1
|
de Araujo Ribeiro GC, de Assis SA. β-glucosidases from Saccharomyces cerevisiae: production, protein precipitation, characterization, and application in the enzymatic hydrolysis of delignified sugarcane bagasse. Prep Biochem Biotechnol 2024; 54:317-327. [PMID: 38178713 DOI: 10.1080/10826068.2023.2238290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
β-glucosidase is an essential enzyme for the enzymatic hydrolysis of lignocellulosic biomass, as it catalyzes the final stage of cellulose breakdown, releasing glucose. This paper aims to produce β-glucosidase from Saccharomyces cerevisiae and evaluate the enzymatic degradation of delignified sugarcane bagasse. S. cerevisiae was grown in yeast peptone dextrose medium. Partial purification of the enzyme was achieved through precipitating proteins with ethanol, and the optimal activity was measured by optimizing pH and temperature. The effects of ions, glucose tolerance, and heat treatment were evaluated. Delignified sugarcane bagasse was hydrolyzed by the enzyme. β-glucosidase showed a specific activity of 14.0712 ± 0.0207 U mg-1. Partial purification showed 1.22-fold purification. The optimum pH and temperature were 6.24 and 54 °C, respectively. β-glucosidase showed tolerance to glucose, with a relative activity of 71.27 ± 0.16%. Thermostability showed a relative activity of 58.84 ± 0.91% at 90 °C. The hydrolysis of delignified sugarcane bagasse showed a conversion rate of 87.97 ± 0.10% in the presence of Zn2+, an ion that promoted the highest increase in enzymatic activity. S. cerevisiae produced an extracellular β-glucosidase with good stability at pH and temperatures conventionally applied in the hydrolysis of lignocellulosic biomass, showing viability for industrial application.
Collapse
|
2
|
Cavalheiro GF, Costa ACDA, Garbin ADEP, Silva GADA, Garcia NFL, Paz MFDA, Fonseca GG, Leite RSR. Catalytic properties of amylases produced by Cunninghamella echinulata and Rhizopus microsporus. AN ACAD BRAS CIENC 2023; 95:e20230187. [PMID: 37909570 DOI: 10.1590/0001-3765202320230187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/02/2023] [Indexed: 11/03/2023] Open
Abstract
The present work aimed to characterize and compare the catalytic properties of amylases from Cunninghamella echinulata and Rhizopus microsporus. The highest production of amylase by C. echinulata, 234.94 U g-1 of dry substrate (or 23.49 U mL-1), was obtained using wheat bran as a substrate, with 50-55% initial moisture and kept at 28 °C for 48 h. The highest production of amylases by R. microsporus, 224.85 U g-1 of dry substrate (or 22.48 U mL-1), was obtained cultivating wheat bran with 65% initial moisture at 45 °C for 24 h. The optimal activity of the amylases was observed at pH 5.0 at 60 °C for C. echinulata enzymes and at pH 4.5 at 65 °C for R. microsporus. The amylases produced by C. echinulata were stable at pH 4.0-8.0, while the R. microsporus enzymes were stable at pH 4.0-10.0. The amylases produced by C. echinulata remained stable for 1 h at 50 °C and the R. microsporus amylases maintained catalytic activity for 1 h at 55 °C. The enzymatic extracts of both fungi hydrolyzed starches from different plant sources and showed potential for liquefaction of starch, however the amylolytic complex of C. echinulata exhibited greater saccharifying potential.
Collapse
Affiliation(s)
- Gabriela F Cavalheiro
- Universidade Federal da Grande Dourados (UFGD), Faculdade de Ciências Biológicas e Ambientais (FCBA), Laboratório de Enzimologia e Processos Fermentativos (FEPFER), Rodovia Dourados/Itahum, Km 12, 79804-970 Dourados, MS, Brazil
| | - Ana Carolina DA Costa
- Universidade Federal da Grande Dourados (UFGD), Faculdade de Ciências Biológicas e Ambientais (FCBA), Laboratório de Enzimologia e Processos Fermentativos (FEPFER), Rodovia Dourados/Itahum, Km 12, 79804-970 Dourados, MS, Brazil
| | - Andreza DE Paula Garbin
- Universidade Federal da Grande Dourados (UFGD), Faculdade de Ciências Biológicas e Ambientais (FCBA), Laboratório de Enzimologia e Processos Fermentativos (FEPFER), Rodovia Dourados/Itahum, Km 12, 79804-970 Dourados, MS, Brazil
| | - Geisa A DA Silva
- Universidade Federal da Grande Dourados (UFGD), Faculdade de Ciências Biológicas e Ambientais (FCBA), Laboratório de Enzimologia e Processos Fermentativos (FEPFER), Rodovia Dourados/Itahum, Km 12, 79804-970 Dourados, MS, Brazil
| | - Nayara Fernanda L Garcia
- Universidade Federal da Grande Dourados (UFGD), Faculdade de Ciências Biológicas e Ambientais (FCBA), Laboratório de Enzimologia e Processos Fermentativos (FEPFER), Rodovia Dourados/Itahum, Km 12, 79804-970 Dourados, MS, Brazil
| | - Marcelo F DA Paz
- Universidade Federal da Grande Dourados (UFGD), Faculdade de Ciências Biológicas e Ambientais (FCBA), Laboratório de Enzimologia e Processos Fermentativos (FEPFER), Rodovia Dourados/Itahum, Km 12, 79804-970 Dourados, MS, Brazil
| | - Gustavo G Fonseca
- University of Akureyri, Faculty of Natural Resource Sciences, School of Business and Science, Borgir v. Norðurslóð, 600 Akureyri, Iceland
| | - Rodrigo S R Leite
- Universidade Federal da Grande Dourados (UFGD), Faculdade de Ciências Biológicas e Ambientais (FCBA), Laboratório de Enzimologia e Processos Fermentativos (FEPFER), Rodovia Dourados/Itahum, Km 12, 79804-970 Dourados, MS, Brazil
| |
Collapse
|
3
|
Daddaoua A, Álvarez C, Oggerin M, Rodriguez N, Duque E, Amils R, Armengaud J, Segura A, Ramos JL. Rio Tinto as a niche for acidophilus enzymes of industrial relevance. Microb Biotechnol 2023; 16:1069-1086. [PMID: 36748404 PMCID: PMC10128141 DOI: 10.1111/1751-7915.14192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/06/2022] [Indexed: 02/08/2023] Open
Abstract
Lignocellulosic residues are amongst the most abundant waste products on Earth. Therefore, there is an increasing interest in the utilization of these residues for bioethanol production and for biorefineries to produce compounds of industrial interest. Enzymes that breakdown cellulose and hemicellulose into oligomers and monosaccharides are required in these processes and cellulolytic enzymes with optimum activity at a low pH area are desirable for industrial processes. Here, we explore the fungal biodiversity of Rıo Tinto, the largest acidic ecosystem on Earth, as far as the secretion of cellulolytic enzymes is concerned. Using colorimetric and industrial substrates, we show that a high proportion of the fungi present in this extremophilic environment secrete a wide range of enzymes that are able to hydrolyze cellulose and hemicellulose at acidic pH (4.5-5). Shotgun proteomic analysis of the secretomes of some of these fungi has identified different cellulases and hemicellulolytic enzymes as well as a number of auxiliary enzymes. Supplementation of pre-industrial cocktails from Myceliophtora with Rio Tinto secretomes increased the amount of monosaccharides released from corn stover or sugar cane straw. We conclude that the Rio Tinto fungi display a good variety of hydrolytic enzymes with high industrial potential.
Collapse
Affiliation(s)
- Abdelali Daddaoua
- Department of Biochemistry and Molecular Biology II, Faculty of PharmacyUniversity of GranadaGranadaSpain
| | - Consolación Álvarez
- Instituto de Bioquímica Vegetal y Fotosíntesis (CSIC‐US)Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, CIC CartujaSevilleSpain
| | - Monika Oggerin
- Centro de Biología Molecular Severo Ochoa (CSIC‐UAM)Universidad Autónoma de MadridMadridSpain
| | | | | | - Ricardo Amils
- Centro de Biología Molecular Severo Ochoa (CSIC‐UAM)Universidad Autónoma de MadridMadridSpain
- Centro de Astrobiología (INTA‐CSIC)Torrejón de ArdozSpain
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS)Université Paris Saclay, CEA, INRAEBagnols‐sur‐CèzeFrance
| | - Ana Segura
- Estación Experimental del Zaidín (EEZ‐CSIC)GranadaSpain
| | | |
Collapse
|
4
|
Sanguine IS, Cavalheiro GF, Garcia NFL, Santos MVD, Gandra JR, Goes RHDTEBD, Paz MFD, Fonseca GG, Leite RSR. Xylanases of Trichoderma koningii and Trichoderma pseudokoningii: Production, characterization and application as additives in the digestibility of forage for cattle. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Spatial heterogeneity of the microbiome and metabolome profiles of high-temperature Daqu in the same workshop. Food Res Int 2022; 156:111298. [DOI: 10.1016/j.foodres.2022.111298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/01/2022] [Accepted: 04/22/2022] [Indexed: 12/11/2022]
|
6
|
Zhang J, Liu S, Sun H, Jiang Z, Xu Y, Mao J, Qian B, Wang L, Mao J. Metagenomics-based insights into the microbial community profiling and flavor development potentiality of baijiu Daqu and huangjiu wheat Qu. Food Res Int 2022; 152:110707. [PMID: 35181108 DOI: 10.1016/j.foodres.2021.110707] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/13/2021] [Accepted: 09/05/2021] [Indexed: 12/11/2022]
Abstract
Daqu and wheat Qu are saccharification and fermenting agents in Chinese huangjiu and baijiu production. This study aimed to investigate the difference between Daqu and wheat Qu in physicochemical indices, microbial communities, functional genes, and the metabolic network of key microbes responsible for flavor synthesis by whole-metagenome sequencing and metabolite analysis. Herein, physicochemical indices indicated that compared with wheat Qu, Daqu exhibited higher protease and cellulase activity and acidity, and lower glucoamylase and amylase enzyme activity. Metagenomic sequencing reveals that although Daqu and wheat Qu community composition have significant differences at species level, they have similar functional genes. Daqu were enriched in Pediococcus pentosaceus, Weissella paramesenteroides, Rasamsonia emersonii and Byssochlamys spectabilis (22.48% of the total abundance), while wheat Qu harbored greater abundances of Saccharopolyspora (54.78%, Saccharopolyspora rectivirgula, Saccharopolyspora shandongensis, Saccharopolyspora hirsuta, Saccharopolyspora spinose, and Saccharopolyspora erythraea). From a functional perspective, the important functions of Daqu and wheat Qu are both amino acid metabolism and carbohydrate metabolism. Meanwhile, a combined analysis among microbiota, functional genes, and dominant flavors indicated S. shandongensis, S. rectivirgula, and S. spinose might be the main contributor to the synthesis of flavor compounds in wheat Qu, while R. emersonii, W. paramesenteroides, Leuconostoc citreum, Leuconostoc mesenteroides, Weissella cibaria and P. pentosaceus may make the greatest contribution to flavor compounds synthesis in Daqu. This study reveals the microbial and functional dissimilarities of Daqu and wheat Qu, and helps elucidating different metabolic roles of microbes during flavor formation.
Collapse
Affiliation(s)
- Jing Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shuangping Liu
- National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang 31200, China; National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, Zhejiang 31200, China
| | - Hailong Sun
- National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengfei Jiang
- National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuezheng Xu
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, Zhejiang 31200, China
| | - Jieqi Mao
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, 117542, Singapore
| | - Bin Qian
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, Zhejiang 31200, China
| | - Lan Wang
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, Zhejiang 31200, China
| | - Jian Mao
- National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang 31200, China; National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, Zhejiang 31200, China.
| |
Collapse
|
7
|
Hu S, He C, Li Y, Yu Z, Chen Y, Wang Y, Ni D. Changes of fungal community and non-volatile metabolites during pile-fermentation of dark green tea. Food Res Int 2021; 147:110472. [PMID: 34399469 DOI: 10.1016/j.foodres.2021.110472] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/17/2021] [Accepted: 05/23/2021] [Indexed: 01/20/2023]
Abstract
Fungal community and non-volatile metabolites changes during the pile-fermentation are key factors to organoleptic qualities of dark green tea. However, the correlation between fungal succession and non-volatile compounds has never been satisfactorily explained. The purpose of the present study was to investigate fungal succession and its correlation with flavor compounds by multi-omics. Illumina Miseq sequencing of ITS1 region was conducted to analyze the fungal succession, a total of 78 OTUs which consisted of one phyla, nine classes, 15 orders, 26 families, 37 genera were identified, with Ascomycota as dominant phyla. Cluster analysis and non-metric multidimensional scaling of samples demonstrated the distribution of OTUs in multi-dimensional space, the pile-fermentation process of dark green tea can be divided into four periods according to the generated trajectory of fungal population, S0, S1-S3, S4-S5, and S6. Aspergillus is the dominant genus. Penicillium, Cyberlindnera, Debaryomyces, Candida, Thermomyces, Rasamsonia, Thermoascus, and Byssochlamys appear in different periods. three alkaloids, seven catechins, nine amino acids, five organic acids, five flavones and flavonoid glycosides were identified by UPLC-QTOF-MS/MS, and the contents were all decreasing. Caffeine, EGC, EGCG, L-theanine, kaempferitrin, L-phenylalanine, gallic acid, and myricetin-3-O-galactoside are important ingredients which contribute to the flavor of dark green tea. This study demonstrated the fungal succession, non-volatile flavor compounds and their relationships during pile-fermentation of dark green tea, and provides new insights into evaluating pivotal role of fungal succession in the manufacturing process of dark green tea.
Collapse
Affiliation(s)
- Shuai Hu
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China
| | - Chang He
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China
| | - Yuchuan Li
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China
| | - Zhi Yu
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China
| | - Yuqiong Chen
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China
| | - Yaomin Wang
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China.
| | - Dejiang Ni
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China.
| |
Collapse
|
8
|
Galanopoulou AP, Haimala I, Georgiadou DN, Mamma D, Hatzinikolaou DG. Characterization of the Highly Efficient Acid-Stable Xylanase and β-Xylosidase System from the Fungus Byssochlamys spectabilis ATHUM 8891 ( Paecilomyces variotii ATHUM 8891). J Fungi (Basel) 2021; 7:jof7060430. [PMID: 34072339 PMCID: PMC8228849 DOI: 10.3390/jof7060430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/17/2023] Open
Abstract
Two novel xylanolytic enzymes, a xylanase and a β-xylosidase, were simultaneously isolated and characterized from the extracellular medium of Byssochlamys spectabilis ATHUM 8891 (anamorph Paecilomyces variotii ATHUM 8891), grown on Brewer’s Spent Grain as a sole carbon source. They represent the first pair of characterized xylanolytic enzymes of the genus Byssochlamys and the first extensively characterized xylanolytic enzymes of the family Thermoascaceae. In contrast to other xylanolytic enzymes isolated from the same family, both enzymes are characterized by exceptional thermostability and stability at low pH values, in addition to activity optima at temperatures around 65 °C and acidic pH values. Applying nano-LC-ESI-MS/MS analysis of the purified SDS-PAGE bands, we sequenced fragments of both proteins. Based on sequence-comparison methods, both proteins appeared conserved within the genus Byssochlamys. Xylanase was classified within Glycoside Hydrolase family 11 (GH 11), while β-xylosidase in Glycoside Hydrolase family 3 (GH 3). The two enzymes showed a synergistic action against xylan by rapidly transforming almost 40% of birchwood xylan to xylose. The biochemical profile of both enzymes renders them an efficient set of biocatalysts for the hydrolysis of xylan in demanding biorefinery applications.
Collapse
Affiliation(s)
- Anastasia P. Galanopoulou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15772 Athens, Greece; (A.P.G.); (I.H.); (D.N.G.)
| | - Irini Haimala
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15772 Athens, Greece; (A.P.G.); (I.H.); (D.N.G.)
| | - Daphne N. Georgiadou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15772 Athens, Greece; (A.P.G.); (I.H.); (D.N.G.)
| | - Diomi Mamma
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 15780 Athens, Greece
- Correspondence: (D.M.); (D.G.H.)
| | - Dimitris G. Hatzinikolaou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15772 Athens, Greece; (A.P.G.); (I.H.); (D.N.G.)
- Correspondence: (D.M.); (D.G.H.)
| |
Collapse
|
9
|
GARBIN ANDREZAP, GARCIA NAYARAF, CAVALHEIRO GABRIELAF, SILVESTRE MARIAALICE, RODRIGUES ANDRÉ, PAZ MARCELOFDA, FONSECA GUSTAVOG, LEITE RODRIGOS. β-glucosidase from thermophilic fungus Thermoascus crustaceus: production and industrial potential. ACTA ACUST UNITED AC 2021; 93:e20191349. [DOI: 10.1590/0001-3765202120191349] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/12/2020] [Indexed: 12/15/2022]
|
10
|
de Andrade Silva CA, da Silva PGP, da Silva GFA, Dantas DP, Leite RSR, Fonseca GG. Biotransformation of fruit residues via solid state bioprocess using Lichtheimia ramosa. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2689-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
11
|
Srivastava N, Rathour R, Jha S, Pandey K, Srivastava M, Thakur VK, Sengar RS, Gupta VK, Mazumder PB, Khan AF, Mishra PK. Microbial Beta Glucosidase Enzymes: Recent Advances in Biomass Conversation for Biofuels Application. Biomolecules 2019; 9:E220. [PMID: 31174354 PMCID: PMC6627771 DOI: 10.3390/biom9060220] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 01/10/2023] Open
Abstract
The biomass to biofuels production process is green, sustainable, and an advanced technique to resolve the current environmental issues generated from fossil fuels. The production of biofuels from biomass is an enzyme mediated process, wherein β-glucosidase (BGL) enzymes play a key role in biomass hydrolysis by producing monomeric sugars from cellulose-based oligosaccharides. However, the production and availability of these enzymes realize their major role to increase the overall production cost of biomass to biofuels production technology. Therefore, the present review is focused on evaluating the production and efficiency of β-glucosidase enzymes in the bioconversion of cellulosic biomass for biofuel production at an industrial scale, providing its mechanism and classification. The application of BGL enzymes in the biomass conversion process has been discussed along with the recent developments and existing issues. Moreover, the production and development of microbial BGL enzymes have been explained in detail, along with the recent advancements made in the field. Finally, current hurdles and future suggestions have been provided for the future developments. This review is likely to set a benchmark in the area of cost effective BGL enzyme production, specifically in the biorefinery area.
Collapse
Affiliation(s)
- Neha Srivastava
- Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.
| | - Rishabh Rathour
- Department of Bioengineering, Integral University, Lucknow 226026, India.
| | - Sonam Jha
- Department of Botany, Banaras Hindu University, Varanasi 221005, India.
| | - Karan Pandey
- Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.
| | - Manish Srivastava
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India.
| | - Vijay Kumar Thakur
- Enhanced Composites and Structures Center, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK.
| | - Rakesh Singh Sengar
- Department of Agriculture Biotechnology, College of Agriculture, Sardar Vallabhbhai Patel, University of Agriculture and Technology, Meerut 250110, U.P., India.
| | - Vijai K Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of Technology, 12618 Tallinn, Estonia.
| | | | - Ahamad Faiz Khan
- Department of Bioengineering, Integral University, Lucknow 226026, India.
| | - Pradeep Kumar Mishra
- Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.
| |
Collapse
|