1
|
Would JA, Rühland KM, Simmatis B, Evans MS, Meyer-Jacob C, Smol JP. Trends in sedimentary Cladocera and metal(loid)s from Williams Lake (Washington, USA) track ∼125 years of trans-boundary contamination from smelter emissions in the upper Columbia River valley. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175816. [PMID: 39197766 DOI: 10.1016/j.scitotenv.2024.175816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/08/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
The lead‑zinc smelter at Trail (British Columbia, Canada) has operated continuously for ∼125 years, with long-standing concerns that transboundary metal(loid) and sulphur emissions have contaminated water bodies in both western Canada and Washington (WA), USA. To assess aquatic ecosystems affected by over a century of industrial contamination requires an understanding of pre-smelting conditions. Here, we use a dated sediment core from Williams Lake (WA), downwind of both the Trail and the short-lived LeRoi (Northport, WA) smelters, to track regional contaminant history and other environmental stressors. Specifically, we examine a selection of chemical elements, cladoceran assemblages, visible range spectroscopy-inferred chlorophyll a (VRS-Chl a) and visible near-infrared spectroscopy-inferred lake-water total organic carbon (VNIRS-TOC). Sedimentary proxies recorded the onset of smelting in 1896 CE, peak periods of aerial emissions in the early to mid-20th century, and the history of emission controls. With a few exceptions, sedimentary metal(loid)s exceeded Canadian Interim Sediment Quality Guidelines during the height of the smelting era and have declined substantially since ca. 2000 CE. The loss of metal-sensitive Cladocera and declines in primary production (VRS-Chl a) at the onset of the regional smelting era indicate a strong biological response to airborne industrial contamination. The largest cladoceran change in the sediment record was concurrent with accelerated mitigation efforts at the Trail facilities following the 1960s; however, this compositional shift was between ecologically similar daphniid taxa. Steep declines in VNIRS-TOC concentrations during the period of peak emissions at Trail suggested an increase in sulphur deposition on the landscape that reduced terrestrial carbon supply. However, the persistence of calcium-sensitive daphniids throughout the record indicates that alkaline Williams Lake had not acidified. Current cladoceran assemblages remain substantially distinct from pre-industrial communities, demonstrating how paleoecotoxicological approaches can be used to track the effects of multiple stressors in a temporally appropriate context.
Collapse
Affiliation(s)
- Jamie A Would
- Paleoecological Environmental Assessment and Research Laboratory (PEARL), Queen's University, 116 Barrie St., Kingston, ON K7L 3N6, Canada.
| | - Kathleen M Rühland
- Paleoecological Environmental Assessment and Research Laboratory (PEARL), Queen's University, 116 Barrie St., Kingston, ON K7L 3N6, Canada.
| | - Brigitte Simmatis
- Paleoecological Environmental Assessment and Research Laboratory (PEARL), Queen's University, 116 Barrie St., Kingston, ON K7L 3N6, Canada.
| | - Marlene S Evans
- Environment and Climate Change Canada, 11 Innovation Blvd, Saskatoon, SK S7N 3H5, Canada.
| | - Carsten Meyer-Jacob
- Paleoecological Environmental Assessment and Research Laboratory (PEARL), Queen's University, 116 Barrie St., Kingston, ON K7L 3N6, Canada.
| | - John P Smol
- Paleoecological Environmental Assessment and Research Laboratory (PEARL), Queen's University, 116 Barrie St., Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
2
|
Black TA, Paterson MJ, Timlick L, Cederwall J, Blais JM, Hollebone B, Orihel DM, Palace VP, Rodriguez-Gil JL, Hanson ML. The Challenges of Characterizing the Zooplankton Community Response Following Simulated Spills of Diluted Bitumen into Boreal Lake Limnocorrals. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:46. [PMID: 36690874 DOI: 10.1007/s00128-022-03680-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
We attempted to characterize zooplankton community response following spills of the unconventional crude oil, diluted bitumen (dilbit), into 10-m diameter, ~ 100 m3, ~ 1.5-m deep boreal lake limnocorrals, including two controls and seven dilbit treatments ranging from 1.5 to 180 L (1:100,000 to 1:1,000 v/v, dilbit:water). Community composition and abundances were monitored weekly to bi-weekly over three months. Total zooplankton biomass and abundance seemingly collapsed in all limnocorrals, regardless of treatment, though some rotifer species persisted. As a result, it was not possible to determine the impacts of dilbit. We theorize several potential non-oil-related reasons for the sudden community collapse - including elevated zinc levels, fish grazing pressures, and sampling biases - and provide guidance for future work using in-lake enclosures.
Collapse
Affiliation(s)
- T A Black
- Department of Environment & Geography, University of Manitoba, R3T 2N2, Winnipeg, MB, Canada.
| | - M J Paterson
- International Institute for Sustainable Development - Experimental Lakes Area (IISD-ELA), R3B 0T4, Winnipeg, MB, Canada
| | - L Timlick
- International Institute for Sustainable Development - Experimental Lakes Area (IISD-ELA), R3B 0T4, Winnipeg, MB, Canada
| | - J Cederwall
- Department of Biology, Queen's University, K7L 3N6, Kingston, ON, Canada
| | - J M Blais
- Department of Biology, University of Ottawa, K1N 9A7, Ottawa, ON, Canada
| | - B Hollebone
- Environment and Climate Change Canada, K1V 1H2, Ottawa, ON, Canada
| | - D M Orihel
- Department of Biology, Queen's University, K7L 3N6, Kingston, ON, Canada
| | - V P Palace
- International Institute for Sustainable Development - Experimental Lakes Area (IISD-ELA), R3B 0T4, Winnipeg, MB, Canada
| | - J L Rodriguez-Gil
- Department of Environment & Geography, University of Manitoba, R3T 2N2, Winnipeg, MB, Canada
- International Institute for Sustainable Development - Experimental Lakes Area (IISD-ELA), R3B 0T4, Winnipeg, MB, Canada
| | - M L Hanson
- Department of Environment & Geography, University of Manitoba, R3T 2N2, Winnipeg, MB, Canada
| |
Collapse
|
3
|
Alho LDOG, Souza JP, Rocha GS, Mansano ADS, Lombardi AT, Sarmento H, Melão MGG. Photosynthetic, morphological and biochemical biomarkers as tools to investigate copper oxide nanoparticle toxicity to a freshwater chlorophyceae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114856. [PMID: 32540563 DOI: 10.1016/j.envpol.2020.114856] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 04/26/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Copper oxide nanoparticles (CuO NP) have been produced on a large scale due to their economically interesting thermophysical properties. This heightens the concern about risks they may pose on their release into the environment, possibly affecting non-target organisms. Microalga are important organisms in ecotoxicological studies as they are at the base of the aquatic food chain, but information about their biochemical and photosynthetic changes in response CuO NP are still scarce. We studied the effects of CuO NP in Raphidocelis subcapitata using morphological, photosynthetic and biochemical biomarkers. Our results showed that the NP affected microalgal population growth with 0.70 mg Cu L-1 IC50-96 h (inhibition concentration). Based on predicted environmental concentrations of Cu NPs in aquatic environments, our results indicate potential risks of the NP to microalgae. Algal cell size, granularity and photosynthetic efficiencies were affected by the CuO NP at 0.97 and 11.74 mg Cu L-1. Furthermore, lipid metabolism was affected mostly at the highest NP concentration, but at environmentally relevant values (0.012 and 0.065 mg Cu L-1) the production of sterols (structural lipids) and triacylglycerols (reserve lipid) increased. Moreover, we found evidence of cell membrane impairment at the highest CuO NP concentration, and, as a photosynthetic response, the oxygen evolving complex was its main site of action. To the best of our knowledge, this is the first study to date to investigate microalgal lipid composition during CuO NP exposure, showing that it is a sensitive diagnostic tool. This research demonstrated that CuO NP may affect the physiology of R. subcapitata, and because they were observed in a primary producer, we foresee consequences to higher trophic levels in aquatic communities.
Collapse
Affiliation(s)
- Lays de Oliveira Gonçalves Alho
- Department of Hydrobiology, Universidade Federal de São Carlos, Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil; Post-Graduate Program in Ecology and Natural Resources (PPGERN), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil.
| | - Jaqueline Pérola Souza
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos - Universidade de São Paulo (USP), Avenida Trabalhador São-carlense, 400, Parque Arnold Schimidt, 13566-590, São Carlos, SP, Brazil.
| | - Giseli Swerts Rocha
- NEEA/CRHEA/SHS, São Carlos School of Engineering, Universidade de São Paulo, Avenida Trabalhador São-Carlense 400, 13560-970, São Carlos, SP, Brazil.
| | - Adrislaine da Silva Mansano
- Department of Hydrobiology, Universidade Federal de São Carlos, Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil; Post-Graduate Program in Ecology and Natural Resources (PPGERN), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil.
| | - Ana Teresa Lombardi
- Department of Hydrobiology, Universidade Federal de São Carlos, Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil; Department of Botany. Universidade Federal de São Carlos, Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil.
| | - Hugo Sarmento
- Department of Hydrobiology, Universidade Federal de São Carlos, Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil; Post-Graduate Program in Ecology and Natural Resources (PPGERN), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil.
| | - Mariada Graça Gama Melão
- Department of Hydrobiology, Universidade Federal de São Carlos, Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil; Post-Graduate Program in Ecology and Natural Resources (PPGERN), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
4
|
Abstract
The presence of pesticides in water bodies presents unique challenges to the ecosystem and all the life forms. Biological methods have been widely used to examine the toxic effects of various toxicants including pesticides. The present study aims at determining the adverse effects of diazinon, a nonsystemic organophosphate insecticide, on two cladoceran species including the temperate Daphnia magna (D. magna) and the tropical Daphnia lumholtzi (D. lumholtzi). The 48 h LC50 values demonstrated higher toxicity of diazinon for D. lumholtzi at a concentration of 3.41 µg·L−1 compared to D. magna at a concentration of 4.63 µg·L−1. After 14 days of exposure to diazinon, the survival capacity as well as the reproduction potential of the two cladoceran species clearly reduced and their rate of population increase (RPI) decreased at concentrations >0.1 µg·L−1. The present study indicated that the tropical cladoceran (D. lumholtzi) was more sensitive than the temperate D. magna. Therefore, it could be used as an indicator for toxicity assessment in tropical environments. The presence of diazinon in water bodies can be associated with significant risk to aquatic organisms.
Collapse
|
5
|
Santos VSV, Campos CF, de Campos Júnior EO, Pereira BB. Acute ecotoxicity bioassay using Dendrocephalus brasiliensis: alternative test species for monitoring of contaminants in tropical and subtropical freshwaters. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:635-640. [PMID: 29796722 DOI: 10.1007/s10646-018-1951-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/09/2018] [Indexed: 06/08/2023]
Abstract
In International guidelines for standard ecotoxicological bioassays, Daphnia magna is the most applied microcrustacea for assessing toxicity of different pollutants. However, in research realized in tropical and subtropical areas, autochthonous species must be prioritized because they are adapted to the specificities of ecosystems. In this sense, the present study aimed to assess and compare (with D. magna) the sensitivity of the tropical species Dendrocephalus brasiliensis as alternative test species for monitoring of contaminants in tropical and subtropical freshwaters, by carrying out acute toxicity tests with different pollutants. According results, D. brasiliensis presented EC50-48 h values lower than D. magna for all substances tested, indicating higher sensitivity of the tropical organism in relation to the temperate organism. Furthermore, comparing the results obtained with data from other studies, D. brasiliensis is more sensitive to the chemicals tested than D. magna and has similar sensitivity to Pseudosida ramosa and Ceriodaphnia dubia, common species in tropical areas. In view of this, we suggest that D. brasiliensis can be used as alternative test species for monitoring of contaminants in tropical and subtropical freshwaters.
Collapse
Affiliation(s)
- Vanessa Santana Vieira Santos
- Department of Environmental Health, Laboratory of Environmental Health, Federal University of Uberlândia, Santa Mônica Campus, Avenida João Naves de Ávila, 2121, 38.408-100, Uberlândia, Minas Gerais, Brazil.
- Institute of Genetics and Biochemistry, Department of Biotechnology, Federal University of Uberlândia, Umuarama Campus, Avenida Pará, 1720, 38.400-902, Uberlândia, Minas Gerais, Brazil.
| | - Carlos Fernando Campos
- Department of Genetics and Biochemistry, Laboratory of Cytogenetics and Mutagenesis, Federal University of Uberlândia, Umuarama Campus, Avenida Pará, 1720, 38.400-902, Uberlândia, Minas Gerais, Brazil
| | - Edimar Olegário de Campos Júnior
- Department of Genetics and Biochemistry, Laboratory of Cytogenetics and Mutagenesis, Federal University of Uberlândia, Umuarama Campus, Avenida Pará, 1720, 38.400-902, Uberlândia, Minas Gerais, Brazil
| | - Boscolli Barbosa Pereira
- Department of Environmental Health, Laboratory of Environmental Health, Federal University of Uberlândia, Santa Mônica Campus, Avenida João Naves de Ávila, 2121, 38.408-100, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
6
|
Gonçalves RA, de Oliveira Franco Rossetto AL, Nogueira DJ, Vicentini DS, Matias WG. Comparative assessment of toxicity of ZnO and amine-functionalized ZnO nanorods toward Daphnia magna in acute and chronic multigenerational tests. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 197:32-40. [PMID: 29428564 DOI: 10.1016/j.aquatox.2018.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
Zinc oxide nanomaterials (ZnO NM) have been used in a large number of applications due to their interesting physicochemical properties. However, the increasing use of ZnO NM has led to concerns regarding their environmental impacts. In this study, the acute and chronic toxicity of ZnO nanorods (NR) bare (ZnONR) and amine-functionalized (ZnONR@AF) toward the freshwater microcrustacean Daphnia magna was evaluated. The ZnO NR were characterized by transmission electron microscopy (TEM), X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and the zeta potential and hydrodynamic diameter (HD). The acute EC50(48h) values for D. magna revealed that the ZnONR@AF were more toxic than the ZnONR. The generation of reactive oxygen species (ROS) was observed in both NM. Regarding the chronic toxicity, the ZnONR@AF were again found to be more toxic than the ZnONR toward D. magna. An effect on longevity was observed for ZnONR, while ZnONR@AF affected the reproduction, growth and longevity. In the multigenerational recovery test, we observed that maternal exposure can affect the offspring even when these organisms are not directly exposed to the ZnO NR.
Collapse
Affiliation(s)
- Renata Amanda Gonçalves
- Laboratório de Toxicologia Ambiental, LABTOX, Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Santa Catarina, CEP: 88040-970, Florianópolis, SC, Brazil
| | - Ana Letícia de Oliveira Franco Rossetto
- Laboratório de Toxicologia Ambiental, LABTOX, Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Santa Catarina, CEP: 88040-970, Florianópolis, SC, Brazil
| | - Diego José Nogueira
- Laboratório de Toxicologia Ambiental, LABTOX, Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Santa Catarina, CEP: 88040-970, Florianópolis, SC, Brazil
| | - Denice Schulz Vicentini
- Laboratório de Toxicologia Ambiental, LABTOX, Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Santa Catarina, CEP: 88040-970, Florianópolis, SC, Brazil
| | - William Gerson Matias
- Laboratório de Toxicologia Ambiental, LABTOX, Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Santa Catarina, CEP: 88040-970, Florianópolis, SC, Brazil.
| |
Collapse
|
7
|
Hiki K, Tobino T, Nakajima F, Tsukahara K. Duration of life-cycle toxicity tests with the ostracod Heterocypris incongruens. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:3443-3449. [PMID: 28755484 DOI: 10.1002/etc.3931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/15/2017] [Accepted: 07/27/2017] [Indexed: 05/25/2023]
Abstract
An acute sediment toxicity test using the ostracod Heterocypris incongruens is user friendly and has high sensitivity; however, a life-cycle test using this species has not been developed. The most challenging problem when developing a life-cycle test is that the egg development time varies greatly and is sometimes too long (> 150 d) to monitor. It is desirable to shorten the duration of life-cycle toxicity tests including the observation period of egg development while preserving the ecological relevance of the net reproductive rate (R0 ), an endpoint in the life-cycle test. Therefore, in the present study, we suggest a practical test duration for R0 using population growth rate (λ) as a measure of ecological relevance. We collected a range of life history characteristics of the ostracod by combining data from the literature and experimental results, constructed population matrix models, and calculated λ for 20 life history patterns. The results showed that a longer test period (> 150 d) did not increase the correlation coefficients between R0 and λ. Rather, a shorter test duration resulted in R0 being highly correlated with λ. Our results suggest that a life-cycle toxicity test using the ostracod can provide an ecologically relevant toxicity endpoint, even if the test is abandoned after approximately 50 d and unhatched eggs remain. Environ Toxicol Chem 2017;36:3443-3449. © 2017 SETAC.
Collapse
Affiliation(s)
- Kyoshiro Hiki
- Department of Urban Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomohiro Tobino
- Environmental Science Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Fumiyuki Nakajima
- Department of Urban Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kenta Tsukahara
- Department of Urban Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
8
|
Bal N, Kumar A, Du J, Nugegoda D. Multigenerational effects of two glucocorticoids (prednisolone and dexamethasone) on life-history parameters of crustacean Ceriodaphnia dubia (Cladocera). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:569-578. [PMID: 28336096 DOI: 10.1016/j.envpol.2017.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 02/28/2017] [Accepted: 03/11/2017] [Indexed: 06/06/2023]
Abstract
Synthetic glucocorticoids (GCs) such as dexamethasone (DEX) and prednisolone (PDS) have been used since the 1940s to cure inflammatory and auto-immune disorders. Their use has been linked to a host of deleterious effects in aquatic ecosystems such as osteoporosis in vertebrates, developmental impairments in molluscs and reduced fecundity and growth in cladocerans. Apart from these handful of studies, the effects of GCs on aquatic biota are largely unknown. The present study is a first of its kind aiming to assess the multi-generational exposure effects of DEX and PDS on the life history parameters of Ceriodaphnia dubia (C. dubia). Multigenerational studies have proved to be an advantage in assessing the cumulative damage caused by aquatic toxicants at the population level of the exposed organisms over a period of successive generations using multiple biological endpoints. Test results demonstrated that C. dubia exhibited varied sensitivities towards both the studied chemicals however were more sensitive to DEX with 48-h EC50 (95% confidence interval) of 0.75 mg/L (CI: 0.59-0.92) in comparison to PDS [19 mg/L (CI: 15-23)]. EC10 values for F0 in a multigenerational chronic bioassays were 48 μg/L (CI: 37.4-61) for DEX and 460 μg/L (CI: 341-606) for PDS and in F3 were 2.2 μg/L (CI: 1.6-3.1) for DEX and 31 μg/L (CI: 19.4-46) for PDS. There was a positive trend of increased toxicity followed by reduced life history traits such as fecundity, brood size and time to first brood and intrinsic rate of population increase and body growth (length and area) of C. dubia in the case of both studied chemicals. The results from the current work highlighted the importance of multigenerational studies in identifying the evolutionary responses of stressed non-target aquatic organisms, and data obtained can be further used in developing water quality guidelines.
Collapse
Affiliation(s)
- Navdeep Bal
- RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia; CSIRO Land and Water, PMB 2, Glen Osmond, SA, 5064, Australia.
| | - Anupama Kumar
- CSIRO Land and Water, PMB 2, Glen Osmond, SA, 5064, Australia
| | - Jun Du
- CSIRO Land and Water, PMB 2, Glen Osmond, SA, 5064, Australia
| | | |
Collapse
|
9
|
Lopes S, Ribeiro F, Wojnarowicz J, Łojkowski W, Jurkschat K, Crossley A, Soares AMVM, Loureiro S. Zinc oxide nanoparticles toxicity to Daphnia magna: size-dependent effects and dissolution. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:190-198. [PMID: 24123301 DOI: 10.1002/etc.2413] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/11/2013] [Accepted: 09/25/2013] [Indexed: 06/02/2023]
Abstract
As the production of zinc oxide nanoparticles (ZnO-NPs) and other metal oxides is exponentially increasing, it is important to investigate potential environmental and health impacts of such nanoparticles. Nanoparticles' properties (e.g., size, dissolution rate) may change in different water media, and their characterization is essential to derive conclusions about toxicity results. Therefore, an aquatic model organism, Daphnia magna, was used to investigate the effect of ZnO-NPs with 2 different particle sizes (30 nm and 80-100 nm) and then compare these effects with ZnO microsized particles (>200 nm) and the ionic counterpart (in the form of ZnCl2 ) on immobilization, feeding inhibition, and reproduction endpoints. The 48-h median lethal concentration (LC50) for immobilization ranged between 0.76 mg Zn L(-1) for the ionic zinc and 1.32 mg Zn L(-1) for ZnO-NPs of 80 nm to 100 nm. For the chronic exposures, the reproduction output was impaired similarly among zinc exposures and possibly driven mainly by the zinc ionic form. The concentrations used showed a total dissolution after 48 h. On the other hand, feeding activity was more affected by the 30 nm ZnO-NPs than by the ionic zinc, showing that the particulate form was also playing an important role in the feeding inhibition of D. magna. Dissolution and particle size in the daphnia test media were found to be essential to derive conclusions on toxicity. Therefore, they can possibly be considered critical for evaluating nanoparticles' toxicity and fate.
Collapse
Affiliation(s)
- Sílvia Lopes
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | | | | | | | | | | | | | | |
Collapse
|