1
|
Bauer EM, Ricci C, Cecchetti D, Ciufolini G, Cicero DO, Rossi M, Guerriero E, Orlando S, Carbone M. Toxicological problems of tattoo removal: characterization of femtosecond laser-induced fragments of Pigment Green 7 and Green Concentrate tattoo ink. Arch Toxicol 2025; 99:1355-1369. [PMID: 39812830 PMCID: PMC11968555 DOI: 10.1007/s00204-024-03953-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
Femtosecond lasers represent a novel tool for tattoo removal as sources that can be operated at high power, potentially leading to different removal pathways and products. Consequently, the potential toxicity of its application also needs to be evaluated. In this framework, we present a comparative study of Ti:Sapphire femtosecond laser irradiation, as a function of laser power and exposure time, on water dispersions of Pigment Green 7 (PG7) and the green tattoo ink Green Concentrate (GC), which contains PG7 as its coloring agent. The treated samples were subsequently analyzed via UV‒Vis spectroscopy, gas chromatography‒mass spectrometry (GC‒MS), SEM imaging and associated statistical analysis. We found that, on average, the discoloration efficacy of femtosecond laser treatment was comparable to that of nanosecond lasers as were the decomposition products. In fact, two primary types of fragments are produced, both of which are potentially harmful, resulting either from the decomposition of chlorinated phthalocyanine (i.e., PG7) or from the active chlorination of naphthalene impurities. However, the outcomes for the PG7 and GC treatments differed significantly from each other from several points of view. The spectral intensity patterns of GC and PG7 were distinct, depending on the treatment conditions, and showed linearity with power only in the case of GC. Additionally, the relative ratios of the fragment products differed significantly, with the production rate showing a linear dependence on power only in the case of GC and no discernible trend for PG7. Shape and size distribution of the generated particles were highly dependent on the type of sample. Femtosecond laser irradiation of GCs primarily produces nanoparticles with a homogeneous size distribution, which are typically considered nontoxic. Large aggregates also formed, exhibiting a regular shape. In contrast, PG7 yielded rods and needles with aspect ratios similar to those of toxic fibers.
Collapse
Affiliation(s)
- Elvira Maria Bauer
- Institute of Structure of Matter, Italian National Research Council (ISM-CNR), c/o Area della Ricerca di Roma1, Strada Provinciale 35d n. 9, Montelibretti, 00010, Rome, Italy
| | - Cosimo Ricci
- STARTNETICS - Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Daniele Cecchetti
- STARTNETICS - Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Giorgia Ciufolini
- STARTNETICS - Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Daniel Oscar Cicero
- STARTNETICS - Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Marco Rossi
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Via Antonio Scarpa 16, 00161, Rome, Italy
- Research Center on Nanotechnologies Applied to Engineering (CNIS), Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Ettore Guerriero
- Institute for Atmospheric Pollution Research, Italian National Research Council (CNR-IIA), c/o Area della Ricerca di Roma1, Strada Provinciale 35d n. 9, Montelibretti, 00010, Rome, Italy
| | - Stefano Orlando
- Institute of Structure of Matter, Italian National Research Council (ISM-CNR), FemtoLAB, C.da S. Loja, 85050, Tito Scalo, Italy
| | - Marilena Carbone
- STARTNETICS - Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy.
| |
Collapse
|
2
|
Kochs S, Schiewe S, Foerster M, Hillmann K, Blankenstein C, Meinke MC, Kugler J, Kocovic D, Luch A, Blume-Peytavi U, Schreiver I. Tat_BioV: tattoo ink exposure and biokinetics of selected tracers in a short-term clinical study of 24 subjects. Arch Toxicol 2025; 99:1341-1354. [PMID: 39888425 PMCID: PMC11968518 DOI: 10.1007/s00204-025-03959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 01/09/2025] [Indexed: 02/01/2025]
Abstract
About one-fifth of people in industrialised countries are tattooed, potentially putting them at risk of exposure to possible carcinogenic or otherwise harmful substances. This study aims to determine the exposure to soluble tattoo ink ingredients and their excretion within 24 h after tattooing. In this clinical study, 24 subjects were tattooed with black or red tattoo ink to which the 3 tracer substances, potassium iodide, 4-aminobenzoic acid (PABA) and 2-phenoxyethanol (PEtOH), had been added to mimic known substances found in tattoo inks. Tracers and their metabolites were quantified in blood, urine, ink and consumables pre- and post-tattooing. Tattooed skin area was determined using picture analysis. PABA metabolism upon tattooing was compared to peroral administration. Skin fibroblasts and macrophages were tested in vitro for their ability to metabolise PABA. All tracers or their metabolites were identified in urine; iodide and the PABA metabolite 4-acetamidobenzoic acid (ACD) were identified in plasma. The worst-case scenario for systemic ink exposure was estimated to be 0.31 g ink per tattoo session (75th percentile). Peroral administration resulted in lower levels of ACD than tattooing. Fibroblasts and macrophages were capable of converting PABA into ACD. Our results are the first human in vivo data on soluble tattoo ink ingredients and suggest that the overall exposure might be lower than the estimates previously used for regulatory purposes. In addition, the first-pass effect by skin metabolism leads to an altered metabolite profile compared to oral exposure. Skin metabolism might also contribute to detoxification of certain carcinogenic substances through N-acetylation.
Collapse
Affiliation(s)
- Susanne Kochs
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Sandra Schiewe
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Milena Foerster
- International Agency for Research On Cancer (IARC), Environment and Lifestyle Epidemiology Branch, Lyon, France
| | - Kathrin Hillmann
- Department of Dermatology, Venereology and Allergology, Clinical Research Center for Hair and Skin Science, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany
| | - Claudia Blankenstein
- Department of Dermatology, Venereology and Allergology, Clinical Research Center for Hair and Skin Science, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany
| | - Martina C Meinke
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany
| | - Josephine Kugler
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - David Kocovic
- Center for Inspection Supervision and Market Control, Institute for Medicines and Medical Devices of Montenegro, Podgorica, Montenegro
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Ulrike Blume-Peytavi
- Department of Dermatology, Venereology and Allergology, Clinical Research Center for Hair and Skin Science, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany
| | - Ines Schreiver
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
| |
Collapse
|
3
|
Kim H, Park HJ. Current hPSC-derived liver organoids for toxicity testing: Cytochrome P450 enzymes and drug metabolism. Toxicol Res 2025; 41:105-121. [PMID: 40013078 PMCID: PMC11850699 DOI: 10.1007/s43188-024-00275-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 02/28/2025] Open
Abstract
Drug-induced hepatotoxicity is the leading cause of attrition of drug candidates and withdrawal of marketed drugs owing to safety concerns. In most hepatotoxicity cases, the parent drugs are metabolized by cytochrome P450 (CYP) enzymes, generating reactive metabolites that bind to intracellular organelles and proteins, ultimately causing hepatocellular damage. A major limitation of animal models, which are widely used for toxicity assessment, is the discrepancy in CYP-mediated drug metabolism and toxicological outcomes owing to species differences between humans and animals. Two-dimensional (2D) hepatocytes were first developed as a promising alternative model using human pluripotent stem cells (hPSCs). However, their CYP expression was similar to that of the fetal liver, and they lacked CYP-mediated hepatic metabolism. CYP expression in hPSC-derived hepatic models is closely correlated with liver maturity. Therefore, liver organoids that are more mature than hPSC-derived hepatic models and mimic the structure and physiological functions of the human liver have emerged as new alternatives. In this review, we explored the role and essentiality of CYPs in human hepatotoxicity, their expression, and epigenetic regulation in hPSC-derived hepatocytes and liver organoids, as well as the current state of liver organoid technology in terms of CYP expression and activity, drug metabolism, and toxicity. We also discussed the current challenges and future directions for the practical use of liver organoids. In conclusion, we highlight the importance of methods and metrics for accurately assessing CYP expression and activity in liver organoids to enable the development of feasible models that reproduce hepatotoxicity in humans.
Collapse
Affiliation(s)
- Hyemin Kim
- Division of Advanced Predictive Research, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Han-Jin Park
- Division of Advanced Predictive Research, Korea Institute of Toxicology, Daejeon, Republic of Korea
| |
Collapse
|
4
|
Stock V, Hofer R, Lochmann F, Spanke V, Liedl KR, Troppmair J, Langer T, Gstach H, Dank C, Mayhew CA, Kammerer S, Ruzsanyi V. Tolterodine is a novel candidate for assessing CYP3A4 activity through metabolic volatiles to predict drug responses. Sci Rep 2025; 15:2462. [PMID: 39828876 PMCID: PMC11743777 DOI: 10.1038/s41598-025-86450-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
Cytochrome P450 (CYP) 3A4 plays a major role in drug metabolism. Its activity could be determined by non-invasive and cost-effective assays, such as breath analysis, for the personalised monitoring of drug response. For the first time, we identify an isotopically unlabelled CYP3A4 substrate, tolterodine that leads to the formation of a non-toxic volatile metabolite, acetone, which could potentially be applied to monitor CYP3A4 activity in humans. In vitro biotransformation of tolterodine by HepG2 cells overexpressing CYP3A4, CYP2D6 or CYP2C9 was investigated by LC-MS analysis of cell culture supernatant for the non-volatile metabolite, N-dealkylated tolterodine, and PTR-ToF-MS analysis of the headspace for acetone. The highest level of the N-dealkylated metabolite was produced by HepG2-CYP3A4. Concentration dependent effects of tolterodine were analysed, resulting in TC50 values of 414 µM and 375 µM for HepG2-CYP3A4 and reference cells, respectively. Acetone and N-dealkylated tolterodine levels increased continuously over 24 h in HepG2-CYP3A4. Treatment with either a pan-CYP inhibitor, 1-aminobenzotriazole, or a CYP3A4 inhibitor, ketoconazole, considerably reduced the production of both metabolites in HepG2-CYP3A4 cells. These findings pave the way for the further development of non-invasive breath tests using unlabelled precursors to determine CYP enzyme activity in individuals.
Collapse
Affiliation(s)
- Valentina Stock
- Institute for Breath Research, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Rebecca Hofer
- Institute for Breath Research, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Franziska Lochmann
- Institute for Breath Research, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Vera Spanke
- Institute for Theoretical Chemistry, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Klaus R Liedl
- Institute for Theoretical Chemistry, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Jakob Troppmair
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innrain 66, Innsbruck, 6020, Austria
| | - Thierry Langer
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, Vienna, 1090, Austria
| | - Hubert Gstach
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, Vienna, 1090, Austria
| | - Christian Dank
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, Vienna, 1090, Austria
- Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, Vienna, 1090, Austria
| | - Chris A Mayhew
- Institute for Breath Research, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Sarah Kammerer
- Institute for Breath Research, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus- Senftenberg, 01968, Senftenberg, Germany
| | - Veronika Ruzsanyi
- Institute for Breath Research, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria.
| |
Collapse
|
5
|
Eroglu CN, Yuksek MN, Elasan S, Mizrak YR, Karaca B. Comparison of the analgesic efficacy of spray and tablet flurbiprofen for pain after soft tissue surgery. Braz Oral Res 2024; 38:e108. [PMID: 39536200 PMCID: PMC11552457 DOI: 10.1590/1807-3107bor-2024.vol38.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/24/2024] [Accepted: 08/05/2024] [Indexed: 11/16/2024] Open
Abstract
The aim of this randomized clinical study was to assess the comparative efficacy of flurbiprofen in tablet and spray formulations for postoperative pain management in oral soft tissue wounds undergoing primary closure while investigating the feasibility of achieving optimal analgesia with reduced dosage and risk. Forty patients who underwent epulis fissuratum and frenulum excision for pre-prosthetic surgery were randomly assigned to receive either tablet or spray forms of flurbiprofen. The lesion dimensions were measured preoperatively, followed by excision and primary closure. The tablet group received oral tablets containing 100 mg of flurbiprofen twice daily, whereas the spray group received an oral spray containing 0.25% flurbiprofen, administered as two sprays thrice daily. Postoperative pain was assessed using the Numerical Rating Scale (NRS) until the 7th day. Lesion size, drug consumption, and rescue analgesic use were compared between the groups. There were no statistically significant differences in the lesion size between the groups. However, the mean NRS score in the spray group was significantly lower in the spray group compared to than that in the tablet group at 6th hour postoperatively (p = 0.037). Significant differences favoring the tablet group were observed in the first three doses of the drug (p = 0.001). No patients required rescue analgesics. The spray formulation of flurbiprofen demonstrated effective and safe pain relief in oral soft tissue wounds undergoing primary closure, with no reported adverse effects.
Collapse
Affiliation(s)
- Cennet Neslihan Eroglu
- Akdeniz University, Faculty of Dentistry, Department of Oral & Maxillofacial Surgery, Antalya, Turkey
| | - Mehmet Nuri Yuksek
- Yuzuncu Yil University, Faculty of Dentistry Department of Oral & Maxillofacial Surgery, Van, Turkey
| | - Sadi Elasan
- Yuzuncu Yil University, Faculty of Medicine, Department of Biostatistics, Van, Turkey
| | - Yusuf Rodi Mizrak
- Yuzuncu Yil University, Faculty of Dentistry Department of Oral & Maxillofacial Surgery, Van, Turkey
| | - Busra Karaca
- Akdeniz University, Faculty of Dentistry, Department of Oral & Maxillofacial Surgery, Antalya, Turkey
| |
Collapse
|
6
|
Arav Y. Advances in Modeling Approaches for Oral Drug Delivery: Artificial Intelligence, Physiologically-Based Pharmacokinetics, and First-Principles Models. Pharmaceutics 2024; 16:978. [PMID: 39204323 PMCID: PMC11359797 DOI: 10.3390/pharmaceutics16080978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Oral drug absorption is the primary route for drug administration. However, this process hinges on multiple factors, including the drug's physicochemical properties, formulation characteristics, and gastrointestinal physiology. Given its intricacy and the exorbitant costs associated with experimentation, the trial-and-error method proves prohibitively expensive. Theoretical models have emerged as a cost-effective alternative by assimilating data from diverse experiments and theoretical considerations. These models fall into three categories: (i) data-driven models, encompassing classical pharmacokinetics, quantitative-structure models (QSAR), and machine/deep learning; (ii) mechanism-based models, which include quasi-equilibrium, steady-state, and physiologically-based pharmacokinetics models; and (iii) first principles models, including molecular dynamics and continuum models. This review provides an overview of recent modeling endeavors across these categories while evaluating their respective advantages and limitations. Additionally, a primer on partial differential equations and their numerical solutions is included in the appendix, recognizing their utility in modeling physiological systems despite their mathematical complexity limiting widespread application in this field.
Collapse
Affiliation(s)
- Yehuda Arav
- Department of Applied Mathematics, Israeli Institute for Biological Research, P.O. Box 19, Ness-Ziona 7410001, Israel
| |
Collapse
|
7
|
Sardu ML, Poggesi I. Pharmacokinetics of intranasal drugs, still a missed opportunity? Xenobiotica 2024; 54:424-438. [PMID: 38687903 DOI: 10.1080/00498254.2024.2349046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
The intranasal (IN) route of administration is important for topical drugs and drugs intended to act systemically. More recently, direct nose-to-brain input was considered to bypass the blood-brain barrier.Processes related to IN absorption and nose-to-brain distribution are complex and depend, sometimes in contrasting ways, on chemico-physical and structural parameters of the compounds, and on formulation options.Due to the intricacies of these processes and despite the large number of articles published on many different IN compounds, it appears that absorption after IN dosing is not yet fully understood. In particular, at variance of the understanding and modelling approaches that are available for predicting the pharmacokinetics (PK) following oral administration of xenobiotics, it appears that there is not a similar understanding of the chemico-physical and structural determinants influencing drug absorption and disposition of compounds after IN administration, which represents a missed opportunity for this research field. This is even more true regarding the understanding of the direct nose-to-brain input. Due to this, IN administrations may represent an interesting and open research field for scientists aiming to develop PK property predictions tools, mechanistic PK models describing rate and extent of IN absorption, and translational tools to anticipate the clinical PK following IN dosing based on in vitro and in vivo non clinical experiments.This review intends to provide: i) some basic knowledge related to the physiology of PK after IN dosing, ii) a non-exhaustive list of preclinical and clinical examples related to compounds explored for the potential nose-to-blood and nose-to-brain passage, and iii) the identification of some areas requiring improvements, the understanding of which may facilitate the development of IN drug candidates.
Collapse
Affiliation(s)
| | - Italo Poggesi
- Clinical Pharmacology, Modeling and Simulation, GSK, Verona, Italy
| |
Collapse
|
8
|
Cho S, Jo H, Hwang YJ, Kim C, Jo YH, Yun JW. Potential impact of underlying diseases influencing ADME in nonclinical safety assessment. Food Chem Toxicol 2024; 188:114636. [PMID: 38582343 DOI: 10.1016/j.fct.2024.114636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Nonclinical studies involve in vitro, in silico, and in vivo experiments to assess the toxicokinetics, toxicology, and safety pharmacology of drugs according to regulatory requirements by a national or international authority. In this review, we summarize the potential effects of various underlying diseases governing the absorption, distribution, metabolism, and excretion (ADME) of drugs to consider the use of animal models of diseases in nonclinical trials. Obesity models showed alterations in hepatic metabolizing enzymes, transporters, and renal pathophysiology, which increase the risk of drug-induced toxicity. Diabetes models displayed changes in hepatic metabolizing enzymes, transporters, and glomerular filtration rates (GFR), leading to variability in drug responses and susceptibility to toxicity. Animal models of advanced age exhibited impairment of drug metabolism and kidney function, thereby reducing the drug-metabolizing capacity and clearance. Along with changes in hepatic metabolic enzymes, animal models of metabolic syndrome-related hypertension showed renal dysfunction, resulting in a reduced GFR and urinary excretion of drugs. Taken together, underlying diseases can induce dysfunction of organs involved in the ADME of drugs, ultimately affecting toxicity. Therefore, the use of animal models of representative underlying diseases in nonclinical toxicity studies can be considered to improve the predictability of drug side effects before clinical trials.
Collapse
Affiliation(s)
- Sumin Cho
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Harin Jo
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yeon Jeong Hwang
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Changuk Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Yong Hyeon Jo
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jun-Won Yun
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
9
|
Dashkova AS, Kovalev VI, Chaplygina AV, Zhdanova DY, Bobkova NV. Unique Properties of Synaptosomes and Prospects for Their Use for the Treatment of Alzheimer's Disease. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1031-1044. [PMID: 38981699 DOI: 10.1134/s0006297924060051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 07/11/2024]
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative condition affecting millions worldwide. Prevalence of AD correlates with increased life expectancy and aging population in the developed countries. Considering that AD is a multifactorial disease involving various pathological processes such as synaptic dysfunction, neuroinflammation, oxidative stress, and improper protein folding, a comprehensive approach targeting multiple pathways may prove effective in slowing the disease progression. Cellular therapy and its further development in the form of cell vesicle and particularly mitochondrial transplantation represent promising approaches for treating neurodegeneration. The use of synaptosomes, due to uniqueness of their contents, could mark a new stage in the development of comprehensive therapies for neurodegenerative diseases, particularly AD. Synaptosomes contain unique memory mitochondria, which differ not only in size but also in functionality compared to the mitochondria in the neuronal soma. These synaptosomal mitochondria actively participate in cellular communication and signal transmission within synapses. Synaptosomes also contain other elements such as their own protein synthesis machinery, synaptic vesicles with neurotransmitters, synaptic adhesion molecules, and microRNAs - all crucial for synaptic transmission and, consequently, cognitive processes. Complex molecular ensemble ensures maintenance of the synaptic autonomy of mitochondria. Additionally, synaptosomes, with their affinity for neurons, can serve as an optimal platform for targeted drug delivery to nerve cells. This review discusses unique composition of synaptosomes, their capabilities and advantages, as well as limitations of their suggested use as therapeutic agents for treating neurodegenerative pathologies, particularly AD.
Collapse
Affiliation(s)
- Alla S Dashkova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Vladimir I Kovalev
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Alina V Chaplygina
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Daria Yu Zhdanova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Natalia V Bobkova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
10
|
Chang C, Roh YS, Du M, Kuo YC, Zhang Y, Hardy M, Gahler R, Solnier J. Differences in Metabolite Profiles of Dihydroberberine and Micellar Berberine in Caco-2 Cells and Humans-A Pilot Study. Int J Mol Sci 2024; 25:5625. [PMID: 38891813 PMCID: PMC11171481 DOI: 10.3390/ijms25115625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
We investigated the pharmacokinetic pathway of berberine and its metabolites in vitro, in Caco-2 cells, and in human participants following the administration of dihydroberberine (DHB) and micellar berberine (LipoMicel®, LMB) formulations. A pilot trial involving nine healthy volunteers was conducted over a 24 h period; blood samples were collected and subjected to Ultra High-Performance Liquid Chromatography-High Resolution Mass Spectrometry (UHPLC-HRMS) analyses to quantify the concentrations of berberine and its metabolites. Pharmacokinetic correlations indicated that berberrubine and thalifendine follow distinct metabolic pathways. Additionally, jatrorrhizine sulfate appeared to undergo metabolism differently compared to the other sulfated metabolites. Moreover, berberrubine glucuronide likely has a unique metabolic pathway distinct from other glucuronides. The human trial revealed significantly higher blood concentrations of berberine metabolites in participants of the DHB treatment group compared to the LMB treatment group-except for berberrubine glucuronide, which was only detected in the LMB treatment group. Similarly, results from in vitro investigations showed significant differences in berberine metabolite profiles between DHB and LMB. Dihydroberberine, dihydroxy-berberrubine/thalifendine and jatrorrhizine sulfate were detected in LMB-treated cells, but not in DHB-treated cells; thalifendine and jatrorrhizine-glucuronide were detected in DHB-treated cells only. While DHB treatment provided higher blood concentrations of berberine and most berberine metabolites, both in vitro (Caco-2 cells) and in vivo human studies showed that treatment with LMB resulted in a higher proportion of unmetabolized berberine compared to DHB. These findings suggest potential clinical implications that merit further investigation in future large-scale trials.
Collapse
Affiliation(s)
- Chuck Chang
- ISURA, Clinical Research, Burnaby, BC V3N 4S9, Canada; (C.C.); (Y.S.R.); (M.D.); (Y.C.K.); (Y.Z.)
| | - Yoon Seok Roh
- ISURA, Clinical Research, Burnaby, BC V3N 4S9, Canada; (C.C.); (Y.S.R.); (M.D.); (Y.C.K.); (Y.Z.)
| | - Min Du
- ISURA, Clinical Research, Burnaby, BC V3N 4S9, Canada; (C.C.); (Y.S.R.); (M.D.); (Y.C.K.); (Y.Z.)
| | - Yun Chai Kuo
- ISURA, Clinical Research, Burnaby, BC V3N 4S9, Canada; (C.C.); (Y.S.R.); (M.D.); (Y.C.K.); (Y.Z.)
| | - Yiming Zhang
- ISURA, Clinical Research, Burnaby, BC V3N 4S9, Canada; (C.C.); (Y.S.R.); (M.D.); (Y.C.K.); (Y.Z.)
| | - Mary Hardy
- Academy of Integrative and Holistic Medicine, San Diego, CA 92037, USA;
| | | | - Julia Solnier
- ISURA, Clinical Research, Burnaby, BC V3N 4S9, Canada; (C.C.); (Y.S.R.); (M.D.); (Y.C.K.); (Y.Z.)
| |
Collapse
|
11
|
Ahmadi M, Alizadeh B, Ayyoubzadeh SM, Abiyarghamsari M. Predicting Pharmacokinetics of Drugs Using Artificial Intelligence Tools: A Systematic Review. Eur J Drug Metab Pharmacokinet 2024; 49:249-262. [PMID: 38457092 DOI: 10.1007/s13318-024-00883-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND AND OBJECTIVE Pharmacokinetic studies encompass the examination of the absorption, distribution, metabolism, and excretion of bioactive compounds. The pharmacokinetics of drugs exert a substantial influence on their efficacy and safety. Consequently, the investigation of pharmacokinetics holds great importance. However, laboratory-based assessment necessitates the use of numerous animals, various materials, and significant time. To mitigate these challenges, alternative methods such as artificial intelligence have emerged as a promising approach. This systematic review aims to review existing studies, focusing on the application of artificial intelligence tools in predicting the pharmacokinetics of drugs. METHODS A pre-prepared search strategy based on related keywords was used to search different databases (PubMed, Scopus, Web of Science). The process involved combining articles, eliminating duplicates, and screening articles based on their titles, abstracts, and full text. Articles were selected based on inclusion and exclusion criteria. Then, the quality of the included articles was assessed using an appraisal tool. RESULTS Ultimately, 23 relevant articles were included in this study. The clearance parameter received the highest level of investigation, followed by the area under the concentration-time curve (AUC) parameter, in pharmacokinetic studies. Among the various models employed in the articles, Random Forest and eXtreme Gradient Boosting (XGBoost) emerged as the most commonly utilized ones. Generalized Linear Models and Elastic Nets (GLMnet) and Random Forest models showed the most performance in predicting clearance. CONCLUSION Overall, artificial intelligence tools offer a robust, rapid, and precise means of predicting various pharmacokinetic parameters based on a dataset containing information of patients or drugs.
Collapse
Affiliation(s)
- Mahnaz Ahmadi
- Student Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Alizadeh
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ayyoubzadeh
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
- Health Information Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdiye Abiyarghamsari
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, 1991953381, Iran.
| |
Collapse
|
12
|
Gulnaz A, Lee KR, Kang MJ, Chang JE, Chae YJ. Roles of breast cancer resistance protein and organic anion transporting polypeptide 2B1 in gastrointestinal toxicity induced by SN-38 under inflammatory conditions. Toxicol Lett 2024; 394:57-65. [PMID: 38423481 DOI: 10.1016/j.toxlet.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/29/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Drug transporters are among the factors that determine the pharmacokinetic profiles after drug administration. In this study, we investigated the roles of drug transporters involved in transport of SN-38, which is an active metabolite of irinotecan, in the intestine under inflammatory conditions in vitro and determined their functional consequences. The expression alterations of breast cancer resistance protein (BCRP) and organic anion transporting polypeptide (OATP) 2B1 were determined at the mRNA and protein levels, and the subsequent functional alterations were evaluated via an accumulation study with the representative transporter substrates [prazosin and dibromofluorescein (DBF)] and SN-38. We also determined the cytotoxicity of SN-38 under inflammatory conditions. Decreased BCRP expression and increased OATP2B1 expression were observed under inflammatory conditions in vitro, which led to altered accumulation profiles of prazosin, DBF, and SN-38, and the subsequent cytotoxic profiles of SN-38. Treatment with rifampin or novobiocin supported the significant roles of BCRP and OATP2B1 in the transport and cytotoxic profile of SN-38. Collectively, these results suggest that BCRP and OATP2B1 are involved in the increased cytotoxicity of SN-38 under inflammatory conditions in vitro. Further comprehensive research is warranted to completely understand SN-38-induced gastrointestinal cytotoxicity and aid in the successful treatment of cancer with irinotecan.
Collapse
Affiliation(s)
- Aneela Gulnaz
- College of Pharmacy, Woosuk University, Wanju 55338, Republic of Korea
| | - Kyeong-Ryoon Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea; Department of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Min-Ji Kang
- College of Pharmacy, Woosuk University, Wanju 55338, Republic of Korea
| | - Ji-Eun Chang
- College of Pharmacy, Dongduk Women's University, Seoul 02748, Republic of Korea
| | - Yoon-Jee Chae
- College of Pharmacy, Woosuk University, Wanju 55338, Republic of Korea; Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju 55338, Republic of Korea.
| |
Collapse
|
13
|
Harvey DH, Sugali CK, Mao W. Glucocorticoid-Induced Ocular Hypertension and Glaucoma. Clin Ophthalmol 2024; 18:481-505. [PMID: 38379915 PMCID: PMC10878139 DOI: 10.2147/opth.s442749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Glucocorticoid (GC) therapy is indicated in many diseases, including ocular diseases. An important side-effect of GC therapy is GC-induced ocular hypertension (GIOHT), which may cause irreversible blindness known as GC-induced glaucoma (GIG). Here, we reviewed the pathological changes that contribute to GIOHT including in the trabecular meshwork and Schlemm's canal at cellular and molecular levels. We also discussed the clinical aspects of GIOHT/GIG including disease prevalence, risk factors, the type of GCs, the route of GC administration, and management strategies.
Collapse
Affiliation(s)
- Devon Hori Harvey
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
- Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chenna Kesavulu Sugali
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
- Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Weiming Mao
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
- Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
14
|
Le Merdy M, Szeto KX, Perrier J, Bolger MB, Lukacova V. PBPK Modeling Approach to Predict the Behavior of Drugs Cleared by Metabolism in Pregnant Subjects and Fetuses. Pharmaceutics 2024; 16:96. [PMID: 38258106 PMCID: PMC10820132 DOI: 10.3390/pharmaceutics16010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
This study aimed to develop a physiologically based pharmacokinetic (PBPK) model that simulates metabolically cleared compounds' pharmacokinetics (PK) in pregnant subjects and fetuses. This model accounts for the differences in tissue sizes, blood flow rates, enzyme expression levels, plasma protein binding, and other physiological factors affecting the drugs' PK in both the pregnant woman and the fetus. The PBPKPlus™ module in GastroPlus® was used to model the PK of metoprolol, midazolam, and metronidazole for both non-pregnant and pregnant groups. For each of the three compounds, the model was first developed and validated against PK data in healthy non-pregnant volunteers and then applied to predict the PK in the pregnant groups. The model accurately described the PK in both the non-pregnant and pregnant groups and explained well the differences in the plasma concentration due to pregnancy. When available, the fetal plasma concentration, placenta, and fetal tissue concentrations were also predicted reasonably well at different stages of pregnancy. The work described the use of a PBPK approach for drug development and demonstrates the ability to predict differences in PK in pregnant subjects and fetal exposure for metabolically cleared compounds.
Collapse
Affiliation(s)
- Maxime Le Merdy
- Simulations Plus, Inc., 42505 10th Street West, Lancaster, CA 93534, USA
| | - Ke Xu Szeto
- Simulations Plus, Inc., 42505 10th Street West, Lancaster, CA 93534, USA
| | - Jeremy Perrier
- PhinC Development, 36 Rue Victor Basch, 91300 Massy, France
| | - Michael B. Bolger
- Simulations Plus, Inc., 42505 10th Street West, Lancaster, CA 93534, USA
| | - Viera Lukacova
- Simulations Plus, Inc., 42505 10th Street West, Lancaster, CA 93534, USA
| |
Collapse
|
15
|
Ejaz S, Ali SMA, Zarif B, Shahid R, Ihsan A, Noor T, Imran M. Surface engineering of chitosan nanosystems and the impact of functionalized groups on the permeability of model drug across intestinal tissue. Int J Biol Macromol 2023; 242:124777. [PMID: 37169055 DOI: 10.1016/j.ijbiomac.2023.124777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Surface attributes of nanocarriers are crucial to determine their fate in the gastrointestinal (GI) tract. Herein, we have functionalized chitosan with biochemical moieties including rhamnolipid (RL), curcumin (Cur) and mannose (M). FTIR spectra of functionalized chitosan nanocarriers (FCNCs) demonstrated successful conjugation of M, Cur and RL. The functional moieties influenced the entrapment of model drug i.e., coumarin-6 (C6) in FCNCs with payload-hosting and non-leaching behavior i.e., >91 ± 2.5 % with negligible cumulative release of <2 % for 5 h in KREB, which was further verified in the simulated gastric and intestinal fluids. Consequently, substantial difference in the size and zeta potential was observed for FCNCs with different biochemical moieties. Scanning electron microscopy and atomic force microscopy of FCNCs displayed well-dispersed and spherical morphology. In addition, in vitro cytotoxicity results of FCNCs confirmed their hemocompatibility. In the ex-vivo rat intestinal models, FCNCs displayed a time-dependent-phenomenon in cellular-uptake and adherence. However, apparent-permeability-coefficient and flux values were in the order of C6-RL-FCNCs > C6-M-FCNCs > C6-Cur-FCNCs = C6-CNCs > Free-C6. Furthermore, the transepithelial electrical resistance revealed the FCNCs mediated recovery of membrane-integrity with reversible tight junctions opening. Thus, FCNCs have the potential to overcome the poor solubility and/or permeability issues of active pharmaceutical ingredients and transform the impact of functionalized-nanomedicines in the biomedical industry.
Collapse
Affiliation(s)
- Sadaf Ejaz
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Syed Muhammad Afroz Ali
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Bina Zarif
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Ramla Shahid
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Ayesha Ihsan
- Nanobiotechnology Group, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Imran
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan.
| |
Collapse
|
16
|
Yang Z, Liu X, Cribbin EM, Kim AM, Li JJ, Yong KT. Liver-on-a-chip: Considerations, advances, and beyond. BIOMICROFLUIDICS 2022; 16:061502. [PMID: 36389273 PMCID: PMC9646254 DOI: 10.1063/5.0106855] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/25/2022] [Indexed: 05/14/2023]
Abstract
The liver is the largest internal organ in the human body with largest mass of glandular tissue. Modeling the liver has been challenging due to its variety of major functions, including processing nutrients and vitamins, detoxification, and regulating body metabolism. The intrinsic shortfalls of conventional two-dimensional (2D) cell culture methods for studying pharmacokinetics in parenchymal cells (hepatocytes) have contributed to suboptimal outcomes in clinical trials and drug development. This prompts the development of highly automated, biomimetic liver-on-a-chip (LOC) devices to simulate native liver structure and function, with the aid of recent progress in microfluidics. LOC offers a cost-effective and accurate model for pharmacokinetics, pharmacodynamics, and toxicity studies. This review provides a critical update on recent developments in designing LOCs and fabrication strategies. We highlight biomimetic design approaches for LOCs, including mimicking liver structure and function, and their diverse applications in areas such as drug screening, toxicity assessment, and real-time biosensing. We capture the newest ideas in the field to advance the field of LOCs and address current challenges.
Collapse
Affiliation(s)
| | | | - Elise M. Cribbin
- School of Biomedical Engineering, University of Technology Sydney, New South Wales 2007, Australia
| | - Alice M. Kim
- School of Biomedical Engineering, University of Technology Sydney, New South Wales 2007, Australia
| | - Jiao Jiao Li
- Authors to whom correspondence should be addressed: and
| | - Ken-Tye Yong
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
17
|
Fadel C, Łebkowska‐Wieruszewska B, Sartini I, Lisowski A, Poapolathep A, Giorgi M. Robenacoxib pharmacokinetics in sheep following oral, subcutaneous, and intravenous administration. J Vet Pharmacol Ther 2022; 45:550-557. [PMID: 35899473 PMCID: PMC9796919 DOI: 10.1111/jvp.13089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/07/2022] [Accepted: 07/17/2022] [Indexed: 01/07/2023]
Abstract
The aim of this study was to evaluate the pharmacokinetics (PK) of robenacoxib (RX), a COX-2 selective non-steroidal anti-inflammatory drug, in sheep after single subcutaneous (SC), oral (PO), and intravenous (IV) administration. Five healthy female sheep underwent a three-phase parallel study design with a washout period of 4 weeks, in which sheep received a 4 mg/kg SC dose in phase 1, a 4 mg/kg PO administration in phase 2, and a 2 mg/kg IV administration in phase 3. Plasma RX concentrations were measured over a 48 h period for each treatment using HPLC coupled to a UV multiple wavelength detector, and the PK parameters were estimated using a non-compartmental method. Following IV administration, terminal elimination half-life, volume of distribution at steady state, and total clearance were 2.64 h, 0.077 L/kg, and 0.056 L/h kg, respectively. The mean peak plasma concentrations following SC and PO administrations were 7.04 and 3.01 μg/mL, respectively. The mean bioavailability following SC and PO administrations were 45.98% and 16.58%, respectively. The SC route may be proposed for use in sheep. However, the multi-dose and pharmacodynamic studies are necessary to establish more accurately its safety and efficacy in sheep.
Collapse
Affiliation(s)
- Charbel Fadel
- Department of Veterinary MedicineUniversity of SassariSassariItaly
| | | | - Irene Sartini
- Department of Veterinary SciencesUniversity of PisaPisaItaly
| | - Andrzej Lisowski
- Institute of Animal Breeding and Biodiversity ConservationUniversity of Life SciencesLublinPoland
| | - Amnart Poapolathep
- Faculty of Veterinary Medicine, Department of PharmacologyKasetsart UniversityBangkokThailand
| | - Mario Giorgi
- Department of Veterinary MedicineUniversity of SassariSassariItaly,Department of Veterinary SciencesUniversity of PisaPisaItaly
| |
Collapse
|
18
|
Pharmacophore-Model-Based Virtual-Screening Approaches Identified Novel Natural Molecular Candidates for Treating Human Neuroblastoma. Curr Issues Mol Biol 2022; 44:4838-4858. [PMID: 36286044 PMCID: PMC9600652 DOI: 10.3390/cimb44100329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
The mortality of cancer patients with neuroblastoma is increasing due to the limited availability of specific treatment options. Few drug candidates for combating neuroblastoma have been developed, and identifying novel therapeutic candidates against the disease is an urgent issue. It has been found that muc-N protein is amplified in one-third of human neuroblastomas and expressed as an attractive drug target against the disease. The myc-N protein interferes with the bromodomain and extraterminal (BET) family proteins. Pharmacologically inhibition of the protein potently depletes MYCN in neuroblastoma cells. BET inhibitors target MYCN transcription and show therapeutic efficacy against neuroblastoma. Therefore, the study aimed to identify potential inhibitors against the BET family protein, specifically Brd4 (brodamine-containing protein 4), to hinder the activity of neuroblastoma cells. To identify effective molecular candidates against the disease, a structure-based pharmacophore model was created for the binding site of the Brd4 protein. The pharmacophore model generated from the protein Brd4 was validated to screen potential natural active compounds. The compounds identified through the pharmacophore-model-based virtual-screening process were further screened through molecular docking, ADME (absorption, distribution, metabolism, and excretion), toxicity, and molecular dynamics (MD) simulation approach. The pharmacophore-model-based screening process initially identified 136 compounds, further evaluated based on molecular docking, ADME analysis, and toxicity approaches, identifying four compounds with good binding affinity and lower side effects. The stability of the selected compounds was also confirmed by dynamic simulation and molecular mechanics with generalized Born and surface area solvation (MM-GBSA) methods. Finally, the study identified four natural lead compounds, ZINC2509501, ZINC2566088, ZINC1615112, and ZINC4104882, that will potentially inhibit the activity of the desired protein and help to fight against neuroblastoma and related diseases. However, further evaluations through in vitro and in vivo assays are suggested to identify their efficacy against the desired protein and disease.
Collapse
|
19
|
Almazroo OA, Shaik IH, Hughes CB, Humar A, Venkataramanan R. Treprostinil Supplementation Ameliorates Hepatic Ischemia Reperfusion Injury and Regulates Expression of Hepatic Drug Transporters: An Isolated Perfused Rat Liver (IPRL) Study. Pharm Res 2022; 39:2979-2990. [PMID: 36071353 PMCID: PMC9633539 DOI: 10.1007/s11095-022-03384-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/27/2022] [Indexed: 11/09/2022]
Abstract
Purpose IR injury is an unavoidable consequence in deceased donor liver transplantation. Cold preservation and warm reperfusion may change the expression and function of drug transporters in the liver due to vasoconstriction, infiltration of neutrophils and release of cytokines. We hypothesize that vasodilation, anti-platelet aggregation and proinflammatory downregulation activities of treprostinil will diminish the IR injury and its associated effects. Methods Livers obtained from male SD rats (n = 20) were divided into 1) Control, 2) IR, 3) Treprostinil-1 (preservation only), and 4) Treprostinil-2 (preservation and reperfusion) groups. Control livers were procured and immediately reperfused. Livers in the other groups underwent preservation for 24 h and were reperfused. All the livers were perfused using an Isolated Perfused Rat Liver (IPRL) system. Periodic perfusate, cumulative bile samples and liver tissue at the end of perfusion were collected. Liver injury markers, bile flow rates, m-RNA levels for uptake and efflux transporters (qRT-PCR) were measured. Results Cold preservation and warm reperfusion significantly increased the release of AST and ALT in untreated livers. Treprostinil supplementation substantially reduced liver injury. Bile flow rate was significantly improved in treprostinil-2 group. m-RNA levels of Slc10a1, Slc22a1, and Slc22a7 in liver were increased and m-RNA levels of Mdr1a were decreased by IR. Treprostinil treatment increased Abcb11 and Abcg2 m-RNA levels and maintained Slc22a1m-RNA similar to control livers. Conclusions Treprostinil treatment significantly reduced liver injury. IR injury changed expression of both uptake and efflux transporters in rat livers. Treprostinil significantly altered the IR injury mediated changes in m-RNA expression of transporters.
Collapse
Affiliation(s)
- Omar Abdulhameed Almazroo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, 3501 Terrace St, Pittsburgh, PA, 15219, USA
| | - Imam H Shaik
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, 3501 Terrace St, Pittsburgh, PA, 15219, USA
| | - Christopher B Hughes
- Thomas Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Abhinav Humar
- Thomas Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, 3501 Terrace St, Pittsburgh, PA, 15219, USA. .,Thomas Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
20
|
Liu X, Li W, Zhang H, Wang X, Huang Y, Li Y, Pan G. Biodistribution and pharmacokinetic profile of berberine and its metabolites in hepatocytes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154288. [PMID: 35785560 DOI: 10.1016/j.phymed.2022.154288] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/09/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Berberine has been shown in clinical studies to have many health benefits, including anti-inflammatory and antioxidant properties, along with gut-flora balancing properties. However, its clinical efficacy is hindered by its low oral bioavailability and rapid metabolism. PURPOSE This study aims to identify the berberine metabolites' forms and characterize their biodistribution patterns in and out of HepG2 cells. METHODS The qualitative analysis of metabolites of berberine in HepG2 cells was performed using the LC/MSn-IT-TOF method. Subsequent cellular pharmacokinetics characterization of intracellular and extracellular berberine and its metabolites was performed by LC-MS/MS analysis. RESULTS Berberine's metabolites of phase I metabolism were demethyleneberberine, jatrorrhizine, columbamine, berberrubine, etc., while its phase II metabolites were sulfate and glucuronide conjugates of phase I metabolites. Among the phase I metabolites of berberine, jatrorrhizine+columbamine accounted for over two-thirds of the total, followed by demethyleneberberine, which accounted for about a quarter. The intracellular demethyleneberberine is 25.14 times more enriched than extracellular demethyleneberberine. On the other hand, jatrorrhizine+columbamine and berberrubine were primarily distributed extracellularly, and their extracellular concentrations were 7.13 times and 15.61 times of their intracellular concentrations, respectively. Berberine metabolites produced in phase II metabolism are predominantly sulfate conjugates. CONCLUSION Our results show that demethyleneberberine is highly concentrated intracellularly in HepG2, possibly because it is an essential metabolite of berberine that likely contributes to berberine's efficacy. In light of our findings, berberine's poor plasma concentration-effectiveness characteristics have been partially explained.
Collapse
Affiliation(s)
- Xiaomei Liu
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Wenfang Li
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Han Zhang
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Xiaoming Wang
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Yuhong Huang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300250, China
| | - Yuhong Li
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Guixiang Pan
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300250, China.
| |
Collapse
|
21
|
Porat D, Dukhno O, Vainer E, Cvijić S, Dahan A. Antiallergic Treatment of Bariatric Patients: Potentially Hampered Solubility/Dissolution and Bioavailability of Loratadine, but Not Desloratadine, Post-Bariatric Surgery. Mol Pharm 2022; 19:2922-2936. [PMID: 35759355 DOI: 10.1021/acs.molpharmaceut.2c00292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Gastrointestinal anatomical/physiological changes after bariatric surgery influence variables affecting the fate of drugs after ingestion, and medication management of these patients requires a thorough and complex mechanistic analysis. The aim of this research was to study whether loratadine/desloratadine antiallergic treatment of bariatric patients is at risk of being ineffective due to impaired solubility/dissolution. The pH-dependent solubility of loratadine/desloratadine was studied in vitro, as well as ex vivo, in gastric content aspirated from patients before versus after bariatric surgery. Then, a biorelevant dissolution method was developed to simulate the gastric conditions after sleeve gastrectomy (SG) or one-anastomosis gastric bypass (OAGB), accounting for key variables (intragastric volume, pH, and contractility), and the dissolution of loratadine/desloratadine was studied pre- versus post-surgery. Dissolution was also studied after tablet crushing or syrup ingestion, as these actions are recommended after bariatric surgery. Finally, these experimental data were implemented in a newly developed physiologically based pharmacokinetic (PBPK) model to simulate loratadine/desloratadine PK profiles pre- versus post-surgery. For both drugs, pH-dependent solubility was demonstrated, with decreased solubility at higher pH; over the pH range 1-7, loratadine solubility decreased ∼2000-fold, and desloratadine decreased ∼120-fold. Ex vivo solubility in aspirated human gastric fluid pre- versus post-surgery was in good agreement with these in vitro results and revealed that while desloratadine solubility still allows complete dissolution post-surgery, loratadine solubility post-surgery is much lower than the threshold required for the complete dissolution of the drug dose. Indeed, severely hampered loratadine dissolution was revealed, dropping from 100% pre-surgery to only 3 and 1% post-SG and post-OAGB, respectively. Tablet crushing did not increase loratadine dissolution in any post-bariatric condition, nor did loratadine syrup in post-OAGB (pH 7) media, while in post-laparoscopic SG conditions (pH 5), the syrup provided partial improvement of up to 40% dissolution. Desloratadine exhibited quick and complete dissolution across all pre-/post-surgery conditions. PBPK simulations revealed pronounced impaired absorption of loratadine post-surgery, with 84-88% decreased Cmax, 28-36% decreased Fa, and 24-31% decreased overall bioavailability, depending on the type of bariatric procedure. Desloratadine absorption remained unchanged post-surgery. We propose that desloratadine should be preferred over loratadine in bariatric patients, and as loratadine is an over-the-counter medication, antiallergic therapy after bariatric surgery requires special attention by patients and clinicians alike. This mechanistic approach that reveals potential post-surgery complexity, and at the same time provides adequate substitutions, may contribute to better pharmacotherapy and overall patient care after bariatric surgery.
Collapse
Affiliation(s)
- Daniel Porat
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Oleg Dukhno
- Department of Surgery B, Soroka University Medical Center, Beer-Sheva 8410101, Israel
| | - Ella Vainer
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Sandra Cvijić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
22
|
Shao S, Zheng R, Cheng X, Zhang S, Yu Z, Pang X, Li J, Wang H, Ye Q. Diverse positional 14C labeling-assisted metabolic analysis of pesticides in rats: The case of vanisulfane, a novel vanillin-derived pesticide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:153920. [PMID: 35189233 DOI: 10.1016/j.scitotenv.2022.153920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/12/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Information on pesticide metabolites is crucial for accurate environmental risk assessment. However, identifying the various metabolites of a novel pesticide is challenging since the potential metabolic pathways are unknown. In this study, we coupled diverse positional 14C labeling with high-resolution mass spectrometry to quantitatively and qualitatively study pesticide metabolism in rats. With the unique M/(M + 2) ratios derived from 14C, precursor compounds of metabolites could be better distinguished from impurity ions. Additionally, the use of diverse 14C labeling positions is a powerful tool to elucidate the complete metabolic fate of novel contaminants. Vanisulfane is a novel vanillin-derived antiviral agent with encouraging prospects for the efficient control of cucumber mosaic virus in China, but its metabolic pathways in mammals are still poorly understood. Thus, the metabolism of vanisulfane was studied in rats of both sexes by this strategy. The results showed that phase I and phase II metabolism occurred in both sexes. The former included mainly oxidation reactions, and the latter involved binding reactions that formed glucuronide, sulfate and amino acid conjugates. Sex-related differences were observed in the experiment, with earlier appearance of downstream metabolites and a preference for sulfate conjugate formation in males compared to females. This research facilitates the risk evaluation of vanisulfane, and offers an effective framework for screening unknown pesticide metabolic pathways, which could be applied to establish the metabolic profiles of other novel contaminants with limited information.
Collapse
Affiliation(s)
- Siyao Shao
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Ruonan Zheng
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Xi Cheng
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Sufen Zhang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Zhiyang Yu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Xingyan Pang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Jiaoyang Li
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Haiyan Wang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
23
|
F. Martins ML, Heydari P, Li W, Martínez-Chávez A, Venekamp N, Lebre MC, Lucas L, Beijnen JH, Schinkel AH. Drug Transporters ABCB1 (P-gp) and OATP, but not Drug-Metabolizing Enzyme CYP3A4, Affect the Pharmacokinetics of the Psychoactive Alkaloid Ibogaine and its Metabolites. Front Pharmacol 2022; 13:855000. [PMID: 35308219 PMCID: PMC8931498 DOI: 10.3389/fphar.2022.855000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
The psychedelic alkaloid ibogaine is increasingly used as an oral treatment for substance use disorders, despite being unlicensed in most countries and having reported adverse events. Using wild-type and genetically modified mice, we investigated the impact of mouse (m)Abcb1a/1b and Abcg2 drug efflux transporters, human and mouse OATP drug uptake transporters, and the CYP3A drug-metabolizing complex on the pharmacokinetics of ibogaine and its main metabolites. Following oral ibogaine administration (10 mg/kg) to mice, we observed a rapid and extensive conversion of ibogaine to noribogaine (active metabolite) and noribogaine glucuronide. Mouse Abcb1a/1b, in combination with mAbcg2, modestly restricted the systemic exposure (plasma AUC) and peak plasma concentration (Cmax) of ibogaine. Accordingly, we found a ∼2-fold decrease in the relative recovery of ibogaine in the small intestine with fecal content in the absence of both transporters compared to the wild-type situation. Ibogaine presented good intrinsic brain penetration even in wild-type mice (brain-to-plasma ratio of 3.4). However, this was further increased by 1.5-fold in Abcb1a/1b;Abcg2−/− mice, but not in Abcg2−/− mice, revealing a stronger effect of mAbcb1a/1b in restricting ibogaine brain penetration. The studied human OATP transporters showed no major impact on ibogaine plasma and tissue disposition, but the mOatp1a/1b proteins modestly affected the plasma exposure of ibogaine metabolites and the tissue disposition of noribogaine glucuronide. No considerable role of mouse Cyp3a knockout or transgenic human CYP3A4 overexpression was observed in the pharmacokinetics of ibogaine and its metabolites. In summary, ABCB1, in combination with ABCG2, limits the oral availability of ibogaine, possibly by mediating its hepatobiliary and/or direct intestinal excretion. Moreover, ABCB1 restricts ibogaine brain penetration. Variation in ABCB1/ABCG2 activity due to genetic variation and/or pharmacologic inhibition might therefore affect ibogaine exposure in patients, but only to a limited extent. The insignificant impact of human CYP3A4 and OATP1B1/1B3 transporters may be clinically advantageous for ibogaine and noribogaine use, as it decreases the risks of undesirable drug interactions or interindividual variation related to CYP3A4 and/or OATP activity.
Collapse
Affiliation(s)
| | - Paniz Heydari
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Wenlong Li
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Alejandra Martínez-Chávez
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Nikkie Venekamp
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Maria C. Lebre
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Luc Lucas
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Jos H. Beijnen
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology and Clinical Pharmacology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Alfred H. Schinkel
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- *Correspondence: Alfred H. Schinkel,
| |
Collapse
|
24
|
Using the Intranasal Route to Administer Drugs to Treat Neurological and Psychiatric Illnesses: Rationale, Successes, and Future Needs. CNS Drugs 2022; 36:739-770. [PMID: 35759210 PMCID: PMC9243954 DOI: 10.1007/s40263-022-00930-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 11/17/2022]
Abstract
While the intranasal administration of drugs to the brain has been gaining both research attention and regulatory success over the past several years, key fundamental and translational challenges remain to fully leveraging the promise of this drug delivery pathway for improving the treatment of various neurological and psychiatric illnesses. In response, this review highlights the current state of understanding of the nose-to-brain drug delivery pathway and how both biological and clinical barriers to drug transport using the pathway can been addressed, as illustrated by demonstrations of how currently approved intranasal sprays leverage these pathways to enable the design of successful therapies. Moving forward, aiming to better exploit the understanding of this fundamental pathway, we also outline the development of nanoparticle systems that show improvement in delivering approved drugs to the brain and how engineered nanoparticle formulations could aid in breakthroughs in terms of delivering emerging drugs and therapeutics while avoiding systemic adverse effects.
Collapse
|
25
|
Mehrotra T, Maulik SK. Hepatic drug metabolism and gut microbiome. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 191:207-228. [DOI: 10.1016/bs.pmbts.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Dabrafenib inhibits ABCG2 and cytochrome P450 isoenzymes; potential implications for combination anticancer therapy. Toxicol Appl Pharmacol 2021; 434:115797. [PMID: 34780725 DOI: 10.1016/j.taap.2021.115797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/21/2022]
Abstract
Dabrafenib is a BRAF inhibitor used in combination treatment of malignant melanoma and non-small cell lung carcinoma. In this study, we aimed to characterize its interactions with cytochrome P450 (CYP) isoenzymes and ATP-binding cassette (ABC) efflux transporters that have critical impact on the pharmacokinetics of drugs and play a role in drug resistance development. Using accumulation assays, we showed that dabrafenib inhibited ABCG2 and, less potently, ABCB1 transporter. We also confirmed dabrafenib as a CYP2C8, CYP2C9, CYP3A4, and CYP3A5 inhibitor. Importantly, inhibition of ABCG2 and CYP3A4 by dabrafenib led to the potentiation of cytotoxic effects of mitoxantrone and docetaxel toward respective resistant cell lines in drug combination studies. On the contrary, the synergistic effect was not consistently observed in ABCB1-expressing models. We further demonstrated that mRNA levels of ABCB1, ABCG2, ABCC1, and CYP3A4 were increased after 24 h and 48 h exposure to dabrafenib. Overall, our data confirm dabrafenib as a drug frequently and potently interacting with ABC transporters and CYP isoenzymes. This feature should be addressed with caution when administering dabrafenib to patients with polypharmacy but also could be utilized advantageously when designing new dabrafenib-containing drug combinations to improve the therapeutic outcome in drug-resistant cancer.
Collapse
|
27
|
Wenzel C, Drozdzik M, Oswald S. Mass spectrometry-based targeted proteomics method for the quantification of clinically relevant drug metabolizing enzymes in human specimens. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1180:122891. [PMID: 34390906 DOI: 10.1016/j.jchromb.2021.122891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/06/2021] [Accepted: 07/30/2021] [Indexed: 01/15/2023]
Abstract
Biotransformation by phase I and II metabolizing enzymes represents the major determinant for the oral bioavailability of many drugs. To estimate the pharmacokinetics, data on protein abundance of hepatic and extrahepatic tissues, such as the small intestine, are required. Targeted proteomics assays are nowadays state-of-the-art for absolute protein quantification and several methods for quantification of drug metabolizing enzymes have been published. However, some enzymes remain still uncovered by the analytical spectra of those methods. Therefore, we developed and validated a quantification assay for two carboxylesterases (CES-1, CES-2), 17 cytochrome P450 enzymes (CYP) (CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1, CYP2J2, CYP3A4, CYP3A5, CYP3A7, CYP4F2, CYP4F12, CYP4A11) and five UDP-glucuronosyltransferases (UGTs) (UGT1A1, UGT1A3, UGT2B7, UGT2B15, UGT2B17). Protein quantification was performed by analyzing proteospecific surrogate peptides after tryptic digestion with stable isotope-labelled standards. Chromatographic separation was performed on a Kinetex® 2.6 µm C18 100 Å core-shell column (100 × 2.1 mm) with a gradient elution using 0.1% formic acid and acetonitrile containing 0.1% formic acid with a flow rate of 200 µl/min. Three mass transitions were simultaneously monitored with a scheduled multiple reaction monitoring (sMRM) method for each analyte and standard. The method was partly validated according to current bioanalytical guidelines and met the criteria regarding linearity (0.1-25 nmol/L), within-day and between-day accuracy and precision as well as multiple stability criteria. Finally, the developed method was successfully applied to determine the abundance of the aforementioned enzymes in human intestinal und liver microsomes. Our work offers a new fit for purpose method for the absolute quantification of CES, CYPs and UGTs in various human tissues and can be used for the acquisition of data for physiologically based pharmacokinetic modelling.
Collapse
Affiliation(s)
- Christoph Wenzel
- Department of Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany
| | - Marek Drozdzik
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Stefan Oswald
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany.
| |
Collapse
|
28
|
In Vitro Metabolism of Donepezil in Liver Microsomes Using Non-Targeted Metabolomics. Pharmaceutics 2021; 13:pharmaceutics13070936. [PMID: 34201744 PMCID: PMC8309179 DOI: 10.3390/pharmaceutics13070936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022] Open
Abstract
Donepezil is a reversible acetylcholinesterase inhibitor that is currently the most commonly prescribed drug for the treatment of Alzheimer’s disease. In general, donepezil is known as a safe and well-tolerated drug, and it was not associated with liver abnormalities in several clinical trials. However, rare cases of drug-related liver toxicity have been reported since it has become commercially available. Few studies have investigated the metabolic profile of donepezil, and the mechanism of liver damage caused by donepezil has not been elucidated. In this study, the in vitro metabolism of donepezil was investigated using liquid chromatography–tandem mass spectrometry based on a non-targeted metabolomics approach. To identify metabolites, the data were subjected to multivariate data analysis and molecular networking. A total of 21 donepezil metabolites (17 in human liver microsomes, 21 in mice liver microsomes, and 17 in rat liver microsomes) were detected including 14 newly identified metabolites. One potential reactive metabolite was identified in rat liver microsomal incubation samples. Metabolites were formed through four major metabolic pathways: (1) O-demethylation, (2) hydroxylation, (3) N-oxidation, and (4) N-debenzylation. This study indicates that a non-targeted metabolomics approach combined with molecular networking is a reliable tool to identify and detect unknown drug metabolites.
Collapse
|
29
|
Raoufi A, Ebrahimi M, Bozorgmehr MR. Determination of Thermodynamics Constant of Interaction among of Atenolol and Metoprolol with Human Serum Albumin: Spectroscopic and Molecular Modeling Approaches. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421140181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Bialik M, Kuras M, Sobczak M, Oledzka E. Achievements in Thermosensitive Gelling Systems for Rectal Administration. Int J Mol Sci 2021; 22:5500. [PMID: 34071110 PMCID: PMC8197127 DOI: 10.3390/ijms22115500] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/22/2022] Open
Abstract
Rectal drug delivery is an effective alternative to oral and parenteral treatments. This route allows for both local and systemic drug therapy. Traditional rectal dosage formulations have historically been used for localised treatments, including laxatives, hemorrhoid therapy and antipyretics. However, this form of drug dosage often feels alien and uncomfortable to a patient, encouraging refusal. The limitations of conventional solid suppositories can be overcome by creating a thermosensitive liquid suppository. Unfortunately, there are currently only a few studies describing their use in therapy. However, recent trends indicate an increase in the development of this modern therapeutic system. This review introduces a novel rectal drug delivery system with the goal of summarising recent developments in thermosensitive liquid suppositories for analgesic, anticancer, antiemetic, antihypertensive, psychiatric, antiallergic, anaesthetic, antimalarial drugs and insulin. The report also presents the impact of various types of components and their concentration on the properties of this rectal dosage form. Further research into such formulations is certainly needed in order to meet the high demand for modern, efficient rectal gelling systems. Continued research and development in this field would undoubtedly further reveal the hidden potential of rectal drug delivery systems.
Collapse
Affiliation(s)
| | | | | | - Ewa Oledzka
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland; (M.B.); (M.K.); (M.S.)
| |
Collapse
|
31
|
Santos J, Lobato L, Vale N. Clinical pharmacokinetic study of latrepirdine via in silico sublingual administration. In Silico Pharmacol 2021; 9:29. [PMID: 33898159 DOI: 10.1007/s40203-021-00083-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 03/09/2021] [Indexed: 10/21/2022] Open
Abstract
In recent decades, numerous in silico methodologies have been developed focused on the study of pharmacodynamic, pharmacokinetics and toxicological properties of drugs. The study of the pharmacokinetic behavior of new chemical entities is an essential part of the successful development of a new drug and Gastroplus™ is a simulation software used to predict the pharmacokinetic behavior of chemical entities. Latrepirdine is a drug that has been studied for Alzheimer's disease and Huntington's disease and later abandoned by the pharmaceutical industry already in the clinical trials because it has not demonstrated therapeutic efficacy. During this project, through Gastroplus™ simulations, it was possible to achieve predicted values of Cmax coincident with those found in clinical trials, showing its utility in the prediction of pharmacokinetic parameters. Besides, sublingual delivery has the potential to offer improved bioavailability by circumventing first-pass metabolism. This study used GastroPlus™ to simulate sublingual administration of latrepirdine and the results showed improvements in bioavailability and plasma concentrations achieved though this route of administration.
Collapse
Affiliation(s)
- Joana Santos
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Faculty of Medicine of University of Porto, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal.,Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Luísa Lobato
- Department of Nephrology, Centro Hospitalar Universitário do Porto, Hospital de Santo António, Porto, Portugal.,Unit for Multidisciplinary Research in Biomedicine, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Faculty of Medicine of University of Porto, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal.,Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
32
|
Seneviratne HK, Tillotson J, Lade JM, Bekker LG, Li S, Pathak S, Justman J, Mgodi N, Swaminathan S, Sista N, Farrior J, Richardson P, Hendrix CW, Bumpus NN. Metabolism of Long-Acting Rilpivirine After Intramuscular Injection: HIV Prevention Trials Network Study 076 (HPTN 076). AIDS Res Hum Retroviruses 2021; 37:173-183. [PMID: 33191765 DOI: 10.1089/aid.2020.0155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A long-acting injectable formulation of rilpivirine (RPV), a non-nucleoside reverse transcriptase inhibitor, is currently under investigation for use in human immunodeficiency virus (HIV) maintenance therapy. We previously characterized RPV metabolism after oral dosing and identified seven metabolites: four metabolites resulting from mono- or dioxygenation of the 2,6-dimethylphenyl ring itself or either of the two methyl groups located on that ring, one N-linked RPV glucuronide conjugate, and two O-linked RPV glucuronides produced via glucuronidation of mono- and dihydroxymethyl metabolites. However, as is true for most drugs, the metabolism of RPV after injection has yet to be reported. The phase II clinical trial HPTN 076 enrolled 136 HIV-uninfected women and investigated the safety and acceptability of long-acting injectable RPV for use in HIV pre-exposure prophylaxis. Through the analysis of plasma samples from 80 of these participants in the active product arm of the study, we were able to detect 2 metabolites after intramuscular injection of long-acting RPV, 2-hydroxymethyl-RPV, and RPV N-glucuronide. Of the total of 80 individuals, 72 participants exhibited detectable levels of 2-hydroxymethyl-RPV in plasma samples whereas RPV N-glucuronide was detectable in plasma samples of 78 participants. In addition, RPV N-glucuronide was detectable in rectal fluid, cervicovaginal fluid, and vaginal tissue. To investigate potential genetic variation in genes encoding enzymes relevant to RPV metabolism, we isolated genomic DNA and performed next-generation sequencing of CYP3A4, CYP3A5, UGT1A1 and UGT1A4. From these analyses, four missense variants were detected for CYP3A4 whereas one missense variant and one frameshift variant were detected for CYP3A5. A total of eight missense variants of UGT1A4 were detected, whereas two variants were detected for UGT1A1; however, these variants did not appear to account for the observed interindividual variability in metabolite levels. These findings provide insight into the metabolism of long-acting RPV and contribute to an overall understanding of metabolism after oral dosing versus injection. ClinicalTrials.gov Identifier: NCT02165202.
Collapse
Affiliation(s)
- Herana Kamal Seneviratne
- Division of Clinical Pharmacology, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joseph Tillotson
- Division of Clinical Pharmacology, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Julie M. Lade
- Department of Pharmacology and Molecular Sciences, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Linda-Gail Bekker
- The Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Sue Li
- Statistical Center for HIV/AIDS Research & Prevention (SCHARP), Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Subash Pathak
- Statistical Center for HIV/AIDS Research & Prevention (SCHARP), Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jessica Justman
- ICAP at Columbia, Mailman School of Public Health, and Division of Infectious Diseases, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Nyaradzo Mgodi
- University of Zimbabwe–University of California, San Francisco (UZ-UCSF) Collaborative Research Programme, Harare, Zimbabwe
| | - Shobha Swaminathan
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | | | | | - Paul Richardson
- Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Craig W. Hendrix
- Division of Clinical Pharmacology, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Namandje N. Bumpus
- Division of Clinical Pharmacology, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pharmacology and Molecular Sciences, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
33
|
Yu Z, Chen Z, Li Q, Yang K, Huang Z, Wang W, Zhao S, Hu H. What dominates the changeable pharmacokinetics of natural sesquiterpene lactones and diterpene lactones: a review focusing on absorption and metabolism. Drug Metab Rev 2020; 53:122-140. [PMID: 33211987 DOI: 10.1080/03602532.2020.1853151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Sesquiterpene lactones (STLs) and diterpene lactones (DTLs) are two groups of common phytochemicals with similar structures. It's frequently reported that both exhibit changeable pharmacokinetics (PK) in vivo, especially the unstable absorption and extensive metabolism. However, the recognition of their PK characteristics is still scattered. In this review, representative STLs (atractylenolides, alantolactone, costunolide, artemisinin, etc.) and DTLs (ginkgolides, andrographolide, diosbulbins, triptolide, etc.) as typical cases are discussed in detail. We show how the differences of treatment regimens and subjects alter the PK of STLs and DTLs, with emphasis on the effects from absorption and metabolism. These compounds tend to be quite permeable in intestinal epithelium, but gastrointestinal pH and efflux transporters (represented by P-glycoprotein) have great impact and result in the unstable absorption. As the only characteristic functional moiety, the metabolic behavior of lactone ring is not dominant. The α, β-unsaturated lactone moiety has the strongest metabolic activity. While with the increase of low-activity saturated lactone moieties, the metabolism is led by other groups more easily. The phase I (oxidation, reduction and hydrolysis reaction) and II metabolism (conjugation reaction) are both extensive. CYP450s, mainly CYP3A4, are largely involved in biotransformation. However, only UGTs (UGT1A3, UGT1A4, UGT2B4 and UGT2B7) has been mentioned in studies about phase II metabolic enzymes. Our work offers a beneficial reference for promoting the safety evaluation and maximizing the utilization of STLs and DTLs.
Collapse
Affiliation(s)
- Ziwei Yu
- Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory Breeding Base of Characteristic Chinese Medicine Resources in Southwest China, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziqiang Chen
- Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory Breeding Base of Characteristic Chinese Medicine Resources in Southwest China, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qijuan Li
- Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory Breeding Base of Characteristic Chinese Medicine Resources in Southwest China, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Yang
- Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory Breeding Base of Characteristic Chinese Medicine Resources in Southwest China, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zecheng Huang
- Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory Breeding Base of Characteristic Chinese Medicine Resources in Southwest China, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenjun Wang
- Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory Breeding Base of Characteristic Chinese Medicine Resources in Southwest China, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siyu Zhao
- Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory Breeding Base of Characteristic Chinese Medicine Resources in Southwest China, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huiling Hu
- Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory Breeding Base of Characteristic Chinese Medicine Resources in Southwest China, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
34
|
Vagiannis D, Yu Z, Novotna E, Morell A, Hofman J. Entrectinib reverses cytostatic resistance through the inhibition of ABCB1 efflux transporter, but not the CYP3A4 drug-metabolizing enzyme. Biochem Pharmacol 2020; 178:114061. [DOI: 10.1016/j.bcp.2020.114061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/31/2022]
|
35
|
Abd El-atty SM. Health monitoring scheme-based Forster resonance energy transfer nanocommunications in the Internet of Biological Nanothings. INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS 2020; 33:e4398. [DOI: 10.1002/dac.4398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Affiliation(s)
- Saied M. Abd El-atty
- The Department of Electronics and Electrical Communications Engineering, Faculty of Electronic Engineering; Menoufia University; Menouf Egypt
| |
Collapse
|
36
|
Lu D, Zhao M, Chen M, Wu B. Circadian Clock-Controlled Drug Metabolism: Implications for Chronotherapeutics. Drug Metab Dispos 2020; 48:395-406. [PMID: 32114506 DOI: 10.1124/dmd.120.090472] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/18/2020] [Indexed: 12/20/2022] Open
Abstract
Dependence of drug metabolism on dosing time has long been recognized. However, only recently are the underlying mechanisms for circadian drug metabolism being clarified. Diurnal rhythmicity in expression of drug-metabolizing enzymes is believed to be a key factor determining circadian metabolism. Supporting the notion that biological rhythms are generated and maintained by the circadian clock, a number of diurnal enzymes are under the control of the circadian clock. In general, circadian clock genes generate and regulate diurnal rhythmicity in drug-metabolizing enzymes via transcriptional actions on one or two of three cis-elements (i.e., E-box, D-box, and Rev-erb response element or RAR-related orphan receptor response element). Additionally, cycling or clock-controlled nuclear receptors such as hepatocyte nuclear factor 4α and peroxisome proliferator-activated receptor γ are contributors to diurnal enzyme expression. These newly discovered mechanisms for each of the rhythmic enzymes are reviewed in this article. We also discuss how the rhythms of enzymes are translated to circadian pharmacokinetics and drug chronotoxicity, which has direct implications for chronotherapeutics. Our discussion is also extended to two diurnal transporters (P-glycoprotein and multidrug resistance-associated protein 2) that have an important role in drug absorption. Although the experimental evidence is lacking in metabolism-based chronoefficacy, circadian genes (e.g., Rev-erbα) as drug targets are shown to account for diurnal variability in drug efficacy. SIGNIFICANCE STATEMENT: Significant progress has been made in understanding the molecular mechanisms for generation of diurnal rhythmicity in drug-metabolizing enzymes. In this article, we review the newly discovered mechanisms for each of the rhythmic enzymes and discuss how the rhythms of enzymes are translated to circadian pharmacokinetics and drug chronotoxicity, which has direct implications for chronotherapeutics.
Collapse
Affiliation(s)
- Danyi Lu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China (D.L., M.Z., M.C., B.W.) and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China (B.W.)
| | - Mengjing Zhao
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China (D.L., M.Z., M.C., B.W.) and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China (B.W.)
| | - Min Chen
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China (D.L., M.Z., M.C., B.W.) and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China (B.W.)
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China (D.L., M.Z., M.C., B.W.) and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China (B.W.)
| |
Collapse
|
37
|
Islam A, Islam MS, Uddin MN, Hasan MMI, Akanda MR. The potential health benefits of the isoflavone glycoside genistin. Arch Pharm Res 2020; 43:395-408. [PMID: 32253713 DOI: 10.1007/s12272-020-01233-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/03/2020] [Indexed: 12/11/2022]
Abstract
Genistin is a type of isoflavone glycoside and has a broad range of health benefits. It is found in a variety of dietary plants, such as soybean, kudzu (Japanese arrowroot), and other plant-based products. Genistin has been described to have several beneficial health impacts, such as decreasing the risk of osteoporosis and post-menopausal symptoms, as well as anti-cancer, anti-oxidative, cardioprotective, anti-apoptotic, neuroprotective, hepatoprotective, and anti-microbial activities. It may also assist individuals with metabolic syndrome. This review summarizes some of the molecular impacts and prospective roles of genistin in maintaining and treatment of health disorders. The review could help to develop novel genistin medicine with significant health benefits for application in the nutraceutical and pharmaceutical fields.
Collapse
Affiliation(s)
- Anowarul Islam
- College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, South Korea
| | - Md Sadikul Islam
- College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, South Korea
| | - Md Nazim Uddin
- Department of Livestock Production and Management, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Mir Md Iqbal Hasan
- Department of Physiology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Md Rashedunnabi Akanda
- Department of Pharmacology and Toxicology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| |
Collapse
|
38
|
Hu J, Cai Y, Li W, Liu G, Tang Y. In Silico
Prediction of Metabolic Epoxidation for Drug‐like Molecules via Machine Learning Methods. Mol Inform 2020; 39:e1900178. [DOI: 10.1002/minf.201900178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/11/2020] [Indexed: 01/11/2023]
Affiliation(s)
- Jiajing Hu
- Shanghai Key Laboratory of New Drug Design, School of PharmacyEast China University of Science and Technology Shanghai 200237 China
| | - Yingchun Cai
- Shanghai Key Laboratory of New Drug Design, School of PharmacyEast China University of Science and Technology Shanghai 200237 China
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of PharmacyEast China University of Science and Technology Shanghai 200237 China
| | - Guixia Liu
- Shanghai Key Laboratory of New Drug Design, School of PharmacyEast China University of Science and Technology Shanghai 200237 China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of PharmacyEast China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
39
|
Ensartinib (X-396) Effectively Modulates Pharmacokinetic Resistance Mediated by ABCB1 and ABCG2 Drug Efflux Transporters and CYP3A4 Biotransformation Enzyme. Cancers (Basel) 2020; 12:cancers12040813. [PMID: 32231067 PMCID: PMC7226045 DOI: 10.3390/cancers12040813] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 12/26/2022] Open
Abstract
Ensartinib (X-396) is a promising tyrosine kinase inhibitor currently undergoing advanced clinical evaluation for the treatment of non-small cell lung cancer. In this work, we investigate possible interactions of this promising drug candidate with ATP-binding cassette (ABC) drug efflux transporters and cytochrome P450 biotransformation enzymes (CYPs), which play major roles in multidrug resistance (MDR) and pharmacokinetic drug-drug interactions (DDIs). Accumulation studies showed that ensartinib is a potent inhibitor of ABCB1 and ABCG2 transporters. Additionally, incubation experiments with recombinant CYPs showed that ensartinib significantly inhibits CYP3A4 and CYP2C9. Subsequent molecular docking studies confirmed these findings. Drug combination experiments demonstrated that ensartinib synergistically potentiates the antiproliferative effects of daunorubicin, mitoxantrone, and docetaxel in ABCB1, ABCG2, and CYP3A4-overexpressing cellular models, respectively. Advantageously, ensartinib’s antitumor efficiency was not compromised by the presence of MDR-associated ABC transporters, although it acted as a substrate of ABCB1 in Madin-Darby Canine Kidney II (MDCKII) monolayer transport assays. Finally, we demonstrated that ensartinib had no significant effect on the mRNA-level expression of examined transporters and enzymes in physiological and lung tumor cellular models. In conclusion, ensartinib may perpetrate clinically relevant pharmacokinetic DDIs and modulate ABCB1-, ABCG2-, and CYP3A4-mediated MDR. The in vitro findings presented here will provide a valuable foundation for future in vivo investigations.
Collapse
|
40
|
Rudik A, Bezhentsev V, Dmitriev A, Lagunin A, Filimonov D, Poroikov V. Metatox - Web application for generation of metabolic pathways and toxicity estimation. J Bioinform Comput Biol 2020; 17:1940001. [PMID: 30866738 DOI: 10.1142/s0219720019400018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Xenobiotics biotransformation in humans is a process of the chemical modifications, which may lead to the formation of toxic metabolites. The prediction of such metabolites is very important for drug development and ecotoxicology studies. We created the web-application MetaTox ( http://way2drug.com/mg ) for the generation of xenobiotics metabolic pathways in the human organism. For each generated metabolite, the estimations of the acute toxicity (based on GUSAR software prediction), organ-specific carcinogenicity and adverse effects (based on PASS software prediction) are performed. Generation of metabolites by MetaTox is based on the fragments datasets, which describe transformations of substrates structures to a metabolites structure. We added three new classes of biotransformation reactions: Dehydrogenation, Glutathionation, and Hydrolysis, and now metabolite generation for 15 most frequent classes of xenobiotic's biotransformation reactions are available. MetaTox calculates the probability of formation of generated metabolite - it is the integrated assessment of the biotransformation reactions probabilities and their sites using the algorithm of PASS ( http://way2drug.com/passonline ). The prediction accuracy estimated by the leave-one-out cross-validation (LOO-CV) procedure calculated separately for the probabilities of biotransformation reactions and their sites is about 0.9 on the average for all reactions.
Collapse
Affiliation(s)
- Anastasiya Rudik
- * Department of Bioinformatics, Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, Moscow 119121, Russia
| | - Vladislav Bezhentsev
- * Department of Bioinformatics, Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, Moscow 119121, Russia
| | - Alexander Dmitriev
- * Department of Bioinformatics, Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, Moscow 119121, Russia
| | - Alexey Lagunin
- * Department of Bioinformatics, Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, Moscow 119121, Russia.,† Medico-Biological Faculty, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, Moscow 117997, Russia
| | - Dmitry Filimonov
- * Department of Bioinformatics, Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, Moscow 119121, Russia
| | - Vladimir Poroikov
- * Department of Bioinformatics, Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, Moscow 119121, Russia
| |
Collapse
|
41
|
Abbasian M, Hasanzadeh P, Mahmoodzadeh F, Salehi R. Novel cationic cellulose-based nanocomposites for targeted delivery of methotrexate to breast cancer cells. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1673174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | | | | | - Roya Salehi
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
42
|
Rudik AV, Dmitriev AV, Lagunin AA, Ivanov SM, Filimonov DA, Poroikov VV. Computer-Aided Xenobiotic Toxicity Prediction Taking into Account their Metabolism in the Human Body. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2019. [DOI: 10.1134/s1990750819030065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
43
|
Gawlik M, Trawiński J, Skibiński R. Simulation of phase I metabolism reactions of selected calcium channel blockers by human liver microsomes and photochemical methods with the use of Q-TOF LC/MS. J Pharm Biomed Anal 2019; 175:112776. [PMID: 31351248 DOI: 10.1016/j.jpba.2019.07.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/17/2019] [Accepted: 07/13/2019] [Indexed: 12/13/2022]
Abstract
The in vitro phase I metabolism of perhexiline and flunarizine, two calcium channel blockers was investigated during this study with the use of human liver microsomes (HLM) method compared with TiO2, WO3 and ZnO catalyzed photochemical reaction. In order to determine the structures of metabolites an quadrupole time-of-flight mass spectrometry combined with liquid chromatography (Q-TOF LC/MS) system was used. The obtained high resolution mass spectra enabled to identify thirteen products of metabolism of selected drugs including three not yet described metabolites of perhexiline and two new metabolites of flunarizine. The vast majority of metabolites were confirmed also with the participation of photocatalytic approach of the drug metabolism simulation. The comparison of all metabolic profiles made with the use of computational methods drew attention particularly to TiO2 and WO3 catalyzed photochemical reaction as similar to HLM incubation. Additionally, in silico toxicity assessment of the detected transformation products of the analyzed substances was also evaluated.
Collapse
Affiliation(s)
- Maciej Gawlik
- Department of Medicinal Chemistry, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | - Jakub Trawiński
- Department of Medicinal Chemistry, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | - Robert Skibiński
- Department of Medicinal Chemistry, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland.
| |
Collapse
|
44
|
Camacho-Muñoz D, Petrie B, Lopardo L, Proctor K, Rice J, Youdan J, Barden R, Kasprzyk-Hordern B. Stereoisomeric profiling of chiral pharmaceutically active compounds in wastewaters and the receiving environment - A catchment-scale and a laboratory study. ENVIRONMENT INTERNATIONAL 2019; 127:558-572. [PMID: 30981914 DOI: 10.1016/j.envint.2019.03.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/03/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
Chiral pharmaceutically active compounds (cPACs) are not currently governed by environmental regulation yet are expected to be in the future. As cPACs can exert stereospecific toxicity in the aquatic environment, it is essential to better understand their stereoselective behaviour here. Therefore, this study aims to provide a new perspective towards comprehensive evaluation of cPACs at a river catchment level, including their stereochemistry as a chemical phenomenon driving fate of chiral molecules in the environment. A large spatial and temporal monitoring program was performed in Southwest England. It included 5 sewage treatment works and the receiving waters of the largest river catchment in Southwest England. Simultaneously, lab-scale microcosm studies in simulated activated sludge bioreactors and river water microcosm were performed to evaluate stereoselective degradation of cPACs. A multi-residue enantioselective method allowed the analysis of a total of 18 pairs of enantiomers and 3 single enantiomers in wastewater and river water samples. Our monitoring program revealed: (1) spatial and temporal variations of cPACs in influent wastewaters resulting from different patterns of usage as well as an (2) enantiomeric enrichment of cPACs, likely due to human metabolism, despite their commercialization as racemic mixtures. A similar chiral signature was observed in effluent and receiving waters. Stereoselective degradation was observed in trickling filters (TF) for naproxen, ketoprofen, cetirizine and 10,11-dihydroxy-10-hydroxycarbamazepine, in sequencing batch reactors (SBR) for ifosfamide and in activated sludge (AS) for cetirizine. The extent of enantiomer-specific fate was wastewater treatment dependent in the case of naproxen (TF showed higher stereoselectivity than AS and SBR) and cetirizine (TF and AS showed higher stereoselectivity than SBR) due to differing microbial population. Furthermore, stereoselective degradation of naproxen was highly variable among STWs using similar treatments (TF) and operating in the same region. Microbial stereoselective degradation was also confirmed by both activated and river water simulated microcosm for chloramphenicol, ketoprofen, indoprofen, naproxen and 10,11-dihydroxy-10-hydroxycarbamazepine. Results from our large scale river catchment monitoring study and lab simulated microcosm show wide-ranging implications of enantiomerism of cPACs on environmental risk assessment (ERA). As two enantiomers of the same compound show different biological effects (e.g. toxicity), their non-racemic presence in the environment might lead to inaccurate ERA. This is because current ERA approaches do not require analysis at enantiomeric level.
Collapse
Affiliation(s)
- Dolores Camacho-Muñoz
- Manchester Pharmacy School, The University of Manchester, Manchester M13 9PT, UK; Department of Chemistry, University of Bath, Bath BA2 7AY, UK; Water Innovation & Research Centre (WIRC), University of Bath, Bath BA2 7AY, UK
| | - Bruce Petrie
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; Water Innovation & Research Centre (WIRC), University of Bath, Bath BA2 7AY, UK; School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK
| | - Luigi Lopardo
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; Water Innovation & Research Centre (WIRC), University of Bath, Bath BA2 7AY, UK
| | - Kathryn Proctor
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; Water Innovation & Research Centre (WIRC), University of Bath, Bath BA2 7AY, UK
| | - Jack Rice
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; Water Innovation & Research Centre (WIRC), University of Bath, Bath BA2 7AY, UK
| | | | | | - Barbara Kasprzyk-Hordern
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; Water Innovation & Research Centre (WIRC), University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
45
|
Rudik AV, Dmitriev AV, Lagunin AA, Ivanov SM, Filimonov DA, Poroikov VV. [Xenobiotic toxicity prediction combined with xenobiotic metabolism prediction in the human body]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 65:114-122. [PMID: 30950816 DOI: 10.18097/pbmc20196502114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The majority of xenobiotics undergo a number of chemical reactions known as biotransformation in human body. The biological activity, toxicity, and other properties of the metabolites may significantly differ from those of the parent compound. Not only xenobiotic itself and its final metabolites produced in large quantities, but the intermediate and final metabolites that are formed in trace quantities, can cause undesirable effects. We have developed a freely available web resource MetaTox (http://www.way2drug.com/mg/) for integral assessment of xenobiotics toxicity taking into account their metabolism in the humans. The generation of the metabolite structures is based on the reaction fragments. The estimates of the probability of the reaction of a certain class and the probability of site of biotransformation are used at the generation of the xenobiotic metabolism pathways. The web resource MetaTox allows researchers to assess the metabolism of compounds in the humans and to obtain assessment of their acute, chronic toxicity, and adverse effects.
Collapse
Affiliation(s)
- A V Rudik
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A V Dmitriev
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A A Lagunin
- Institute of Biomedical Chemistry, Moscow, Russia; Medico-biological faculty, Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - S M Ivanov
- Institute of Biomedical Chemistry, Moscow, Russia; Medico-biological faculty, Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | | | - V V Poroikov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
46
|
Survey of Pharmacological Activity and Pharmacokinetics of Selected β-Adrenergic Blockers in Regard to Their Stereochemistry. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9040625] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The present survey concentrates on pharmacodynamics and pharmacokinetics of selected β-adrenergic blockers from the point of view of their stereochemistry. It could be shown that the activity in the arylaminoethanol and aryloxyaminopropanol group of β-blockers is higher in their (–)-enantiomers as compared with the (+)-enantiomers. The stereoisomers differ also in other types of bioactivity as well as in toxicity. The particular pharmacokinetic stages such as resorption, distribution, and metabolism are discussed in regard to their stereochemistry.
Collapse
|
47
|
Lamont L, Eijkel GB, Jones EA, Flinders B, Ellis SR, Porta Siegel T, Heeren RMA, Vreeken RJ. Targeted Drug and Metabolite Imaging: Desorption Electrospray Ionization Combined with Triple Quadrupole Mass Spectrometry. Anal Chem 2018. [PMID: 30346139 DOI: 10.1021/acs.analchem.8b03857(2018)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Mass spectrometry imaging (MSI) has proven to be a valuable tool for drug and metabolite imaging in pharmaceutical toxicology studies and can reveal, for example, accumulation of drug candidates in early drug development. However, the lack of sample cleanup and chromatographic separation can hamper the analysis due to isobaric interferences. Multiple reaction monitoring (MRM) uses unique precursor ion-product ion transitions to add specificity which leads to higher selectivity. Here, we present a targeted imaging platform where desorption electrospray ionization is combined with a triple quadrupole (QqQ) system to perform MRM imaging. The platform was applied to visualize (i) lipids in mouse brain tissue sections and (ii) a drug candidate and metabolite in canine liver tissue. All QqQ modes were investigated to show the increased detection time provided by MRM as well as the possibility to perform dual polarity imaging. This is very beneficial for lipid imaging because some phospholipid classes ionize in opposite polarity (e.g., phosphatidylcholine/sphingomyelin in positive ion mode and phosphatidylserine/phosphatidylethanolamine in negative ion mode). Drug and metabolite images were obtained to show its strength in drug distribution studies. Multiple MRM transitions were used to confirm the local presence and selective detection of pharmaceutical compounds.
Collapse
Affiliation(s)
- Lieke Lamont
- Maastricht Multimodal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands
| | - Gert B Eijkel
- Maastricht Multimodal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands
| | | | - Bryn Flinders
- Maastricht Multimodal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands
| | - Shane R Ellis
- Maastricht Multimodal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands
| | - Tiffany Porta Siegel
- Maastricht Multimodal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands
| | - Ron M A Heeren
- Maastricht Multimodal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands
| | - Rob J Vreeken
- Maastricht Multimodal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands
- Janssen Research & Development , B-2340 Beerse , Belgium
| |
Collapse
|
48
|
Lamont L, Eijkel GB, Jones EA, Flinders B, Ellis SR, Porta Siegel T, Heeren RMA, Vreeken RJ. Targeted Drug and Metabolite Imaging: Desorption Electrospray Ionization Combined with Triple Quadrupole Mass Spectrometry. Anal Chem 2018; 90:13229-13235. [PMID: 30346139 PMCID: PMC6256344 DOI: 10.1021/acs.analchem.8b03857] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
![]()
Mass
spectrometry imaging (MSI) has proven to be a valuable tool
for drug and metabolite imaging in pharmaceutical toxicology studies
and can reveal, for example, accumulation of drug candidates in early
drug development. However, the lack of sample cleanup and chromatographic
separation can hamper the analysis due to isobaric interferences.
Multiple reaction monitoring (MRM) uses unique precursor ion-product
ion transitions to add specificity which leads to higher selectivity.
Here, we present a targeted imaging platform where desorption electrospray
ionization is combined with a triple quadrupole (QqQ) system to perform
MRM imaging. The platform was applied to visualize (i) lipids in mouse
brain tissue sections and (ii) a drug candidate and metabolite in
canine liver tissue. All QqQ modes were investigated to show the increased
detection time provided by MRM as well as the possibility to perform
dual polarity imaging. This is very beneficial for lipid imaging because
some phospholipid classes ionize in opposite polarity (e.g., phosphatidylcholine/sphingomyelin
in positive ion mode and phosphatidylserine/phosphatidylethanolamine
in negative ion mode). Drug and metabolite images were obtained to
show its strength in drug distribution studies. Multiple MRM transitions
were used to confirm the local presence and selective detection of
pharmaceutical compounds.
Collapse
Affiliation(s)
- Lieke Lamont
- Maastricht Multimodal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands
| | - Gert B Eijkel
- Maastricht Multimodal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands
| | | | - Bryn Flinders
- Maastricht Multimodal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands
| | - Shane R Ellis
- Maastricht Multimodal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands
| | - Tiffany Porta Siegel
- Maastricht Multimodal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands
| | - Ron M A Heeren
- Maastricht Multimodal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands
| | - Rob J Vreeken
- Maastricht Multimodal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands.,Janssen Research & Development , B-2340 Beerse , Belgium
| |
Collapse
|
49
|
Bachmann F, Duthaler U, Rudin D, Krähenbühl S, Haschke M. N-demethylation of N-methyl-4-aminoantipyrine, the main metabolite of metamizole. Eur J Pharm Sci 2018; 120:172-180. [PMID: 29746911 DOI: 10.1016/j.ejps.2018.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/17/2018] [Accepted: 05/06/2018] [Indexed: 12/15/2022]
Abstract
Metamizole is an old analgesic used frequently in some countries. Active metabolites of metamizole are the non-enzymatically generated N-methyl-4-aminoantipyrine (4-MAA) and its demethylation product 4-aminoantipyrine (4-AA). Previous studies suggested that 4-MAA demethylation can be performed by hepatic cytochrome P450 (CYP) 3A4, but the possible contribution of other CYPs remains unclear. Using human liver microsomes (HLM), liver homogenate and HepaRG cells, we could confirm 4-MAA demethylation by CYPs. Based on CYP induction (HepaRG cells) and CYP inhibition (HLM) we could identify CYP2B6, 2C8, 2C9 and 3A4 as major contributors to 4-MAA demethylation. The 4-MAA demethylation rate by HLM was 280 pmol/mg protein/h, too low to account for in vivo 4-MAA demethylation in humans. Since peroxidases can perform N-demethylation, we investigated horseradish peroxidase and human myeloperoxidase (MPO). Horse radish peroxidase efficiently demethylated 4-MAA, depending on the hydrogen peroxide concentration. This was also true for MPO; this reaction was saturable with a Km of 22.5 μM and a maximal velocity of 14 nmol/min/mg protein. Calculation of the entire body MPO capacity revealed that the demethylation capacity by granulocyte/granulocyte precursors was approximately 600 times higher than the liver capacity and could account for 4-MAA demethylation in humans. 4-MAA demethylation could also be demonstrated in MPO-expressing granulocyte precursor cells (HL-60). In conclusion, 4-MAA can be demethylated in the liver by several CYPs, but hepatic metabolism cannot fully explain 4-MAA demethylation in humans. The current study suggests that the major part of 4-MAA is demethylated by circulating granulocytes and granulocyte precursors in bone marrow.
Collapse
Affiliation(s)
- Fabio Bachmann
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Switzerland; Department of Biomedicine, University of Basel, Switzerland
| | - Urs Duthaler
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Switzerland; Department of Biomedicine, University of Basel, Switzerland
| | - Deborah Rudin
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Switzerland; Department of Biomedicine, University of Basel, Switzerland
| | - Stephan Krähenbühl
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Switzerland; Department of Biomedicine, University of Basel, Switzerland.
| | - Manuel Haschke
- Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern and Institute of Pharmacology, University of Bern, Switzerland
| |
Collapse
|
50
|
Interaction of antitumoral drug erlotinib with biodegradable triblock copolymers: a molecular modeling study. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0413-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|