1
|
Khaliq H. Exploring the role of boron-containing compounds in biological systems: Potential applications and key challenges. J Trace Elem Med Biol 2025; 87:127594. [PMID: 39826267 DOI: 10.1016/j.jtemb.2025.127594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Boron, a naturally abundant trace element, plays a crucial role in various biological processes and influences important physiological functions such as bone health, immune response, and cellular metabolism. Its applications span diverse scientific fields including anatomy, pharmacology, reproduction, medicine, and agriculture. OBJECTIVES This review examines the diverse functions of boron-compounds in biological systems and highlights their therapeutic potential, challenges associated with toxicity, and mechanisms underlying their biological interactions. METHODS In this paper, the literature on boron action was reviewed, paying special attention to studies that examined the effects of boron on health and its therapeutic applications in multiple areas. RESULTS Boron exhibits broad therapeutic potential by affecting several pathways. However, excessive consumption can cause toxicity and negatively impact health. Current research only partially elucidates the mechanisms of boron's biological effects, so further studies are needed. CONCLUSION Understanding boron's interactions in biological systems is critical to optimizing its application in healthcare and ensuring safety. Future research will improve our knowledge of boron's biological effects and promote innovative therapeutic applications.
Collapse
Affiliation(s)
- Haseeb Khaliq
- Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences Bahawalpur, 63100, Pakistan.
| |
Collapse
|
2
|
Barrón-González M, Rivera-Antonio AM, Jarillo-Luna RA, Santiago-Quintana JM, Levaro-Loquio D, Pérez-Capistran T, Guerra-Araiza CH, Soriano-Ursúa MA, Farfán-García ED. Borolatonin limits cognitive deficit and neuron loss while increasing proBDNF in ovariectomised rats. Fundam Clin Pharmacol 2024; 38:730-741. [PMID: 38423984 DOI: 10.1111/fcp.12997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Borolatonin is a potential therapeutic agent for some neuronal diseases such as Alzheimer's disease (AD). Its administration exerts ameliorative effects such as those induced by the equimolar administration of melatonin in behavioral tests on male rats and in neuronal immunohistochemistry assays. OBJECTIVE In this study, motivated by sex differences in neurobiology and the incidence of AD, the ability of borolatonin to induce changes in female rats was assessed. METHODS Effects of borolatonin were measured by the evaluation of both behavioral and immunohistopathologic approaches; additionally, its ability to limit amyloid toxicity was determined in vitro. RESULTS Surprisingly, behavioral changes were similar to those reported in male rats, but not those evaluated by immunoassays regarding neuronal survival; while pro-brain-derived neurotrophic factor (BDNF) immunoreactivity and the limitation of toxicity by amyloid in vitro were observed for the first time. CONCLUSION Borolatonin administration induced changes in female rats. Differences induced by the administration of borolatonin or melatonin could be related to the differences in the production of steroid hormones in sex dependence. Further studies are required to clarify the possible mechanism and origin of differences in disturbed memory caused by the gonadectomy procedure between male and female rats.
Collapse
Affiliation(s)
- Mónica Barrón-González
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| | - Astrid M Rivera-Antonio
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, ESM-IPN, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| | - Rosa A Jarillo-Luna
- Laboratorio de Morfología, Sección de Estudios de Posgrado e Investigación, ESM-IPN, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| | - José M Santiago-Quintana
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| | - David Levaro-Loquio
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| | - Teresa Pérez-Capistran
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| | - Christian H Guerra-Araiza
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México, Mexico
| | - Marvin A Soriano-Ursúa
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| | - Eunice D Farfán-García
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| |
Collapse
|
3
|
Grams RJ, Santos WL, Scorei IR, Abad-García A, Rosenblum CA, Bita A, Cerecetto H, Viñas C, Soriano-Ursúa MA. The Rise of Boron-Containing Compounds: Advancements in Synthesis, Medicinal Chemistry, and Emerging Pharmacology. Chem Rev 2024; 124:2441-2511. [PMID: 38382032 DOI: 10.1021/acs.chemrev.3c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Boron-containing compounds (BCC) have emerged as important pharmacophores. To date, five BCC drugs (including boronic acids and boroles) have been approved by the FDA for the treatment of cancer, infections, and atopic dermatitis, while some natural BCC are included in dietary supplements. Boron's Lewis acidity facilitates a mechanism of action via formation of reversible covalent bonds within the active site of target proteins. Boron has also been employed in the development of fluorophores, such as BODIPY for imaging, and in carboranes that are potential neutron capture therapy agents as well as novel agents in diagnostics and therapy. The utility of natural and synthetic BCC has become multifaceted, and the breadth of their applications continues to expand. This review covers the many uses and targets of boron in medicinal chemistry.
Collapse
Affiliation(s)
- R Justin Grams
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | | | - Antonio Abad-García
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| | - Carol Ann Rosenblum
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Andrei Bita
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Hugo Cerecetto
- Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400 Montevideo, Uruguay
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Marvin A Soriano-Ursúa
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| |
Collapse
|
4
|
Mehta NV, Abhyankar A, Degani MS. Elemental exchange: Bioisosteric replacement of phosphorus by boron in drug design. Eur J Med Chem 2023; 260:115761. [PMID: 37651875 DOI: 10.1016/j.ejmech.2023.115761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/12/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Continuous efforts are being directed toward the employment of boron in drug design due to its advantages and unique characteristics including a plethora of target engagement modes, lower metabolism, and synthetic accessibility, among others. Phosphates are components of multiple drug molecules as well as clinical candidates, since they play a vital role in various biochemical functions, being components of nucleotides, energy currency- ATP as well as several enzyme cofactors. This review discusses the unique chemistry of boron functionalities as phosphate bioisosteres - "the boron-phosphorus elemental exchange strategy" as well as the superiority of boron groups over other commonly employed phosphate bioisosteres. Boron phosphate-mimetics have been utilized for the development of enzyme inhibitors as well as novel borononucleotides. Both the boron functionalities described in this review-boronic acids and benzoxaboroles-contain a boron connected to two oxygens and one carbon atom. The boron atom of these functional groups coordinates with a water molecule in the enzyme site forming a tetrahedral molecule which mimics the phosphate structure. Although boron phosphate-mimetic molecules - FDA-approved Crisaborole and phase II/III clinical candidate Acoziborole are products of the boron-phosphorus bioisosteric elemental exchange strategy, this technique is still in its infancy. The review aims to promote the use of this strategy in future medicinal chemistry projects.
Collapse
Affiliation(s)
- Namrashee V Mehta
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, Maharashtra, India.
| | - Arundhati Abhyankar
- Shri Vile Parle Kelavani Mandal's Dr Bhanuben Nanavati College of Pharmacy, Gate No.1, Mithibai College Campus, Vile Parle West, Mumbai, 400056, Maharashtra, India.
| | - Mariam S Degani
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, Maharashtra, India.
| |
Collapse
|
5
|
Rosalez MN, Farfán-García ED, Badillo-Romero J, Córdova-Chávez RI, Trujillo-Ferrara JG, Morales-González JA, Soriano-Ursúa MA, Martínez-Archundia M. A Boron-Containing Analogue of Acetaminophen Induces Analgesic Effect in Hot Plate Test and Limited Hepatotoxicity. INORGANICS 2023; 11:261. [DOI: 10.3390/inorganics11060261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2024] Open
Abstract
Acetaminophen is the most sold drug to treat pain. The TRPV1 channel is among its main targets. Due to its over-the-counter availability, its use is known as the main cause of acute liver failure induced by drugs. In addition, boron-containing compounds (BCC) have shown higher efficiency, potency, and affinity than their carbon counterparts. The present study explored the potential analgesic effect and hepatotoxicity of a BCC with a similar chemical structure to acetaminophen. Docking studies were carried out on the TRPV1 channel. In addition, a hot plate test was carried out with three doses of acetaminophen (APAP) and equimolar doses of 4-acetamidophenylboronic acid (4APB) in C57bl/6 mice. These same mice were submitted to a partial hepatectomy and continued compound administration, then they were sacrificed at day seven of treatment to analyze the liver histology and blood chemistry markers. From the in silico assays, it was observed that APAP and 4APB shared interactions with key residues, but 4APB showed a higher affinity on the orthosteric site. Mice administered with 4APB showed a higher latency time than those administered with their equimolar dose of APAP and the control group, with no motor pathway affected. The 4APB groups did not show an increase in hepatic enzyme activity while the APAP did show an increase in activity that was dose-dependent. Although all the experimental groups did show necrosis and inflammation, all APAP groups showed a greater cellular damage than their 4APB counterparts. In addition, the LD50 of 4APB is 409 mg/kg (against APAP-LD50 of 338 mg/kg). Thus, in the current evaluation, 4APB was a better analgesic and safer than APAP.
Collapse
Affiliation(s)
- Melvin Nadir Rosalez
- Academy of Physiology & Postgraduate and Research Section, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City 11340, Mexico
- Laboratory for the Design and Development of New Drugs and Biotechnological Innovation, Postgraduate and Research Section, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City 11340, Mexico
| | - Eunice D. Farfán-García
- Academy of Biochemistry & Postgraduate and Research Section, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City 11340, Mexico
| | - Jesús Badillo-Romero
- Department of Anatomical Pathology, Hospital General de Zona 2A, Troncoso. Añil 144, Granjas México, Iztacalco, Mexico City 08400, Mexico
| | - Ricardo Iván Córdova-Chávez
- Academy of Physiology & Postgraduate and Research Section, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City 11340, Mexico
| | - José G. Trujillo-Ferrara
- Academy of Biochemistry & Postgraduate and Research Section, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City 11340, Mexico
| | - José A. Morales-González
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City 11340, Mexico
| | - Marvin A. Soriano-Ursúa
- Academy of Physiology & Postgraduate and Research Section, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City 11340, Mexico
| | - Marlet Martínez-Archundia
- Laboratory for the Design and Development of New Drugs and Biotechnological Innovation, Postgraduate and Research Section, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City 11340, Mexico
| |
Collapse
|
6
|
Ri CC, Mf CR, D RV, T PC, F TC, Ir S, A AG, Ma SU. Boron-Containing Compounds for Prevention, Diagnosis, and Treatment of Human Metabolic Disorders. Biol Trace Elem Res 2023; 201:2222-2239. [PMID: 35771339 DOI: 10.1007/s12011-022-03346-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/24/2022] [Indexed: 11/02/2022]
Abstract
The application of natural and synthetic boron-containing compounds (BCC) in biomedical field is expanding. BCC have effects in the metabolism of living organisms. Some boron-enriched supplements are marketed as they exert effects in the bone and skeletal muscle; but also, BCC are being reported as acting on the enzymes and transporters of membrane suggesting they could modify the carbohydrate metabolism linked to some pathologies of high global burden, as an example is diabetes mellitus. Also, some recent findings are showing effects of BCC on lipid metabolism. In this review, information regarding the effects and interaction of these compounds was compiled, as well as the potential application for treating human metabolic disorders is suggested.
Collapse
Affiliation(s)
- Córdova-Chávez Ri
- Academia de Fisiología Y Sección de Estudios de Posgrado E Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis Y Díaz Mirón S/N, 11340, Mexico City, Mexico
| | - Carrasco-Ruiz Mf
- Academia de Fisiología Y Sección de Estudios de Posgrado E Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis Y Díaz Mirón S/N, 11340, Mexico City, Mexico
| | - Rodríguez-Vera D
- Academia de Fisiología Y Sección de Estudios de Posgrado E Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis Y Díaz Mirón S/N, 11340, Mexico City, Mexico
| | - Pérez-Capistran T
- Academia de Fisiología Y Sección de Estudios de Posgrado E Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis Y Díaz Mirón S/N, 11340, Mexico City, Mexico
| | - Tamay-Cach F
- Academia de Bioquímica Médica Y Sección de Estudios de Posgrado E Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis Y Díaz Mirón S/N, 11340, Mexico City, Mexico
| | - Scorei Ir
- BioBoron Research Institute, Dunarii 31B Street, 207465, Podari, Romania
| | - Abad-García A
- Academia de Fisiología Y Sección de Estudios de Posgrado E Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis Y Díaz Mirón S/N, 11340, Mexico City, Mexico.
| | - Soriano-Ursúa Ma
- Academia de Fisiología Y Sección de Estudios de Posgrado E Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis Y Díaz Mirón S/N, 11340, Mexico City, Mexico.
| |
Collapse
|
7
|
Farfán-García ED, Kilic A, García-Machorro J, Cuevas-Galindo ME, Rubio-Velazquez BA, García-Coronel IH, Estevez-Fregoso E, Trujillo-Ferrara JG, Soriano-Ursúa MA. Antimicrobial (viral, bacterial, fungal, and parasitic) mechanisms of action of boron-containing compounds. VIRAL, PARASITIC, BACTERIAL, AND FUNGAL INFECTIONS 2023:733-754. [DOI: 10.1016/b978-0-323-85730-7.00026-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Wang S, Ren Y, Wang Z, Jiang X, Xu S, Zhang X, Zhao S, Zalloum WA, Liu X, Zhan P. The current progress in the use of boron as a platform for novel antiviral drug design. Expert Opin Drug Discov 2022; 17:1329-1340. [PMID: 36448326 DOI: 10.1080/17460441.2023.2153829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
INTRODUCTION Boron has attracted extensive interest due to several FDA-approved boron-containing drugs and other pharmacological agents in clinical trials. As a semimetal, it has peculiar biochemical characteristics which could be utilized in designing novel drugs against drug-resistant viruses. Emerging and reemerging viral pandemics are major threats to human health. Accordingly, we aim to comprehensively review the current status of antiviral boron-containing compounds. AREAS COVERED This review focuses on the utilization of boron to design molecules against viruses from two perspectives: (i) single boron atom-containing compounds acting on miscellaneous viral targets and (ii) boron clusters. The peculiar properties of antiviral boron-containing compounds and their diverse binding modes with viral targets are described in detail in this review. EXPERT OPINION Compounds bearing boronic acid can interact with viral targets by forming covalent or robust hydrogen bonds. This feature is valuable for combating resistant viruses. Furthermore, boron clusters can form dihydrogen bonds and bear features such as three-dimensional aromaticity, hydrophobicity, and biological stability. All these features demonstrated boron as a probable essential element with immense potential for drug design.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Yujie Ren
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Zhao Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Xujie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Shujie Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Waleed A Zalloum
- Department of Pharmacy, Faculty of Health Science, American University of Madaba, P.O Box 2882 11821, Amman, Jordan
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| |
Collapse
|
9
|
Messner K, Vuong B, Tranmer GK. The Boron Advantage: The Evolution and Diversification of Boron’s Applications in Medicinal Chemistry. Pharmaceuticals (Basel) 2022; 15:ph15030264. [PMID: 35337063 PMCID: PMC8948683 DOI: 10.3390/ph15030264] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 12/13/2022] Open
Abstract
In this review, the history of boron’s early use in drugs, and the history of the use of boron functional groups in medicinal chemistry applications are discussed. This includes diazaborines, boronic acids, benzoxaboroles, boron clusters, and carboranes. Furthermore, critical developments from these functional groups are highlighted along with recent developments, which exemplify potential prospects. Lastly, the application of boron in the form of a prodrug, softdrug, and as a nanocarrier are discussed to showcase boron’s emergence into new and exciting fields. Overall, we emphasize the evolution of organoboron therapeutic agents as privileged structures in medicinal chemistry and outline the impact that boron has had on drug discovery and development.
Collapse
Affiliation(s)
- Katia Messner
- Rady Faculty of Health Science, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (K.M.); (B.V.)
| | - Billy Vuong
- Rady Faculty of Health Science, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (K.M.); (B.V.)
| | - Geoffrey K. Tranmer
- Rady Faculty of Health Science, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (K.M.); (B.V.)
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Correspondence:
| |
Collapse
|
10
|
Nadar SS, Patil SP, Kelkar RK, Patil NP, Pise PV, Tiwari MS, Phirke AN, Patil PD. Nanobiomaterials for bioimaging. NANOTECHNOLOGY IN MEDICINE AND BIOLOGY 2022:189-234. [DOI: 10.1016/b978-0-12-819469-0.00001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Arciniega-Martínez IM, Romero-Aguilar KS, Farfán-García ED, García-Machorro J, Reséndiz-Albor AA, Soriano-Ursúa MA. Diversity of effects induced by boron-containing compounds on immune response cells and on antibodies in basal state. J Trace Elem Med Biol 2022; 69:126901. [PMID: 34801850 DOI: 10.1016/j.jtemb.2021.126901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/22/2021] [Accepted: 11/12/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND It has been reported that boron induces changes in the immune response, including in inflammatory processes. Recently, the effect of boric acid has been documented on the differentiation of lymphocyte clusters in mice and rats. However, the differences among boron-containing compounds (BCC) have been poorly explored. METHODS In this study, we analyzed the effects after oral administration of boric acid (BOR), methylboronic (MET), 3-thyenylboronic (3TB), 4-hydroxymethyl-phenylboronic (4MP) and 4-methanesulfonyl-phenylboronic (4SP) acids on the populations of lymphocytes from spleen and Peyer's patch (PP) as well as on antibodies. Groups of six male BALB/c were orally treated with 4.6 mg/kg of body weight with BOR, MET, 3TB, 4MP, and 4SP/daily for 10 days or vehicle (VEH) as a control group. After euthanasia, the spleen and small intestine were dissected. We conducted flow cytometry assays to assess B, CD3+ T, CD4+ T, and CD8+ T cells. Levels of IgG and IgM in serum, and IgA in intestinal fluid samples were analyzed by enzyme immunoassay. RESULTS In particular, we observed the effects of the administration of boronic acids on the number of lymphocytes; these changes were more notable in spleen than in PP. We found different profiles for each boron-containing compound, that is BOR induced an increase in the percentage of CD8+ T and CD19+/IgA+ cells in spleen, but a decrease in CD8+ T and B220+/CD19+ cells in PP. Meanwhile MET induced a decrease of CD4+ T in spleen, but induced an increase of CD4+ T cells and a decrease in the number of CD8+ T cells in PP. Boronic acids with an aromatic ring moiety induced changes in serum immunoglobulins levels, while 3TB acid induced a notable increase in S-IgA. CONCLUSIONS Effects in lymphocyte populations and antibodies are different for each tested compound. These results highlight the establishment of the necessary structure-activity relationship for BCC as immunomodulatory drugs. This is relevant in the biomedical field due to their attractiveness for selecting compounds to develop therapeutic tools.
Collapse
Affiliation(s)
- Ivonne M Arciniega-Martínez
- Laboratorio de Inmunidad de Mucosas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina (ESM) del Instituto Politécnico Nacional (IPN), Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| | - Karla S Romero-Aguilar
- Academias de Fisiología, Bioquímica y Sección de Estudios de Posgrado e Investigación del IPN, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| | - Eunice D Farfán-García
- Academias de Fisiología, Bioquímica y Sección de Estudios de Posgrado e Investigación del IPN, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| | - Jazmín García-Machorro
- Laboratorio de Medicina de Conservación, Sección de Estudios de Posgrado e Investigación, ESM del IPN, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| | - Aldo A Reséndiz-Albor
- Laboratorio de Inmunidad de Mucosas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina (ESM) del Instituto Politécnico Nacional (IPN), Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico.
| | - Marvin A Soriano-Ursúa
- Academias de Fisiología, Bioquímica y Sección de Estudios de Posgrado e Investigación del IPN, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico.
| |
Collapse
|
12
|
Song S, Gao P, Sun L, Kang D, Kongsted J, Poongavanam V, Zhan P, Liu X. Recent developments in the medicinal chemistry of single boron atom-containing compounds. Acta Pharm Sin B 2021; 11:3035-3059. [PMID: 34729302 PMCID: PMC8546671 DOI: 10.1016/j.apsb.2021.01.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/25/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
Various boron-containing drugs have been approved for clinical use over the past two decades, and more are currently in clinical trials. The increasing interest in boron-containing compounds is due to their unique binding properties to biological targets; for example, boron substitution can be used to modulate biological activity, pharmacokinetic properties, and drug resistance. In this perspective, we aim to comprehensively review the current status of boron compounds in drug discovery, focusing especially on progress from 2015 to December 2020. We classify these compounds into groups showing anticancer, antibacterial, antiviral, antiparasitic and other activities, and discuss the biological targets associated with each activity, as well as potential future developments.
Collapse
Key Words
- ACTs, artemisinin combination therapies
- ADCs, Acinetobacter-derived cephalosporinases
- AML, acute myeloid leukemia
- AMT, aminopterin
- BLs, β-lactamases
- BNCT, boron neutron capture therapy
- BNNPs, boron nitride nanoparticles
- BNNTs, boron nitride nanotubes
- Boron-containing compounds
- CEs, carboxylesterases
- CIA, collagen-induced arthritis
- COVID-19, coronavirus disease 2019
- ClpP, casein protease P
- Covalent inhibitors
- GSH, glutathione
- HADC1, class I histone deacetylase
- HBV, hepatitis B virus
- HCV, hepatitis C virus
- HIV, human immunodeficiency virus
- LeuRS, leucyl-tRNA synthetase
- Linker components
- MBLs, metal β-lactamases
- MDR-TB, multidrug-resistant tuberculosis
- MERS, Middle East respiratory syndrome
- MIDA, N-methyliminodiacetic acid
- MM, multiple myeloma
- MTX, methotrexate
- Mcl-1, myeloid cell leukemia 1
- Mtb, Mycobacterium tuberculosis
- NA, neuraminidase
- NS5B, non-nucleoside polymerase
- OBORT, oxaborole tRNA capture
- OPs, organophosphate
- PBA, phenylboronic acid
- PDB, Protein Data Bank
- PPI, protein–protein interaction
- Prodrug
- QM, quinone methide
- RA, rheumatoid arthritis
- ROS, reactive oxygen species
- SARS-CoV-2, syndrome coronavirus 2
- SBLs, serine β-lactamases
- SERD, selective estrogen receptor downregulator
- SHA, salicyl hydroxamic acid
- SaClpP, Staphylococcus aureus caseinolytic protease P
- TB, tuberculosis
- TTR, transthyretin
- U4CR, Ugi 4-component reaction
- cUTI, complex urinary tract infection
- dCTPase, dCTPase pyrophosphatase
Collapse
Affiliation(s)
- Shu Song
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| | - Ping Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| | - Lin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M. DK-5230, Denmark
| | - Vasanthanathan Poongavanam
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M. DK-5230, Denmark
- Corresponding authors. Tel./fax: +86 531 88380270.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
- Corresponding authors. Tel./fax: +86 531 88380270.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
- Corresponding authors. Tel./fax: +86 531 88380270.
| |
Collapse
|
13
|
MacCormack TJ, Gormley PT, Khuong BN, Adams OA, Braz-Mota S, Duarte RM, Vogels CM, Tremblay L, Val AL, Almeida-Val VMF, Westcott SA. Boron Oxide Nanoparticles Exhibit Minor, Species-Specific Acute Toxicity to North-Temperate and Amazonian Freshwater Fishes. Front Bioeng Biotechnol 2021; 9:689933. [PMID: 34124028 PMCID: PMC8194395 DOI: 10.3389/fbioe.2021.689933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/05/2021] [Indexed: 11/25/2022] Open
Abstract
Boron oxide nanoparticles (nB2O3) are manufactured for structural, propellant, and clinical applications and also form spontaneously through the degradation of bulk boron compounds. Bulk boron is not toxic to vertebrates but the distinctive properties of its nanostructured equivalent may alter its biocompatibility. Few studies have addressed this possibility, thus our goal was to gain an initial understanding of the potential acute toxicity of nB2O3 to freshwater fish and we used a variety of model systems to achieve this. Bioactivity was investigated in rainbow trout (Oncorhynchus mykiss) hepatocytes and at the whole animal level in three other North and South American fish species using indicators of aerobic metabolism, behavior, oxidative stress, neurotoxicity, and ionoregulation. nB2O3 reduced O. mykiss hepatocyte oxygen consumption (ṀO2) by 35% at high doses but whole animal ṀO2 was not affected in any species. Spontaneous activity was assessed using ṀO2 frequency distribution plots from live fish. nB2O3 increased the frequency of high ṀO2 events in the Amazonian fish Paracheirodon axelrodi, suggesting exposure enhanced spontaneous aerobic activity. ṀO2 frequency distributions were not affected in the other species examined. Liver lactate accumulation and significant changes in cardiac acetylcholinesterase and gill Na+/K+-ATPase activity were noted in the north-temperate Fundulus diaphanus exposed to nB2O3, but not in the Amazonian Apistogramma agassizii or P. axelrodi. nB2O3 did not induce oxidative stress in any of the species studied. Overall, nB2O3 exhibited modest, species-specific bioactivity but only at doses exceeding predicted environmental relevance. Chronic, low dose exposure studies are required for confirmation, but our data suggest that, like bulk boron, nB2O3 is relatively non-toxic to aquatic vertebrates and thus represents a promising formulation for further development.
Collapse
Affiliation(s)
- Tyson J MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - Patrick T Gormley
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - B Ninh Khuong
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - Olivia A Adams
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - Susana Braz-Mota
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, Brazil
| | - Rafael M Duarte
- Institute of Biosciences, São Paulo State University (UNESP), São Vicente, Brazil
| | - Christopher M Vogels
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - Luc Tremblay
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Adalberto L Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, Brazil
| | - Vera M F Almeida-Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, Brazil
| | - Stephen A Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| |
Collapse
|
14
|
Estevez-Fregoso E, Farfán-García ED, García-Coronel IH, Martínez-Herrera E, Alatorre A, Scorei RI, Soriano-Ursúa MA. Effects of boron-containing compounds in the fungal kingdom. J Trace Elem Med Biol 2021; 65:126714. [PMID: 33453473 DOI: 10.1016/j.jtemb.2021.126714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/10/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND The number of known boron-containing compounds (BCCs) is increasing due to their identification in nature and innovative synthesis procedures. Their effects on the fungal kingdom are interesting, and some of their mechanisms of action have recently been elucidated. METHODS In this review, scientific reports from relevant chemistry and biomedical databases were collected and analyzed. RESULTS It is notable that several BCC actions in fungi induce social and economic benefits for humans. In fact, boric acid was traditionally used for multiple purposes, but some novel synthetic BCCs are effective antifungal agents, particularly in their action against pathogen species, and some were recently approved for use in humans. Moreover, most reports testing BCCs in fungal species suggest a limiting effect of these compounds on some vital reactions. CONCLUSIONS New BCCs have been synthesized and tested for innovative technological and biomedical emerging applications, and new interest is developing for discovering new strategic compounds that can act as environmental or wood protectors, as well as antimycotic agents that let us improve food acquisition and control some human infections.
Collapse
Affiliation(s)
- Elizabeth Estevez-Fregoso
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Mexico
| | - Eunice D Farfán-García
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Mexico.
| | - Itzel H García-Coronel
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Mexico; Unidad de Investigación, Hospital Regional de Alta Especialidad Ixtapaluca, Carretera Federal México-Puebla km 34.5, C.P. 56530, Ixtapaluca, State of Mexico, Mexico
| | - Erick Martínez-Herrera
- Unidad de Investigación, Hospital Regional de Alta Especialidad Ixtapaluca, Carretera Federal México-Puebla km 34.5, C.P. 56530, Ixtapaluca, State of Mexico, Mexico
| | - Alberto Alatorre
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Mexico
| | - Romulus I Scorei
- BioBoron Research Institute, Dunarii 31B Street, 207465, Podari, Romania
| | - Marvin A Soriano-Ursúa
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Mexico.
| |
Collapse
|
15
|
Romero-Aguilar KS, Arciniega-Martínez IM, Farfán-García ED, Campos-Rodríguez R, Reséndiz-Albor AA, Soriano-Ursúa MA. Effects of boron-containing compounds on immune responses: review and patenting trends. Expert Opin Ther Pat 2019; 29:339-351. [PMID: 31064237 DOI: 10.1080/13543776.2019.1612368] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Boron-containing compounds induce effects on immune responses. Such effects are interesting to the biomedical field for the development of therapeutic tools to modulate the immune system. AREAS COVERED The scope of BCC use to modify immune responses is expanding, mainly with regard to inflammatory diseases. The information was organized to demonstrate the breadth of reported effects. BCCs act as modulators of innate and adaptive immunity, with the former including regulation of cluster differentiation and cytokine production. In addition, BCCs exert effects on inflammation induced by infectious and noninfectious agents, and there are also reports regarding their effects on mechanisms involving hypersensitivity and transplants. Finally, the authors discuss the beneficial effects of BCCs on pathologies involving various targets and mechanisms. EXPERT OPINION Some BCCs are currently used as drugs in humans. The mechanisms by which these BCCs modulate immune responses, as well as the required structure-activity relationship for each observed mechanism of action, should be clarified. The former will allow for the development of improved immunomodulatory drugs with extensive applications in medicine. Patenting trends involve claims concerning the synthesis and actions of identified molecules with a defined profile regarding cytokines, cell differentiation, proliferation, and antibody production.
Collapse
Affiliation(s)
- Karla S Romero-Aguilar
- a Departamento de Fisiología, Sección de Estudios de Posgrado e Investigación , Escuela Superior de Medicina del Instituto Politécnico Nacional , México City , México
- b Departamento de Inmunología de Mucosas, Sección de Estudios de Posgrado e Investigación , Escuela Superior de Medicina del Instituto Politécnico Nacional , México City , México
| | - Ivonne M Arciniega-Martínez
- b Departamento de Inmunología de Mucosas, Sección de Estudios de Posgrado e Investigación , Escuela Superior de Medicina del Instituto Politécnico Nacional , México City , México
| | - Eunice D Farfán-García
- a Departamento de Fisiología, Sección de Estudios de Posgrado e Investigación , Escuela Superior de Medicina del Instituto Politécnico Nacional , México City , México
| | - Rafael Campos-Rodríguez
- b Departamento de Inmunología de Mucosas, Sección de Estudios de Posgrado e Investigación , Escuela Superior de Medicina del Instituto Politécnico Nacional , México City , México
| | - Aldo A Reséndiz-Albor
- b Departamento de Inmunología de Mucosas, Sección de Estudios de Posgrado e Investigación , Escuela Superior de Medicina del Instituto Politécnico Nacional , México City , México
| | - Marvin A Soriano-Ursúa
- a Departamento de Fisiología, Sección de Estudios de Posgrado e Investigación , Escuela Superior de Medicina del Instituto Politécnico Nacional , México City , México
| |
Collapse
|
16
|
Demianenko E, Rayevsky A, Soriano-Ursúa MA, Trujillo-Ferrara JG. Theoretical Coupling and Stability of Boronic Acid Adducts with Catecholamines. LETT DRUG DES DISCOV 2019; 16:467-475. [DOI: 10.2174/1570180815666180710101604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 06/15/2018] [Accepted: 07/04/2018] [Indexed: 02/07/2023]
Abstract
Background:
Catecholamines combined with boric/boronic acids are attractive chemical
agents in drug design because some of their adducts have shown interesting biological activity.
Scant information exists about their stability.
Objective:
The aim of the present theoretical study was to explore the role of boron in molecules
that combine catecholamines and boric/boronic acids, with a particular interest in examining
stability.
Method:
The methodology was based on the US GAMESS program using DFT with the B3LYP
exchange-correlation functional and the 6-31G (d,p) split-valence basis set.
Results:
According to the current findings, the boron-containing compounds (BCCs) exhibit weaker
bonding to the hydroxyls on the ethylamine moiety than to those in the aromatic ring. The strongest
binding site of a hydroxyl group was often found to be in meta-position (relative to ethylamine
moiety) for boron-free compounds and in para-position for BCCs. Nonetheless, the methyl substituent
in the amino group was able to induce changes in this pattern. We analyzed feasible boronsubstituted
structures and assessed the relative strength of the respective C-B bonds, which allowed
for the identification of the favorable points for reaction and stability.
Conclusion:
It is feasible to form adducts by bonding on the amine and catechol sides of catecholamines.
The presence of boron stabilizes the adducts in para-position. Since some of these BCCs
are promising therapeutic agents, understanding the mechanisms of reaction is relevant for drug
design.
Collapse
Affiliation(s)
- Eugeniy Demianenko
- Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 General Naumov Str., Kyiv, 03164, Ukraine
| | - Alexey Rayevsky
- Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 General Naumov Str., Kyiv, 03164, Ukraine
| | - Marvin A. Soriano-Ursúa
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Plan de San Luis y Diaz Miron s/n, Mexico City, 11340, Mexico
| | - José G. Trujillo-Ferrara
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Plan de San Luis y Diaz Miron s/n, Mexico City, 11340, Mexico
| |
Collapse
|
17
|
López-Cabrera Y, Castillo-García EL, Altamirano-Espino JA, Pérez-Capistran T, Farfán-García ED, Trujillo-Ferrara JG, Soriano-Ursúa MA. Profile of three boron-containing compounds on the body weight, metabolism and inflammatory markers of diabetic rats. J Trace Elem Med Biol 2018; 50:424-429. [PMID: 30262315 DOI: 10.1016/j.jtemb.2018.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 02/07/2023]
Abstract
It has been reported that boron induces changes in carbohydrate and lipid metabolism, body weight and inflammatory processes. This is relevant to the biomedical field due to the requirement for developing therapeutic tools with potential application in metabolic disorders affecting humankind. However, most of the reported data from both humans and animals were obtained after boron was administered as borax or boric acid. In this work, we determined the effects of boric, cyclohexylboronic (CHB) and phenylboronic (PBA) acids (10 mg/kg of body weight/daily for two weeks) on the body weight, metabolism and inflammatory markers in the blood of control, fat-feeding and experimental diabetic rats. In particular, we observed the effects of the administration of these compounds on glycaemia and cholesterol, triglyceride, insulin, IL-6 and C-reactive protein levels, as well as visceral fat and body weight. We found different profiles for each boron-containing compound: boric acid induced decreasing body weight, insulin and IL-6 levels; CHB administration induced an increase in body weight and cholesterol but decreased IL-6 levels; and PBA administration induced a decrease in visceral fat and glucose and insulin levels. These results can improve the understanding of boron as a metabolic regulator and help develop new potential strategies to use compounds with this trace element for therapeutic purposes.
Collapse
Affiliation(s)
- Yessica López-Cabrera
- Departamento de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, México City, Mexico
| | - Emily L Castillo-García
- Departamento de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, México City, Mexico
| | - José A Altamirano-Espino
- Departamento de Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, México City, Mexico
| | - Teresa Pérez-Capistran
- Departamento de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, México City, Mexico
| | - Eunice D Farfán-García
- Departamento de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, México City, Mexico; Departamento de Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, México City, Mexico
| | - José G Trujillo-Ferrara
- Departamento de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, México City, Mexico
| | - Marvin A Soriano-Ursúa
- Departamento de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, México City, Mexico.
| |
Collapse
|
18
|
Farfán-García ED, Castillo-García EL, Soriano-Ursúa MA. More than boric acid: Increasing relevance of boron in medicine. World J Transl Med 2018; 7:1-4. [DOI: 10.5528/wjtm.v7.i1.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/31/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023] Open
Abstract
Although boron has been a chemical element of interest since the ancient times, only a few boron-containing compounds (BCCs) had been used for medicinal purposes before the 21st century. Among these, only boric acid has been explored in multiple therapeutic applications. Hence, it is common to extrapolate from boric acid to all BCCs, supposing a similar biological effect. However, boric acid is just one of dozens of BCCs in nature and thousands available from chemical synthesis. Nowadays, there is a boom in research on new BCCs as potential tools in the prevention, diagnosis and therapy of human disease. We herein discuss the new role of BCCs in drug development, with emphasis on the compounds for which a mechanism of action has been proposed or demonstrated. Because of data gathered in recent years, BCCs have expanded beyond the well-known fields of antimicrobial and antineoplastic agents, now being explored for their possible use as enzyme inhibitors, regulators of protein expression and modulators of the immune response, as well as in biomaterials. We suggest that translational medicine can accelerate the medicinal applications of BCCs, which is especially important for the human diseases that are generating a high global burden.
Collapse
Affiliation(s)
- Eunice D Farfán-García
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Emily L Castillo-García
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Marvin A Soriano-Ursúa
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| |
Collapse
|
19
|
Kaldas SJ, Rogova T, Nenajdenko VG, Yudin AK. Modular Synthesis of β-Amino Boronate Peptidomimetics. J Org Chem 2018; 83:7296-7302. [PMID: 29631400 DOI: 10.1021/acs.joc.8b00325] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sherif J. Kaldas
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Tatiana Rogova
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | | | - Andrei K. Yudin
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
20
|
Kaldas SJ, O'Keefe KTV, Mendoza-Sanchez R, Yudin AK. Amphoteric Borylketenimines: Versatile Intermediates in the Synthesis of Borylated Heterocycles. Chemistry 2017; 23:9711-9715. [PMID: 28475819 DOI: 10.1002/chem.201702008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Sherif J. Kaldas
- Davenport Research Laboratories; Department of Chemistry; University of Toronto; 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Kowan T. V. O'Keefe
- Davenport Research Laboratories; Department of Chemistry; University of Toronto; 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Rodrigo Mendoza-Sanchez
- Davenport Research Laboratories; Department of Chemistry; University of Toronto; 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Andrei K. Yudin
- Davenport Research Laboratories; Department of Chemistry; University of Toronto; 80 St. George St. Toronto ON M5S 3H6 Canada
| |
Collapse
|