1
|
Daher M, Covarrubias O, Lopez R, Boufadel P, Hachem MCR, Zalaquett Z, Fares MY, Abboud JA. The role of vitamin D in shoulder health: a comprehensive review of its impact on rotator cuff tears and surgical results. Clin Shoulder Elb 2025; 28:93-102. [PMID: 39138946 PMCID: PMC11938919 DOI: 10.5397/cise.2024.00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 08/15/2024] Open
Abstract
Vitamin D deficiency is highly prevalent in the general population and is associated with various chronic health conditions. In addition to its role in bone mineralization, Vitamin D has various physiological effects that may impact the pathogenesis of shoulder pathologies. Vitamin D deficiency may also affect outcomes after shoulder surgeries, such as rotator cuff repair and total shoulder arthroplasty. Vitamin D plays a role in tissue healing, bone growth, and maintenance of homeostasis in skeletal muscle cells. Vitamin D also has anti-inflammatory effects that are important to rotator cuff health. Vitamin D deficiency is highly prevalent in patients with rotator cuff tears, suggesting its role as a potential risk factor. Vitamin D deficiency has been associated with decreased preoperative shoulder strength as well as increased re-tear rates, postoperative stiffness, and the need for revision surgery in patients who underwent rotator cuff repair. Studies have also demonstrated a potential association between vitamin D deficiency and increased risk of revision after total shoulder arthroplasty. Further research is necessary to elucidate the direct role of vitamin D in the pathogenesis of rotator cuff tears and its impact on clinical outcomes after rotator cuff surgery and total shoulder arthroplasty.
Collapse
Affiliation(s)
- Mohammad Daher
- Division of Shoulder and Elbow, Rothman Orthopaedic Institute, Philadelphia, PA, USA
| | | | - Ryan Lopez
- Division of Shoulder and Elbow, Rothman Orthopaedic Institute, Philadelphia, PA, USA
| | - Peter Boufadel
- Division of Shoulder and Elbow, Rothman Orthopaedic Institute, Philadelphia, PA, USA
| | | | - Ziad Zalaquett
- Department of Orthopedics, Hotel Dieu de France, Beirut, Lebanon
| | - Mohamad Y. Fares
- Division of Shoulder and Elbow, Rothman Orthopaedic Institute, Philadelphia, PA, USA
| | - Joseph A. Abboud
- Division of Shoulder and Elbow, Rothman Orthopaedic Institute, Philadelphia, PA, USA
| |
Collapse
|
2
|
Ahn SY, Kim KA, Lee S, Kim KH. Potential skin anti-aging effects of main phenolic compounds, tremulacin and tremuloidin from Salix chaenomeloides leaves on TNF-α-stimulated human dermal fibroblasts. Chem Biol Interact 2024; 402:111192. [PMID: 39127184 DOI: 10.1016/j.cbi.2024.111192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
The genus Salix spp. has long been recognized as a healing herb for its use in treating fever, inflammation, and pain relief, as well as a food source for its nutritional value. In this study, we aimed to explore the potential bioactive natural products in the leaves of Salix chaenomeloides, commonly known as Korean pussy willow, for their protective effects against skin damage, including aging. Utilizing LC/MS-guided chemical analysis of the ethanol extract of S. chaenomeloides leaves, with a focus on major compounds, we successfully isolated two main phenolic compounds, tremulacin (1) and tremuloidin (2). Subsequently, we investigated the protective effects of tremulacin (1) and tremuloidin (2) in TNF-α-stimulated human dermal fibroblasts (HDFs). The results revealed that both tremulacin (1) and tremuloidin (2) inhibited TNF-α-stimulation-induced ROS, suppressed matrix metalloproteinase-1 (MMP-1) expression, and enhanced collagen secretion. This implies that both tremulacin (1) and tremuloidin (2) hold promise as preventive agents against photoaging-induced skin aging. Furthermore, we assessed the activity of mitogen-activated protein kinases (MAPKs), cyclooxygenase-2 (COX-2), and heme oxygenase 1 (HO-1) to elucidate the mechanism of photoaging inhibition by tremuloidin (2), which exhibited superior efficacy. We found that tremuloidin (2) inhibited ERK and p38 phosphorylation and notably suppressed COX-2 expression while significantly upregulating HO-1 expression. These findings suggest potent anti-inflammatory and antioxidant properties of tremuloidin (2), positioning it as a potential candidate for combating photoaging-induced skin aging.
Collapse
Affiliation(s)
- Si-Young Ahn
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Kyung Ah Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sullim Lee
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam, 13120, Republic of Korea.
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
3
|
Liu K, Xia Y, Zhang L, Lu W, Deng S, Li S, Yu J, Yan J. Indomethacin Combined with Ciprofloxacin Improves the Prognosis of Mice under Severe Traumatic Infection via the PI3K/Akt Pathway in Macrophages. Inflammation 2024; 47:1776-1792. [PMID: 38865055 DOI: 10.1007/s10753-024-02008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/23/2024] [Accepted: 03/19/2024] [Indexed: 06/13/2024]
Abstract
The prevention and treatment strategies for traumatic infection often focus on the use of antibiotics, while eschew the combined treatment of the bacteria, their toxins, and inflammatory mediators. This might be a main reason the prognosis of wound victims has not improved. Although our previous work found that the combination of indomethacin (IND) and ciprofloxacin (CIP) could promote skin wound repair and enhance the immune function, the efficacy and safety of this strategy for severe traumatic infection-mediated complications remain unknown. Additionally, there is no study on the relevant target cells and molecular mechanisms. In this study, C57BL/6 adult male mice were modeled for severe traumatic infection, and the optimal doses of IND and CIP alone were determined. After that, the efficacy and safety of IND plus CIP in traumatic infection mice were explored. Then the differentially expressed genes of activated macrophages in this process were analysed and verified by transcriptomic methods and conventional experimental techniques. The role of a candidate signalling pathway (PI3K/Akt) in regulating macrophage function and drug combination therapy was evaluated. The results showed that IND plus CIP increased the survival rate, reduced the degree of inflammatory response, and enhanced the bacteriostatic effect in mice under traumatic infection. This combined therapy did not cause significant damage to the functions of important organs (liver, kidney, heart). In addition, IND combined with CIP induced macrophages to significantly change their expression levels of several cytokines, including interleukin (IL) -1β, IL-6, IL-10, IL-22, IL-23A, IL-17A, IL-17F, cluster of differentiation (CD) 11b and other genes/encode proteins. Further study showed that intervention with the PI3K inhibitor LY294002 modulated the secretion function of the above-mentioned macrophages and Akt activation (phosphorylation at serine 473). IND plus CIP can regulate macrophage function through the PI3K/Akt signalling pathway and improve the prognosis of severe traumatic infected mice. This may be a new therapeutic strategy for the prevention and treatment of severe traumatic infection.
Collapse
Affiliation(s)
- Ke Liu
- Department of Special War Wound, State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery, Daping Hospital, Army Medical University, Third Military Medical University), Chongqing, 400042, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Yu Xia
- Department of Special War Wound, State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery, Daping Hospital, Army Medical University, Third Military Medical University), Chongqing, 400042, China
| | - Leiting Zhang
- Department of Special War Wound, State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery, Daping Hospital, Army Medical University, Third Military Medical University), Chongqing, 400042, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Weiping Lu
- Clinical Laboratory, Research Institute of Surgery, Daping Hospital, Army Medical University, Third Military Medical University), Chongqing, 400042, China
| | - Shaoli Deng
- Clinical Laboratory, Research Institute of Surgery, Daping Hospital, Army Medical University, Third Military Medical University), Chongqing, 400042, China
| | - Suiyan Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Jing Yu
- Department of Special War Wound, State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery, Daping Hospital, Army Medical University, Third Military Medical University), Chongqing, 400042, China.
| | - Jun Yan
- Department of Special War Wound, State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery, Daping Hospital, Army Medical University, Third Military Medical University), Chongqing, 400042, China.
| |
Collapse
|
4
|
Garza-Brenner E, Sánchez-Dávila F, Mauleón-Tolentino K, Zapata-Campos CC, Luna-Palomera C, Hernandez-Melendez J, Gonzalez-Delgado M, Vázquez-Armijo JF. Systematic review of hormonal strategies to improve fertility in rams. Anim Reprod 2024; 21:e20240007. [PMID: 38903866 PMCID: PMC11189135 DOI: 10.1590/1984-3143-ar2024-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/16/2024] [Indexed: 06/22/2024] Open
Abstract
Reviewing the current state of knowledge on reproductive performance and productive traits in rams has many advantages. First, the compilation of this information will serve as a literature resource for scientists conducting research around the world and will contribute to the understanding of the data collected and interpreted by researchers on the different hormonal strategies used to improve reproductive performance in rams. Second, it will allow scientists to identify current knowledge gaps and set future research priorities in ram reproduction. Rams play an important role in the global flock economy, but their reproductive analysis has been limited in the use of hormonal technologies to increase the productivity of sheep flocks. In this review, we cite the most important works on six hormones that, in one way or another, modify the hypothalamus-pituitary-gonadal axis, at different doses, in and out of the reproductive season, breeds, application methods, among other factors. The overall aim is to increase the reproductive efficiency of rams in different scenarios and, in some cases, of other species due to the lack of limited information on rams.
Collapse
Affiliation(s)
- Estela Garza-Brenner
- Facultad de Agronomía, Posgrado Conjunto, Universidad Autónoma de Nuevo León, General Escobedo, N.L México
| | - Fernando Sánchez-Dávila
- Facultad de Agronomía, Posgrado Conjunto, Universidad Autónoma de Nuevo León, General Escobedo, N.L México
| | - Keyla Mauleón-Tolentino
- Facultad de Agronomía, Posgrado Conjunto, Universidad Autónoma de Nuevo León, General Escobedo, N.L México
| | - Cecilia Carmela Zapata-Campos
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Ciudad Victoria, Tamaulipas, México
| | - Carlos Luna-Palomera
- División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México
| | | | - Marisol Gonzalez-Delgado
- Centro de Investigación en Producción Agropecuaria, Universidad Autónoma de Nuevo León, Linares, Nuevo León, México
| | | |
Collapse
|
5
|
Haque MF, El-Nashar HAS, Akbor MS, Alfaifi M, Bappi MH, Chowdhury AK, Hossain MK, El-Shazly M, Albayouk T, Saleh N, Islam MT. Anti-inflammatory activity of d-pinitol possibly through inhibiting COX-2 enzyme: in vivo and in silico studies. Front Chem 2024; 12:1366844. [PMID: 38690012 PMCID: PMC11058972 DOI: 10.3389/fchem.2024.1366844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/21/2024] [Indexed: 05/02/2024] Open
Abstract
Introduction: D-pinitol, a naturally occurring inositol, has diverse biological activities like antioxidant, antimicrobial and anticancer activities. This study aimed to evaluate anti-inflammatory effect of d-pinitol in a chick model. Additionally, in silico studies were performed to evaluate the molecular interactions with cyclooxygenase-2 (COX-2). Methods: The tested groups received d-pinitol (12.5, 25, and 50 mg/kg) and the standard drugs celecoxib and ketoprofen (42 mg/kg) via oral gavage prior to formalin injection. Then, the number of licks was counted for the first 10 min, and the paw edema diameter was measured at 60, 90, and 120 min. Results and Discussion: The d-pinitol groups significantly (p < 0.05) reduced the number of paw licks and paw edema diameters, compared to negative control. When d-pinitol was combined with celecoxib, it reduced inflammatory parameters more effectively than the individual groups. The in silico study showed a promising binding capacity of d-pinitol with COX-2. Taken together, d-pinitol exerted anti-inflammatory effects in a dose-dependent manner, possibly through COX-2 interaction pathway.
Collapse
Affiliation(s)
- Mst. Farjanamul Haque
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Heba A. S. El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Md. Showkoth Akbor
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Mohammed Alfaifi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mehedi Hasan Bappi
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | | | - Muhammad Kamal Hossain
- School of Pharmacy, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Pharmacy, University of Science and Technology Chittagiong, Chittagong, Bangladesh
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Tala Albayouk
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Na’il Saleh
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna, Bangladesh
- BioLuster Research Center, Dhaka, Bangladesh
| |
Collapse
|
6
|
Sharma R, George M, Krishnan M. Efficacy of Preemptive Analgesia on Pain Perception After Simple Tooth Extraction: A Prospective Study. Cureus 2024; 16:e58262. [PMID: 38752094 PMCID: PMC11093768 DOI: 10.7759/cureus.58262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/14/2024] [Indexed: 05/18/2024] Open
Abstract
Background and objective This study aims to explore the concept of preemptive analgesia, which is the technique of administration of analgesic agents before the painful stimulus. This bridges the time gap between the onset of action of the analgesic agents and the wear-off of local anesthesia. Existing literature also brings up the concept of central sensitization, which is the hyper-activity of the nervous system in response to a noxious stimulus. Administration of preemptive analgesia prevents central sensitization and hence provides prolonged analgesia to the patient. For the benefit of this study, tab. Etoricoxib 90 mg was used as the analgesic agent. In addition, this study aims to investigate the effects of the administration of tab. Etoricoxib 90 mg 30 minutes before extraction of a single mandibular third molar on the effects of pain experienced by the patient after tooth extraction as compared to a placebo. Methodology This was a double-blinded, prospective, observational study. The pain experienced by 50 participants in each group was measured at 1 hour, 6 hours, 12 hours, and 24 hours postoperatively using a visual analog scale (VAS). The independent samples t-test was then conducted to evaluate the results and draw out conclusions. Results The average difference in pain experienced was maximum in the first hour after the procedure. The mean VAS score reported by patients was 3.14 in the study group but was 6.40 in the control group within the first hour. This difference was reduced in the first six hours after the procedure, with the average score being 3.82 in the study and 7.16 in the control group. The difference was the least after 12 hours, with the study group experiencing a VAS score of 4.64 and controls experiencing a VAS score of 6.14. After the first 24 hours, the mean VAS score was 3.80 in the study group and 5.60 in the control group. Conclusions Preemptive administration of tab. Etoricoxib 90 mg can reduce postextraction pain in healthy adult patients as compared to placebo tablets, with a maximum difference in pain reduction seen at the end of the first six hours (P = 0.012) and the minimum at the end of 12 hours (P = 0.0197).
Collapse
Affiliation(s)
- Roohika Sharma
- Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Melvin George
- Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Murugesan Krishnan
- Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
7
|
Zahid S, Malik A, Waqar S, Zahid F, Tariq N, Khawaja AI, Safir W, Gulzar F, Iqbal J, Ali Q. Countenance and implication of Β-sitosterol, Β-amyrin and epiafzelechin in nickel exposed Rat: in-silico and in-vivo approach. Sci Rep 2023; 13:21351. [PMID: 38049552 PMCID: PMC10695965 DOI: 10.1038/s41598-023-48772-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 11/30/2023] [Indexed: 12/06/2023] Open
Abstract
The detrimental impact of reactive oxygen species on D.N.A. repair processes is one of the contributing factors to colon cancer. The idea that oxidative stress may be a significant etiological element for carcinogenesis is currently receiving more and more support. The goal of the current study is to evaluate the anti-inflammatory and anticancer activity of three powerful phytocompounds-sitosterol, amyrin, and epiafzelechin-alone and in various therapeutic combinations against colon cancer to identify the critical mechanisms that mitigate nickel's carcinogenic effect. To evaluate the ligand-protein interaction of four selected components against Vascular endothelial growth factor (VEGF), Matrix metalloproteinase-9 (MMP9) inhibitor and Interleukin-10 (IL-10) molecular docking approach was applied using PyRx bioinformatics tool. For in vivo analysis, hundred albino rats were included, divided into ten groups, each containing ten rats of weight 160-200 g. All the groups were injected with 1 ml/kg nickel intraperitoneally per week for three months, excluding the negative control group. Three of the ten groups were treated with β-sitosterol (100 mg/kg b wt), β-amyrin (100 mg/kg b wt), and epiafzelechin (200 mg/kg b wt), respectively, for one month. The later four groups were fed with combinatorial treatments of the three phyto compounds for one month. The last group was administered with commercial drug Nalgin (500 mg/kg b wt). The biochemical parameters Creatinine, Protein carbonyl, 8-hydroxydeoxyguanosine (8-OHdG), VEGF, MMP-9 Inhibitor, and IL-10 were estimated using ELISA kits and Glutathione (G.S.H.), Superoxide dismutase (S.O.D.), Catalase (C.A.T.) and Nitric Oxide (NO) were analyzed manually. The correlation was analyzed through Pearson's correlation matrix. All the parameters were significantly raised in the positive control group, indicating significant inflammation. At the same time, the levels of the foresaid biomarkers were decreased in the serum in all the other groups treated with the three phytocompounds in different dose patterns. However, the best recovery was observed in the group where the three active compounds were administered concomitantly. The correlation matrix indicated a significant positive correlation of IL-10 vs VEGF (r = 0.749**, p = 0.009), MMP-9 inhibitor vs SOD (r = 0.748**, p = 0.0 21). The study concluded that the three phytocompounds β-sitosterol, β-amyrin, and epiafzelechin are important anticancer agents which can target the cancerous biomarkers and might be used as a better therapeutic approach against colon cancer soon.
Collapse
Affiliation(s)
- Sara Zahid
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Arif Malik
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan.
| | - Suleyman Waqar
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Fatima Zahid
- Ibadat International University (IIUI), Islamabad, Pakistan
| | - Nusrat Tariq
- M. Islam Medical and Dental College, Gujranwala, Pakistan
| | - Ali Imran Khawaja
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Waqas Safir
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Sciences and Technology, Xinjiang University, Urumqi, 830046, Xinjiang, China
| | - Faisal Gulzar
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Javeid Iqbal
- School of Pharmacy, Minhaj University Lahore, Lahore, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
8
|
He Y, Su Q, Zhao L, Zhang L, Yu L, Shi J. Historical perspectives and recent advances in small molecule ligands of selective/biased/multi-targeted μ/δ/κ opioid receptor (2019-2022). Bioorg Chem 2023; 141:106869. [PMID: 37797454 DOI: 10.1016/j.bioorg.2023.106869] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023]
Abstract
The opioids have been used for more than a thousand years and are not only the most widely prescribed drugs for moderate to severe pain and acute pain, but also the preferred drugs. However, their non-analgesic effects, especially respiratory depression and potential addiction, are important factors that plague the safety of clinical use and are an urgent problem for pharmacological researchers to address. Current research on analgesic drugs has evolved into different directions: de-opioidization; application of pharmacogenomics to individualize the use of opioids; development of new opioids with less adverse effects. The development of new opioid drugs remains a hot research topic, and with the in-depth study of opioid receptors and intracellular signal transduction mechanisms, new research ideas have been provided for the development of new opioid analgesics with less side effects and stronger analgesic effects. The development of novel opioid drugs in turn includes selective opioid receptor ligands, biased opioid receptor ligands, and multi-target opioid receptor ligands and positive allosteric modulators (PAMs) or antagonists and the single compound as multi-targeted agnoists/antagonists for different receptors. PAMs strategies are also getting newer and are the current research hotspots, including the BMS series of compounds and others, which are extensive and beyond the scope of this review. This review mainly focuses on the selective/biased/multi-targeted MOR/DOR/KOR (mu opioid receptor/delta opioid receptor/kappa opioid receptor) small molecule ligands and involves some cryo-electron microscopy (cryoEM) and structure-based approaches as well as the single compound as multi-targeted agnoists/antagonists for different receptors from 2019 to 2022, including discovery history, activities in vitro and vivo, and clinical studies, in an attempt to provide ideas for the development of novel opioid analgesics with fewer side effects.
Collapse
Affiliation(s)
- Ye He
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Qian Su
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Liyun Zhao
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lijuan Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Lu Yu
- Department of Respiratory Medicine, Sichuan Academy of Medical Sciences and Sichuan provincial People's Hospital, Chengdu, 610072, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| |
Collapse
|
9
|
Liu K, Yu J, Xia Y, Zhang LT, Li SY, Yan J. The combination of ciprofloxacin and indomethacin suppresses the level of inflammatory cytokines secreted by macrophages in vitro. Chin J Traumatol 2022; 25:379-388. [PMID: 35697590 PMCID: PMC9751534 DOI: 10.1016/j.cjtee.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/21/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
PURPOSE The combined use of antibiotics and anti-inflammatory medicine to manage bacterial endotoxin-induced inflammation following injuries or diseases is increasing. The cytokine level produced by macrophages plays an important role in this treatment course. Ciprofloxacin and indomethacin, two typical representatives of antibiotics and anti-inflammatory medicine, are cost-effective and has been reported to show satisfactory effect. The current study aims to investigate the effect of ciprofloxacin along with indomethacin on the secretion of inflammatory cytokines by macrophages in vitro. METHODS Primary murine peritoneal macrophages and RAW 264.7 cells were administrated with lipopolysaccharide (LPS) for 24 h. The related optimal dose and time point of ciprofloxacin or indomethacin in response to macrophage inflammatory response inflammation were determined via macrophage secretion induced by LPS. Then, the effects of ciprofloxacin and indomethacin on the secretory functions and viability of various macrophages were determined by enzyme-linked immunosorbent assay and flow cytometry analysis, especially for the levels of interleukin (IL)-1β, IL-6, IL-10, and tumor necrosis factor (TNF)-α. The optimal dose and time course of ciprofloxacin affecting macrophage inflammatory response were determined by testing the maximum inhibitory effect of the drugs on pro-inflammatory factors at each concentration or time point. RESULTS According to the levels of cytokines secreted by various macrophages (1.2 × 106 cells/well) after administration of 1 μg/mL LPS, the optimal dose and usage timing for ciprofloxacin alone were 80 μg/mL and 24 h, respectively, and the optimal dose for indomethacin alone was 10 μg/mL. Compared with the LPS-stimulated group, the combination of ciprofloxacin and indomethacin reduced the levels of IL-1β (p < 0.05), IL-6 (p < 0.05), IL-10 (p < 0.01)), and TNF-α (p < 0.01). Furthermore, there was greater stability in the reduction of inflammatory factor levels in the combination group compared with those in which only ciprofloxacin or indomethacin was used. CONCLUSION The combination of ciprofloxacin and indomethacin suppressed the levels of inflammatory cytokines secreted by macrophages in vitro. This study illustrates the regulatory mechanism of drug combinations on innate immune cells that cause inflammatory reactions. In addition, it provides a new potential antibacterial and anti-inflammatory treatment pattern to prevent and cure various complications in the future.
Collapse
Affiliation(s)
- Ke Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China,State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Jing Yu
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Yu Xia
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Lei-Ting Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China,State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Sui-Yan Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China,Corresponding author.
| | - Jun Yan
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China,Corresponding author.
| |
Collapse
|
10
|
Chen J, Lou J, Wang W, Xu G. Association of Preoperative Vitamin D Deficiency With Retear Rate and Early Pain After Arthroscopic Rotator Cuff Repair: A Retrospective Cohort Study. Orthop J Sports Med 2022; 10:23259671221130315. [PMID: 36276423 PMCID: PMC9580096 DOI: 10.1177/23259671221130315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/07/2022] [Indexed: 11/17/2022] Open
Abstract
Background Although the function of vitamin D in bone metabolism has been well studied, the question remains whether vitamin D deficiency impairs tendon healing after rotator cuff repair. Purpose To investigate the correlation between preoperative vitamin D deficiency and the retear rate and pain after arthroscopic rotator cuff repair. Study Design Cohort study; Level of evidence, 3. Methods Patients with full-thickness rotator cuff tears who underwent arthroscopic rotator cuff repair between January 2018 and August 2019 were enrolled. Included patients were divided into a control group (vitamin D level ≥20 μg/L) and a deficiency group (vitamin D level <20 μg/L). We investigated the association between preoperative vitamin D level and patient characteristics, MRI findings, pain and function scores (visual analog scale [VAS] for pain; Constant-Murley; University of California, Los Angeles; and American Shoulder and Elbow Surgeons scores), and healing status using the Pearson or Spearman correlation coefficient. The clinical characteristics were compared between the groups using the chi-square test or Fisher exact test. Results Included were 89 patients (control group, 44 patients; deficiency group, 45 patients). The mean vitamin D levels were 25.07 ± 5.38 and 14.61 ± 3.43 μg/L in the control and deficiency groups, respectively (P < .001); otherwise, there were no significant differences between the groups in the variables under study. Vitamin D levels were not related to age, symptom duration, tear size, extent of retraction, VAS pain score preoperatively and at 6 and 24 months postoperatively, or any function scores. Supraspinatus fatty infiltration and VAS scores at 1 and 3 months postoperatively were significantly associated with vitamin D level (r = -0.360, -0.362, and -0.316, respectively; P < .05 for all). VAS scores were significantly lower in the control group than in the deficiency group at postoperative 1 month (1.09 ± 0.56 vs 1.47 ± 0.66, respectively) and 3 months (1.14 ± 0.77 vs 1.44 ± 0.66) (P < .05 for both). The retear rate was significantly lower in the control group than in the deficiency group (9.09% vs 26.67%, respectively; P < .05). Conclusion Our study revealed that preoperative vitamin D deficiency was associated with a higher retear rate and early pain (1 and 3 months) after arthroscopic rotator cuff repair.
Collapse
Affiliation(s)
- Jun Chen
- Department of Orthopedics, Dongyang People’s Hospital, Wenzhou Medical University, Dongyang, People’s Republic of China
| | - Juexiang Lou
- Department of Orthopedics, Dongyang People’s Hospital, Wenzhou Medical University, Dongyang, People’s Republic of China
| | - Weikai Wang
- Department of Orthopedics, Dongyang People’s Hospital, Wenzhou Medical University, Dongyang, People’s Republic of China
| | - Guohong Xu
- Department of Orthopedics, Dongyang People’s Hospital, Wenzhou Medical University, Dongyang, People’s Republic of China.,Guohong Xu, MD, Department of Orthopedics, Dongyang People’s Hospital, Wenzhou Medical University, 60 Wuning West Road, 322100, Dongyang, People’s Republic of China ()
| |
Collapse
|
11
|
Prostanoid Metabolites as Biomarkers in Human Disease. Metabolites 2022; 12:metabo12080721. [PMID: 36005592 PMCID: PMC9414732 DOI: 10.3390/metabo12080721] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Prostaglandins (PGD2, PGE2, PGF2α), prostacyclin (PGI2), and thromboxane A2 (TXA2) together form the prostanoid family of lipid mediators. As autacoids, these five primary prostanoids propagate intercellular signals and are involved in many physiological processes. Furthermore, alterations in their biosynthesis accompany a wide range of pathological conditions, which leads to substantially increased local levels during disease. Primary prostanoids are chemically instable and rapidly metabolized. Their metabolites are more stable, integrate the local production on a systemic level, and their analysis in various biological matrices yields valuable information under different pathological settings. Therefore, prostanoid metabolites may be used as diagnostic, predictive, or prognostic biomarkers in human disease. Although their potential as biomarkers is great and extensive research has identified major prostanoid metabolites that serve as target analytes in different biofluids, the number of studies that correlate prostanoid metabolite levels to disease outcome is still limited. We review the metabolism of primary prostanoids in humans, summarize the levels of prostanoid metabolites in healthy subjects, and highlight existing biomarker studies. Since analysis of prostanoid metabolites is challenging because of ongoing metabolism and limited half-lives, an emphasis of this review lies on the reliable measurement and interpretation of obtained levels.
Collapse
|
12
|
Mesoporous Materials as Elements of Modern Drug Delivery Systems for Anti-Inflammatory Agents: A Review of Recent Achievements. Pharmaceutics 2022; 14:pharmaceutics14081542. [PMID: 35893798 PMCID: PMC9331996 DOI: 10.3390/pharmaceutics14081542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/16/2022] [Accepted: 07/22/2022] [Indexed: 12/04/2022] Open
Abstract
Interest in the use of mesoporous materials as carriers of medicinal substances has been steadily increasing in the last two decades. Mesoporous carriers have application in the preparation of delivery systems for drugs from various therapeutic groups; however, their use as the carriers of anti-inflammatory agents is particularly marked. This review article, with about 170 references, summarizes the achievements in the application of mesoporous materials as the carriers of anti-inflammatory agents in recent years. This article will discuss a variety of mesoporous carriers as well as the characteristics of their porous structure that determine further use of these materials in the field of medical applications. Special attention will be paid to the progress observed in the construction of stimuli-responsive drug carriers and systems providing site-specific drug delivery. Subsequently, a review of the literature devoted to the use of mesoporous matrices as the carriers of anti-inflammatory drugs was carried out.
Collapse
|
13
|
Faqueti LG, da Silva LAL, Moreira GSG, Kraus S, de Jesus GDSC, Honorato LA, de Araujo BV, Dos Santos ARS, Costa TD, Biavatti MW. Preclinical Pharmacokinetic and Pharmacodynamic Investigation of 5'-Methoxynobiletin from Ageratum conyzoides: In vivo and In silico Approaches. Pharm Res 2022; 39:2135-2145. [PMID: 35831672 DOI: 10.1007/s11095-022-03332-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 07/04/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE 5'-methoxynobiletin (5'-MeONB), a polymethoxyflavone isolated from A. conyzoides, has shown anti-inflammatory property. Nevertheless, the antinociceptive activity and pre-clinical pharmacokinetics (PK) characteristics of 5'-MeONB remain unknown. Considering the anti-inflammatory potential of the 5'-MeONB, this study aimed to investigate the pre-clinical PK behavior of 5'-MeONB, as well as its time course antinociceptive activity. METHODS 5'-MeONB plasma concentrations were determined in Wistar rats after intravenous (i.v.) (10 mg/kg) and oral (50 mg/kg) administration, and in Swiss mice after oral administration (100 mg/kg). Plasma samples were deproteinization and 5'-MeONB quantified by a validated UPLC-MS method. Additionally, the antinociceptive activity of 5'-MeONB was evaluated after 15, 30, 60, 180 and 360 min following oral administration on the acute nocifensive behavior of mice induced by formalin. RESULTS 5'-MeONB rats and mice plasma concentration-time profiles were best one-compartment model. After i.v. administration to rats, a short half-life, a high clearance and moderate volume of distribution at steady state were observed. Similar results were obtained after oral administration. The oral bioavailability ranged from 8 to 11%. Additionally, 5'-MeONB exhibited antinociceptive activity in both formalin phases, especially in the inflammatory phase of the model, inhibiting 68% and 91% of neurogenic and inflammatory responses, respectively, after 30 min of oral administration. CONCLUSIONS The results described here provide novel insights on 5'-MeONB pharmacokinetics and pharmacodynamic effect, serving as support for future studies to confirm this compound as anti-nociceptive and anti-inflammatory effective agent.
Collapse
Affiliation(s)
- Larissa Gabriela Faqueti
- Department of Pharmaceutical Sciences, CCS, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Layzon Antonio Lemos da Silva
- Department of Pharmaceutical Sciences, CCS, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Gabriela Salim Gomes Moreira
- Department of Pharmaceutical Sciences, CCS, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Scheila Kraus
- Department of Physiological Sciences, CCB, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | | | - Luciana Aparecida Honorato
- Department of Pharmacology, CCB, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Bibiana Verlindo de Araujo
- Pharmacokinetics and PK/PD Modelling Laboratory, College of Pharmacy, Universidade Federal Do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | | | - Teresa Dalla Costa
- Pharmacokinetics and PK/PD Modelling Laboratory, College of Pharmacy, Universidade Federal Do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Maique Weber Biavatti
- Department of Pharmaceutical Sciences, CCS, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil.
- Farmacognosy Laboratory, CIF/CCS, UFSC Campus Universitário/Trindade, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
14
|
Liu C, Zheng X, Liu L, Hu Y, Zhu Q, Zhang J, Wang H, Gu EW, Yang Z, Xu G. Caloric Restriction Alleviates CFA-Induced Inflammatory Pain via Elevating β-Hydroxybutyric Acid Expression and Restoring Autophagic Flux in the Spinal Cord. Front Neurosci 2022; 16:828278. [PMID: 35573301 PMCID: PMC9096081 DOI: 10.3389/fnins.2022.828278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/15/2022] [Indexed: 12/15/2022] Open
Abstract
Inflammatory pain is the most common type of pain encountered in clinical practice; however, the currently available treatments are limited by insufficient efficacy and side effects. Therefore, new methods to relieve inflammatory pain targeting new mechanisms are urgently needed. Preclinical investigations have shown that CR (calorie restriction) exerts analgesic effects in neuropathic and cancer pain; however, the effect of CR on chronic inflammatory pain remains unknown. During calorie restriction, autophagy, a lysosome-dependent degradation process, can be activated to support cell survival. In the present study, we investigated the analgesic effects of CR on complete Freund’s adjuvant (CFA)-induced inflammatory pain. The accumulation of LC3-II and p62 showed impaired autophagic flux in the ipsilateral spinal cord of mice with CFA-induced inflammatory pain. CR alleviated mechanical allodynia and thermal hyperalgesia and reduced paw edema and pro-inflammatory factors following CFA administration. CR exerted an analgesic effect by restoring autophagic flux in the spinal cord. Regarding the mechanisms underlying the analgesic effects of CR, β-hydroxybutyric acid (BHB) was studied. CR increased BHB levels in the ipsilateral spinal cord. Furthermore, exogenous BHB administration exerted an analgesic effect by restoring autophagic flux in the spinal cords of CFA-induced inflammatory pain mice. Taken together, these results illustrated that CR relieved inflammatory pain by restoring autophagic flux in the spinal cord, while BHB controlled the benefits of CR, suggesting that CR or BHB might be a promising treatment for inflammatory pain.
Collapse
Affiliation(s)
- Chang Liu
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, China
| | - Xiaoting Zheng
- Department of Anesthesiology, Affiliated Chaohu Hospital, Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, China
| | - Lifang Liu
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, China
| | - Yun Hu
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, China
| | - Qianyun Zhu
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, China
| | - Jiawei Zhang
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, China
| | - Huan Wang
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, China
| | - Er-wei Gu
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, China
| | - Zhilai Yang
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
- Department of Anesthesiology, Affiliated Chaohu Hospital, Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, China
- *Correspondence: Zhilai Yang,
| | - Guanghong Xu
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, China
- Guanghong Xu,
| |
Collapse
|
15
|
Prenatal and adolescent alcohol exposure programs immunity across the lifespan: CNS-mediated regulation. Pharmacol Biochem Behav 2022; 216:173390. [PMID: 35447157 DOI: 10.1016/j.pbb.2022.173390] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/28/2022] [Accepted: 04/11/2022] [Indexed: 12/31/2022]
Abstract
For many individuals, first exposure to alcohol occurs either prenatally due to maternal drinking, or during adolescence, when alcohol consumption is most likely to be initiated. Prenatal Alcohol Exposure (PAE) and its associated Fetal Alcohol Spectrum Disorders (FASD) in humans is associated with earlier initiation of alcohol use and increased rates of Alcohol Use Disorders (AUD). Initiation of alcohol use and misuse in early adolescence correlates highly with later AUD diagnosis as well. Thus, PAE and adolescent binge drinking set the stage for long-term health consequences due to adverse effects of alcohol on subsequent immune function, effects that may persist across the lifespan. The overarching goal of this review, therefore, is to determine the extent to which early developmental exposure to alcohol produces long-lasting, and potentially life-long, changes in immunological function. Alcohol affects the whole body, yet most studies are narrowly focused on individual features of immune function, largely ignoring the systems-level interactions required for effective host defense. We therefore emphasize the crucial role of the Central Nervous System (CNS) in orchestrating host defense processes. We argue that alcohol-mediated disruption of host immunity can occur through both (a) direct action of ethanol on neuroimmune processes, that subsequently disrupt peripheral immune function (top down); and (b) indirect action of ethanol on peripheral immune organs/cells, which in turn elicit consequent changes in CNS neuroimmune function (bottom up). Recognizing that alcohol consumption across the entire body, we argue in favor of integrative, whole-organism approaches toward understanding alcohol effects on immune function, and highlight the need for more work specifically examining long-lasting effects of early developmental exposure to alcohol (prenatal and adolescent periods) on host immunity.
Collapse
|
16
|
Fuchs MAA, Schrankl J, Leupold C, Wagner C, Kurtz A, Broeker KAE. Intact prostaglandin signaling through EP2 and EP4 receptors in stromal progenitor cells is required for normal development of the renal cortex in mice. Am J Physiol Renal Physiol 2022; 322:F295-F307. [PMID: 35037469 DOI: 10.1152/ajprenal.00414.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/10/2022] [Indexed: 01/20/2023] Open
Abstract
Cyclooxygenase (Cox) inhibitors are known to have severe side effects during renal development. These consist of reduced renal function, underdeveloped subcapsular glomeruli, interstitial fibrosis, and thinner cortical tissue. Global genetic deletion of Cox-2 mimics the phenotype observed after application of Cox inhibitors. This study aimed to investigate which cell types express Cox-2 and prostaglandin E2 receptors and what functions are mediated through this pathway during renal development. Expression of EP2 and EP4 mRNA was detected by RNAscope mainly in descendants of FoxD1+ stromal progenitors; EP1 and EP3, on the other hand, were expressed in tubules. Cox-2 mRNA was detected in medullary interstitial cells and macula densa cells. Functional investigations were performed with a cell-specific approach to delete Cox-2, EP2, and EP4 in FoxD1+ stromal progenitor cells. Our data show that Cox-2 expression in macula densa cells is sufficient to drive renal development. Deletion of EP2 or EP4 in FoxD1+ cells had no functional effect on renal development. Codeletion of EP2 and EP4 in FoxD1+ stromal cells, however, led to severe glomerular defects and a strong decline of glomerular filtration rate (1.316 ± 69.7 µL/min/100 g body wt in controls vs. 644.1 ± 64.58 µL/min/100 g body wt in FoxD1+/Cre EP2-/- EP4ff mice), similar to global deletion of Cox-2. Furthermore, EP2/EP4-deficient mice showed a significant increase in collagen production with a strong downregulation of renal renin expression. This study shows the distinct localization of EP receptors in mice. Functionally, we could identify EP2 and EP4 receptors in stromal FoxD1+ progenitor cells as essential receptor subtypes for normal renal development.NEW & NOTEWORTHY Cyclooxygenase-2 (Cox-2) produces prostaglandins that are essential for normal renal development. It is unclear in which cells Cox-2 and the receptors for prostaglandin E2 (EP receptors) are expressed during late nephrogenesis. This study identified the expression sites for EP subtypes and Cox-2 in neonatal mouse kidneys. Furthermore, it shows that stromal progenitor cells may require intact prostaglandin E2 signaling through EP2 and EP4 receptors for normal renal development.
Collapse
MESH Headings
- Animals
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Gene Expression Regulation, Developmental
- Kidney Cortex/cytology
- Kidney Cortex/enzymology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Organogenesis
- Prostaglandins/metabolism
- Receptors, Prostaglandin E, EP2 Subtype/genetics
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Receptors, Prostaglandin E, EP4 Subtype/genetics
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Signal Transduction
- Stem Cells/metabolism
- Stromal Cells/enzymology
- Mice
Collapse
Affiliation(s)
| | - Julia Schrankl
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Christina Leupold
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Charlotte Wagner
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Armin Kurtz
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | | |
Collapse
|
17
|
Burayk S, Oh-hashi K, Kandeel M. Drug Discovery of New Anti-Inflammatory Compounds by Targeting Cyclooxygenases. Pharmaceuticals (Basel) 2022; 15:ph15030282. [PMID: 35337080 PMCID: PMC8955829 DOI: 10.3390/ph15030282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022] Open
Abstract
The goal of achieving anti-inflammatory efficacy with the fewest possible adverse effects through selective COX-2 inhibition is still being investigated in order to develop drugs with safe profiles. This work shows the efficacy and safety profile of two novel benzimidazole piperidine and phenoxy pyridine derivatives in reaching this goal, which would be considered a major achievement in inflammatory therapy. The compounds were evaluated by virtual screening campaign, in vitro cyclooxygenase 1 and 2 (COX-1 and COX-2) inhibition, in vivo carrageenan-induced rat paw edema assay, cytotoxicity against Raw264.7 cells, and histopathological examination of rat paw and stomach. Two new compounds, compound 1 ([(2-{[3-(4-methyl-1H-benzimidazol-2-yl)piperidin-1-yl]carbonyl}phenyl)amino]acetic acid) and compound 2 (ethyl 1-(5-cyano-2-hydroxyphenyl)-4-oxo-5-phenoxy-1,4-dihydropyridine-3-carboxylate) showed high selectivity against COX-2, favourable drug-likeness and ADME descriptors, a lack of cytotoxicity, relived paw edema, and inflammation without noticeable side effects on the stomach. These two compounds are promising new NSAIDs.
Collapse
Affiliation(s)
- Shady Burayk
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf 31982, Saudi Arabia;
| | - Kentaro Oh-hashi
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan;
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf 31982, Saudi Arabia;
- Department of Pharmacology, Faculty of Veterinary Medicine, KafrelShaikh University, Kafr El-Shaikh 33516, Egypt
- Correspondence:
| |
Collapse
|
18
|
N-Acylated and N-Alkylated 2-Aminobenzothiazoles Are Novel Agents That Suppress the Generation of Prostaglandin E2. Biomolecules 2022; 12:biom12020267. [PMID: 35204768 PMCID: PMC8961538 DOI: 10.3390/biom12020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/23/2022] Open
Abstract
The quest for novel agents to regulate the generation of prostaglandin E2 (PGE2) is of high importance because this eicosanoid is a key player in inflammatory diseases. We synthesized a series of N-acylated and N-alkylated 2-aminobenzothiazoles and related heterocycles (benzoxazoles and benzimidazoles) and evaluated their ability to suppress the cytokine-stimulated generation of PGE2 in rat mesangial cells. 2-Aminobenzothiazoles, either acylated by the 3-(naphthalen-2-yl)propanoyl moiety (GK510) or N-alkylated by a chain carrying a naphthalene (GK543) or a phenyl moiety (GK562) at a distance of three carbon atoms, stand out in inhibiting PGE2 generation, with EC50 values ranging from 118 nM to 177 nM. Both GK510 and GK543 exhibit in vivo anti-inflammatory activity greater than that of indomethacin. Thus, N-acylated or N-alkylated 2-aminobenzothiazoles are novel leads for the regulation of PGE2 formation.
Collapse
|
19
|
Psarra A, Theodoropoulou MA, Erhardt M, Mertiri M, Mantzourani C, Vasilakaki S, Magrioti V, Huwiler A, Kokotos G. α-Ketoheterocycles Able to Inhibit the Generation of Prostaglandin E 2 (PGE 2) in Rat Mesangial Cells. Biomolecules 2021; 11:biom11020275. [PMID: 33668480 PMCID: PMC7918003 DOI: 10.3390/biom11020275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/28/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023] Open
Abstract
Prostaglandin E2 (PGE2) is a key mediator of inflammation, and consequently huge efforts have been devoted to the development of novel agents able to regulate its formation. In this work, we present the synthesis of various α-ketoheterocycles and a study of their ability to inhibit the formation of PGE2 at a cellular level. A series of α-ketobenzothiazoles, α-ketobenzoxazoles, α-ketobenzimidazoles, and α-keto-1,2,4-oxadiazoles were synthesized and chemically characterized. Evaluation of their ability to suppress the generation of PGE2 in interleukin-1β plus forskolin-stimulated mesangial cells led to the identification of one α-ketobenzothiazole (GK181) and one α-ketobenzoxazole (GK491), which are able to suppress the PGE2 generation at a nanomolar level.
Collapse
Affiliation(s)
- Anastasia Psarra
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece; (A.P.); (M.A.T.); (M.M.); (C.M.); (S.V.); (V.M.)
| | - Maria A. Theodoropoulou
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece; (A.P.); (M.A.T.); (M.M.); (C.M.); (S.V.); (V.M.)
| | - Martin Erhardt
- Institute of Pharmacology, University of Bern, CH-3010 Bern, Switzerland; (M.E.); (A.H.)
| | - Marina Mertiri
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece; (A.P.); (M.A.T.); (M.M.); (C.M.); (S.V.); (V.M.)
| | - Christiana Mantzourani
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece; (A.P.); (M.A.T.); (M.M.); (C.M.); (S.V.); (V.M.)
| | - Sofia Vasilakaki
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece; (A.P.); (M.A.T.); (M.M.); (C.M.); (S.V.); (V.M.)
| | - Victoria Magrioti
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece; (A.P.); (M.A.T.); (M.M.); (C.M.); (S.V.); (V.M.)
| | - Andrea Huwiler
- Institute of Pharmacology, University of Bern, CH-3010 Bern, Switzerland; (M.E.); (A.H.)
| | - George Kokotos
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece; (A.P.); (M.A.T.); (M.M.); (C.M.); (S.V.); (V.M.)
- Correspondence: ; Tel.: +30-210-727-4462
| |
Collapse
|
20
|
Li T, Wang G, Hui VCC, Saad D, de Sousa Valente J, La Montanara P, Nagy I. TRPV1 feed-forward sensitisation depends on COX2 upregulation in primary sensory neurons. Sci Rep 2021; 11:3514. [PMID: 33568699 PMCID: PMC7876133 DOI: 10.1038/s41598-021-82829-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Increased activity and excitability (sensitisation) of a series of molecules including the transient receptor potential ion channel, vanilloid subfamily, member 1 (TRPV1) in pain-sensing (nociceptive) primary sensory neurons are pivotal for developing pathological pain experiences in tissue injuries. TRPV1 sensitisation is induced and maintained by two major mechanisms; post-translational and transcriptional changes in TRPV1 induced by inflammatory mediators produced and accumulated in injured tissues, and TRPV1 activation-induced feed-forward signalling. The latter mechanism includes synthesis of TRPV1 agonists within minutes, and upregulation of various receptors functionally linked to TRPV1 within a few hours, in nociceptive primary sensory neurons. Here, we report that a novel mechanism, which contributes to TRPV1 activation-induced TRPV1-sensitisation within ~ 30 min in at least ~ 30% of TRPV1-expressing cultured murine primary sensory neurons, is mediated through upregulation in cyclooxygenase 2 (COX2) expression and increased synthesis of a series of COX2 products. These findings highlight the importance of feed-forward signalling in sensitisation, and the value of inhibiting COX2 activity to control pain, in nociceptive primary sensory neurons in tissue injuries.
Collapse
Affiliation(s)
- Tianci Li
- Nociception Group, Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College London, 369 Fulham Road, London, SW10 9NH, UK
| | - Gaoge Wang
- Nociception Group, Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College London, 369 Fulham Road, London, SW10 9NH, UK
| | - Vivian Chin Chin Hui
- Nociception Group, Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College London, 369 Fulham Road, London, SW10 9NH, UK
| | - Daniel Saad
- Nociception Group, Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College London, 369 Fulham Road, London, SW10 9NH, UK
| | - Joao de Sousa Valente
- Section of Vascular Biology and Inflammation Section, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King's College London, London, UK
| | - Paolo La Montanara
- Nociception Group, Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College London, 369 Fulham Road, London, SW10 9NH, UK
| | - Istvan Nagy
- Nociception Group, Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College London, 369 Fulham Road, London, SW10 9NH, UK.
| |
Collapse
|
21
|
Pasquinucci L, Parenti C, Ruiz-Cantero MC, Georgoussi Z, Pallaki P, Cobos EJ, Amata E, Marrazzo A, Prezzavento O, Arena E, Dichiara M, Salerno L, Turnaturi R. Novel N-Substituted Benzomorphan-Based Compounds: From MOR-Agonist/DOR-Antagonist to Biased/Unbiased MOR Agonists. ACS Med Chem Lett 2020; 11:678-685. [PMID: 32435370 PMCID: PMC7236032 DOI: 10.1021/acsmedchemlett.9b00549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/28/2020] [Indexed: 12/21/2022] Open
Abstract
Modifications at the basic nitrogen of the benzomorphan scaffold allowed the development of compounds able to segregate physiological responses downstream of the receptor signaling, opening new possibilities in opioid drug development. Alkylation of the phenyl ring in the N-substituent of the MOR-agonist/DOR-antagonist LP1 resulted in retention of MOR affinity. Moreover, derivatives 7a, 7c, and 7d were biased MOR agonists toward ERK1,2 activity stimulation, whereas derivative 7e was a low potency MOR agonist on adenylate cyclase inhibition. They were further screened in the mouse tail flick test and PGE2-induced hyperalgesia and drug-induced gastrointestinal transit.
Collapse
Affiliation(s)
- Lorella Pasquinucci
- Department
of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Carmela Parenti
- Department
of Drug Sciences, Pharmacology and Toxicology Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - M. Carmen Ruiz-Cantero
- Department
of Pharmacology, Faculty of Medicine and Institute of Neuroscience,
Biomedical Research Center, University of
Granada, Parque Tecnológico de Ciencias de la Salud, 18100 Armilla, Granada, Spain
- Teófilo Hernando
Institute for Drug Discovery, 28029 Madrid, Spain
| | - Zafiroula Georgoussi
- Laboratory
of Cellular Signaling and Molecular Pharmacology, Institute of Biosciences
and Applications, National Center for Scientific
Research “Demokritos″, Ag. Paraskevi 15310, Athens, Greece
| | - Paschalina Pallaki
- Laboratory
of Cellular Signaling and Molecular Pharmacology, Institute of Biosciences
and Applications, National Center for Scientific
Research “Demokritos″, Ag. Paraskevi 15310, Athens, Greece
| | - Enrique J. Cobos
- Department
of Pharmacology, Faculty of Medicine and Institute of Neuroscience,
Biomedical Research Center, University of
Granada, Parque Tecnológico de Ciencias de la Salud, 18100 Armilla, Granada, Spain
- Teófilo Hernando
Institute for Drug Discovery, 28029 Madrid, Spain
| | - Emanuele Amata
- Department
of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Agostino Marrazzo
- Department
of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Orazio Prezzavento
- Department
of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Emanuela Arena
- Department
of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Maria Dichiara
- Department
of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Loredana Salerno
- Department
of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Rita Turnaturi
- Department
of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
22
|
Sun M, Cong X, Chang E, Miao M, Zhang J. Efficacy of Flurbiprofen for Postoperative Pain in Chinese Surgical Patients: A Meta-Analysis. J Surg Res 2020; 252:80-88. [PMID: 32247074 DOI: 10.1016/j.jss.2019.11.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/24/2019] [Accepted: 11/16/2019] [Indexed: 10/24/2022]
Abstract
BACKGROUND The objective of this meta-analysis is to assess the analgesic effect of flurbiprofen on postoperative pain in Chinese surgical patients. METHODS The primary outcome was acute postoperative pain scores; the secondary outcomes included total opiate consumption during surgery and adverse effects, such as nausea, vomiting, and dizziness. Results were expressed as weighted mean difference (WMD) or odds ratio with 95% confidence intervals (95% CIs). We evaluated heterogeneity by visually examining the forest plots and quantified it by using the I2 statistic. We used random-effects models to pool the data. RESULTS Of 573 abstracts reviewed, 19 studies involving 1628 participants met the inclusion criteria. Pooled results showed that the intravenous administration of flurbiprofen had a beneficial effect in reducing pain scores at 2 (WMD, -0.78; 95% CI, -1.22 to -0.34; P = 0.001), 6 (WMD, -0.93; 95% CI, -1.40 to -0.46; P = 0.000), 12 (WMD, -1.09; 95% CI, -1.93 to -0.24; P = 0.011), 24 (WMD, -1.08; 95% CI, -1.48 to -0.68; P = 0.000), and 48 (WMD, -0.62; 95% CI, -1.19 to -0.05; P = 0.032) h after surgery. In addition, flurbiprofen administration significantly decreased the incidence of postoperative nausea and vomiting (odds ratio, 0.39; 95% CI, 0.26-0.58; P = 0.000) but had no effects on opiate consumption and dizziness. CONCLUSIONS The perioperative administration of flurbiprofen is effective in reducing postoperative pain, nausea, and vomiting in Chinese surgical patients. Future studies with adequate power should evaluate the ideal flurbiprofen regimen for postoperative pain.
Collapse
Affiliation(s)
- Mingyang Sun
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuhui Cong
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Enqiang Chang
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengrong Miao
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiaqiang Zhang
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
23
|
Nardosinanone N suppresses LPS-induced macrophage activation by modulating the Nrf2 pathway and mPGES-1. Biochem Pharmacol 2020; 173:113639. [DOI: 10.1016/j.bcp.2019.113639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022]
|
24
|
Grunwald SA, Popp O, Haafke S, Jedraszczak N, Grieben U, Saar K, Patone G, Kress W, Steinhagen-Thiessen E, Dittmar G, Spuler S. Statin-induced myopathic changes in primary human muscle cells and reversal by a prostaglandin F2 alpha analogue. Sci Rep 2020; 10:2158. [PMID: 32034223 PMCID: PMC7005895 DOI: 10.1038/s41598-020-58668-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/17/2020] [Indexed: 12/18/2022] Open
Abstract
Statin-related muscle side effects are a constant healthcare problem since patient compliance is dependent on side effects. Statins reduce plasma cholesterol levels and can prevent secondary cardiovascular diseases. Although statin-induced muscle damage has been studied, preventive or curative therapies are yet to be reported. We exposed primary human muscle cell populations (n = 22) to a lipophilic (simvastatin) and a hydrophilic (rosuvastatin) statin and analyzed their expressome. Data and pathway analyses included GOrilla, Reactome and DAVID. We measured mevalonate intracellularly and analyzed eicosanoid profiles secreted by human muscle cells. Functional assays included proliferation and differentiation quantification. More than 1800 transcripts and 900 proteins were differentially expressed after exposure to statins. Simvastatin had a stronger effect on the expressome than rosuvastatin, but both statins influenced cholesterol biosynthesis, fatty acid metabolism, eicosanoid synthesis, proliferation, and differentiation of human muscle cells. Cultured human muscle cells secreted ω-3 and ω-6 derived eicosanoids and prostaglandins. The ω-6 derived metabolites were found at higher levels secreted from simvastatin-treated primary human muscle cells. Eicosanoids rescued muscle cell differentiation. Our data suggest a new aspect on the role of skeletal muscle in cholesterol metabolism. For clinical practice, the addition of omega-n fatty acids might be suitable to prevent or treat statin-myopathy.
Collapse
Affiliation(s)
- Stefanie Anke Grunwald
- Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Universitätsmedizin and the Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany.
- Charité Universitätsmedizin Berlin, Berlin, 13125, Germany.
| | - Oliver Popp
- Mass Spectrometry Core Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, 13125, Germany
- Mass Spectrometry Facility, Berlin Institute of Health, Berlin, 13125, Germany
| | - Stefanie Haafke
- Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Universitätsmedizin and the Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany
- Charité Universitätsmedizin Berlin, Berlin, 13125, Germany
| | - Nicole Jedraszczak
- Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Universitätsmedizin and the Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany
- Charité Universitätsmedizin Berlin, Berlin, 13125, Germany
| | - Ulrike Grieben
- Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Universitätsmedizin and the Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany
- Charité Universitätsmedizin Berlin, Berlin, 13125, Germany
| | - Kathrin Saar
- Genetics and Genomics of Cardiovascular Diseases, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, 13125, Germany
| | - Giannino Patone
- Genetics and Genomics of Cardiovascular Diseases, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, 13125, Germany
| | - Wolfram Kress
- Institute for Human Genetics, Julius-Maximilians-University of Würzburg, Würzburg, 97074, Germany
| | | | - Gunnar Dittmar
- Mass Spectrometry Core Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, 13125, Germany
- Mass Spectrometry Facility, Berlin Institute of Health, Berlin, 13125, Germany
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Universitätsmedizin and the Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany.
- Charité Universitätsmedizin Berlin, Berlin, 13125, Germany.
| |
Collapse
|
25
|
Super Critical Fluid Extracted Fatty Acids from Withania somnifera Seeds Repair Psoriasis-Like Skin Lesions and Attenuate Pro-Inflammatory Cytokines (TNF-α and IL-6) Release. Biomolecules 2020; 10:biom10020185. [PMID: 31991752 PMCID: PMC7072271 DOI: 10.3390/biom10020185] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Withania somnifera Dunal (Ashwagandha) is a widely used medicinal herb in traditional medicinal systems with extensive research on various plant parts. Surprisingly, seeds of W. somnifera have never been investigated for their therapeutic potential. (2) Methods: W. somnifera seeds were extracted for fatty acids (WSSO) using super critical fluid extraction, and was analyzed by gas chromatography. Its therapeutic potential in psoriasis-like skin etiologies was investigated using a 12-O tetradecanoyl phorbol 13-acetate (TPA)-induced psoriatic mouse model. Psoriatic inflammation along with psoriatic lesions and histopathological scores were recorded. WSSO was also tested on murine macrophage (RAW264.7), human epidermoid (A431), and monocytic (THP-1) cells, stimulated with TPA or lipo poly-saccharide (LPS) to induce pro-inflammatory cytokine (IL-6 and TNF-α) release. NFκB promoter activity was also measured by luciferase reporter assay. (3) Results: Topical application of WSSO with concurrent oral doses significantly reduced inflammation-induced edema, and repaired psoriatic lesions and associated histopathological scores. Inhibition of pro-inflammatory cytokines release was observed in WSSO-treated A431 and THP-1 cells, along with reduced NFκB expression. WSSO also inhibited reactive nitrogen species (RNS) in LPS-stimulated RAW264.7 cells. (4) Conclusion: Here we show that the fatty acids from W. somnifera seeds have strong anti-inflammatory properties, along with remarkable therapeutic potential on psoriasis-like skin etiologies.
Collapse
|
26
|
Parnham MJ, Geisslinger G. Pharmacological plasticity-How do you hit a moving target? Pharmacol Res Perspect 2019; 7:e00532. [PMID: 31768257 PMCID: PMC6868654 DOI: 10.1002/prp2.532] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 12/23/2022] Open
Abstract
Paul Ehrlich's concept of the magic bullet, by which a single drug induces pharmacological effects by interacting with a single receptor has been a strong driving force in pharmacology for a century. It is continually thwarted, though, by the fact that the treated organism is highly dynamic and the target molecule(s) is (are) never static. In this article, we address some of the factors that modify and cause the mobility and plasticity of drug targets and their interactions with ligands and discuss how these can lead to unexpected (lack of) effects of drugs. These factors include genetic, epigenetic, and phenotypic variability, cellular plasticity, chronobiological rhythms, time, age and disease resolution, sex, drug metabolism, and distribution. We emphasize four existing approaches that can be taken, either singly or in combination, to try to minimize effects of pharmacological plasticity. These are firstly, to enhance specificity using target conditions close to those in diseases, secondly, by simultaneously or thirdly, sequentially aiming at multiple targets, and fourthly, in synchronization with concurrent dietary, psychological, training, and biorhythm-synchronizing procedures to optimize drug therapy.
Collapse
Affiliation(s)
- Michael J. Parnham
- Fraunhofer Institute for Molecular Biology & Applied Ecology IMEBranch for Translational Medicine and Pharmacology TMPFrankfurt am MainGermany
| | - Gerd Geisslinger
- Fraunhofer Institute for Molecular Biology & Applied Ecology IMEBranch for Translational Medicine and Pharmacology TMPFrankfurt am MainGermany
- Institute of Clinical PharmacologyJ.W. Goethe UniversityFrankfurtGermany
| |
Collapse
|
27
|
Pishgahi A, Dolatkhah N, Shakouri SK, Hashemian M, Amiri A, Delkhosh Reihany M, Jahanjou F. Lower serum 25-hydroxyvitamin D3 concentration is associated with higher pain and disability in subjects with low back pain: a case-control study. BMC Res Notes 2019; 12:738. [PMID: 31703733 PMCID: PMC6842133 DOI: 10.1186/s13104-019-4768-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/29/2019] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVES Low back pain (LBP) is a common medical problem worldwide. The aim of this study is to evaluate the association between serum concentration of 25-hydroxivitamin D3 and functional disability in patients suffering from LBP in a sample of Azeri middle-aged subjects, North West of Iran. RESULTS In this case-control study, 63 eligible patients with LBP and 55 healthy subjects enrolled in the study. Peripheral venous blood was taken for evaluating the serum concentration of 25-hydroxivitamin D3. We recognized factors related with LBP by multiple regression analyses. The average serum 25-hydroxivitamin D3 concentration in case group was significantly lower than that of the matched controlled group (26.25 ± 15.95 vs. 34.20 ± 14.92, p-value < 0.01 respectively). Subjects with vitamin D deficiency or insufficiency were more likely to exhibit LBP than subjects with normal serum 25-hydroxivitamin D3 concentration [(OR = 2.388, 95% CI (1.114 to 5.119)]. According to the partial correlation analysis, there was a reverse correlation between serum 25-hydroxivitamin D3 concentration with functional disability measured by Modified Oswestry Questionnaire (r = - 0.307, p = 0.017) and also with pain intensity according to Visual Analogue Scale (VAS) score (r = - 0.268, p = 0.040) whilst adjusting for age, sex and body mass index (BMI).
Collapse
Affiliation(s)
- Alireza Pishgahi
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Emam Reza Hospital, Golgasht, Azadi Ave., Tabriz, Iran
| | - Neda Dolatkhah
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Emam Reza Hospital, Golgasht, Azadi Ave., Tabriz, Iran
| | - Seyed Kazem Shakouri
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Emam Reza Hospital, Golgasht, Azadi Ave., Tabriz, Iran
| | - Maryam Hashemian
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, USA
| | - Atefeh Amiri
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fatemeh Jahanjou
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Emam Reza Hospital, Golgasht, Azadi Ave., Tabriz, Iran
| |
Collapse
|
28
|
Pino A, Russo N, Van Hoorde K, De Angelis M, Sferrazzo G, Randazzo CL, Caggia C. Piacentinu Ennese PDO Cheese as Reservoir of Promising Probiotic Bacteria. Microorganisms 2019; 7:E254. [PMID: 31408976 PMCID: PMC6723934 DOI: 10.3390/microorganisms7080254] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 01/17/2023] Open
Abstract
Piacentinu Ennese is a protected designation of origin (PDO) cheese produced in the surrounding area of Enna (Sicily, Italy), using raw ewe's milk without the addition of any starter cultures. In the present study, the Lactobacillus population of Piacentinu Ennese PDO cheese was in vitro screened in order to select promising probiotic strains to be further used in humans. One hundred and sixty-nine lactic acid bacteria (LAB) were isolated from 90 days ripened cheeses and identified by Rep-PCR genomic fingerprinting, using the (GTG)5-primer, and by MALDI-TOF MS. One hundred and thirteen (113) isolates belonging to QPS-list species were characterized for both safety and functional properties. All tested isolates were considered safe because none showed either gelatinase, DNase, mucinase, or hemolytic activity. Tolerance to lysozyme, bile salts, and acidic conditions, along with ability to survive under simulated gastrointestinal digestion, were observed. In addition, based on antimicrobial activity against pathogens, cell surface characteristics, Caco-2 adhesion abilities, and anti-inflammatory potential, it was possible to confirm the strain-dependent functional aptitude, suggesting that Piacentinu Ennese PDO cheese may be considered a precious source of probiotic candidates.
Collapse
Affiliation(s)
- Alessandra Pino
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Nunziatina Russo
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Koenraad Van Hoorde
- Department of Biotechnology, Laboratory of Brewing Science and Technology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Giuseppe Sferrazzo
- Department of Drug Sciences, Section of Biochemistry, University of Catania, 95125 Catania, Italy
| | - Cinzia Lucia Randazzo
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy.
| | - Cinzia Caggia
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy
| |
Collapse
|
29
|
Chandrasekharan JA, Sharma-Walia N. Arachidonic Acid Derived Lipid Mediators Influence Kaposi's Sarcoma-Associated Herpesvirus Infection and Pathogenesis. Front Microbiol 2019; 10:358. [PMID: 30915039 PMCID: PMC6422901 DOI: 10.3389/fmicb.2019.00358] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/11/2019] [Indexed: 12/30/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) infection, particularly latent infection is often associated with inflammation. The arachidonic acid pathway, the home of several inflammation and resolution associated lipid mediators, is widely altered upon viral infections. Several in vitro studies show that these lipid mediators help in the progression of viral pathogenesis. This review summarizes the findings related to human herpesvirus KSHV infection and arachidonic acid pathway metabolites. KSHV infection has been shown to promote inflammation by upregulating cyclooxygenase-2 (COX-2), 5 lipoxygenase (5LO), and their respective metabolites prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) to promote latency and an inflammatory microenvironment. Interestingly, the anti-inflammatory lipid mediator lipoxin is downregulated during KSHV infection to facilitate infected cell survival. These studies aid in understanding the role of arachidonic acid pathway metabolites in the progression of viral infection, the host inflammatory response, and pathogenesis. With limited therapeutic options to treat KSHV infection, use of inhibitors to these inflammatory metabolites and their synthetic pathways or supplementing anti-inflammatory lipid mediators could be an effective alternative therapeutic.
Collapse
Affiliation(s)
- Jayashree A Chandrasekharan
- Department of Microbiology and Immunology, H.M. Bligh Cancer Research Laboratories, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Neelam Sharma-Walia
- Department of Microbiology and Immunology, H.M. Bligh Cancer Research Laboratories, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
30
|
Treutlein EM, Kern K, Weigert A, Tarighi N, Schuh CD, Nüsing RM, Schreiber Y, Ferreirós N, Brüne B, Geisslinger G, Pierre S, Scholich K. The prostaglandin E2 receptor EP3 controls CC-chemokine ligand 2-mediated neuropathic pain induced by mechanical nerve damage. J Biol Chem 2018; 293:9685-9695. [PMID: 29752406 DOI: 10.1074/jbc.ra118.002492] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/09/2018] [Indexed: 01/22/2023] Open
Abstract
Prostaglandin (PG) E2 is an important lipid mediator that is involved in several pathophysiological processes contributing to fever, inflammation, and pain. Previous studies have shown that early and continuous application of nonsteroidal anti-inflammatory drugs significantly reduces pain behavior in the spared nerve injury (SNI) model for trauma-induced neuropathic pain. However, the role of PGE2 and its receptors in the development and maintenance of neuropathic pain is incompletely understood but may help inform strategies for pain management. Here, we sought to define the nociceptive roles of the individual PGE2 receptors (EP1-4) in the SNI model using EP knockout mice. We found that PGE2 levels at the site of injury were increased and that the expression of the terminal synthase for PGE2, cytosolic PGE synthase was up-regulated in resident positive macrophages located within the damaged nerve. Only genetic deletion of the EP3 receptor affected nociceptive behavior and reduced the development of late-stage mechanical allodynia as well as recruitment of immune cells to the injured nerve. Importantly, EP3 activation induced the release of CC-chemokine ligand 2 (CCL2), and antagonists against the CCL2 receptor reduced mechanical allodynia in WT but not in EP3 knockout mice. We conclude that selective inhibition of EP3 might present a potential approach for reducing chronic neuropathic pain.
Collapse
Affiliation(s)
- Elsa-Marie Treutlein
- From the Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, 60590 Frankfurt, Germany
| | - Katharina Kern
- From the Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, 60590 Frankfurt, Germany
| | - Andreas Weigert
- the Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60323 Frankfurt, Germany, and
| | - Neda Tarighi
- From the Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, 60590 Frankfurt, Germany
| | - Claus-Dieter Schuh
- From the Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, 60590 Frankfurt, Germany
| | - Rolf M Nüsing
- From the Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, 60590 Frankfurt, Germany
| | - Yannick Schreiber
- From the Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, 60590 Frankfurt, Germany
| | - Nerea Ferreirós
- From the Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, 60590 Frankfurt, Germany
| | - Bernhard Brüne
- the Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60323 Frankfurt, Germany, and
| | - Gerd Geisslinger
- From the Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, 60590 Frankfurt, Germany.,the Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology, 60596 Frankfurt am Main, Germany
| | - Sandra Pierre
- From the Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, 60590 Frankfurt, Germany
| | - Klaus Scholich
- From the Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, 60590 Frankfurt, Germany,
| |
Collapse
|
31
|
Lee MH, Han AR, Jang M, Choi HK, Lee SY, Kim KT, Lim TG. Antiskin Inflammatory Activity of Black Ginger (Kaempferia parviflora) through Antioxidative Activity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5967150. [PMID: 29849904 PMCID: PMC5903305 DOI: 10.1155/2018/5967150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/16/2018] [Accepted: 02/05/2018] [Indexed: 11/18/2022]
Abstract
Kaempferia parviflora (Krachaidum (KD)) is a traditional herbal medicine and has properties that are beneficial for human health. In the current study, we sought to investigate the anti-inflammatory properties of KD extract (KPE). In mouse skin tissue, UV light representing solar wavelengths (sUV) increased COX-2 expression, while treatment with KPE reduced this effect. The anti-inflammatory activity of KPE was confirmed in in vitro models. MAPK signaling pathways were activated by sUV irradiation, and this was also repressed in the presence of KPE treatment. It is assumed that the anti-inflammatory activity of KPE is caused by the antioxidative effect. Furthermore, we confirmed the critical role of oxidative stress in sUV-induced COX-2 expression. We analyzed the polyphenol composition of KPE. Of the polyphenols identified, gallic acid, apigenin, and tangeretin were identified as the major polyphenols (at 9.31 ± 1.27, 2.37 ± 0.14, and 2.15 ± 0.19 μg/mg dry weight, resp.). Collectively, these findings show that in the presence of sUV irradiation, KD has anti-inflammatory properties and antioxidative effects in the skin.
Collapse
Affiliation(s)
- Myung-hee Lee
- Korea Food Research Institute, Wanju-gun, 55365 Jeollabuk-do, Republic of Korea
| | - Ah-Ram Han
- Korea Food Research Institute, Wanju-gun, 55365 Jeollabuk-do, Republic of Korea
| | - Mi Jang
- Korea Food Research Institute, Wanju-gun, 55365 Jeollabuk-do, Republic of Korea
| | - Hyo-Kyoung Choi
- Korea Food Research Institute, Wanju-gun, 55365 Jeollabuk-do, Republic of Korea
| | - Sung-Young Lee
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912, USA
| | - Kyung-Tack Kim
- Korea Food Research Institute, Wanju-gun, 55365 Jeollabuk-do, Republic of Korea
| | - Tae-Gyu Lim
- Korea Food Research Institute, Wanju-gun, 55365 Jeollabuk-do, Republic of Korea
| |
Collapse
|
32
|
Koeberle A, Werz O. Natural products as inhibitors of prostaglandin E 2 and pro-inflammatory 5-lipoxygenase-derived lipid mediator biosynthesis. Biotechnol Adv 2018; 36:1709-1723. [PMID: 29454981 DOI: 10.1016/j.biotechadv.2018.02.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/19/2018] [Accepted: 02/14/2018] [Indexed: 12/31/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit prostanoid formation and represent prevalent therapeutics for treatment of inflammatory disorders. However, NSAIDs are afflicted with severe side effects, which might be circumvented by more selective suppression of pro-inflammatory eicosanoid biosynthesis. This concept led to dual inhibitors of microsomal prostaglandin E2 synthase (mPGES)-1 and 5-lipoxygenase that are crucial enzymes in the biosynthesis of pro-inflammatory prostaglandin E2 and leukotrienes. The potential of their dual inhibition in light of superior efficacy and safety is discussed. Focus is placed on natural products, for which direct inhibition of mPGES-1 and leukotriene biosynthesis has been confirmed.
Collapse
Affiliation(s)
- Andreas Koeberle
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, Jena 07743, Germany.
| | - Oliver Werz
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, Jena 07743, Germany.
| |
Collapse
|
33
|
Abstract
Fever depends on a complex physiologic response to infectious agents and other conditions. To alleviate fever, many medicinal agents have been developed over a century of trying to improve upon aspirin, which was determined to work by inhibiting prostaglandin synthesis. We present the process of fever induction through prostaglandin synthesis and discuss the development of pharmaceuticals that target enzymes and receptors involved in prostaglandin-mediated signal transduction, including prostaglandin H2 synthase (also known as cyclooxygenase), phospholipase A2, microsomal prostaglandin E2 synthase-1, EP receptors, and transient potential cation channel subfamily V member 1. Clinical use of established antipyretics will be discussed as well as medicinal agents under clinical trials and future research.
Collapse
Affiliation(s)
- Jonathan J Lee
- Biochemistry Department, Brigham Young University, Provo, UT, United States
| | - Daniel L Simmons
- Biochemistry Department, Brigham Young University, Provo, UT, United States.
| |
Collapse
|
34
|
MacNicol JL, Lindinger MI, Pearson W. A time-course evaluation of inflammatory and oxidative markers following high-intensity exercise in horses: a pilot study. J Appl Physiol (1985) 2017; 124:860-865. [PMID: 29074709 DOI: 10.1152/japplphysiol.00461.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Exercise is a physiological stress resulting in reactive oxygen species and inflammatory mediators, the accumulation of which are thought to contribute to degenerative articular diseases. The horse is of particular interest in this regard as equine athletes are frequently exposed to repetitive bouts of high-intensity exercise. The purpose of this study was to provide a detailed description of the response of articular and systemic oxidative and inflammatory biomarkers following high-intensity, exhaustive exercise in horses. A group of horses (Ex) underwent repeated bouts of high-intensity exercise, at a target heart rate of 180 beats/min, until voluntary exhaustion. Baseline plasma and synovial fluid (SF) samples were taken 24 h before exercise and then at 0.5, 1, 2, 4, 8, and 24 h following exercise cessation. This time course was repeated in a group of nonexercised control horses (Co). Plasma and SF samples were analyzed for prostaglandin E2 (PGE2), nitric oxide (NO), total antioxidant status (TAS), and glycosaminoglycans (GAG). The Ex group had significantly higher plasma NO at 0.5, 1, and 2 h; and higher plasma PGE2 at 0.5 and 1 h compared with Co. SF PGE2 and GAG were also higher in Ex horses at 8 h compared with Co. It is concluded that high-intensity exercise in horses results in a rapid increase in systemic oxidative and inflammatory markers from 0.5 to 2 h after exercise, which is followed by local articular inflammation and cartilage turnover at 8 h postexercise. NEW & NOTEWORTHY In horses, the influence of exercise systemically and within the articular space remains unclear and requires further detailed characterization. In this study, we identify that an acute bout of high-intensity exercise in horses induces systemic inflammation and oxidative stress within 30 min of exercise cessation, which lasts for ~2 h. Articular inflammation and cartilage turnover were also be observed within the equine carpal joint 8 h following exercise completion.
Collapse
Affiliation(s)
- Jennifer L MacNicol
- Department of Animal Biosciences, University of Guleph , Guelph, Ontario , Canada
| | | | - Wendy Pearson
- Department of Animal Biosciences, University of Guleph , Guelph, Ontario , Canada
| |
Collapse
|
35
|
Helde-Frankling M, Björkhem-Bergman L. Vitamin D in Pain Management. Int J Mol Sci 2017; 18:E2170. [PMID: 29057787 PMCID: PMC5666851 DOI: 10.3390/ijms18102170] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/29/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022] Open
Abstract
Vitamin D is a hormone synthesized in the skin in the presence of sunlight. Like other hormones, vitamin D plays a role in a wide range of processes in the body. Here we review the possible role of vitamin D in nociceptive and inflammatory pain. In observational studies, low vitamin D levels have been associated with increased pain and higher opioid doses. Recent interventional studies have shown promising effects of vitamin D supplementation on cancer pain and muscular pain-but only in patients with insufficient levels of vitamin D when starting intervention. Possible mechanisms for vitamin D in pain management are the anti-inflammatory effects mediated by reduced cytokine and prostaglandin release and effects on T-cell responses. The recent finding of vitamin D-mediated inhibition of Prostaglandin E2 (PGE2) is especially interesting and exhibits a credible mechanistic explanation. Having reviewed current literature, we suggest that patients with deficient levels defined as 25-hydroxyvitamin D (25-OHD) levels <30 nmol/L are most likely to benefit from supplementation, while individuals with 25-OHD >50 nmol/L probably have little benefit from supplementation. Our conclusion is that vitamin D may constitute a safe, simple and potentially beneficial way to reduce pain among patients with vitamin D deficiency, but that more randomized and placebo-controlled studies are needed before any firm conclusions can be drawn.
Collapse
Affiliation(s)
- Maria Helde-Frankling
- ASIH Stockholm Södra, Långbro Park, Palliative Home Care and Hospice Ward, Bergtallsvägen 12, SE-125 59 Älvsjö, Sweden.
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, Huddinge, SE-141 86 Stockholm, Sweden.
| | - Linda Björkhem-Bergman
- ASIH Stockholm Södra, Långbro Park, Palliative Home Care and Hospice Ward, Bergtallsvägen 12, SE-125 59 Älvsjö, Sweden.
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, Huddinge, SE-141 86 Stockholm, Sweden.
| |
Collapse
|
36
|
Gazal G, Al-Samadani KH. Comparison of paracetamol, ibuprofen, and diclofenac potassium for pain relief following dental extractions and deep cavity preparations. Saudi Med J 2017; 38:284-291. [PMID: 28251224 PMCID: PMC5387905 DOI: 10.15537/smj.2017.3.16023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objectives: To compare the effectiveness of different oral analgesics for relieving pain and distress in adults following the extraction of teeth and deep cavity preparations under local anesthesia. Methods: This randomized controlled study was conducted between November 2015 and May 2016. One hundred and twenty patients were randomly allocated to 3 groups. Forty patients were in the paracetamol (1 gram) group, 40 in the ibuprofen (400 mg) group and 40 in the diclofenac potassium (50 mg) group. Evaluation of the post extraction and deep cavity preparations pain was made by patients immediately postoperatively, 2, 4 and 6 hours postoperatively on standard 100 mm visual analogue scales (VAS). Furthermore, each patient was observed preoperatively and immediately postoperatively for signs of distress by using a 5 point face scale. Results: There were significant decreases in mean pain VAS scores for diclofenac potassium group compared to paracetamol and ibuprofen groups at 4 hours postoperatively (one-way Analysis of Variance: p=0.0001, p=0.001) and 6 hours postoperatively (p=0.04, p=0.005). Changes in distress scores from the preoperative score to the postoperative score were made using the paired sample t-test. There were significant decreases in distress scores between the preoperative and postoperative scores (p=0.0001). Conclusions: Diclofenac potassium was more effective than paracetamol or ibuprofen for reducing postoperative pain associated with tooth extraction and deep cavity preparation. Patients’ distress levels can be alleviated by using preemptive analgesics.
Collapse
Affiliation(s)
- Giath Gazal
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Taibah University, Al Madinah Al Munawwarah, Kingdom of Saudi Arabia. E-mail.
| | | |
Collapse
|
37
|
Zaman M, Hanif M. In vitro and ex vivo assessment of hydrophilic polymer- and plasticizer-based thin buccal films designed by using central composite rotatable design for the delivery of meloxicam. ADVANCES IN POLYMER TECHNOLOGY 2017. [DOI: 10.1002/adv.21841] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Muhammad Zaman
- Department of Pharmaceutics; Faculty of Pharmacy; Bahauddin Zakariya University; Multan Pakistan
- Department of Pharmaceutics; Faculty of Pharmacy; The University of Lahore; Lahore Pakistan
| | - Muhammad Hanif
- Department of Pharmaceutics; Faculty of Pharmacy; Bahauddin Zakariya University; Multan Pakistan
| |
Collapse
|