1
|
Ali S, Ejaz A, Hayyat MU, Ahmad MU, Siddique Z, Ali B, Ercisli S, Malik T, Aljowaie RM, Elshikh MS, Javed MA. Cross-linking of fungal β-glucosidase on Al 2O 3 nanocrystals synthesized using Cajanus cajan L. Millsp. extracts for in suit genistein manufacture. Sci Rep 2025; 15:6810. [PMID: 40000687 PMCID: PMC11861985 DOI: 10.1038/s41598-025-89973-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
This present study deals with the cross-linking of fungal β-glucosidase on Al2O3 nanocrystals (NCs) synthesized in C. cajan for in-suit genistein production. The Cajanus cajan leaves were dried and used to prepare their extract at 65 °C by agitation for 30 min. For enzyme production under submerged culture, 50 mL of medium at pH 8.6 with an inoculum volume of 2 mL; was incubated for 72 h with optimized parameters at 30 °C. The Al2O3 NCs were synthesized by adding 30 mM Al2NO3 to 25 mL of leaf extract with NaOH at 65 °C for 50 min which enhanced the β-glucosidase specific activity when immobilized. Genistein by biotransformation was obtained using both free (0.67 ± 0.42 mg/mL) and Al2O3 immobilized β-glucosidase (1.3 ± 0.66 mg/mL) for 48 h. The substrate level and enzyme concentration were 2.5 and 1 mL respectively. The UV visible spectra for leaf extract; free and cross-linked β-glucosidase and Al2O3 NCs were at 225, 235, 300, and 210 nm. The bands for Al2O3 NCs were achieved at 500-750 cm- 1 which showed the FTIR analysis to check the change in functional groups of free and Al2O3 cross-linked β-glucosidase. In XRD analysis, peaks depicted the crystalline structure of Al2O3 NCs ranging from 10-50°. The size of NCs was confirmed by using different magnifications (1.01, 2.00, 3.00, 5.00, 7.02, and 10 K X) of SEM images obtained. For zeta potential measurements, the peak was obtained at -21.0 mV.
Collapse
Affiliation(s)
- Sikander Ali
- Department of Microbiology, Dr. Ikram-ul-Haq Institute of Industrial Biotechnology (IIIB), Government College University, Lahore, 54000, Pakistan.
| | - Afra Ejaz
- Department of Microbiology, Dr. Ikram-ul-Haq Institute of Industrial Biotechnology (IIIB), Government College University, Lahore, 54000, Pakistan
| | - Muhammad Umar Hayyat
- Sustainable Development Study Centre (SDSC), Government College University, Lahore, 54000, Pakistan
| | - Muhammad Usman Ahmad
- Department of Microbiology, Dr. Ikram-ul-Haq Institute of Industrial Biotechnology (IIIB), Government College University, Lahore, 54000, Pakistan
| | - Zafar Siddique
- Department of Botany, Dr. Nazir Ahmad Institute of Biological Sciences (NAIBS), Government College University, Lahore, 54000, Pakistan
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Sezai Ercisli
- Department of Horticulture, Agricultural Faculty, Ataturk University, Erzurum, 25240, Türkiye
- HGF Agro, Ata Teknokent, Erzurum, TR-25240, Türkiye
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma 378, Jimma, Ethiopia.
- Division of Research & Development, Lovely Professional University, 144411, Phagwara, India.
| | - Reem M Aljowaie
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Muhammad Ammar Javed
- School of Agriculture and Environment, UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
2
|
He M, Peng Q, Xu X, Shi B, Qiao Y. Antioxidant capacities and non-volatile metabolites changes after solid-state fermentation of soybean using oyster mushroom ( Pleurotus ostreatus) mycelium. Front Nutr 2024; 11:1509341. [PMID: 39713777 PMCID: PMC11660803 DOI: 10.3389/fnut.2024.1509341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024] Open
Abstract
Given the abundance of beneficial properties and enzymes secreted by edible oyster mushrooms, their mycelium could serve as a starter for fermented foods to enhance their nutritional and bioactive quality. This study aimed to investigate the effects on the nutritional ingredients, antioxidant activity, and non-volatile metabolites during solid-state fermentation (SSF) of soybeans by Pleurotus ostreatus mycelium. The results indicated that the contents of dietary fiber and starch in fermented soybeans decreased, while the amounts of protein and lipid increased after SSF (P < 0.05). Analysis of the total phenolic content (TPC) and antioxidant activities of the fermented soybeans revealed that the methanolic extracts significantly increased TPC and antioxidant activities against intracellular reactive oxygen species (ROS) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages, as well as against DPPH and ABTS radicals in vitro. A total 154 differential metabolites were identified after SSF, and a Spearman correlation study revealed a direct relationship between antioxidant activities and certain metabolites including phenolic compounds, oligopeptides, and free fatty acids etc. Among these metabolites, phenolic compounds produced by the shikimic acid pathway were diverse in variety and had the greatest multiple differences. The study discovered that a potential mechanism involving SSF with P. ostreatus mycelium increased the antioxidant activity of soybeans.
Collapse
Affiliation(s)
| | | | | | | | - Yu Qiao
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Xie Y, Yan X, Li C, Wang S, Jia L. Characterization and insight mechanism of an acid-adapted β-Glucosidase from Lactobacillus paracasei and its application in bioconversion of glycosides. Front Bioeng Biotechnol 2024; 12:1334695. [PMID: 38333082 PMCID: PMC10851751 DOI: 10.3389/fbioe.2024.1334695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Introduction: β-glucosidase is one class of pivotal glycosylhydrolase enzyme that can cleavage glucosidic bonds and transfer glycosyl group between the oxygen nucleophiles. Lactobacillus is the most abundant bacteria in the human gut. Identification and characterization of new β-glucosidases from Lactobacillus are meaningful for food or drug industry. Method: Herein, an acid-adapted β-glucosidase (LpBgla) was cloned and characterized from Lactobacillus paracasei. And the insight acid-adapted mechanism of LpBgla was investigated using molecular dynamics simulations. Results and Discussion: The recombinant LpBgla exhibited maximal activity at temperature of 30°C and pH 5.5, and the enzymatic activity was inhibited by Cu2+, Mn2+, Zn2+, Fe2+, Fe3+ and EDTA. The LpBgla showed a more stable structure, wider substrate-binding pocket and channel aisle, more hydrogen bonds and stronger molecular interaction with the substrate at pH 5.5 than pH 7.5. Five residues including Asp45, Leu60, Arg120, Lys153 and Arg164 might play a critical role in the acid-adapted mechanism of LpBgla. Moreover, LpBgla showed a broad substrate specificity and potential application in the bioconversion of glycosides, especially towards the arbutin. Our study greatly benefits for the development novel β-glucosidases from Lactobacillus, and for the biosynthesis of aglycones.
Collapse
Affiliation(s)
- Yufeng Xie
- College of Food Science and Engineering, Harbin University, Harbin, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xinrui Yan
- College of Food Science and Engineering, Harbin University, Harbin, China
| | - Changzhuo Li
- College of Food Science and Engineering, Harbin University, Harbin, China
| | - Shumei Wang
- College of Food Science and Engineering, Harbin University, Harbin, China
| | - Longgang Jia
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
4
|
Tindjau R, Chua JY, Liu SQ. Utilization of propionic acid bacteria in the biotransformation of soy (tofu) whey: Growth and metabolite changes. J Food Sci 2024; 89:540-551. [PMID: 38051025 DOI: 10.1111/1750-3841.16863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023]
Abstract
Soy whey, a by-product from the tofu and soy protein isolate industry was evaluated as a substrate for a biofortified beverage using several propionic acid bacteria (PAB). PAB growth and changes in sugars, organic acids, amino acids and isoflavones were investigated. Vitamin B12 and short-chain fatty acid (SCFA) production were measured over time. Acidipropionibacterium acidipropionici (DSM 20272) showed the highest growth, compared to the other three PABs (Propionibacterium freudenreichii [DSM 20271 and DSM 4902], A. jensenii [DSM 20535]). Acidipropionibacterium (DSM 20272 and DSM 20535) showed the best propionic acid and acetic acid production, while P. freudenreichii produced the most succinic acid. Propionibacterium freudenreichii exhibited significant vitamin B12 production at 4.06 ± 0.28 µg/L for DSM 20271, followed by 2.58 ± 0.22 µg/L for DSM 4902. Notably, all PAB displayed strong β-glycosidase activities evidenced by the conversion of isoflavone glycosides to isoflavone aglycones. The stark differences between Acidipropionibacterium spp. and Propionibacterium spp. indicate that the former PAB is specialized in SCFA production, while the latter PAB is better at vitamin B12 bioenrichment. This study demonstrated the possibility of employing PAB fermentation to improve SCFA and vitamin B12 content. This can open avenues for a beverage or functional ingredient development.
Collapse
Affiliation(s)
- Ricco Tindjau
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Jian-Yong Chua
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Shao-Quan Liu
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
- Advanced Food Research Laboratory, National University of Singapore (Suzhou) Research Institute, Jiangsu, China
| |
Collapse
|
5
|
Arjmand S, Mollakhalili‐Meybodi N, Akrami Mohajeri F, Madadizadeh F, Khalili Sadrabad E. Quinoa dough fermentation by Saccharomyces cerevisiae and lactic acid bacteria: Changes in saponin, phytic acid content, and antioxidant capacity. Food Sci Nutr 2023; 11:7594-7604. [PMID: 38107108 PMCID: PMC10724584 DOI: 10.1002/fsn3.3679] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 12/19/2023] Open
Abstract
The effects of two fermentation processes (common fermentation with Saccharomyces cerevisiae and fermentation by Lacticaseibacillus casei subsp. casei PTCC 1608 and Lactiplantibacillus plantarum subsp. plantarum PTCC 1745) on pH, titratable acidity, total phenolic and flavonoid contents, antioxidant capacity, saponin content, as well as phytic acid content of quinoa dough were investigated during the 24-h fermentation (4-h interval). According to the results, the highest titratable acidity was observed in the samples fermented by L. casei subsp. casei. Moreover, the highest antioxidant capacity was observed after 12 h of fermentation by L. plantarum subsp. plantarum (31.22% for DPPH, 104.67% for FRAP) due to a higher concentration of phenolic compounds produced (170.5% for total phenolic content). Also, all samples have been able to reduce saponin by 67% on average. Furthermore, the samples fermented by L. plantarum subsp. plantarum showed the most significant decrease in phytic acid content (64.64%) during 24-h fermentation. By considering the reduction of the antinutritional compounds and improvement in the antioxidant properties of quinoa flour, the Lactiplantibacillus plantarum strain was recommended.
Collapse
Affiliation(s)
- Sanaz Arjmand
- Research Center for Food Hygiene and SafetyDepartment of Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Neda Mollakhalili‐Meybodi
- Research Center for Food Hygiene and SafetyDepartment of Food Science and Technology, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Fateme Akrami Mohajeri
- Research Center for Food Hygiene and SafetyDepartment of Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
- Infectious Diseases Research CenterShahid Sadoughi HospitalShahid Sadoughi University of Medical SciencesYazdIran
| | - Farzan Madadizadeh
- Center for Healthcare Data modelingDepartments of Biostatistics and Epidemiology, School of public healthShahid Sadoughi University of Medical SciencesYazdIran
| | - Elham Khalili Sadrabad
- Research Center for Food Hygiene and SafetyDepartment of Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
- Infectious Diseases Research CenterShahid Sadoughi HospitalShahid Sadoughi University of Medical SciencesYazdIran
| |
Collapse
|
6
|
Han JS, Joung JY, Kim HW, Kim JH, Choi HS, Bae HJ, Jang JH, Oh NS. Enhanced Cholesterol-Lowering and Antioxidant Activities of Soymilk by Fermentation with Lactiplantibacillus plantarum KML06. J Microbiol Biotechnol 2023; 33:1475-1483. [PMID: 37482800 DOI: 10.4014/jmb.2306.06036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
This study aimed to evaluate the cholesterol-lowering and antioxidant activities of soymilk fermented with probiotic Lactobacillaceae strains and to investigate the production of related bioactive compounds. Lactiplantibacillus plantarum KML06 (KML06) was selected for the fermentation of soymilk because it has the highest antioxidant, cholesterol-lowering, and β-glucosidase activities among the 10 Lactobacillaceae strains isolated from kimchi. The genomic information of strain KML06 was analyzed. Moreover, soymilk fermented with KML06 was evaluated for growth kinetics, metabolism, and functional characteristics during the fermentation period. The number of viable cells, which was similar to the results of radical scavenging activities and cholesterol assimilation, as well as the amount of soy isoflavone aglycones, daidzein, and genistein, was the highest at 12 h of fermentation. These results indicate that soymilk fermented with KML06 can prevent oxidative stress and cholesterol-related problems through the production of soy isoflavone aglycones.
Collapse
Affiliation(s)
- Ji Seung Han
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Jae Yeon Joung
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hyung Wook Kim
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Jin Hwan Kim
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Hyo Su Choi
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Hyun Jin Bae
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Ji Hun Jang
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Nam Su Oh
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
7
|
Peng X, Yang S, Liu Y, Ren K, Tian T, Tong X, Dai S, Lyu B, Yu A, Wang H, Jiang L. Application of kombucha combined with fructo-oligosaccharides in soy milk: Colony composition, antioxidant capacity, and flavor relationship. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
8
|
Mantegazza G, Dalla Via A, Licata A, Duncan R, Gardana C, Gargari G, Alamprese C, Arioli S, Taverniti V, Karp M, Guglielmetti S. Use of kefir-derived lactic acid bacteria for the preparation of a fermented soy drink with increased estrogenic activity. Food Res Int 2023; 164:112322. [PMID: 36737914 DOI: 10.1016/j.foodres.2022.112322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Fermented foods are receiving growing attention for their health promoting properties. In particular, there is a growing demand for plant-based fermented foods as dairy alternatives. Considering that soy is a vegetal food rich in nutrients and a source of the phytoestrogen isoflavones, the aim of this study was to select safe food microorganisms with the ability to ferment a soy drink resulting in a final product with an increased estrogenic activity and improved functional properties. We used milk kefir grains, a dairy source of microorganisms with proven health-promoting properties, as a starting inoculum for a soymilk. After 14 passages of daily inoculum in fresh soy drink, we isolated four lactic acid bacterial strains: Lactotoccus lactis subsp. lactis K03, Leuconostc pseudomesenteroides K05, Leuconostc mesenteroides K09 and Lentilactobacillus kefiri K10. Isolated strains were proven to be safe for human consumption according to the assessment of their antibiotic resistance profile and comparative genomics. Furthermore, functional characterization of the bacterial strains demonstrated their ability to ferment sugars naturally present in soybeans and produce a creamy texture. In addition, we demonstrated, by means of a yeast-based bioluminescence reporter system, that the two strains belonging to the genus Leuconostoc increased the estrogenic activity of the soybean drink. In conclusion, the proposed application of the bacterial strains characterized in this study meets the growing demand of consumers for health-promoting vegetal food alternatives to dairy products.
Collapse
Affiliation(s)
- Giacomo Mantegazza
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | - Alessandro Dalla Via
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | - Armando Licata
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | - Robin Duncan
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | - Claudio Gardana
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | - Giorgio Gargari
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | - Cristina Alamprese
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | - Stefania Arioli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | - Valentina Taverniti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | - Matti Karp
- Materials Science and Environmental Engineering, Bio and Circular Economy, Tampere University, Finland
| | - Simone Guglielmetti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy.
| |
Collapse
|
9
|
Fermentation performance, nutrient composition, and flavor volatiles in soy milk after mixed culture fermentation. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
10
|
Qiao Y, Zhang K, Zhang Z, Zhang C, Sun Y, Feng Z. Fermented soybean foods: A review of their functional components, mechanism of action and factors influencing their health benefits. Food Res Int 2022; 158:111575. [PMID: 35840260 DOI: 10.1016/j.foodres.2022.111575] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/27/2022]
Abstract
After thousands of years of evolution and development, traditional fermented soybean foods, with their unique charm, have gained a stable place in the global market. With the explosive development of modern biological technologies, some traditional fermented soybean foods that possess health-promoting benefits are gradually appearing. Physiologically active substances in fermented soybean foods have received extensive attention in recent decades. This review addresses the potential health benefits of several representative fermented soybean foods, as well as the action mechanism and influencing factors of their functional components. Phenolic compounds, low-molecular-weight peptides, melanoidins, furanones and 3-hydroxyanthranilic acid are the antioxidative components predominantly found in fermented soybean foods. Angiotensin I-converting enzyme inhibitory peptides and γ-aminobutyric acid isolated from fermented soy foods provide potential selectivity for hypertension therapy. The potential anti-inflammatory bioactive components in fermented soybean foods include γ-linolenic acid, butyric acid, soy sauce polysaccharides, 2S albumin and isoflavone glycones. Deoxynojirimycin, genistein, and betaine possess high activity against α-glucosidase. Additionally, fermented soybean foods contain neuroprotective constituents, including indole alkaloids, nattokinase, arbutin, and isoflavone vitamin B12. The anticancer activities of fermented soybean foods are associated with surfactin, isolavone, furanones, trypsin inhibitors, and 3-hydroxyanthranilic acid. Nattokinase is highly correlated with antioxidant activity. And a high level of menaquinones-7 is linked to protection against neurodegenerative diseases. Sufficiently recognizing and exploiting the health benefits and functional components of traditional fermented soybean foods could provide a new strategy in the development of the food fermentation industry.
Collapse
Affiliation(s)
- Yali Qiao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin 150030, China
| | - Kenan Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin 150030, China
| | - Zongcai Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin 150030, China
| | - Chao Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin 150030, China
| | - Yan Sun
- Heilongjiang Tobacco Industry Co., Ltd. Harbin Cigarette Factory, Harbin 150027, China
| | - Zhen Feng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin 150030, China; Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China.
| |
Collapse
|
11
|
Mandha J, Shumoy H, Matemu AO, Raes K. Evaluation of the composition and quality of watermelon and mango juices fermented by
Levilactobacillus brevis, Lacticaseibacillus casei
and
Pediococcus pentosaceus
and subsequent simulated digestion and storage. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Juliana Mandha
- Research Unit VEG‐i‐TEC, Department of Food Technology, Safety and Health Ghent University Campus Kortrijk Sint‐Martens‐Latemlaan 2B 8500 Kortrijk Belgium
- Department of Food Biotechnology and Nutritional Sciences Nelson Mandela African Institution of Science and Technology 447 Arusha Tanzania
| | - Habtu Shumoy
- Research Unit VEG‐i‐TEC, Department of Food Technology, Safety and Health Ghent University Campus Kortrijk Sint‐Martens‐Latemlaan 2B 8500 Kortrijk Belgium
| | - Athanasia O. Matemu
- Department of Food Biotechnology and Nutritional Sciences Nelson Mandela African Institution of Science and Technology 447 Arusha Tanzania
| | - Katleen Raes
- Research Unit VEG‐i‐TEC, Department of Food Technology, Safety and Health Ghent University Campus Kortrijk Sint‐Martens‐Latemlaan 2B 8500 Kortrijk Belgium
| |
Collapse
|
12
|
Letizia F, Albanese G, Testa B, Vergalito F, Bagnoli D, Di Martino C, Carillo P, Verrillo L, Succi M, Sorrentino E, Coppola R, Tremonte P, Lombardi SJ, Di Marco R, Iorizzo M. In Vitro Assessment of Bio-Functional Properties from Lactiplantibacillus plantarum Strains. Curr Issues Mol Biol 2022; 44:2321-2334. [PMID: 35678687 PMCID: PMC9164048 DOI: 10.3390/cimb44050158] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/24/2022] Open
Abstract
In recent years, alongside the conventional screening procedures for the evaluation of probiotics for human usage, the pharmaceutical and food industries have encouraged scientific research towards the selection of new probiotic bacterial strains with particular functional features. Therefore, this study intended to explore novel functional properties of five Lactiplantibacillus plantarum strains isolated from bee bread. Specifically, antioxidant, antimicrobial and β-glucosidase activities, exopolysaccharides (EPS) production and the ability to synthesize γ-aminobutyric acid (GABA) were evaluated. The results demonstrated that the investigated L. plantarum strains were effective in inhibiting the growth of some human opportunistic pathogens in vitro (Pseudomonas aeruginosa, Escherichia coli, Proteus mirabilis, Enterococcus faecalis and Staphylococcus aureus). Moreover, the evaluation of antioxidant and β-glucosidase activity and of EPS and GABA production, revealed a different behavior among the strains, testifying how these properties are strongly strain-dependent. This suggests that a careful selection within a given species is important in order to identify appropriate strains for specific biotechnological applications. The results highlighted that the five strains of L. plantarum are promising candidates for application as dietary supplements in the human diet and as microbial cultures in specific food productions.
Collapse
Affiliation(s)
- Francesco Letizia
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (F.L.); (G.A.); (B.T.); (F.V.); (D.B.); (C.D.M.); (M.S.); (R.C.); (P.T.); (S.J.L.)
| | - Gianluca Albanese
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (F.L.); (G.A.); (B.T.); (F.V.); (D.B.); (C.D.M.); (M.S.); (R.C.); (P.T.); (S.J.L.)
| | - Bruno Testa
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (F.L.); (G.A.); (B.T.); (F.V.); (D.B.); (C.D.M.); (M.S.); (R.C.); (P.T.); (S.J.L.)
| | - Franca Vergalito
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (F.L.); (G.A.); (B.T.); (F.V.); (D.B.); (C.D.M.); (M.S.); (R.C.); (P.T.); (S.J.L.)
| | - Diletta Bagnoli
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (F.L.); (G.A.); (B.T.); (F.V.); (D.B.); (C.D.M.); (M.S.); (R.C.); (P.T.); (S.J.L.)
| | - Catello Di Martino
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (F.L.); (G.A.); (B.T.); (F.V.); (D.B.); (C.D.M.); (M.S.); (R.C.); (P.T.); (S.J.L.)
| | - Petronia Carillo
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy;
| | - Lucia Verrillo
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, National Research Council (CNR), 80131 Naples, Italy;
| | - Mariantonietta Succi
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (F.L.); (G.A.); (B.T.); (F.V.); (D.B.); (C.D.M.); (M.S.); (R.C.); (P.T.); (S.J.L.)
| | - Elena Sorrentino
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (F.L.); (G.A.); (B.T.); (F.V.); (D.B.); (C.D.M.); (M.S.); (R.C.); (P.T.); (S.J.L.)
- Correspondence: (E.S.); (M.I.)
| | - Raffaele Coppola
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (F.L.); (G.A.); (B.T.); (F.V.); (D.B.); (C.D.M.); (M.S.); (R.C.); (P.T.); (S.J.L.)
| | - Patrizio Tremonte
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (F.L.); (G.A.); (B.T.); (F.V.); (D.B.); (C.D.M.); (M.S.); (R.C.); (P.T.); (S.J.L.)
| | - Silvia Jane Lombardi
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (F.L.); (G.A.); (B.T.); (F.V.); (D.B.); (C.D.M.); (M.S.); (R.C.); (P.T.); (S.J.L.)
| | - Roberto Di Marco
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy;
| | - Massimo Iorizzo
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (F.L.); (G.A.); (B.T.); (F.V.); (D.B.); (C.D.M.); (M.S.); (R.C.); (P.T.); (S.J.L.)
- Correspondence: (E.S.); (M.I.)
| |
Collapse
|
13
|
Swallah MS, Yang X, Li J, Korese JK, Wang S, Fan H, Yu H, Huang Q. The Pros and Cons of Soybean Bioactive Compounds: An Overview. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2062763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Mohammed Sharif Swallah
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
- Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of SciencesCAS Key, Hefei, China
| | - Xiaoqing Yang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Jiaxin Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Joseph Kudadam Korese
- Agricultural Mechanization and Irrigation Technology, Faculty of Agriculture, Food and Consumer Sciences, University for Development StudiesDepartment of, Tamale, Ghana
| | - Sainan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Hongliang Fan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Qing Huang
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
- Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of SciencesCAS Key, Hefei, China
| |
Collapse
|
14
|
Kusuma RJ, Widada J, Huriyati E, Julia M. Therapeutic Effects of Modified Tempeh on Glycemic Control and Gut Microbiota Diversity in Diabetic Rats. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401318666220329101437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The role of the gut microbiota in improving glycemic control in diabetic patients is gaining attention. Tempeh is a fermented soy food from Indonesia that has antidiabetic and antidysbiotic effects. Interestingly, modification of tempeh processing by adding lactic acid bacteria has been reported to enhance the antidiabetic effect of tempeh.
Aim:
To evaluate the effects of modified tempeh on serum glucose, insulin, and gut microbiota diversity of diabetic rats.
Methods:
Modified tempeh was developed by adding lactic acid bacteria from fermented cassava during tempeh processing. Diabetes was induced by injection of streptozotocin nicotinamide. Normal tempeh or modified tempeh was added to the diet and replaced 15% or 30% of casein. Serum glucose and insulin were analyzed before and after 30 days of intervention. At the end of the experiment, the appendix was sampled for gut microbiota analysis.
Result:
Modified tempeh has a significantly higher number of lactic acid bacteria (9.99±0.09 versus 7.74±0.07 log CFU, p < 0.001) compared to normal tempeh. There was a significant difference (p < 0.01) in serum glucose and insulin after treatment. Both tempeh supplements increased the diversity of the gut microbiota. Gut microbiota diversity has a strong negative correlation with delta glucose (r=-0.63, p < 0.001) and delta insulin resistance index (r=-0.54, p=0.003).
Conclusion:
Modified tempeh has potential therapeutic antidiabetic activity, possibly through increased diversity of the gut microbiota.
Collapse
Affiliation(s)
- Rio Jati Kusuma
- Department of Nutrition and Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Doctorate Program of Medicine and Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Jaka Widada
- Department of Agricultural Microbiology, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Emy Huriyati
- Department of Nutrition and Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia;
- Doctorate Program of Medicine and Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Madarina Julia
- Doctorate Program of Medicine and Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia;
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
15
|
Antioxidant Effect via Bioconversion of Isoflavonoid in Astragalus membranaceus Fermented by Lactiplantibacillus plantarum MG5276 In Vitro and In Vivo. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8010034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
In this study, the antioxidant mechanism of Astragalus membranaceus fermented by Lactiplantibacillusplantarum MG5276 (MG5276F-AM) was evaluated in HepG2 cells and in an animal model. HPLC analysis was performed to confirm the bioconversion of the bioactive compounds in A. membranaceus by fermentation. Calycosin and formononetin, which were not detected before fermentation (NF-AM), were detected after fermentation (MG5276F-AM), and its glycoside was not observed in MG5276F-AM. In HepG2 cells, MG5276F-AM alleviated H2O2-induced oxidative stress by mediating lipid peroxidation and glutathione levels, and upregulated antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx). In the tBHP-injected mouse model, administration of MG5276F-AM reduced hepatic aspartate transaminase, alanine transaminase, and lipid peroxidation. MG5276F-AM also modulated antioxidant enzymes as well as HepG2 cells. Thus, fermentation of A. membranaceus with L. plantarum MG5276 elevated the isoflavonoid aglycone by hydrolysis of its glycosides, and this bioconversion enhanced antioxidant activity both in vitro and in vivo.
Collapse
|
16
|
De Villa R, Roasa J, Mine Y, Tsao R. Impact of solid-state fermentation on factors and mechanisms influencing the bioactive compounds of grains and processing by-products. Crit Rev Food Sci Nutr 2021:1-26. [PMID: 34955050 DOI: 10.1080/10408398.2021.2018989] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cereal and legume grains and their processing by-products are rich sources of bioactives such as phenolics with considerable health potential, but these bioactives suffer from low bioaccessibility and bioavailability, resulting in limited use. Several studies have demonstrated that solid-state fermentation (SSF) with food-grade microorganisms is effective in releasing bound phenolic compounds in cereal and legume products. In this review, we discuss the effect of SSF on cereal and legume grains and their by-products by examining the role of specific microorganisms, their hydrolytic enzymes, fermentability of agri-food substrates, and the potential health benefits of SSF-enhanced bioactive compounds. SSF with fungi (Aspergillus spp. and Rhizopus spp.), bacteria (Bacillus subtilis and lactic acid bacteria (LAB) spp.) and yeast (Saccharomyces cerevisiae) significantly increased the bioactive phenolics and antioxidant capacities in cereal and legume grains and by-products, mainly through carbohydrate-cleaving enzymes. Increased bioactive phenolic and peptide contents of SSF-bioprocessed cereal and legume grains have been implicated for improved antioxidant, anti-inflammatory, anti-carcinogenic, anti-diabetic, and angiotensin-converting-enzyme (ACE) inhibitory effects in fermented agri-food products, but these remain as preliminary results. Future research should focus on the microbial mechanisms, suitability of substrates, and the physiological health benefits of SSF-treated grains and by-products.
Collapse
Affiliation(s)
- Ray De Villa
- Guelph Research & Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada.,Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Joy Roasa
- Guelph Research & Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada.,Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Yoshinori Mine
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Rong Tsao
- Guelph Research & Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| |
Collapse
|
17
|
Trung VT, Van Huynh T, Thinh PD, San PT, Bang TH, Hang NT. Probiotic Fermented Beverage From Macroalgae. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211066145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have tested the hypothesis that a fermented beverage from the macroalgae Hydropuntia eucheumatoides exhibits antioxidant and enzymatic activity. The macroalga was hydrolyzed (maximum hydrolysis yield: 78%) with a mixture of the enzymes viscozyme and lactozyme. Then, the hydrolyzate was fermented with Lactobacillus casei and Saccharomyces boulardii. This beverage contained oligosaccharide prebiotics. The lactic acid, acetic acid, ethanol, methanol, cell count, pH, and heavy metal content of the beverage were determined. All tested heavy metals were either not detected (eg, As) or within the US Food and Drug Administration limits (eg, Fe).
Collapse
Affiliation(s)
- Vo T. Trung
- Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, Khanh Hoa, Viet Nam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Tran Van Huynh
- Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, Khanh Hoa, Viet Nam
| | - Pham D. Thinh
- Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, Khanh Hoa, Viet Nam
| | - Pham T. San
- Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, Khanh Hoa, Viet Nam
| | - Truong H. Bang
- Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, Khanh Hoa, Viet Nam
| | - Nguyen T. Hang
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Ha Noi, Viet Nam
| |
Collapse
|
18
|
Kusuma R, Widada J, Huriyati E, Julia M. Naturally Acquired Lactic Acid Bacteria from Fermented Cassava Improves Nutrient and Anti-dysbiosis Activity of Soy Tempeh. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Introduction: Gut microbiota dysbiosis indicated by increased gram-negative bacteria and reduced Firmicutes-producing short chain fatty acids bacteria has been linked with impairment in glucose metabolism. Tempeh is traditional fermented soy food that can stimulate the growth of beneficial bacteria. In Indonesia, some tempeh was produced by adding acidifier that contains lactic acid bacteria. This process may impact the nutrient and anti-dysbiosis activity of tempeh.
Objectives: To evaluate the impact of acidifier on nutrient and gut microbiota profile of diabetic animal model.
Method: Modified tempeh was made by addition of water extract of fermented cassava. Standard and modified tempeh were subjected to proximate analysis and dietary fibre. Diabetic animals were received standard tempeh or modified tempeh diet replacing 15% and 30% of protein in the diet for 4 weeks of intervention. At the end of experiment, caecal content was collected. Short chain fatty acids and microbiota composition were analysed using 16s rDNA next generation sequencing (NGS).
Result: There is significant different (p<0.05) on fat, protein, water and dietary fibre content between regular soy tempeh and modified tempeh. There is significant different (p<0.05) on serum glucose and short chain fatty acid composition among group. Diabetic animal has low ratio of Firmicutes/Bacteroidetes. Supplementation of both tempeh increased bacterial diversity, Firmicutes /Bacteroidetes ratio and short chain fatty acids producing bacteria.
Conclusion: Addition of naturally occurred lactic acid bacteria from fermented cassava during tempeh processing improved both nutrient and microbiota composition in the gut of diabetes mellitus.
Collapse
|
19
|
Kumari M, Kokkiligadda A, Dasriya V, Naithani H. Functional relevance and health benefits of soymilk fermented by lactic acid bacteria. J Appl Microbiol 2021; 133:104-119. [PMID: 34724304 DOI: 10.1111/jam.15342] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/04/2021] [Accepted: 10/16/2021] [Indexed: 12/15/2022]
Abstract
The growing interest of consumers towards nutritionally enriched, and health promoting foods, provoke interest in the eventual development of fermented functional foods. Soymilk is a growing trend that can serve as a low-cost non-dairy alternative with improved functional and nutritional properties. Soymilk acts as a good nutrition media for the growth and proliferation of the micro-organism as well as for their bioactivities. The bioactive compounds produced by fermentation of soymilk with lactic acid bacteria (LAB) exhibit enhanced nutritional values, and several improved health benefits including antihypertensive, antioxidant, antidiabetic, anticancer and hypocholesterolaemic effects. The fermented soymilk is acquiring a significant position in the functional food industry due to its increased techno-functional qualities as well as ensuring the survivability of probiotic bacteria producing diverse metabolites. This review covers the important benefits conferred by the consumption of soymilk fermented by LAB producing bioactive compounds. It provides a holistic approach to obtain existing knowledge on the biofunctional attributes of fermented soymilk, with a focus on the functionality of soymilk fermented by LAB.
Collapse
Affiliation(s)
- Manorama Kumari
- Technofunctional Starters Lab, Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Anusha Kokkiligadda
- Department of Dairy Microbiology, College of Dairy Technology, Sri Venkateswara Veterinary University, Tirupti, Andhra Pradesh, India
| | - Vaishali Dasriya
- Technofunctional Starters Lab, Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Harshita Naithani
- Technofunctional Starters Lab, Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
20
|
Rokni Y, Abouloifa H, Bellaouchi R, Hasnaoui I, Gaamouche S, Lamzira Z, Salah RBEN, Saalaoui E, Ghabbour N, Asehraou A. Characterization of β-glucosidase of Lactobacillus plantarum FSO1 and Candida pelliculosa L18 isolated from traditional fermented green olive. J Genet Eng Biotechnol 2021; 19:117. [PMID: 34370148 PMCID: PMC8353020 DOI: 10.1186/s43141-021-00213-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 07/21/2021] [Indexed: 11/22/2022]
Abstract
Background Oleuropein, the main bitter phenolic glucoside responsible for green olive bitterness, may be degraded by the β-glucosidase enzyme to release glucose and phenolic compounds. Results Lactobacillus plantarum FSO1 and Candida pelliculosa L18 strains, isolated from natural fermented green olives, were tested for their β-glucosidase production and activity at different initial pH, NaCl concentrations, and temperature. The results showed that strains produced extracellular and induced β-glucosidase, with a molecular weight of 60 kD. The strains demonstrated their biodegradation capacity of oleuropein, associated with the accumulation of hydroxytyrosol and other phenolic compounds, resulting in antioxidant activity values significantly higher than that of ascorbic acid. The highest production value of β-glucosidase was 0.91 U/ml obtained at pH 5 and pH 6, respectively for L. plantarum FSO1 and C. pelliculosa L18. The increase of NaCl concentration, from 0 to 10% (w/v), inhibited the production of β-glucosidase for both strains. However, the β-glucosidase was activated with an increase of NaCl concentration, with a maximum activity obtained at 8% NaCl (w/v). The enzyme activity was optimal at pH 5 for both strains, while the optimum temperature was 45 °C for L. plantarum FSO1 and 35 °C for C. pelliculosa L18. Conclusions L. plantarum FSO1 and C. pelliculosa L18 strains showed their ability to produce an extracellular and induced β-glucosidase enzyme with promising traits for application in the biological processing of table olives.
Collapse
Affiliation(s)
- Yahya Rokni
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, BP 717, Oujda, Morocco.
| | - Houssam Abouloifa
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, BP 717, Oujda, Morocco
| | - Reda Bellaouchi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, BP 717, Oujda, Morocco
| | - Ismail Hasnaoui
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, BP 717, Oujda, Morocco
| | - Sara Gaamouche
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, BP 717, Oujda, Morocco
| | - Zahra Lamzira
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, BP 717, Oujda, Morocco
| | - Riadh B E N Salah
- Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax, BP: 1177, 3018, Sfax, Tunisia
| | - Ennouamane Saalaoui
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, BP 717, Oujda, Morocco
| | - Nabil Ghabbour
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, BP 717, Oujda, Morocco
| | - Abdeslam Asehraou
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, BP 717, Oujda, Morocco
| |
Collapse
|
21
|
Rungseevijitprapa W, Yingngam B, Chaiyasut C. Improvement of Biophysical Skin Parameters of Topically Applied Fermented Soybean Extract-Loaded Niosomes with No Systemic Toxicity in Ovariectomized Rats. Pharmaceutics 2021; 13:pharmaceutics13071068. [PMID: 34371759 PMCID: PMC8309116 DOI: 10.3390/pharmaceutics13071068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
Despite the known beneficial impacts of estrogen used as hormone replacement therapy to ameliorate signs of skin aging in postmenopausal women, its compliance rates are low. A significant amount of estrogen may be absorbed into the blood circulation and can lead to systemic actions. Soy isoflavone exhibits biological activities similar to synthetic estrogen because it is a heterocyclic phenolic compound. The disadvantage of most topical ingredients based on isoflavone is that they contain biologically inactive glycoside forms, which must be converted to a readily absorbed aglycone for the topical application. The purposes of this study were to develop niosomes-loaded Aspergillus oryzae-fermented soybean extract (FSE) to enhance skin absorption with proven systemic side effect compared to estrogen application. Skin hydration and viscoelasticity of 75 days post-ovariectomized (OVX) Wistar rats following 84-day topical treatment with various tested gel formulations containing fermented soybean extract (FSE) were evaluated. The tested formulations were gel + FSE nanoniosomes, gel + FSE microniosomes, gel + FSE (200 µg FSE/9 cm2/rat), gel + blank nanoniosomes (a negative control), and gel + 17β-estradiol (E2) nanoniosomes (a positive control, 20 µg E2/9 cm2/rat). Changes in vaginal cornifications and weights of uteri, livers, and kidneys in the OVX rats and signs of primary skin irritation in the rabbits were evaluated for their toxicities. Results showed that FSE-loaded nanoniosomes improved the skin hydration and viscoelasticity better than gel + FSE microniosomes and gel + FSE, respectively, but lower than those of gel + E2 nanoniosomes (p < 0.05). Unlike all gel + E2 nanoniosomes, the FSE formulations showed no changes in vaginal cells and weights of uteri, livers, and kidneys and no signs of skin irritation. In conclusion, The FSE niosome-based gels should be promising candidates for delivering phytoestrogens against signs of skin aging with no systemic toxicities.
Collapse
Affiliation(s)
- Wandee Rungseevijitprapa
- Department of Pharmaceutical Chemistry and Technology, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand;
- Correspondence: (W.R.); (C.C.); Tel.: +66-45-353630 (W.R.); Fax: +66-45-353-626 (W.R.)
| | - Bancha Yingngam
- Department of Pharmaceutical Chemistry and Technology, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand;
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (W.R.); (C.C.); Tel.: +66-45-353630 (W.R.); Fax: +66-45-353-626 (W.R.)
| |
Collapse
|
22
|
Lodha D, Das S, Hati S. Antioxidant activity, total phenolic content and biotransformation of isoflavones during soy lactic‐fermentations. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Dikshita Lodha
- Department of Biochemistry St. Xavier’s College (Autonomous) Ahmedabad India
| | - Sujit Das
- Department of Rural Development and Agricultural Production North‐Eastern Hill University, Tura Campus Tura India
| | - Subrota Hati
- Dairy Microbiology Department SMC College of Dairy Science, Anand Agricultural University Anand India
| |
Collapse
|
23
|
Optimization of the Bioactivation of Isoflavones in Soymilk by Lactic Acid Bacteria. Processes (Basel) 2021. [DOI: 10.3390/pr9060963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Soybeans and soy-based products contain isoflavones which can be used for nutraceutical and medical applications. In soybeans and in unfermented soy foods, isoflavones are normally present as glycosides. Isoflavone glycosides can be enzymatically converted to isoflavone aglycones, thus releasing the sugar molecule. The effective absorption of isoflavones in humans requires the bioconversion of isoflavone glycosides to isoflavone aglycones through the activity of the enzyme β-glucosidase. The objective was to assess the capacity of 42 bacterial strains (belonging to Lactobacillus, Streptococcus and Enterococcus) to produce β-glucosidase activity. The strain that showed the highest β-glucosidase activity (Lactobacillus plantarum 128/2) was then used for the optimization of the bioconversion of genistin and daidzin present in commercial soymilk to their aglycone forms genistein and daidzein. The contribution of process parameters (temperature, inoculum size, time) to the efficiency of such bioactivation was tested. Lactobacillus plantarum 128/2 was able to completely bioactivate soymilk isoflavones under the following conditions: 25 °C temperature, 2% inoculum size and 48 h process time. These results confirm the suitability of lactic acid bacteria for the bioactivation of isoflavones present in soymilk and provide an interesting candidate (L. plantarum 182/2) for food industries to perform this transformation.
Collapse
|
24
|
Guo YP, Shao L, Wang L, Chen MY, Zhang W, Huang WH. Bioconversion variation of ginsenoside CK mediated by human gut microbiota from healthy volunteers and colorectal cancer patients. Chin Med 2021; 16:28. [PMID: 33731196 PMCID: PMC7968294 DOI: 10.1186/s13020-021-00436-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/05/2021] [Indexed: 01/04/2023] Open
Abstract
Background Ginsenoside CK (GCK) serves as the potential anti-colorectal cancer (CRC) protopanaxadiol (PPD)-type saponin, which could be mainly bio-converted to yield PPD by gut microbiota. Meanwhile, the anti-CRC effects of GCK could be altered by gut microbiota due to their different diversity in CRC patients. We aimed to investigate the bioconversion variation of GCK mediated by gut microbiota from CRC patients by comparing with healthy subjects. Methods Gut microbiota profiled by 16S rRNA gene sequencing were collected from healthy volunteers and CRC patients. GCK was incubated with gut microbiota in vitro. A LC-MS/MS method was validated to quantify GCK and PPD after incubation at different time points. Results The bioconversion of GCK in healthy subjects group was much faster than CRC group, as well as the yield of PPD. Moreover, significant differences of PPD concentration between healthy subjects group and CRC group could be observed at 12 h, 48 h and 72 h check points. According to 16S rRNA sequencing, the profiles of gut microbiota derived from healthy volunteers and CRC patients significantly varied, in which 12 differentially abundant taxon were found, such as Bifidobacterium, Roseburia, Bacteroides and Collinsella. Spearman’s correlation analysis showed bacteria enriched in healthy subjects group were positively associated with the biotransformation of GCK, while bacteria enriched in CRC group displayed non correlation character. Among them, Roseburia which could secrete β-glycosidase showed the strongest positive association with the bioconversion of GCK. Conclusions The bioconversion of GCK in healthy subjects was much faster than CRC patients mediated by gut microbiota, which might alter the anti-CRC effects of GCK. ![]() Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00436-z.
Collapse
Affiliation(s)
- Yin-Ping Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 110, 410008, Changsha, China
| | - Li Shao
- Department of Pharmacognosy, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410128, Hunan, China
| | - Li Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 110, 410008, Changsha, China
| | - Man-Yun Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 110, 410008, Changsha, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 110, 410008, Changsha, China
| | - Wei-Hua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China. .,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 110, 410008, Changsha, China. .,NHC Key Laboratory of Birth Defect for Research and Prevention (Hunan Provincial Maternal and Child Health Care Hospital), Changsha, 410008, Hunan, China.
| |
Collapse
|
25
|
Ningtyas DW, Hati S, Prakash S. Bioconversion and bioaccessibility of isoflavones from sogurt during in vitro digestion. Food Chem 2020; 343:128553. [PMID: 33176956 DOI: 10.1016/j.foodchem.2020.128553] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/28/2020] [Accepted: 10/31/2020] [Indexed: 01/14/2023]
Abstract
This study investigated the bioconversion and bioaccessibility of soy isoflavones produced in sogurt fermented with S. thermophilus and L. bulgaricus during in vitro digestion. The highest survivability of S. thermophilus (6.49 log cfu/mL) and L. bulgaricus (6.48 log cfu/mL) was in oral phase. In gastric phase, the total aglycones of sogurt (26.73 g/L) increased up to 20 times than control (1.21 g/L), with a significant increase in daidzein (17.05 g/L) and genistein (9.68 g/L). Addition of 8U of β-glucosidase into soymilk significantly increased the conversion of isoflavone in ENTII (daidzein: 0.46 g/L; genistein: 0.18 g/L) than in ENTI (daidzein: 0.33 g/L; genistein: 0.20 g/L). The particle size analysis and confocal micrographs of digesta also suggest the size of fat and protein in gastric phase to be smaller than in intestinal phase. The results indicate the prospective to develop soy-based fermented products capable of releasing high isoflavone in the digestive system.
Collapse
Affiliation(s)
- Dian Widya Ningtyas
- Department of Food Science and Technology, Faculty of Agricultural Technology, Brawijaya University, Jl. Veteran, Malang 65145, Indonesia; School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Subrota Hati
- Dairy Microbiology Department, SMC College of Dairy Science, Anand Agricultural University, Anand 388110, Gujarat, India
| | - Sangeeta Prakash
- School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
26
|
Mustafa SE, Mustafa S, Ismail A, Abas F, Abd Manap MY, Ahmed Hamdi OA, Elzen S, Nahar L, Sarker SD. Impact of prebiotics on equol production from soymilk isoflavones by two Bifidobacterium species. Heliyon 2020; 6:e05298. [PMID: 33134584 PMCID: PMC7586118 DOI: 10.1016/j.heliyon.2020.e05298] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/20/2020] [Accepted: 10/15/2020] [Indexed: 11/30/2022] Open
Abstract
The influence of commercial prebiotics (fructo-oligosaccharides and inulin) and sugars (glucose and sucrose) on enhancing equol production from soymilk isoflavones by Bifidobacterium longum BB536 and Bifidobacterium breve ATCC 15700 was evaluated in vitro. Sterilized soymilk was inoculated with each bacterial species at 37 °C for 48 h. The growth and β-glucosidase enzyme activity for the two Bifidobacterium species in soymilk throughout fermentation were assessed. The highest viable count for B. breve (8.75 log CFU/ml) was reached at 36 h and for B. longum (8.55 log CFU/ml) at 24 h. Both bacterial species displayed β-glucosidase activity. B. breve showed increased enzyme activity (4.126 U) at 36 h, while B. longum exhibited maximum activity (3.935 U) at 24 h of fermentation. Among the prebiotics screened for their effect in isoflavones transformation to equol, inulin delivered the highest effect on equol production. The co-culture of B. longum BB536 and B. breve ATCC15700 in soymilk supplemented with inulin produced the highest level (11.49 mmol/l) of equol at 48 h of fermentation process. Level of daidzin declined whereas that of daidzein increased, and then gradually decreased due to formation of equol when soymilk was fermented using bifidobacterial. This suggests that the nutritional value of soymilk may be increased by increasing bioavailability of the bioactive ingredients. Collectively these data identify probiotics and prebiotic combinations suitable for inclusion in soymilk to enhance equol production.
Collapse
Affiliation(s)
- Salma Elghali Mustafa
- Department of Food Science and Technology, College of Agricultural Studies, Sudan University of Science and Technology, P.O. Box 71, Shambat, Khartoum North, Sudan
| | - Shuhaimi Mustafa
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Amin Ismail
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, University Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Faridah Abas
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Mohd Yaizd Abd Manap
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Omer Abdalla Ahmed Hamdi
- Department of Chemistry, Faculty of Science and Technology, Al-Neelain University, 11121, Khartoum, Sudan
| | - Salma Elzen
- Department of Food Science and Technology, College of Agricultural Studies, Sudan University of Science and Technology, P.O. Box 71, Shambat, Khartoum North, Sudan
| | - Lutfun Nahar
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK
| | - Satyajit D. Sarker
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK
| |
Collapse
|
27
|
Antimicrobial Activity against Paenibacillus larvae and Functional Properties of Lactiplantibacillus plantarum Strains: Potential Benefits for Honeybee Health. Antibiotics (Basel) 2020; 9:antibiotics9080442. [PMID: 32722196 PMCID: PMC7460353 DOI: 10.3390/antibiotics9080442] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 01/09/2023] Open
Abstract
Paenibacillus larvae is the causative agent of American foulbrood (AFB), a severe bacterial disease that affects larvae of honeybees. The present study evaluated, in vitro, antimicrobial activity of sixty-one Lactiplantibacillus plantarum strains, against P. larvae ATCC 9545. Five strains (P8, P25, P86, P95 and P100) that showed the greatest antagonism against P. larvae ATCC 9545 were selected for further physiological and biochemical characterizations. In particular, the hydrophobicity, auto-aggregation, exopolysaccharides production, osmotic tolerance, enzymatic activity and carbohydrate assimilation patterns were evaluated. The five L. plantarum selected strains showed suitable physical and biochemical properties for their use as probiotics in the honeybee diet. The selection and availability of new selected bacteria with good functional characteristics and with antagonistic activity against P. larvae opens up interesting perspectives for new biocontrol strategies of diseases such as AFB.
Collapse
|
28
|
Hati S, Ningtyas DW, Khanuja JK, Prakash S. β-Glucosidase from almonds and yoghurt cultures in the biotransformation of isoflavones in soy milk. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Raza A, Pothula R, Abdelgaffar H, Bashir S, Jurat-Fuentes JL. Identification and functional characterization of a β-glucosidase from Bacillus tequelensis BD69 expressed in bacterial and yeast heterologous systems. PeerJ 2020; 8:e8792. [PMID: 32266116 PMCID: PMC7115751 DOI: 10.7717/peerj.8792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/25/2020] [Indexed: 12/31/2022] Open
Abstract
Background The identification and characterization of novel β-glucosidase genes has attracted considerable attention because of their valuable use in a variety of industrial applications, ranging from biofuel production to improved digestibility of animal feed. We previously isolated a fiber-degrading strain of Bacillus tequelensis from buffalo dung samples, and the goal of the current work was to identify β-glucosidase genes in this strain. We describe the cloning and expression of a new β-glucosidase gene (Bteqβgluc) from Bacillus tequelensis strain BD69 in bacterial and yeast hosts. The recombinant Bteqβgluc were used to characterize specificity and activity parameters, and candidate active residues involved in hydrolysis of different substrates were identified through molecular docking. Methods The full length Bteqβgluc gene was cloned and expressed in Escherichia coli and Pichia pastoris cultures. Recombinant Bteqβgluc proteins were purified by immobilized metal affinity or anion exchange chromatography and used in β-glucosidase activity assays measuring hydrolysis of ρ-nitrophenyl-β-D-glucopyranoside (pNPG). Activity parameters were determined by testing relative β-glucosidase activity after incubation under different temperature and pH conditions. Candidate active residues in Bteqβgluc were identified using molecular operating environment (MOE) software. Results The cloned Bteqβgluc gene belongs to glycoside hydrolase (GH) family 4 and encoded a 54.35 kDa protein. Specific activity of the recombinant β-glucosidase was higher when expressed in P. pastoris (1,462.25 U/mg) than in E. coli (1,445.09 U/mg) hosts using same amount of enzyme. Optimum activity was detected at pH 5 and 50 °C. The activation energy (E a) was 44.18 and 45.29 kJ/mol for Bteqβgluc produced by P. pastoris and E. coli, respectively. Results from other kinetic parameter determinations, including pK a for the ionizable groups in the active site, Gibbs free energy of activation (ΔG ‡), entropy of activation (ΔS ‡), Michaelis constant (K m) and maximum reaction velocity (V max) for pNPG hydrolysis support unique kinetics and functional characteristics that may be of interest for industrial applications. Molecular docking analysis identified Glu, Asn, Phe, Tyr, Thr and Gln residues as important in protein-ligand catalytic interactions.
Collapse
Affiliation(s)
- Ahmad Raza
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.,Pakistan Institute of Engineering & Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Ratnasri Pothula
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States of America
| | - Heba Abdelgaffar
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States of America
| | - Saira Bashir
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.,Pakistan Institute of Engineering & Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States of America
| |
Collapse
|