| | - Anil V Pathare
- Department of Haematology, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
25
|
Lizarralde-Iragorri MA, Lefevre SD, Cochet S, El Hoss S, Brousse V, Filipe A, Dussiot M, Azouzi S, Le Van Kim C, Rodrigues-Lima F, Français O, Le Pioufle B, Klei T, van Bruggen R, El Nemer W. Oxidative stress activates red cell adhesion to laminin in sickle cell disease. Haematologica 2021; 106:2478-2488. [PMID: 32855277 PMCID: PMC8409043 DOI: 10.3324/haematol.2020.261586] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/12/2020] [Indexed: 12/22/2022] Open
Abstract
Vaso-occlusive crises are the hallmark of sickle cell disease (SCD). They are believed to occur in two steps, starting with adhesion of deformable low-dense red blood cells (RBCs), or other blood cells such as neutrophils, to the wall of post-capillary venules, followed by trapping of the denser RBCs or leukocytes in the areas of adhesion because of reduced effective lumen-diameter. In SCD, RBCs are heterogeneous in terms of density, shape, deformability and surface proteins, which accounts for the differences observed in their adhesion and resistance to shear stress. Sickle RBCs exhibit abnormal adhesion to laminin mediated by Lu/BCAM protein at their surface. This adhesion is triggered by Lu/BCAM phosphorylation in reticulocytes but such phosphorylation does not occur in mature dense RBCs despite firm adhesion to laminin. In this study, we investigated the adhesive properties of sickle RBC subpopulations and addressed the molecular mechanism responsible for the increased adhesion of dense RBCs to laminin in the absence of Lu/BCAM phosphorylation. We provide evidence for the implication of oxidative stress in post-translational modifications of Lu/BCAM that impact its distribution and cis-interaction with glycophorin C at the cell surface activating its adhesive function in sickle dense RBCs.
Collapse
Affiliation(s)
- Maria Alejandra Lizarralde-Iragorri
- Université de Paris, UMR S1134, BIGR, INSERM, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d’Excellence GR-Ex, Paris, France
| | - Sophie D. Lefevre
- Université de Paris, UMR S1134, BIGR, INSERM, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d’Excellence GR-Ex, Paris, France
| | - Sylvie Cochet
- Université de Paris, UMR S1134, BIGR, INSERM, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d’Excellence GR-Ex, Paris, France
| | - Sara El Hoss
- Université de Paris, UMR S1134, BIGR, INSERM, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d’Excellence GR-Ex, Paris, France
| | - Valentine Brousse
- Université de Paris, UMR S1134, BIGR, INSERM, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d’Excellence GR-Ex, Paris, France
- Service de Pédiatrie Générale et Maladies Infectieuses, Hôpital Universitaire Necker Enfants Malades, Paris, France
| | - Anne Filipe
- Université de Paris, UMR S1134, BIGR, INSERM, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d’Excellence GR-Ex, Paris, France
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France
| | - Michael Dussiot
- Institut Imagine, INSERM U1163, CNRS UMR8254, Université Paris Descartes, Hôpital Necker Enfants Malades, Paris, France
| | - Slim Azouzi
- Université de Paris, UMR S1134, BIGR, INSERM, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d’Excellence GR-Ex, Paris, France
| | - Caroline Le Van Kim
- Université de Paris, UMR S1134, BIGR, INSERM, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d’Excellence GR-Ex, Paris, France
| | | | - Olivier Français
- ESYCOM, Université Gustave Eiffel, CNRS UMR 9007, ESIEE Paris, Marne-la-Vallee, France
| | - Bruno Le Pioufle
- Université Paris-Saclay, ENS Paris-Saclay, CNRS Institut d'Alembert, LUMIN, Gif sur Yvette, France
| | - Thomas Klei
- Department of Blood Cell Research, Sanquin Research and Lab Services and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Robin van Bruggen
- Department of Blood Cell Research, Sanquin Research and Lab Services and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Wassim El Nemer
- Université de Paris, UMR S1134, BIGR, INSERM, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d’Excellence GR-Ex, Paris, France
| |
Collapse
|
26
|
Venugopal J, Wang J, Mawri J, Guo C, Eitzman D. Interleukin-1 receptor inhibition reduces stroke size in a murine model of sickle cell disease. Haematologica 2021; 106:2469-2477. [PMID: 32817286 PMCID: PMC8409048 DOI: 10.3324/haematol.2020.252395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Indexed: 12/22/2022] Open
Abstract
Sickle cell disease (SCD) is associated with chronic hemolytic anemia and a heightened inflammatory state. The causal role of inflammatory pathways in stroke associated with SCD is unclear. Therefore, the hypothesis that deletion of the non-hematopoietic interleukin-1 receptor (IL-1R) pool may be beneficial in SCD was pursued. Since potential deleterious effects of IL-1R signaling in SCD could be mediated via downstream production of interleukin-6 (IL-6), the role of the nonhematopoietic IL-6 pool was also addressed. Bone marrow transplantation (BMT) from SCD to wild-type (WT) recipient mice was used to generate SCD mice (Wt,SCDbmt). In order to generate mice with nonhematopoietic deficiency of IL-1R or IL-6, SCD marrow was transplanted into IL-1R deficient (IL1R-/-,SCDbmt) or IL-6 deficient recipients (IL6-/-, SCDbmt). Blood counts, reticulocytes, soluble E-selectin (sEsel), and IL-6 levels were analyzed 14-15 weeks post-BMT. Ischemic stroke was induced by middle cerebral artery (MCA) photothrombosis at 16 weeks post-BMT. A separate group of Wt,SCDbmt mice was given the IL-1R inhibitor, anakinra, following stroke induction. Seventy-two hours after MCA occlusion, stroke volume was assessed by staining brain sections with 2,3,5-triphenyltetrazolium chloride. Formalin-fixed brain sections were also stained for macrophages with MAC3, for endothelial activation with ICAM-1, and for loss of blood brain barrier integrity with fibrin (ogen) staining. All SCD mice generated by BMT were anemic and the severity of anemia was not different between Wt,SCDbmt, IL1R-/-,SCDbmt, and IL-6-/-,SCDbmt mice. Three days following MCA occlusion, stroke volume was significantly reduced in IL1R-/-,SCDbmt mice compared to Wt,SCDbmt mice and IL6-/-,SCDbmt mice. Plasma levels of sEsel were lower in IL1R-/-,SCDbmt compared to Wt,SCDbmt and IL-6-/-,SCDbmt mice. Post-stroke treatment of Wt,SCDbmt mice with anakinra decreased stroke size, leukocyte infiltration, ICAM-1 expression, and fibrin(ogen) accumulation compared to vehicle-treated mice. Deficiency of non-hematopoietic IL-1R or treatment with an IL-1R antagonist is sufficient to confer protection against the increased stroke size associated with SCD. These effects of IL1R deficiency are associated with reduced endothelial activation, leukocyte infiltration, and blood brain barrier disruption, and are independent of non-hematopoietic IL-6 signaling.
Collapse
Affiliation(s)
- Jessica Venugopal
- University of Michigan Internal Medicine - Cardiology division, Ann Arbor, MI, USA
| | - Jintao Wang
- University of Michigan Internal Medicine - Cardiology division, Ann Arbor, MI, USA
| | | | - Chiao Guo
- University of Michigan Internal Medicine - Cardiology division, Ann Arbor, MI, USA
| | - Daniel Eitzman
- University of Michigan Internal Medicine - Cardiology division, Ann Arbor, MI, USA
| |
Collapse
|
27
|
Ex Vivo Activation of Red Blood Cell Senescence by Plasma from Sickle-Cell Disease Patients: Correlation between Markers and Adhesion Consequences during Acute Disease Events. Biomolecules 2021; 11:biom11070963. [PMID: 34208829 PMCID: PMC8301992 DOI: 10.3390/biom11070963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND: Blood transfusion remains a key treatment for managing occlusive episodes and painful crises in sickle-cell disease (SCD). In that clinical context, red blood cells (RBCs) from donors and transfused to patients, may be affected by plasma components in the recipients’ blood. Senescence lesion markers appear on the red cells after transfusion, shortening the RBC lifespan in circulation. In the specific context of SCD, senescence signals can also trigger the occlusive painful events, typical of the disease. This work follows through our previous data that described a RBC senescence process, rapidly detected after challenge with SCD pathological plasmas. In this clinical context, we wanted here to further explore the characteristics and physiologic consequences of AA RBC lesions associated with senescence, as lesions caused by RBCs after transfusion may have adverse consequences for SCD patients. METHODS: Plasma samples from SCD patients, with acute symptoms (n = 20) or steady-state disease (n = 34) were co-incubated with donor AA RBCs from blood units for 24 to 48 h. Specific markers signing RBC senescence were quantified after the incubation with SCD plasma samples. The physiologic in-flow adhesion was investigated on senescent RBCs, an in vitro technic into biochips that mimic adherence of RBCs during the occlusive events of SCD. RESULTS: Senescence markers on AA RBCs, together with their in-flow adhesion to the plasma-bridging protein thrombospondin, were associated with the clinical status of the SCD patients from whom plasma was obtained. In these experiments, the highest values were obtained for SCD acute plasma samples. Adhesion of senescent RBCs into biochips, which is not reversed by a pre-treatment with recombinant Annexin V, can be reproduced with the use of chemical agents acting on RBC membrane channels that regulate either Ca2+ entry or modulating RBC hydration. CONCLUSION: We found that markers on red cells are correlated, and that the senescence induced by SCD plasma provokes the adhesion of RBCs to the vessel wall protein thrombospondin. In-flow adhesion of senescent red cells after plasma co-incubations can be reproduced with the use of modulators of RBC membrane channels; activating the Piezo1 Ca2+ mechanosensitive channel provokes RBC adhesion of normal (non-senescent) RBCs, while blocking the Ca2+-dependent K+ Gardos channel, can reverse it. Clinically modulating the RBC adhesion to vascular wall proteins might be a promising avenue for the treatment of painful occlusive events in SCD.
Collapse
|
28
|
Nwankwo HC, Idowu AA, Muhammad A, Waziri AD, Abubakar YS, Bashir M, Erukainure OL. Antisickling effect of chrysin is associated with modulation of oxygenated and deoxygenated haemoglobin via alteration of functional chemistry and metabolic pathways of human sickle erythrocytes. Hum Exp Toxicol 2021; 40:S108-S124. [PMID: 34151613 DOI: 10.1177/09603271211025599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sickle cell disease (SCD) treatment and management remain a challenging puzzle especially among developing Nations. Chrysin's sickling-suppressive properties in human sickle (SS) erythrocytes in addition to its effect on AA-genotype erythrocytes were evaluated. Sickling was induced (76%) with 2% sodium metabisulphite at 3 h. Chrysin prevented (81.19%) the sickling and reversed same (84.63%) with strong IC50s (0.0257 µM and 0.00275 µM, respectively). The levels of oxygenated haemoglobin in the two groups (before and after induction approaches) were similar but significantly (P < 0.05) higher than that of SS erythrocytes (the 'induced' control), with chrysin-treated AA-genotype showing no effects relative to the untreated. The level of deoxygenated haemoglobin in the 'induced' control group was significantly (P < 0.05) higher than those of the chrysin-treated SS erythrocytes. Normal and chrysin-untreated erythrocytes (AA-untreated) were significantly more resistant to osmotic fragility than the SS-untreated. However, treatment with chrysin significantly reduced the osmotic fragility of the cells relative to the untreated cells. Furthermore, chrysin treatment significantly lowers the high level of 2,3-diphosphoglycerate (2,3-DPG) observed in the sickle erythrocytes, with no effects on AA-genotype erythrocytes. Based on functional chemistry, chrysin treatment alters the functional groups in favour of its antisickling effects judging from the observed bends and shifts. From metabolomics analysis, it was observed that chrysin treatment favors fatty acid alkyl monoesters (FAMEs) production with concomitant shutting down-effects on selenocompound metabolism. Thus, sickling-suppressive effects of chrysin could potentially be associated with modulation of oxygenated and deoxygenated haemoglobin via alteration of human sickle erythrocyte's functional chemistry and metabolic pathways implicated in SCD crisis.
Collapse
Affiliation(s)
- H C Nwankwo
- Department of Biochemistry, Faculty of Life Sciences, 58989Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - A A Idowu
- Department of Biochemistry, Faculty of Life Sciences, 58989Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - A Muhammad
- Department of Biochemistry, Faculty of Life Sciences, 58989Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - A D Waziri
- Department of Haematology, 58989Ahmadu Bello University Teaching Hospital, Zaria, Kaduna State, Nigeria
| | - Y S Abubakar
- Department of Biochemistry, Faculty of Life Sciences, 58989Ahmadu Bello University, Zaria, Kaduna State, Nigeria.,Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - M Bashir
- Centre for Dryland Agriculture, 54714Bayero University, Kano State, Nigeria
| | - O L Erukainure
- Department of Pharmacology, 37702University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
29
|
Salinas Cisneros G, Thein SL. Research in Sickle Cell Disease: From Bedside to Bench to Bedside. Hemasphere 2021; 5:e584. [PMID: 34095767 PMCID: PMC8171370 DOI: 10.1097/hs9.0000000000000584] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 01/25/2023] Open
Abstract
Sickle cell disease (SCD) is an exemplar of bidirectional translational research, starting with a remarkable astute observation of the abnormally shaped red blood cells that motivated decades of bench research that have now translated into new drugs and genetic therapies. Introduction of hydroxyurea (HU) therapy, the only SCD-modifying treatment for >30 years and now standard care, was initiated through another clinical observation by a pediatrician. While the clinical efficacy of HU is primarily due to its fetal hemoglobin (HbF) induction, the exact mechanism of how it increases HbF remains not fully understood. Unraveling of the molecular mechanism of how HU increases HbF has provided insights on the development of new HbF-reactivating agents in the pipeline. HU has other salutary effects, reduction of cellular adhesion to the vascular endothelium and inflammation, and dissecting these mechanisms has informed bench-both cellular and animal-research for development of the 3 recently approved agents: endari, voxelotor, and crizanlizumab; truly, a bidirectional bench to bedside translation. Decades of research to understand the mechanisms of fetal to adult hemoglobin have also culminated in promising anti-sickling genetic therapies and the first-in-human studies of reactivating an endogenous (γ-globin) gene HBG utilizing innovative genomic approaches.
Collapse
Affiliation(s)
- Gabriel Salinas Cisneros
- Sickle Cell Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
- Division of Hematology and Oncology, Children’s National Medical Center, Washington, District of Columbia, USA
| | - Swee Lay Thein
- Sickle Cell Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
30
|
Lu M, Kanne CK, Reddington RC, Lezzar DL, Sheehan VA, Shevkoplyas SS. Concurrent Assessment of Deformability and Adhesiveness of Sickle Red Blood Cells by Measuring Perfusion of an Adhesive Artificial Microvascular Network. Front Physiol 2021; 12:633080. [PMID: 33995119 PMCID: PMC8113687 DOI: 10.3389/fphys.2021.633080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Biomarker development is a key clinical research need in sickle cell disease (SCD). Hemorheological parameters are excellent candidates as abnormal red blood cell (RBC) rheology plays a critical role in SCD pathophysiology. Here we describe a microfluidic device capable of evaluating RBC deformability and adhesiveness concurrently, by measuring their effect on perfusion of an artificial microvascular network (AMVN) that combines microchannels small enough to require RBC deformation, and laminin (LN) coating on channel walls to model intravascular adhesion. Each AMVN device consists of three identical capillary networks, which can be coated with LN (adhesive) or left uncoated (non-adhesive) independently. The perfusion rate for sickle RBCs in the LN-coated networks (0.18 ± 0.02 nL/s) was significantly slower than in non-adhesive networks (0.20 ± 0.02 nL/s), and both were significantly slower than the perfusion rate for normal RBCs in the LN-coated networks (0.22 ± 0.01 nL/s). Importantly, there was no overlap between the ranges of perfusion rates obtained for sickle and normal RBC samples in the LN-coated networks. Interestingly, treatment with poloxamer 188 decreased the perfusion rate for sickle RBCs in LN-coated networks in a dose-dependent manner, contrary to previous studies with conventional assays, but in agreement with the latest clinical trial which showed no clinical benefit. Overall, these findings suggest the potential utility of the adhesive AMVN device for evaluating the effect of novel curative and palliative therapies on the hemorheological status of SCD patients during clinical trials and in post-market clinical practice.
Collapse
Affiliation(s)
- Madeleine Lu
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Celeste K Kanne
- Division of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Riley C Reddington
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Dalia L Lezzar
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Vivien A Sheehan
- Division of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Sergey S Shevkoplyas
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|
31
|
Evaluation of the expression of red blood cell CD36, interleukin-6 and interleukin-8 in sickle cell anemia pediatric patients. Cytokine 2021; 143:155534. [PMID: 33888402 DOI: 10.1016/j.cyto.2021.155534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/08/2021] [Accepted: 04/01/2021] [Indexed: 02/02/2023]
Abstract
Sickle cell anemia (SCA) is a complex multisystem disease characterized by acute and chronic inflammation, with alterations in inflammatory cytokines and adhesion molecules. This case-control study was carried out to assess the levels of CD36, immature reticulocytes, interleukin (IL)-6 and IL8 in SCA patients (in crisis and the steady state) and healthy controls. It included 90 children who were 2-18 years old; 60 with SCA and 30 healthy controls. Complete blood count, total reticulocyte count, reticulocyte subpopulations, immature reticulocyte fraction (IRF), percentage of CD36-positive red blood cells (RBCs), IL-6 and IL-8 levels were evaluated. The total white blood cell (WBC) and neutrophil counts, CD36-positive RBCs percentage, IRF, IL-6 and IL-8 levels were significantly higher in crises than in the steady state (P < 0.05). We also found that patients with SCA had significantly higher reticulocyte, WBC and neutrophil counts, fetal hemoglobin, CD36-positive RBCs percentage, IRF, and IL-6 and IL-8 levels than healthy children (P < 0.05). A significant positive linear correlation was reported between IL-6 and neutrophils during crises (Spearman correlation coefficient = 0.397, P = 0.03). These findings suggest that the levels of adhesion molecules and inflammatory markers and IRF, as evidenced by CD36-positive RBCs, IL-6 and IL-8, are elevated in SCA patients, both during steady state and crises, although these elevations are more marked during crises. Further knowledge about these cytokines and adhesion molecules will help in understanding the pathogenesis and improve therapy of SCA.
Collapse
|
32
|
Hermand P, Azouzi S, Gautier EF, Guillonneau F, Bondet V, Duffy D, Dechavanne S, Tharaux PL, Mayeux P, Le Van Kim C, Koehl B. The proteome of neutrophils in sickle cell disease reveals an unexpected activation of interferon alpha signaling pathway. Haematologica 2020; 105:2851-2854. [PMID: 33256386 PMCID: PMC7716375 DOI: 10.3324/haematol.2019.238295] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Patricia Hermand
- Université de Paris, Institut National de la Transfusion Sanguine, Paris, France
| | - Slim Azouzi
- Institut national de la transfusion sanguine and Laboratoire Excellence GR-Ex, Paris, France
| | | | | | - Vincent Bondet
- Immunobiology of Dendritic Cells, Institut Pasteur, Paris, France
| | - Darragh Duffy
- Immunobiology of Dendritic Cells, Institut Pasteur, Paris, France
| | - Sebastien Dechavanne
- Université de Paris, Institut National de la Transfusion Sanguine, Paris, France
| | | | - Patrick Mayeux
- Université de Paris, INSERM U1016, Institut Cochin, Paris, France
| | - Caroline Le Van Kim
- Université de Paris, Institut National de la Transfusion Sanguine, Paris, France
| | - Berengere Koehl
- Sickle Cell Disease Center, Hematology Unit, Hôpital Robert Debré, Paris, France
| |
Collapse
|
33
|
Kucukal E, Man Y, Hill A, Liu S, Bode A, An R, Kadambi J, Little JA, Gurkan UA. Whole blood viscosity and red blood cell adhesion: Potential biomarkers for targeted and curative therapies in sickle cell disease. Am J Hematol 2020; 95:1246-1256. [PMID: 32656816 PMCID: PMC7689825 DOI: 10.1002/ajh.25933] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022]
Abstract
Sickle cell disease (SCD) is a recessive genetic blood disorder exhibiting abnormal blood rheology. Polymerization of sickle hemoglobin, due to a point mutation in the β‐globin gene of hemoglobin, results in aberrantly adhesive and stiff red blood cells (RBCs). Hemolysis, abnormal RBC adhesion, and abnormal blood rheology together impair endothelial health in people with SCD, which leads to cumulative systemic complications. Here, we describe a microfluidic assay combined with a micro particle image velocimetry technique for the integrated in vitro assessment of whole blood viscosity (WBV) and RBC adhesion. We examined WBV and RBC adhesion to laminin (LN) in microscale flow in whole blood samples from 53 individuals with no hemoglobinopathies (HbAA, N = 10), hemoglobin SC disease (HbSC, N = 14), or homozygous SCD (HbSS, N = 29) with mean WBV of 4.50 cP, 4.08 cP, and 3.73 cP, respectively. We found that WBV correlated with RBC count and hematocrit in subjects with HbSC or HbSS. There was a significant inverse association between WBV and RBC adhesion under both normoxic and physiologically hypoxic (SpO2 of 83%) tests, in which lower WBV associated with higher RBC adhesion to LN in subjects with HbSS. Low WBV has been found by others to associate with endothelial activation. Altered WBV and abnormal RBC adhesion may synergistically contribute to the endothelial damage and cumulative pathophysiology of SCD. These findings suggest that WBV and RBC adhesion may serve as clinically relevant biomarkers and endpoints in assessing emerging targeted and curative therapies in SCD.
Collapse
Affiliation(s)
- Erdem Kucukal
- Department of Mechanical and Aerospace Engineering Case Western Reserve University Cleveland Ohio
| | - Yuncheng Man
- Department of Mechanical and Aerospace Engineering Case Western Reserve University Cleveland Ohio
| | - Ailis Hill
- Division of Hematology and Oncology, School of Medicine Case Western Reserve University Cleveland Ohio
| | - Shichen Liu
- Department of Mechanical and Aerospace Engineering Case Western Reserve University Cleveland Ohio
| | - Allison Bode
- Division of Hematology and Oncology, School of Medicine Case Western Reserve University Cleveland Ohio
| | - Ran An
- Department of Mechanical and Aerospace Engineering Case Western Reserve University Cleveland Ohio
| | - Jaikrishnan Kadambi
- Department of Mechanical and Aerospace Engineering Case Western Reserve University Cleveland Ohio
| | - Jane A. Little
- Division of Hematology and Blood Research Center, Department of Medicine University of North Carolina Chapel Hill North Carolina
| | - Umut A. Gurkan
- Department of Mechanical and Aerospace Engineering Case Western Reserve University Cleveland Ohio
- Department of Biomedical Engineering Case Western Reserve University Cleveland Ohio
| |
Collapse
|
34
|
Bray MA, Sartain SE, Gollamudi J, Rumbaut RE. Microvascular thrombosis: experimental and clinical implications. Transl Res 2020; 225:105-130. [PMID: 32454092 PMCID: PMC7245314 DOI: 10.1016/j.trsl.2020.05.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/12/2020] [Accepted: 05/17/2020] [Indexed: 02/07/2023]
Abstract
A significant amount of clinical and research interest in thrombosis is focused on large vessels (eg, stroke, myocardial infarction, deep venous thrombosis, etc.); however, thrombosis is often present in the microcirculation in a variety of significant human diseases, such as disseminated intravascular coagulation, thrombotic microangiopathy, sickle cell disease, and others. Further, microvascular thrombosis has recently been demonstrated in patients with COVID-19, and has been proposed to mediate the pathogenesis of organ injury in this disease. In many of these conditions, microvascular thrombosis is accompanied by inflammation, an association referred to as thromboinflammation. In this review, we discuss endogenous regulatory mechanisms that prevent thrombosis in the microcirculation, experimental approaches to induce microvascular thrombi, and clinical conditions associated with microvascular thrombosis. A greater understanding of the links between inflammation and thrombosis in the microcirculation is anticipated to provide optimal therapeutic targets for patients with diseases accompanied by microvascular thrombosis.
Collapse
Key Words
- adamts13, a disintegrin-like and metalloproteinase with thrombospondin type 1 motif 13
- ap, alternate pathway
- apc, activated protein c
- aps, antiphospholipid syndrome
- caps, catastrophic aps
- asfa, american society for apheresis
- atp, adenosine triphosphate
- cfh, complement factor h
- con a, concavalin a
- cox, cyclooxygenase
- damp, damage-associated molecular pattern
- dic, disseminated intravascular coagulation
- gbm, glomerular basement membrane
- hellp, hemolysis, elevated liver enzymes, low platelets
- hitt, heparin-induced thrombocytopenia and thrombosis
- hlh, hemophagocytic lymphohistiocytosis
- hus, hemolytic-uremic syndrome
- isth, international society for thrombosis and haemostasis
- ivig, intravenous immunoglobulin
- ldh, lactate nos, nitric oxide synthase
- net, neutrophil extracellular trap
- pai-1, plasminogen activator inhibitor 1
- pf4, platelet factor 4
- prr, pattern recognition receptor
- rbc, red blood cell
- scd, sickle cell disease
- sle, systemic lupus erythematosus
- tlr, toll-like receptor
- tf, tissue factor
- tfpi, tissue factor pathway inhibitor
- tma, thrombotic microangiopathy
- tnf-α, tumor necrosis factor-α
- tpe, therapeutic plasma exchange
- ulc, ultra large heparin-pf4 complexes
- ulvwf, ultra-large von willebrand factor
- vwf, von willebrand factor
Collapse
Affiliation(s)
- Monica A Bray
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas; Baylor College of Medicine, Houston, Texas
| | - Sarah E Sartain
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas; Baylor College of Medicine, Houston, Texas
| | - Jahnavi Gollamudi
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas; Baylor College of Medicine, Houston, Texas
| | - Rolando E Rumbaut
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas; Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
35
|
Crompton D, Vats R, Pradhan-Sundd T, Sundd P, Kameneva MV. Drag-reducing polymers improve hepatic vaso-occlusion in SCD mice. Blood Adv 2020; 4:4333-4336. [PMID: 32915976 PMCID: PMC7509886 DOI: 10.1182/bloodadvances.2020002779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/13/2020] [Indexed: 02/02/2023] Open
Abstract
Nanomolar concentrations of drag-reducing polymer (DRP) reduce vaso-occlusion in the liver of sickle cell disease (SCD) mice. The potential for DRP as a rheology-based treatment/therapy for SCD warrants further study.
Collapse
Affiliation(s)
- Dan Crompton
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
- McGowan Center for Regenerative Medicine, Pittsburgh, PA
| | - Ravi Vats
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute and
| | | | - Prithu Sundd
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute and
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA; and
| | - Marina V Kameneva
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
- McGowan Center for Regenerative Medicine, Pittsburgh, PA
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| |
Collapse
|
36
|
Blakely IP, Horton RE. A microfluidic computational fluid dynamics model for cellular interaction studies of sickle cell disease vaso-occlusions. Microvasc Res 2020; 132:104052. [PMID: 32768462 DOI: 10.1016/j.mvr.2020.104052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/02/2020] [Accepted: 07/28/2020] [Indexed: 11/27/2022]
Abstract
Individuals with sickle cell disease are plagued with vaso-occlusions, chronic blockages within the vasculature. Several factors including stiffer sickle red blood cells and increased cell aggregation contribute to vaso-occlusion formation; however much remains to be understood. We present a computational fluid dynamics blood flow simulation within a microfluidic platform using the Carreau model and Murray's law. Vaso-occlusions form preferentially near bifurcations within 60 s in the sickle cell disease simulation. Velocity profiles and shear rates align with clinical and experimental reports. We assert that results from this study can be utilized to inform experimental investigations and microfluidic system design decisions.
Collapse
Affiliation(s)
- Ian P Blakely
- Agricultural and Biological Engineering, College of Arts and Life Sciences, James Worth Bagley College of Engineering, Mississippi State University, United States of America
| | - Renita E Horton
- Biomedical Engineering Department, Cullen College of Engineering, University of Houston, United States of America.
| |
Collapse
|
37
|
Wu CYC, Lopez-Toledano MA, Daak AA, Clemons GA, Citadin CT, Sancilio FD, Rabinowicz AL, Minagar A, Neumann JT, Lee RHC, Lin HW. SC411 treatment can enhance survival in a mouse model of sickle cell disease. Prostaglandins Leukot Essent Fatty Acids 2020; 158:102110. [PMID: 32447175 DOI: 10.1016/j.plefa.2020.102110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 02/02/2023]
Abstract
Sickle cell disease (SCD) is one of the most common inherited blood disorder among African Americans affecting 70,000-100,000 individuals in the United States. It is characterized by abnormal hemoglobin (HbS) which develops into severe hemolytic anemia and vaso-occlusive crisis. Therefore, patients with SCD suffer from a chronic state of inflammation, which is responsible for multiple organ damage, ischemic attacks, and premature death. Another major hallmark of SCD patients is the abnormally low levels of omega-3 fatty acids, especially docosahexaenoic acid (DHA) in their red blood cell membranes. Treatment with DHA can reduce red blood cell adhesion and enhance cerebral blood flow, thus, our main goal is to investigate the effect of SC411, which is a novel, highly purified DHA ethyl ester formulation with a proprietary delivery platform in SCD. Utilizing a transgenic mouse model of SCD (HbSS-Townes) and recurrent hypoxic challenges (10%O2, 0.5% CO2 and balance N2 for 3 h) to mimic ischemic-like conditions, our data suggest that SC411 can elevate blood DHA and eicosapentaenoic acid (EPA) levels after 8 weeks of treatment. SC411 can also decrease arachidonic acid (AA) and sickling of red blood cells. In addition, SC411-treated SCD mice showed presented with cerebral blood flow, alleviated neuroinflammation, and revived working memory which ultimately enhanced overall survival. In summary, this study suggests that treatment with SC411 improves cellular and functional outcomes in SCD mice. This finding may provide novel therapeutic opportunities in the treatment against ischemic injury elicited by SCD.
Collapse
Affiliation(s)
- Celeste Y C Wu
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Hwy Shreveport, LA, USA
| | - Miguel A Lopez-Toledano
- Sancilio & Company, Inc, Stuart, FL, USA; Center of Molecular Biology and Biotechnology (CMBB), Florida Atlantic University, USA
| | - Ahmed A Daak
- Sancilio & Company, Inc, Stuart, FL, USA; Center of Molecular Biology and Biotechnology (CMBB), Florida Atlantic University, USA
| | - Garrett A Clemons
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Cristiane T Citadin
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Frederick D Sancilio
- Sancilio & Company, Inc, Stuart, FL, USA; Center of Molecular Biology and Biotechnology (CMBB), Florida Atlantic University, USA
| | - Adrian L Rabinowicz
- Sancilio & Company, Inc, Stuart, FL, USA; Center of Molecular Biology and Biotechnology (CMBB), Florida Atlantic University, USA
| | - Alireza Minagar
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Hwy Shreveport, LA, USA
| | - Jake T Neumann
- Deaprtment of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, WV, USA
| | - Reggie H C Lee
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Hwy Shreveport, LA, USA
| | - Hung Wen Lin
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Hwy Shreveport, LA, USA; Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
38
|
Chamouine A, Saandi T, Muszlak M, Larmaraud J, Lambrecht L, Poisson J, Balicchi J, Pissard S, Elenga N. High fetal hemoglobin level is associated with increased risk of cerebral vasculopathy in children with sickle cell disease in Mayotte. BMC Pediatr 2020; 20:302. [PMID: 32563256 PMCID: PMC7305627 DOI: 10.1186/s12887-020-02187-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/01/2020] [Indexed: 11/10/2022] Open
Abstract
Background Understanding the genetics underlying the heritable subphenotypes of sickle cell anemia, specific to each population, would be prognostically useful and could inform personalized therapeutics.The objective of this study was to describe the genetic modulators of sickle cell disease in a cohort of pediatric patients followed up in Mayotte. Methods This retrospective cohort study analyzed clinical and biological data, collected between January1st2007 and December 31st2017, in children younger than 18 years. Results We included 185 children with 72% SS, 16% Sβ0-thalassemia and 12% Sβ + thalassemia. The average age was 9.5 years; 10% of patients were lost to follow up. The Bantu haplotype was associated with an increase in hospitalizations and transfusions. The alpha-thalassemic mutation was associated with a decrease of hemolysis biological parameters (anemia, reticulocytes), and a decrease of cerebral vasculopathy. The Single Nucleotide Polymorphisms BCL11A rs4671393, BCL11A rs11886868, BCL11A rs1427407 and HMIP rs9399137 were associated with the group of children with HbF > 10%. Patients with HbF > 10% presented a significant risk of early onset of cerebral vasculopathy. Conclusions The most remarkable result of our study was the association of SNPs with clinically relevant phenotypic groups. BCL11A rs4671393, BCL11A rs11886868, BCL11A rs1427407 and HMIP rs9399137 were correlated with HbF > 10%, a group that has a higher risk of cerebral vasculopathy and should be oriented towards the hemolytic sub-phenotype.
Collapse
Affiliation(s)
- Abdourahim Chamouine
- Pediatric Unit, Mamoudzou General Hospital, 1, Rue de l'Hopital, BP 4, 97600, Mamoudzou, Mayotte, France.
| | - Thoueiba Saandi
- Pediatric Unit, Mamoudzou General Hospital, 1, Rue de l'Hopital, BP 4, 97600, Mamoudzou, Mayotte, France
| | - Mathias Muszlak
- Pediatric Unit, Mamoudzou General Hospital, 1, Rue de l'Hopital, BP 4, 97600, Mamoudzou, Mayotte, France
| | - Juliette Larmaraud
- Pediatric Unit, Mamoudzou General Hospital, 1, Rue de l'Hopital, BP 4, 97600, Mamoudzou, Mayotte, France
| | - Laurent Lambrecht
- Pediatric Unit, Mamoudzou General Hospital, 1, Rue de l'Hopital, BP 4, 97600, Mamoudzou, Mayotte, France
| | - Jean Poisson
- Pediatric Unit, Mamoudzou General Hospital, 1, Rue de l'Hopital, BP 4, 97600, Mamoudzou, Mayotte, France
| | - Julien Balicchi
- Pediatric Unit, Mamoudzou General Hospital, 1, Rue de l'Hopital, BP 4, 97600, Mamoudzou, Mayotte, France
| | - Serge Pissard
- APHP, GHU H Mondor, departement de genetique, INSERM-IMRB U955eq2/GREx, 51 Avenue du Maréchal de Lattre de Tassigny, 94010, Créteil Cedex, France
| | - Narcisse Elenga
- Pediatric Medicine and Surgery, Cayenne General Hospital, Cayenne, French Guiana, France
| |
Collapse
|
39
|
Allosteric control of hemoglobin S fiber formation by oxygen and its relation to the pathophysiology of sickle cell disease. Proc Natl Acad Sci U S A 2020; 117:15018-15027. [PMID: 32527859 PMCID: PMC7334536 DOI: 10.1073/pnas.1922004117] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The pathology of sickle cell disease is caused by polymerization of the abnormal hemoglobin S upon deoxygenation in the tissues to form fibers in red cells, causing them to deform and occlude the circulation. Drugs that allosterically shift the quaternary equilibrium from the polymerizing T quaternary structure to the nonpolymerizing R quaternary structure are now being developed. Here we update our understanding on the allosteric control of fiber formation at equilibrium by showing how the simplest extension of the classic quaternary two-state allosteric model of Monod, Wyman, and Changeux to include tertiary conformational changes provides a better quantitative description. We also show that if fiber formation is at equilibrium in vivo, the vast majority of cells in most tissues would contain fibers, indicating that it is unlikely that the disease would be survivable once the nonpolymerizing fetal hemoglobin has been replaced by adult hemoglobin S at about 1 y after birth. Calculations of sickling times, based on a recently discovered universal relation between the delay time prior to fiber formation and supersaturation, show that in vivo fiber formation is very far from equilibrium. Our analysis indicates that patients survive because the delay period allows the majority of cells to escape the small vessels of the tissues before fibers form. The enormous sensitivity of the duration of the delay period to intracellular hemoglobin composition also explains why sickle trait, the heterozygous condition, and the compound heterozygous condition of hemoglobin S with pancellular hereditary persistence of fetal hemoglobin are both relatively benign conditions.
Collapse
|
40
|
Palomo M, Diaz-Ricart M, Carreras E. Is sickle cell disease-related neurotoxicity a systemic endotheliopathy? Hematol Oncol Stem Cell Ther 2020; 13:111-115. [PMID: 32202249 DOI: 10.1016/j.hemonc.2019.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/11/2019] [Indexed: 10/24/2022] Open
Abstract
The aim of the present article is to review the role of endothelial damage and dysfunction in the vaso-occlusive episodes associated with sickle cell disease (SCD). This inherited hematological disorder leads to irreversible damage of multiple organs through a wide variety of mechanisms, such as sickling of red cells, oxidative state due to ischemic-reperfusion episodes, inflammation, hypercoagulation state, and platelet activation, among others. In SCD, the endothelium arises as the key entity where most of these processes, which eventually lead to increased morbidly and mortality, interact. This review begins with the already accepted idea that organ-specific vasculopathy precedes clinical manifestation, and briefly explains one of the main triggers of vaso-occlusive episodes, the complex interplay between blood cells and the dysfunctional endothelium. Endothelial protective strategies emerge as a potential tool for the prevention of organ-specific disease in SCD. Actually, this knowledge is currently used for the development of potential pharmacologic interventions to improve the lives of SCD patients.
Collapse
Affiliation(s)
- Marta Palomo
- Josep Carreras Leukaemia Research Institute, Hospital Clinic/University of Barcelona Campus, Barcelona, Spain; Hematopathology, Department of Pathology, Centre de Diagnostic Biomedic (CDB), Hospital Clinic de Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain; Barcelona Endothelium Team, Barcelona, Spain.
| | - Maribel Diaz-Ricart
- Hematopathology, Department of Pathology, Centre de Diagnostic Biomedic (CDB), Hospital Clinic de Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain; Barcelona Endothelium Team, Barcelona, Spain.
| | - Enric Carreras
- Josep Carreras Leukaemia Research Institute, Hospital Clinic/University of Barcelona Campus, Barcelona, Spain; Barcelona Endothelium Team, Barcelona, Spain.
| |
Collapse
|
41
|
Man Y, Goreke U, Kucukal E, Hill A, An R, Liu S, Bode A, Solis-Fuentes A, Nayak LV, Little JA, Gurkan UA. Leukocyte adhesion to P-selectin and the inhibitory role of Crizanlizumab in sickle cell disease: A standardized microfluidic assessment. Blood Cells Mol Dis 2020; 83:102424. [PMID: 32208292 DOI: 10.1016/j.bcmd.2020.102424] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/08/2020] [Indexed: 01/21/2023]
Abstract
Upregulated expression of P-selectin on activated endothelium and platelets significantly contributes to the initiation and progression of vaso-occlusive crises (VOC), a major cause of morbidity in sickle cell disease (SCD). Crizanlizumab (ADAKVEO®), a humanized monoclonal antibody against P-selectin, primarily inhibits the interaction between leukocytes and P-selectin, and has been shown to decrease the frequency of VOCs in clinical trials. However, the lack of reliable in vitro assays that objectively measure leukocyte adhesion to P-selectin remains a critical barrier to evaluating and improving the therapeutic treatment in SCD. Here, we present a standardized microfluidic BioChip whole blood adhesion assay to assess leukocyte adhesion to P-selectin under physiologic flow conditions. Our results demonstrated heterogeneous adhesion by leukocytes to immobilized P-selectin, and dose-dependent inhibition of this adhesion following pre-exposure to Crizanlizumab. Importantly, treatment with Crizanlizumab following adhesion to P-selectin promoted detachment of rolling, but not of firmly adherent leukocytes. Taken together, our results suggest that the microfluidic BioChip system is a promising in vitro assay with which to screen patients, monitor treatment response, and guide current and emerging anti-adhesive therapies in SCD.
Collapse
Affiliation(s)
- Yuncheng Man
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Utku Goreke
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Erdem Kucukal
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ailis Hill
- Department of Hematology and Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ran An
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Shichen Liu
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Allison Bode
- Department of Hematology and Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ambar Solis-Fuentes
- Department of Hematology and Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Lalitha V Nayak
- Department of Hematology and Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jane A Little
- Department of Hematology and Oncology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Umut A Gurkan
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
42
|
RETINAL AND CHOROIDAL VASCULAR OCCLUSION FOLLOWING AQUEOUS MISDIRECTION SYNDROME IN A PATIENT WITH SICKLE CELL TRAIT. Retin Cases Brief Rep 2020; 13:343-347. [PMID: 28489705 DOI: 10.1097/icb.0000000000000590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To report a patient with retinal and choroidal vascular occlusion as a presenting sign of sickle cell trait following the development of aqueous misdirection syndrome. METHODS Retrospective chart review. RESULTS A patient treated for bilateral chronic angle-closure glaucoma with sequential EX-PRESS glaucoma filtration device surgery developed sequential bilateral aqueous misdirection syndrome. The left eye developed retinal arterial and localized choroidal vascular occlusions subsequent to an acute elevation in intraocular pressure and possibly the use of oral acetazolamide. The patient was subsequently found to have sickle cell trait. The right eye developed aqueous misdirection with acute elevation of intraocular pressure as well, but the patient was not treated with oral acetazolamide and did not develop vascular occlusion. CONCLUSION Retinal and choroidal vascular occlusions can be the presenting sign of a patient with sickle cell trait. Sickle cell screening may be beneficial in African American or Middle Eastern patients after an acute rise in intraocular pressure, particularly before initiation of treatment with oral carbonic anhydrase inhibitors.
Collapse
|
43
|
Ballas SK, Darbari DS. Review/overview of pain in sickle cell disease. Complement Ther Med 2020; 49:102327. [PMID: 32147066 DOI: 10.1016/j.ctim.2020.102327] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/28/2022] Open
Abstract
Sickle cell disease (SCD) is a highly complex inherited disorder of hemoglobin structure. Although the molecular lesion is a single-point mutation, the sickle gene is pleiotropic in nature causing multiple phenotypic expressions that constitute the various complications of the disease. Its manifestations could be acute, chronic, nociceptive, neuropathic that could occur singly or in various combinations. Pain continues to be the major factor of SCD phenotypic complications and the most common cause of admissions to the Emergency Department and/or the hospital. Although progress has been made in understanding the pathophysiology of SCD as well as in developing curative therapies such as hematopoietic stem cell transplantation and gene therapy, effective pain management continues to lag behind. Palliative therapies continue to be the major approach to the management of SCD and its complications. The advent of hydroxyurea made partial success in preventing the frequency of vaso-occlusive crises and l-glutamine awaits post-trial confirmation of benefits. The search for additional pharmacotherapeutic agents that could be used singly or in combination with hydroxyurea and/or l-glutamine awaits their dawn hopefully in the near future. The purpose of this review is to describe the various manifestations of SCD, their pathophysiology and their current management. Recent impressive advances in understanding the pathophysiology of pain promise the determination of agents that could replace or minimize the use of opioids.
Collapse
Affiliation(s)
- Samir K Ballas
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, USA.
| | - Deepika S Darbari
- Division of Hematology, Center for Cancer and Blood Disorders, Children's National Medical Center, Washington, DC, USA
| |
Collapse
|
44
|
Ugurel E, Connes P, Yavas G, Eglenen B, Turkay M, Aksu AC, Renoux C, Joly P, Gauthier A, Hot A, Bertrand Y, Cannas G, Yalcin O. Differential effects of adenylyl cyclase-protein kinase A cascade on shear-induced changes of sickle cell deformability. Clin Hemorheol Microcirc 2020; 73:531-543. [DOI: 10.3233/ch-190563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Elif Ugurel
- Department of Physiology, Koç University School of Medicine, Sariyer, Istanbul, Turkey
| | - Philippe Connes
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
- Institut Universitaire de France (IUF), Paris, France
| | - Gokce Yavas
- Department of Physiology, Koç University School of Medicine, Sariyer, Istanbul, Turkey
| | - Buse Eglenen
- Department of Physiology, Koç University School of Medicine, Sariyer, Istanbul, Turkey
| | - Mine Turkay
- Department of Physiology, Koç University School of Medicine, Sariyer, Istanbul, Turkey
| | - Ali Cenk Aksu
- Department of Physiology, Koç University School of Medicine, Sariyer, Istanbul, Turkey
| | - Celine Renoux
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
- UF de biochimie des pathologies érythrocytaires, Centre de Biologie Est, Hospices Civils de Lyon, Lyon, France
| | - Philippe Joly
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
- UF de biochimie des pathologies érythrocytaires, Centre de Biologie Est, Hospices Civils de Lyon, Lyon, France
| | - Alexandra Gauthier
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
- Institut d’hématologie et d’oncologie pédiatrique (IHOP), Hospices Civils de Lyon, Lyon, France
| | - Arnaud Hot
- Clinique de Médecine Ambulatoire/Hématologie Hôpital Edouard Herriot, Lyon, Lyon, France
| | - Yves Bertrand
- Institut d’hématologie et d’oncologie pédiatrique (IHOP), Hospices Civils de Lyon, Lyon, France
| | - Giovanna Cannas
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
- Clinique de Médecine Ambulatoire/Hématologie Hôpital Edouard Herriot, Lyon, Lyon, France
| | - Ozlem Yalcin
- Department of Physiology, Koç University School of Medicine, Sariyer, Istanbul, Turkey
| |
Collapse
|
45
|
Ballas SK. The Evolving Pharmacotherapeutic Landscape for the Treatment of Sickle Cell Disease. Mediterr J Hematol Infect Dis 2020; 12:e2020010. [PMID: 31934320 PMCID: PMC6951351 DOI: 10.4084/mjhid.2020.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/17/2019] [Indexed: 01/02/2023] Open
Abstract
Sickle cell disease (SCD) is an extremely heterogeneous disease that has been associated with global morbidity and early mortality. More effective and inexpensive therapies are needed. During the last five years, the landscape of the pharmacotherapy of SCD has changed dramatically. Currently, 54 drugs have been used or under consideration to use for the treatment of SCD. These fall into 3 categories: the first category includes the four drugs (Hydroxyurea, L-Glutamine, Crizanlizumab tmca and Voxelotor) that have been approved by the United States Food and Drug Administration (FDA) based on successful clinical trials. The second category includes 22 drugs that failed, discontinued or terminated for now and the third category includes 28 drugs that are actively being considered for the treatment of SCD. Crizanlizumab and Voxelotor are included in the first and third categories because they have been used in more than one trial. New therapies targeting multiple pathways in the complex pathophysiology of SCD have been achieved or are under continued investigation. The emerging trend seems to be the use of multimodal drugs (i.e. drugs that have different mechanisms of action) to treat SCD similar to the use of multiple chemotherapeutic agents to treat cancer.
Collapse
Affiliation(s)
- Samir K Ballas
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
46
|
Ansari J, Gavins FNE. Ischemia-Reperfusion Injury in Sickle Cell Disease: From Basics to Therapeutics. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:706-718. [PMID: 30904156 DOI: 10.1016/j.ajpath.2018.12.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/17/2018] [Accepted: 12/07/2018] [Indexed: 12/17/2022]
Abstract
Sickle cell disease (SCD) is one of the most common hereditary hemoglobinopathies worldwide, affecting almost 400,000 newborns globally each year. It is characterized by chronic hemolytic anemia and endothelial dysfunction, resulting in a constant state of disruption of the vascular system and leading to recurrent episodes of ischemia-reperfusion injury (I/RI) to multiple organ systems. I/RI is a fundamental vascular pathobiological paradigm and contributes to morbidity and mortality in a wide range of conditions, including myocardial infarction, stroke, acute kidney injury, and transplantation. I/RI is characterized by an initial restriction of blood supply to an organ, which can lead to ischemia, followed by the subsequent restoration of perfusion and concomitant reoxygenation. Recent advances in the pathophysiology of SCD have led to an understanding that many of the consequences of this disease can be explained by mechanisms associated with I/RI. The following review focuses on the evolving pathobiology of SCD, how various complications of SCD can be attributed to I/RI, and the role of timely therapeutic intervention(s) based on targeting mediators or pathways that influence I/R insult.
Collapse
Affiliation(s)
- Junaid Ansari
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana
| | - Felicity N E Gavins
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana.
| |
Collapse
|
47
|
Riley TR, Riley TT. Profile of crizanlizumab and its potential in the prevention of pain crises in sickle cell disease: evidence to date. J Blood Med 2019; 10:307-311. [PMID: 31507334 PMCID: PMC6720158 DOI: 10.2147/jbm.s191423] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/06/2019] [Indexed: 12/29/2022] Open
Abstract
Sickle cell disease (SCD) is one of the most common inherited blood disorders globally. It is a grouping of autosomal recessive genetic disorders identified by a genetic mutation that replaces glutamic acid with valine at the sixth amino acid on the hemoglobin β-globin chain. Millions of people around the world live with a severe genotype of SCD that is often associated with occlusion of the microvasculature resulting in episodes of severe pain and multiple organ system dysfunction. These episodes, commonly categorized as vaso-occlusive crises (VOC), are a distinctive clinical presentation of SCD which represents the majority of SCD morbidity and associated hospitalizations. Though the complete process by which these crises occur is complex and not fully outlined, evidence reveals this process to be multifactorial and heterocellular. For nearly two decades, hydroxyurea was the only FDA-approved therapy for SCD. Evidence to date shows that hydroxyurea treatment significantly reduces the rate of VOC, hospitalizations, and mortality. Despite these benefits, adherence remains problematic due to a variety of adverse effects and interpatient variability connected with hydroxyurea therapy. Crizanlizumab, an adhesion inhibitor of sickled red blood cells, was recently granted breakthrough therapy designation. Results of a phase 2 study have reported a successful reduction in annual rates of vaso-occlusive crisis with a favorable safety profile. This paper reviews the available literature concerning crizanlizumab use in patients with SCD.
Collapse
Affiliation(s)
- Tanya R Riley
- Wingate University School of Pharmacy, Hendersonville, NC28739, USA
| | - Treavor T Riley
- Wingate University School of Pharmacy, Hendersonville, NC28739, USA
| |
Collapse
|
48
|
Jit BP, Mohanty PK, Pradhan A, Purohit P, Das K, Patel S, Meher S, Sinha S, Mohanty JR, Behera RK, Das P. Erythrocyte cAMP in Determining Frequency of Acute Pain Episodes in Sickle Cell Disease Patients from Odisha State, India. Hemoglobin 2019; 43:88-94. [PMID: 31290363 DOI: 10.1080/03630269.2019.1623248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Vaso-occlusive crisis (VOC) occurs more frequently during stress in sickle cell disease patients. Epinephrine released during stress increases adhesion of sickled red blood cells (RBCs) to endothelium and to leukocytes, a process mediated through erythrocyte cyclic adenosine monophosphate (cAMP). Increased adhesion of sickled RBCs retards blood flow through the capillaries and promotes vaso-occlusion. Therefore, we examined the association of RBC-cAMP levels with frequency of acute pain episodes in sickle cell disease subjects. Using a case control study design, we measured RBC-cAMP levels, fetal hemoglobin (Hb F), α-thalassemia (α-thal) and other hematological parameters at baseline (sham treated) and after stimulation with epinephrine. The cases consisted of sickle cell disease subjects with three or more acute pain episodes in the last 12 months, and those without a single acute pain episode in the last 12 months were considered as controls. Significantly higher cAMP values were found in cases than the controls, in both sham treated (p < 0.001) and epinephrine treated RBCs (p < 0.001) by Wilcoxon Rank Sum test. However, significant association of cAMP values was observed both on univariate [odds ratio (OR): 4.8, 95% confidence interval (95% CI): 1.51-15.19, p < 0.008) and multivariate logistic regression analyses only in epinephrine treated (OR: 5.07, 95% CI: 1.53-16.82, p < 0.008) but not in sham-treated RBCs. In the covariates, Hb F consistently showed protective effects in univariate as well as in multivariate analyses. Frequent acute pain episodes are associated with higher cAMP levels than those with less frequent pain episodes, only after stimulation with epinephrine but not with baseline level.
Collapse
Affiliation(s)
- Bimal P Jit
- a School of Life Sciences , AIPH University , Bhubaneswar , Odisha State , India.,b Sickle Cell Clinic and Molecular Biology Laboratory , Veer Surendra Sai Institute of Medical Sciences and Research , Burla, Sambalpur , Odisha State , India.,c School of Life Sciences , Sambalpur University , Jyoti Vihar, Burla , Sambalpur , Odisha State , India
| | - Pradeep K Mohanty
- b Sickle Cell Clinic and Molecular Biology Laboratory , Veer Surendra Sai Institute of Medical Sciences and Research , Burla, Sambalpur , Odisha State , India.,d Department of Medicine , Veer Surendra Sai Institute of Medical Sciences and Research , Burla, Sambalpur , Odisha State , India
| | - Avinash Pradhan
- e Central Institute of Freshwater Aquaculture , Bhubaneswar , Odisha State , India
| | - Prasanta Purohit
- b Sickle Cell Clinic and Molecular Biology Laboratory , Veer Surendra Sai Institute of Medical Sciences and Research , Burla, Sambalpur , Odisha State , India.,f Multidisciplinary Research Unit , Maharaja Krishna Chandra Gajapati Medical College , Berhampur , Odisha State , India
| | - Kishalaya Das
- b Sickle Cell Clinic and Molecular Biology Laboratory , Veer Surendra Sai Institute of Medical Sciences and Research , Burla, Sambalpur , Odisha State , India
| | - Siris Patel
- b Sickle Cell Clinic and Molecular Biology Laboratory , Veer Surendra Sai Institute of Medical Sciences and Research , Burla, Sambalpur , Odisha State , India
| | - Satyabrata Meher
- b Sickle Cell Clinic and Molecular Biology Laboratory , Veer Surendra Sai Institute of Medical Sciences and Research , Burla, Sambalpur , Odisha State , India
| | - Shalini Sinha
- a School of Life Sciences , AIPH University , Bhubaneswar , Odisha State , India
| | - Jyoti R Mohanty
- a School of Life Sciences , AIPH University , Bhubaneswar , Odisha State , India
| | - Rajendra Kumar Behera
- c School of Life Sciences , Sambalpur University , Jyoti Vihar, Burla , Sambalpur , Odisha State , India
| | - Padmalaya Das
- a School of Life Sciences , AIPH University , Bhubaneswar , Odisha State , India
| |
Collapse
|
49
|
|
50
|
Leonard A, Bonifacino A, Dominical VM, Luo M, Haro‐Mora JJ, Demirci S, Uchida N, Pierciey FJ, Tisdale JF. Bone marrow characterization in sickle cell disease: inflammation and stress erythropoiesis lead to suboptimal CD34 recovery. Br J Haematol 2019; 186:286-299. [DOI: 10.1111/bjh.15902] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/12/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Alexis Leonard
- Cellular and Molecular Therapeutics Branch NHLBI/NIDDK National Institutes of Health Bethesda MD USA
- Center for Cancer and Blood Disorders Children's National Health System Washington DC USA
| | | | - Venina M. Dominical
- NHLBI Flow Cytometry Core Facility National Institutes of Health Bethesda MD USA
| | - Min Luo
- bluebird bio, Inc. Cambridge MA USA
| | - Juan J. Haro‐Mora
- Cellular and Molecular Therapeutics Branch NHLBI/NIDDK National Institutes of Health Bethesda MD USA
| | - Selami Demirci
- Cellular and Molecular Therapeutics Branch NHLBI/NIDDK National Institutes of Health Bethesda MD USA
| | - Naoya Uchida
- Cellular and Molecular Therapeutics Branch NHLBI/NIDDK National Institutes of Health Bethesda MD USA
| | | | - John F. Tisdale
- Cellular and Molecular Therapeutics Branch NHLBI/NIDDK National Institutes of Health Bethesda MD USA
| |
Collapse
|