1
|
Goetzfried SK, Hakkennes MLA, Busemann A, Bonnet S. Toward the Treatment of Glioblastoma Tumors Using Photoactivated Chemotherapy: In Vitro Evaluation of Efficacy and Safety. ACS Pharmacol Transl Sci 2025; 8:484-498. [PMID: 39974641 PMCID: PMC11833736 DOI: 10.1021/acsptsci.4c00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/21/2025]
Abstract
Glioblastoma multiforme (GBM) is highly aggressive, necessitating new therapies. Photoactivated chemotherapy (PACT) offers a promising approach by activating prodrugs with visible light at the tumor site. This study evaluated the anticancer activity of ruthenium-based PACT compounds in U-87MG glioblastoma cells and their safety in SH-SY5Y neuron-like cells. The compound [3](PF6)2 showed promising light-activated anticancer effects in U-87MG cells, while [1](PF6)2 was inactive, and [2](PF6)2 was nonactivated. Interestingly, in SH-SY5Y cells, light-activated [3](PF6)2 increased cell proliferation, similar to donepezil, without causing cell death. Increased Ca2+ uptake was observed, possibly via interaction with the AMPA receptor, as suggested by docking studies. These findings suggest ruthenium-based PACT compounds may serve as potential treatments for GBM, effectively attacking cancer cells while preserving healthy neuronal cells.
Collapse
Affiliation(s)
| | - Matthijs L. A. Hakkennes
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Anja Busemann
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| |
Collapse
|
2
|
Jacome MA, Wu Q, Piña Y, Etame AB. Evolution of Molecular Biomarkers and Precision Molecular Therapeutic Strategies in Glioblastoma. Cancers (Basel) 2024; 16:3635. [PMID: 39518074 PMCID: PMC11544870 DOI: 10.3390/cancers16213635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Glioblastoma is the most commonly occurring malignant brain tumor, with a high mortality rate despite current treatments. Its classification has evolved over the years to include not only histopathological features but also molecular findings. Given the heterogeneity of glioblastoma, molecular biomarkers for diagnosis have become essential for initiating treatment with current therapies, while new technologies for detecting specific variations using computational tools are being rapidly developed. Advances in molecular genetics have made possible the creation of tailored therapies based on specific molecular targets, with various degrees of success. This review provides an overview of the latest advances in the fields of histopathology and radiogenomics and the use of molecular markers for management of glioblastoma, as well as the development of new therapies targeting the most common molecular markers. Furthermore, we offer a summary of the results of recent preclinical and clinical trials to recognize the current trends of investigation and understand the possible future directions of molecular targeted therapies in glioblastoma.
Collapse
Affiliation(s)
- Maria A. Jacome
- Departamento de Ciencias Morfológicas Microscópicas, Universidad de Carabobo, Valencia 02001, Venezuela
| | - Qiong Wu
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA; (Q.W.); (Y.P.)
| | - Yolanda Piña
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA; (Q.W.); (Y.P.)
| | - Arnold B. Etame
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA; (Q.W.); (Y.P.)
| |
Collapse
|
3
|
Silhan J, Fajtova P, Bartosova J, Hurysz BM, Almaliti J, Miyamoto Y, Eckmann L, Gerwick WH, O'Donoghue AJ, Boura E. Structural elucidation of recombinant Trichomonas vaginalis 20S proteasome bound to covalent inhibitors. Nat Commun 2024; 15:8621. [PMID: 39366995 PMCID: PMC11452676 DOI: 10.1038/s41467-024-53022-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
The proteasome is a proteolytic enzyme complex essential for protein homeostasis in mammalian cells and protozoan parasites like Trichomonas vaginalis (Tv), the cause of the most common, non-viral sexually transmitted disease. Tv and other protozoan 20S proteasomes have been validated as druggable targets for antimicrobials. However, low yields and purity of the native proteasome have hindered studies of the Tv 20S proteasome (Tv20S). We address this challenge by creating a recombinant protozoan proteasome by expressing all seven α and seven β subunits of Tv20S alongside the Ump-1 chaperone in insect cells. The recombinant Tv20S displays biochemical equivalence to its native counterpart, confirmed by various assays. Notably, the marizomib (MZB) inhibits all catalytic subunits of Tv20S, while the peptide inhibitor carmaphycin-17 (CP-17) specifically targets β2 and β5. Cryo-electron microscopy (cryo-EM) unveils the structures of Tv20S bound to MZB and CP-17 at 2.8 Å. These findings explain MZB's low specificity for Tv20S compared to the human proteasome and demonstrate CP-17's higher specificity. Overall, these data provide a structure-based strategy for the development of specific Tv20S inhibitors to treat trichomoniasis.
Collapse
Affiliation(s)
- Jan Silhan
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Prague, Czech Republic
| | - Pavla Fajtova
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Prague, Czech Republic.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| | - Jitka Bartosova
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Prague, Czech Republic
| | - Brianna M Hurysz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Jehad Almaliti
- Department Pharmaceutical Sciences, College of Pharmacy, The University of Jordan, Amman, Jordan
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Yukiko Miyamoto
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Lars Eckmann
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - William H Gerwick
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Prague, Czech Republic.
| |
Collapse
|
4
|
Roth P, Gorlia T, Reijneveld JC, de Vos F, Idbaih A, Frenel JS, Le Rhun E, Sepulveda JM, Perry J, Masucci GL, Freres P, Hirte H, Seidel C, Walenkamp A, Lukacova S, Meijnders P, Blais A, Ducray F, Verschaeve V, Nicholas G, Balana C, Bota DA, Preusser M, Nuyens S, Dhermain F, van den Bent M, O'Callaghan CJ, Vanlancker M, Mason W, Weller M. Marizomib for patients with newly diagnosed glioblastoma: A randomized phase 3 trial. Neuro Oncol 2024; 26:1670-1682. [PMID: 38502052 PMCID: PMC11376448 DOI: 10.1093/neuonc/noae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Standard treatment for patients with newly diagnosed glioblastoma includes surgery, radiotherapy (RT), and temozolomide (TMZ) chemotherapy (TMZ/RT→TMZ). The proteasome has long been considered a promising therapeutic target because of its role as a central biological hub in tumor cells. Marizomib is a novel pan-proteasome inhibitor that crosses the blood-brain barrier. METHODS European Organisation for Research and Treatment of Cancer 1709/Canadian Cancer Trials Group CE.8 was a multicenter, randomized, controlled, open-label phase 3 superiority trial. Key eligibility criteria included newly diagnosed glioblastoma, age > 18 years and Karnofsky performance status > 70. Patients were randomized in a 1:1 ratio. The primary objective was to compare overall survival (OS) in patients receiving marizomib in addition to TMZ/RT→TMZ with patients receiving the only standard treatment in the whole population and in the subgroup of patients with MGMT promoter-unmethylated tumors. RESULTS The trial was opened at 82 institutions in Europe, Canada, and the U.S. A total of 749 patients (99.9% of the planned 750) were randomized. OS was not different between the standard and the marizomib arm (median 17 vs. 16.5 months; HR = 1.04; P = .64). PFS was not statistically different either (median 6.0 vs. 6.3 months; HR = 0.97; P = .67). In patients with MGMT promoter-unmethylated tumors, OS was also not different between standard therapy and marizomib (median 14.5 vs. 15.1 months, HR = 1.13; P = .27). More CTCAE grade 3/4 treatment-emergent adverse events were observed in the marizomib arm than in the standard arm. CONCLUSIONS Adding marizomib to standard temozolomide-based radiochemotherapy resulted in more toxicity, but did not improve OS or PFS in patients with newly diagnosed glioblastoma.
Collapse
Affiliation(s)
- Patrick Roth
- Department of Neurology and Brain Tumor Center, University Hospital Zurich, Zurich, Switzerland
- Department of Neurology, University of Zurich, Zurich, Switzerland
| | - Thierry Gorlia
- European Organisation for Research and Treatment of Cancer (EORTC), Brussels, Belgium
| | - Jaap C Reijneveld
- Department of Neurology & Brain Tumor Center, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Filip de Vos
- Department of Medical Oncology, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Ahmed Idbaih
- Sorbonne Université, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, DMU Neurosciences, Service de Neurologie 2-Mazarin, Paris, France
| | - Jean-Sébastien Frenel
- Department of Medical Oncology, Institut de Cancerologie de L'Ouest, Saint-Herblain, France
| | - Emilie Le Rhun
- CHU Lille, Service de neurochirurgie, Lille, France
- Univ. Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
- Department of Neurosurgery & Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Juan Manuel Sepulveda
- Neuro-Oncology Unit, Department of Medical Oncology, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - James Perry
- Division of Neurology, Sunnybrook HSC, University of Toronto, Toronto, Ontario, Canada
| | - G Laura Masucci
- Department of Radiation Oncology, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Pierre Freres
- Department of Medical Oncology, University Hospital of Liege, Liege, Belgium
| | - Hal Hirte
- Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Clemens Seidel
- Department of Radiation Oncology, University Hospital Leipzig, Leipzig, Germany
| | - Annemiek Walenkamp
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Slavka Lukacova
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Paul Meijnders
- Department of Radiation Oncology, Iridium Network Antwerpen, University of Antwerp, Antwerp, Belgium
| | - Andre Blais
- Service d'hématologie et d'oncologie, Centre intégré de cancérologie du CHU de Québec - Université Laval, Québec City, Québec, Canada
| | - Francois Ducray
- Department of Neuro-Oncology, Hospices Civils de Lyon and Université Claude Bernard Lyon 1, Lyon, France
- Lyon Cancer Research Center (CRCL) UMR INSERM 1052 CNRS 5286, Lyon, France
| | - Vincent Verschaeve
- Department of Medical Oncology, GHDC Grand Hopital de Charleroi, Charleroi, Belgium
| | - Garth Nicholas
- University of Ottawa, Division of Medical Oncology, Ottawa, Ontario, Canada
| | - Carmen Balana
- Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Daniela A Bota
- Chao Family Comprehensive Cancer Center and Department of Neurology, University of California, Irvine, California, USA
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Sarah Nuyens
- European Organisation for Research and Treatment of Cancer (EORTC), Brussels, Belgium
| | - Fréderic Dhermain
- Department of Radiation Oncology, University Hospital Gustave Roussy, Villejuif, France
| | - Martin van den Bent
- Brain Tumor Center at ErasmusMC Cancer Institute, Rotterdam, The Netherlands
| | | | - Maureen Vanlancker
- European Organisation for Research and Treatment of Cancer (EORTC), Brussels, Belgium
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Warren Mason
- Department of Medicine, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Michael Weller
- Department of Neurology and Brain Tumor Center, University Hospital Zurich, Zurich, Switzerland
- Department of Neurology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Kusaczuk M, Tyszka N, Krętowski R, Cechowska-Pasko M. The Proteasome Inhibitor Marizomib Evokes Endoplasmic Reticulum Stress and Promotes Apoptosis in Human Glioblastoma Cells. Pharmaceuticals (Basel) 2024; 17:1089. [PMID: 39204194 PMCID: PMC11357632 DOI: 10.3390/ph17081089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Proteasomes play an important role in the physiology of cancer cells, and inhibition of their activity may be used as a promising therapeutic strategy against glioblastoma (GBM). Although certain proteasome inhibitors (PIs) have been approved for the treatment of other malignancies, they have limited effectiveness against GBM due to low brain bioavailability. Marizomib (MZB) is an irreversible, second-generation proteasome inhibitor, which unlike other PIs can penetrate through the blood-brain barrier, making it a promising therapeutic tool in brain malignancies. The antitumor activity of MZB was investigated in LN229 and U118 cells. The MTT test and the ATP-based assay were performed to evaluate cytotoxicity. Flow cytometry analysis was used to determine the apoptotic death of GBM cells. Luminescent assays were used to assess levels of reactive oxygen species (ROS) and the activity of caspase 3/7. RT-qPCR and Western blot analyses were used to determine gene and protein expressions. Marizomib decreased the viability and caused apoptotic death of GBM cells. The proapoptotic effect was accompanied by activation of caspase 3 and overexpression of cl-PARP, Noxa, Cyt C, and DR5. Moreover, treatment with MZB triggered endoplasmic reticulum (ER) stress, as shown by increased expressions of GRP78, IRE1α, p-EIF2α, p-SAPK/JNK, CHOP, ATF6α, and ATF4. On the contrary, overproduction of ROS or increased expressions of ERO1α, LC3 II, Beclin 1, and ATG5 were not detected, suggesting that neither oxidative stress nor autophagy were involved in the process of MZB-induced cell death. Thus, marizomib represents a potentially promising compound for facilitating further progress in brain cancer therapy.
Collapse
Affiliation(s)
- Magdalena Kusaczuk
- Department of Pharmaceutical Biochemistry, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland; (N.T.); (R.K.)
| | | | | | - Marzanna Cechowska-Pasko
- Department of Pharmaceutical Biochemistry, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland; (N.T.); (R.K.)
| |
Collapse
|
6
|
Wu J, Zhou D, Zhu X, Zhang Y, Xiao Y. Updates of primary central nervous system lymphoma. Ther Adv Hematol 2024; 15:20406207241259010. [PMID: 38883164 PMCID: PMC11177745 DOI: 10.1177/20406207241259010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
Lymphoma occurring in the central nervous system is considered primary central nervous system lymphoma (PCNSL), usually without systematic lesions. Over the last few decades, a deep understanding of PCNSL has been lacking due to the low incidence rate, and the overall survival and progression-free survival of patients with PCNSL are lower than those with other types of non-Hodgkin lymphoma. Recently, there have been several advancements in research on PCNSL. Advances in diagnosis of the disease are primarily reflected in the promising diagnostic efficiency of novel biomarkers. Pathogenesis mainly involves abnormal activation of nuclear factor kappa-B signaling pathways, copy number variations, and DNA methylation. Novel therapies such as Bruton's tyrosine kinase inhibitors, immunomodulatory drugs, immune checkpoint inhibitors, and phosphoinositide 3-kinase/mammalian target of rapamycin inhibitors are being evaluated as possible treatment options for PCNSL, especially for relapsed/refractory (R/R) cases. Several clinical trials also indicated the promising feasibility and efficacy of chimeric antigen receptor T-cell therapy for selected R/R PCNSL patients. This review focuses on discussing recent updates, including the diagnosis, pathogenesis, and novel therapy of PCNSL.
Collapse
Affiliation(s)
- Jiaying Wu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Delian Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology. No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology. No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
| | - Yi Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology. No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
| |
Collapse
|
7
|
Tabnak P, Hasanzade Bashkandi A, Ebrahimnezhad M, Soleimani M. Forkhead box transcription factors (FOXOs and FOXM1) in glioma: from molecular mechanisms to therapeutics. Cancer Cell Int 2023; 23:238. [PMID: 37821870 PMCID: PMC10568859 DOI: 10.1186/s12935-023-03090-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/04/2023] [Indexed: 10/13/2023] Open
Abstract
Glioma is the most aggressive and malignant type of primary brain tumor, comprises the majority of central nervous system deaths, and is categorized into different subgroups according to its histological characteristics, including astrocytomas, oligodendrogliomas, glioblastoma multiforme (GBM), and mixed tumors. The forkhead box (FOX) transcription factors comprise a collection of proteins that play various roles in numerous complex molecular cascades and have been discovered to be differentially expressed in distinct glioma subtypes. FOXM1 and FOXOs have been recognized as crucial transcription factors in tumor cells, including glioma cells. Accumulating data indicates that FOXM1 acts as an oncogene in various types of cancers, and a significant part of studies has investigated its function in glioma. Although recent studies considered FOXO subgroups as tumor suppressors, there are pieces of evidence that they may have an oncogenic role. This review will discuss the subtle functions of FOXOs and FOXM1 in gliomas, dissecting their regulatory network with other proteins, microRNAs and their role in glioma progression, including stem cell differentiation and therapy resistance/sensitivity, alongside highlighting recent pharmacological progress for modulating their expression.
Collapse
Affiliation(s)
- Peyman Tabnak
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Mohammad Ebrahimnezhad
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Soleimani
- Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Jane EP, Reslink MC, Gatesman TA, Halbert ME, Miller TA, Golbourn BJ, Casillo SM, Mullett SJ, Wendell SG, Obodo U, Mohanakrishnan D, Dange R, Michealraj A, Brenner C, Agnihotri S, Premkumar DR, Pollack IF. Targeting mitochondrial energetics reverses panobinostat- and marizomib-induced resistance in pediatric and adult high-grade gliomas. Mol Oncol 2023; 17:1821-1843. [PMID: 37014128 PMCID: PMC10483615 DOI: 10.1002/1878-0261.13427] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 04/05/2023] Open
Abstract
In previous studies, we demonstrated that panobinostat, a histone deacetylase inhibitor, and bortezomib, a proteasomal inhibitor, displayed synergistic therapeutic activity against pediatric and adult high-grade gliomas. Despite the remarkable initial response to this combination, resistance emerged. Here, in this study, we aimed to investigate the molecular mechanisms underlying the anticancer effects of panobinostat and marizomib, a brain-penetrant proteasomal inhibitor, and the potential for exploitable vulnerabilities associated with acquired resistance. RNA sequencing followed by gene set enrichment analysis (GSEA) was employed to compare the molecular signatures enriched in resistant compared with drug-naïve cells. The levels of adenosine 5'-triphosphate (ATP), nicotinamide adenine dinucleotide (NAD)+ content, hexokinase activity, and tricarboxylic acid (TCA) cycle metabolites required for oxidative phosphorylation to meet their bioenergetic needs were analyzed. Here, we report that panobinostat and marizomib significantly depleted ATP and NAD+ content, increased mitochondrial permeability and reactive oxygen species generation, and promoted apoptosis in pediatric and adult glioma cell lines at initial treatment. However, resistant cells exhibited increased levels of TCA cycle metabolites, which required for oxidative phosphorylation to meet their bioenergetic needs. Therefore, we targeted glycolysis and the electron transport chain (ETC) with small molecule inhibitors, which displayed substantial efficacy, suggesting that resistant cell survival is dependent on glycolytic and ETC complexes. To verify these observations in vivo, lonidamine, an inhibitor of glycolysis and mitochondrial function, was chosen. We produced two diffuse intrinsic pontine glioma (DIPG) models, and lonidamine treatment significantly increased median survival in both models, with particularly dramatic effects in panobinostat- and marizomib-resistant cells. These data provide new insights into mechanisms of treatment resistance in gliomas.
Collapse
Affiliation(s)
- Esther P. Jane
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
- John G. Rangos Sr. Research CenterChildren's Hospital of PittsburghPAUSA
| | - Matthew C. Reslink
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
| | - Taylor A. Gatesman
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
- John G. Rangos Sr. Research CenterChildren's Hospital of PittsburghPAUSA
| | - Matthew E. Halbert
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
- John G. Rangos Sr. Research CenterChildren's Hospital of PittsburghPAUSA
| | - Tracy A. Miller
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
| | - Brian J. Golbourn
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
| | - Stephanie M. Casillo
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
- John G. Rangos Sr. Research CenterChildren's Hospital of PittsburghPAUSA
| | - Steven J. Mullett
- Department of Pharmacology and Chemical BiologyUniversity of PittsburghPAUSA
| | - Stacy G. Wendell
- Department of Pharmacology and Chemical BiologyUniversity of PittsburghPAUSA
| | - Udochukwu Obodo
- Department of Diabetes & Cancer MetabolismCity of Hope Medical CenterDuarteCAUSA
| | | | - Riya Dange
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
| | - Antony Michealraj
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
| | - Charles Brenner
- Department of Diabetes & Cancer MetabolismCity of Hope Medical CenterDuarteCAUSA
| | - Sameer Agnihotri
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
- John G. Rangos Sr. Research CenterChildren's Hospital of PittsburghPAUSA
- UPMC Hillman Cancer CenterPittsburghPAUSA
| | - Daniel R. Premkumar
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
- John G. Rangos Sr. Research CenterChildren's Hospital of PittsburghPAUSA
- UPMC Hillman Cancer CenterPittsburghPAUSA
| | - Ian F. Pollack
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
- John G. Rangos Sr. Research CenterChildren's Hospital of PittsburghPAUSA
- UPMC Hillman Cancer CenterPittsburghPAUSA
| |
Collapse
|
9
|
Silhan J, Fajtova P, Bartosova J, Hurysz BM, Almaliti J, Miyamoto Y, Eckmann L, Gerwick WH, O’Donoghue AJ, Boura E. Structural elucidation of recombinant Trichomonas vaginalis 20S proteasome bound to covalent inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553660. [PMID: 37645851 PMCID: PMC10462138 DOI: 10.1101/2023.08.17.553660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Proteasomes are essential for protein homeostasis in mammalian cells1-4 and in protozoan parasites such as Trichomonas vaginalis (Tv).5 Tv and other protozoan 20S proteasomes have been validated as druggable targets.6-8 However, in the case of Tv 20S proteasome (Tv20S), biochemical and structural studies were impeded by low yields and purity of the native proteasome. We successfully made recombinant Tv20S by expressing all seven α and seven β subunits together with the Ump-1 chaperone in insect cells. We isolated recombinant proteasome and showed that it was biochemically indistinguishable from the native enzyme. We confirmed that the recombinant Tv20S is inhibited by the natural product marizomib (MZB)9 and the recently developed peptide inhibitor carmaphycin-17 (CP-17)8,10. Specifically, MZB binds to the β1, β2 and β5 subunits, while CP-17 binds the β2 and β5 subunits. Next, we obtained cryo-EM structures of Tv20S in complex with these covalent inhibitors at 2.8Å resolution. The structures revealed the overall fold of the Tv20S and the binding mode of MZB and CP-17. Our work explains the low specificity of MZB and higher specificity of CP-17 towards Tv20S as compared to human proteasome and provides the platform for the development of Tv20S inhibitors for treatment of trichomoniasis.
Collapse
Affiliation(s)
- Jan Silhan
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| | - Pavla Fajtova
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92037, USA
| | - Jitka Bartosova
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| | - Brianna M. Hurysz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92037, USA
| | - Jehad Almaliti
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92037, USA
| | - Yukiko Miyamoto
- Division of Gastroenterology, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Lars Eckmann
- Division of Gastroenterology, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - William H. Gerwick
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92037, USA
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92037, USA
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| |
Collapse
|
10
|
Gattoni G, de la Haba RR, Martín J, Reyes F, Sánchez-Porro C, Feola A, Zuchegna C, Guerrero-Flores S, Varcamonti M, Ricca E, Selem-Mojica N, Ventosa A, Corral P. Genomic study and lipidomic bioassay of Leeuwenhoekiella parthenopeia: A novel rare biosphere marine bacterium that inhibits tumor cell viability. Front Microbiol 2023; 13:1090197. [PMID: 36687661 PMCID: PMC9859067 DOI: 10.3389/fmicb.2022.1090197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023] Open
Abstract
The fraction of low-abundance microbiota in the marine environment is a promising target for discovering new bioactive molecules with pharmaceutical applications. Phenomena in the ocean such as diel vertical migration (DVM) and seasonal dynamic events influence the pattern of diversity of marine bacteria, conditioning the probability of isolation of uncultured bacteria. In this study, we report a new marine bacterium belonging to the rare biosphere, Leeuwenhoekiella parthenopeia sp. nov. Mr9T, which was isolated employing seasonal and diel sampling approaches. Its complete characterization, ecology, biosynthetic gene profiling of the whole genus Leeuwenhoekiella, and bioactivity of its extract on human cells are reported. The phylogenomic and microbial diversity studies demonstrated that this bacterium is a new and rare species, barely representing 0.0029% of the bacterial community in Mediterranean Sea metagenomes. The biosynthetic profiling of species of the genus Leeuwenhoekiella showed nine functionally related gene cluster families (GCF), none were associated with pathways responsible to produce known compounds or registered patents, therefore revealing its potential to synthesize novel bioactive compounds. In vitro screenings of L. parthenopeia Mr9T showed that the total lipid content (lipidome) of the cell membrane reduces the prostatic and brain tumor cell viability with a lower effect on normal cells. The lipidome consisted of sulfobacin A, WB 3559A, WB 3559B, docosenamide, topostin B-567, and unknown compounds. Therefore, the bioactivity could be attributed to any of these individual compounds or due to their synergistic effect. Beyond the rarity and biosynthetic potential of this bacterium, the importance and novelty of this study is the employment of sampling strategies based on ecological factors to reach the hidden microbiota, as well as the use of bacterial membrane constituents as potential novel therapeutics. Our findings open new perspectives on cultivation and the relationship between bacterial biological membrane components and their bioactivity in eukaryotic cells, encouraging similar studies in other members of the rare biosphere.
Collapse
Affiliation(s)
- Giuliano Gattoni
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Rafael R. de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | | | | | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Antonia Feola
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Candida Zuchegna
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Shaday Guerrero-Flores
- Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| | - Mario Varcamonti
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Ezio Ricca
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Nelly Selem-Mojica
- Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Paulina Corral
- Department of Biology, University of Naples Federico II, Naples, Italy,Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain,*Correspondence: Paulina Corral,
| |
Collapse
|
11
|
Chang HH, Lin YH, Chen TM, Tsai YL, Lai CR, Tsai WC, Cheng YC, Chen Y. ONX-0914 Induces Apoptosis and Autophagy with p53 Regulation in Human Glioblastoma Cells. Cancers (Basel) 2022; 14:cancers14225712. [PMID: 36428804 PMCID: PMC9688407 DOI: 10.3390/cancers14225712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Glioblastoma is believed to be one of the most aggressive brain tumors in the world. ONX-0914 (PR957) is a selective inhibitor of proteasome subunit beta type-8 (PSMB8). Previous studies have shown that inhibiting PSMB8 expression in glioblastoma reduces tumor progression. Therefore, this study aimed to determine whether ONX-0914 has antitumor effects on human glioblastoma. The results indicated that ONX-0914 treatment inhibited survival in LN229, GBM8401, and U87MG glioblastoma cells. Cell cycle analysis showed that ONX-0914 treatment caused cell cycle arrest at the G1 phase and apoptosis in glioblastoma cells. The protein expression of BCL-2 was reduced and PARP was cleaved after ONX-0914 treatment. Furthermore, the levels of p53 and phosphorylated p53 were increased by ONX-0914 treatment in glioblastoma cells. ONX-0914 also induced autophagy in glioblastoma cells. Furthermore, the p53 inhibitor pifithrin attenuated apoptosis but enhanced autophagy caused by ONX-0914. In an orthotopic mouse model, TMZ plus ONX-0914 reduced tumor progression better than the control or TMZ alone. These data suggest that ONX-0914 is a novel therapeutic drug for glioblastoma.
Collapse
Affiliation(s)
- Hsin-Han Chang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 114201, Taiwan
- Department of Nursing, Ching Kuo Institute of Management and Health, Keelung 203301, Taiwan
| | - Yi-Hsuan Lin
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 114201, Taiwan
| | - Tzu-Min Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 114201, Taiwan
| | - Yu-Ling Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan
| | - Chien-Rui Lai
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 114201, Taiwan
| | - Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan
| | - Yu-Chen Cheng
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 114201, Taiwan
- Correspondence: (Y.-C.C.); (Y.C.); Tel.: +886-2-8792-3100 (ext. 18739) (Y.C.)
| | - Ying Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 114201, Taiwan
- Correspondence: (Y.-C.C.); (Y.C.); Tel.: +886-2-8792-3100 (ext. 18739) (Y.C.)
| |
Collapse
|
12
|
An mTORC1 to HRI signaling axis promotes cytotoxicity of proteasome inhibitors in multiple myeloma. Cell Death Dis 2022; 13:969. [PMID: 36400754 PMCID: PMC9674573 DOI: 10.1038/s41419-022-05421-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022]
Abstract
Multiple myeloma (MM) causes approximately 20% of deaths from blood cancers. Notwithstanding significant therapeutic progress, such as with proteasome inhibitors (PIs), MM remains incurable due to the development of resistance. mTORC1 is a key metabolic regulator, which frequently becomes dysregulated in cancer. While mTORC1 inhibitors reduce MM viability and synergize with other therapies in vitro, clinically, mTORC1 inhibitors are not effective for MM. Here we show that the inactivation of mTORC1 is an intrinsic response of MM to PI treatment. Genetically enforced hyperactivation of mTORC1 in MM was sufficient to compromise tumorigenicity in mice. In vitro, mTORC1-hyperactivated MM cells gained sensitivity to PIs and hypoxia. This was accompanied by increased mitochondrial stress and activation of the eIF2α kinase HRI, which initiates the integrated stress response. Deletion of HRI elevated the toxicity of PIs in wt and mTORC1-activated MM. Finally, we identified the drug PMA as a robust inducer of mTORC1 activity, which synergized with PIs in inducing MM cell death. These results help explain the clinical inefficacy of mTORC1 inhibitors in MM. Our data implicate mTORC1 induction and/or HRI inhibition as pharmacological strategies to enhance MM therapy by PIs.
Collapse
|
13
|
Zhang Z, Zhang S, Lin B, Wang Q, Nie X, Shi Y. Combined treatment of marizomib and cisplatin modulates cervical cancer growth and invasion and enhances antitumor potential in vitro and in vivo. Front Oncol 2022; 12:974573. [PMID: 36110967 PMCID: PMC9468930 DOI: 10.3389/fonc.2022.974573] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Proteasome inhibition is an attractive approach for anticancer therapy. Cisplatin (cis-diamminedichloroplatinum, CDDP) is widely used as a standard chemotherapy drug in the treatment of solid malignant tumors, such as cervical cancer, ovarian cancer, colorectal cancer, and lung cancer. However, the development of CDDP resistance largely limits its clinical application. Proteasome inhibitors may enhance traditional chemotherapy agent-induced cytotoxicity and apoptosis. Marizomib (NPI-0052, salinosporamide A, Mzb), a second-generation proteasome inhibitor, shows synergistic anticancer activity with some drugs. Currently, the effect of Mzb on cervical cancer cell proliferation remains unclear. In this study, we explored the role of Mzb in three cervical cancer cell lines, HeLa, CaSki, and C33A, representing major molecular subtypes of cervical cancer and xenografts. We found that Mzb alone showed noteworthy cytotoxic effects, and its combination with CDDP resulted in more obvious cytotoxicity and apoptosis in cervical cancer cell lines and xenografts. In order to investigate the mechanism of this effect, we probed whether Mzb alone or in combination with CDDP had a better antitumor response by enhancing CDDP-induced angiopoietin 1 (Ang-1) expression and inhibiting the expression of TEK receptor tyrosine kinase (Tie-2) in the Ang-1/Tie-2 pathway, FMS-like tyrosine kinase 3 ligand (Flt-3L) and stem cell factor (SCF) as identified by a cytokine antibody chip test. The results suggest that Mzb has better antitumor effects on cervical cancer cells and can sensitize cervical cancer cells to CDDP treatment both in vitro and in vivo. Accordingly, we conclude that the combination of CDDP with Mzb produces synergistic anticancer activity and that Mzb may be a potential effective drug in combination therapy for cervical cancer patients.
Collapse
Affiliation(s)
- Ziruizhuo Zhang
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Songcheng Zhang
- Department of Pediatrics, Nanyang Chinese Medicine Hospital, Nanyang, Henan, China
| | - Bingjie Lin
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Qixin Wang
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiaojing Nie
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yonghua Shi
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Xinjiang Medical University, Urumqi, Xinjiang, China
- *Correspondence: Yonghua Shi,
| |
Collapse
|
14
|
Ma T, Li H, Zhang X. Discovering single-cell eQTLs from scRNA-seq data only. Gene 2022; 829:146520. [PMID: 35452708 DOI: 10.1016/j.gene.2022.146520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/12/2022] [Accepted: 04/15/2022] [Indexed: 12/14/2022]
Abstract
eQTL studies are essential for understanding genomic regulation. The effects of genetic variations on gene regulation are cell-type-specific and cellular-context-related, so studying eQTLs at a single-cell level is crucial. The ideal solution is to use both mutation and expression data from the same cells. However, the current technology of such paired data in single cells is still immature. We present a new method, eQTLsingle, to discover eQTLs only with single-cell RNA-seq (scRNA-seq) data, without genomic data. It detects mutations from scRNA-seq data and models gene expression of different genotypes with the zero-inflated negative binomial (ZINB) model to find associations between genotypes and phenotypes at the single-cell level. On a glioblastoma and gliomasphere scRNA-seq dataset, eQTLsingle discovered hundreds of cell-type-specific tumor-related eQTLs, most of which cannot be found in bulk eQTL studies. Detailed analyses on examples of the discovered eQTLs revealed important underlying regulatory mechanisms. eQTLsingle is a uniquely powerful tool for utilizing the vast scRNA-seq resources for single-cell eQTL studies, and it is available for free academic use at https://github.com/horsedayday/eQTLsingle.
Collapse
Affiliation(s)
- Tianxing Ma
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Haochen Li
- School of Medicine, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Xuegong Zhang
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China; School of Medicine, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
15
|
Domingues Vieira B, Niero H, de Felício R, Giolo Alves LF, Freitas Bazzano C, Sigrist R, Costa Furtado L, Felix Persinoti G, Veras Costa-Lotufo L, Barretto Barbosa Trivella D. Production of Epoxyketone Peptide-Based Proteasome Inhibitors by Streptomyces sp. BRA-346: Regulation and Biosynthesis. Front Microbiol 2022; 13:786008. [PMID: 35401454 PMCID: PMC8988807 DOI: 10.3389/fmicb.2022.786008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Streptomyces sp. BRA-346 is an Actinobacteria isolated from the Brazilian endemic tunicate Euherdmania sp. We have reported that this strain produces epoxyketone peptides, as dihydroeponemycin (DHE) and structurally related analogs. This cocktail of epoxyketone peptides inhibits the proteasome chymotrypsin-like activity and shows high cytotoxicity to glioma cells. However, low yields and poor reproducibility of epoxyketone peptides production by BRA-346 under laboratory cultivation have limited the isolation of epoxyketone peptides for additional studies. Here, we evaluated several cultivation methods using different culture media and chemical elicitors to increase the repertoire of peptide epoxyketone production by this bacterium. Furthermore, BRA-346 genome was sequenced, revealing its broad genetic potential, which is mostly hidden under laboratory conditions. By using specific growth conditions, we were able to evidence different classes of secondary metabolites produced by BRA-346. In addition, by combining genome mining with untargeted metabolomics, we could link the metabolites produced by BRA-346 to its genetic capacity and potential regulators. A single biosynthetic gene cluster (BGC) was related to the production of the target epoxyketone peptides by BRA-346. The candidate BGC displays conserved biosynthetic enzymes with the reported eponemycin (EPN) and TMC-86A (TMC) BGCs. The core of the putative epoxyketone peptide BGC (ORFs A-L), in which ORF A is a LuxR-like transcription factor, was cloned into a heterologous host. The recombinant organism was capable to produce TMC and EPN natural products, along with the biosynthetic intermediates DH-TMC and DHE, and additional congeners. A phylogenetic analysis of the epn/tmc BGC revealed related BGCs in public databases. Most of them carry a proteasome beta-subunit, however, lacking an assigned specialized metabolite. The retrieved BGCs also display a diversity of regulatory genes and TTA codons, indicating tight regulation of this BGC at the transcription and translational levels. These results demonstrate the plasticity of the epn/tmc BGC of BRA-346 in producing epoxyketone peptides and the feasibility of their production in a heterologous host. This work also highlights the capacity of BRA-346 to tightly regulate its secondary metabolism and shed light on how to awake silent gene clusters of Streptomyces sp. BRA-346 to allow the production of pharmacologically important biosynthetic products.
Collapse
Affiliation(s)
- Bruna Domingues Vieira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Faculty of Pharmaceutical Sciences (FCF), University of Campinas (UNICAMP), Campinas, Brazil
| | - Henrique Niero
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Faculty of Pharmaceutical Sciences (FCF), University of Campinas (UNICAMP), Campinas, Brazil
| | - Rafael de Felício
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Luiz Fernando Giolo Alves
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Cristina Freitas Bazzano
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Institute of Computing (IC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Renata Sigrist
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Luciana Costa Furtado
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gabriela Felix Persinoti
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Leticia Veras Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniela Barretto Barbosa Trivella
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- *Correspondence: Daniela Barretto Barbosa Trivella,
| |
Collapse
|
16
|
Murugan NJ, Voutsadakis IA. Proteasome regulators in pancreatic cancer. World J Gastrointest Oncol 2022; 14:38-54. [PMID: 35116102 PMCID: PMC8790418 DOI: 10.4251/wjgo.v14.i1.38] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/14/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic adenocarcinoma is one of the most lethal cancers with rising incidence. Despite progress in its treatment, with the introduction of more effective chemotherapy regimens in the last decade, prognosis of metastatic disease remains inferior to other cancers with long term survival being the exception. Molecular characterization of pancreatic cancer has elucidated the landscape of the disease and has revealed common lesions that contribute to pancreatic carcinogenesis. Regulation of proteostasis is critical in cancers due to increased protein turnover required to support the intense metabolism of cancer cells. The proteasome is an integral part of this regulation and is regulated, in its turn, by key transcription factors, which induce transcription of proteasome structural units. These include FOXO family transcription factors, NFE2L2, hHSF1 and hHSF2, and NF-Y. Networks that encompass proteasome regulators and transduction pathways dysregulated in pancreatic cancer such as the KRAS/ BRAF/MAPK and the Transforming growth factor beta/SMAD pathway contribute to pancreatic cancer progression. This review discusses the proteasome and its transcription factors within the pancreatic cancer cellular micro-environment. We also consider the role of stemness in carcinogenesis and the use of proteasome inhibitors as therapeutic agents.
Collapse
Affiliation(s)
- Nirosha J Murugan
- Department of Biology, Algoma University, Sault Sainte Marie P6A3T6, ON, Canada
| | - Ioannis A Voutsadakis
- Department of Medical Oncology, Sault Area Hospital, Sault Sainte Marie P6A3T6, ON, Canada
| |
Collapse
|
17
|
Baskaran AB, Kumthekar P, Heimberger AB, Lukas RV. American Society of Clinical Oncology 2021 Annual Meeting updates on primary brain tumors and CNS metastatic tumors. Future Oncol 2021; 17:4425-4429. [PMID: 34672682 DOI: 10.2217/fon-2021-0955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this report, select key studies presented at the American Society of Clinical Oncology (ASCO) 2021 annual meeting are reviewed. Two major phase III randomized controlled trials were presented at the meeting: GEINO 1401 and EORTC 1709/CCTG CE.8. Both are reviewed in this report. Moreover, important phase II trials, including Alliance A0716701, and key phase I trials are included. All trials presented cover important advances in the understanding of primary brain tumor management. In addition, case series papers, trials in progress and select work on exploratory CSF biomarkers are reviewed. Altogether, research presented at ASCO 2021 highlights important advances in neuro-oncologic topics that may inform future research and practice.
Collapse
Affiliation(s)
- Archit B Baskaran
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Priya Kumthekar
- Department of Neurology, Northwestern University, Chicago, IL, USA.,Lou & Jean Malnati Brain Tumor Institute, Northwestern University, Chicago, IL, USA
| | - Amy B Heimberger
- Lou & Jean Malnati Brain Tumor Institute, Northwestern University, Chicago, IL, USA.,Department of Neurosurgery, Northwestern University, Chicago, IL, USA
| | - Rimas V Lukas
- Department of Neurology, Northwestern University, Chicago, IL, USA.,Lou & Jean Malnati Brain Tumor Institute, Northwestern University, Chicago, IL, USA
| |
Collapse
|
18
|
Rose M, Cardon T, Aboulouard S, Hajjaji N, Kobeissy F, Duhamel M, Fournier I, Salzet M. Surfaceome Proteomic of Glioblastoma Revealed Potential Targets for Immunotherapy. Front Immunol 2021; 12:746168. [PMID: 34646273 PMCID: PMC8503648 DOI: 10.3389/fimmu.2021.746168] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/08/2021] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) is the most common and devastating malignant brain tumor in adults. The mortality rate is very high despite different treatments. New therapeutic targets are therefore highly needed. Cell-surface proteins represent attractive targets due to their accessibility, their involvement in essential signaling pathways, and their dysregulated expression in cancer. Moreover, they are potential targets for CAR-based immunotherapy or mRNA vaccine strategies. In this context, we investigated the GBM-associated surfaceome by comparing it to astrocytes cell line surfaceome to identify new specific targets for GBM. For this purpose, biotinylation of cell surface proteins has been carried out in GBM and astrocytes cell lines. Biotinylated proteins were purified on streptavidin beads and analyzed by shotgun proteomics. Cell surface proteins were identified with Cell Surface Proteins Atlas (CSPA) and Gene Ontology enrichment. Among all the surface proteins identified in the different cell lines we have confirmed the expression of 66 of these in patient’s glioblastoma using spatial proteomic guided by MALDI-mass spectrometry. Moreover, 87 surface proteins overexpressed or exclusive in GBM cell lines have been identified. Among these, we found 11 specific potential targets for GBM including 5 mutated proteins such as RELL1, CYBA, EGFR, and MHC I proteins. Matching with drugs and clinical trials databases revealed that 7 proteins were druggable and under evaluation, 3 proteins have no known drug interaction yet and none of them are the mutated form of the identified proteins. Taken together, we discovered potential targets for immune therapy strategies in GBM.
Collapse
Affiliation(s)
- Mélanie Rose
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Tristan Cardon
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Soulaimane Aboulouard
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Nawale Hajjaji
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France.,Breast Cancer Unit, Oscar Lambret Center, Lille, France
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Marie Duhamel
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Isabelle Fournier
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France.,Institut Universitaire de France, Paris, France
| | - Michel Salzet
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
19
|
Medeiros M, Candido MF, Valera ET, Brassesco MS. The multifaceted NF-kB: are there still prospects of its inhibition for clinical intervention in pediatric central nervous system tumors? Cell Mol Life Sci 2021; 78:6161-6200. [PMID: 34333711 PMCID: PMC11072991 DOI: 10.1007/s00018-021-03906-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022]
Abstract
Despite advances in the understanding of the molecular mechanisms underlying the basic biology and pathogenesis of pediatric central nervous system (CNS) malignancies, patients still have an extremely unfavorable prognosis. Over the years, a plethora of natural and synthetic compounds has emerged for the pharmacologic intervention of the NF-kB pathway, one of the most frequently dysregulated signaling cascades in human cancer with key roles in cell growth, survival, and therapy resistance. Here, we provide a review about the state-of-the-art concerning the dysregulation of this hub transcription factor in the most prevalent pediatric CNS tumors: glioma, medulloblastoma, and ependymoma. Moreover, we compile the available literature on the anti-proliferative effects of varied NF-kB inhibitors acting alone or in combination with other therapies in vitro, in vivo, and clinical trials. As the wealth of basic research data continues to accumulate, recognizing NF-kB as a therapeutic target may provide important insights to treat these diseases, hopefully contributing to increase cure rates and lower side effects related to therapy.
Collapse
Affiliation(s)
- Mariana Medeiros
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marina Ferreira Candido
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, FFCLRP-USP, University of São Paulo, Av. Bandeirantes, 3900, Bairro Monte Alegre, Ribeirão Preto, São Paulo, CEP 14040-901, Brazil.
| |
Collapse
|
20
|
Niclou SP, Golebiewska A. Turning strength into weakness: protein degradation and autophagy as therapeutic targets in glioblastoma? Neuro Oncol 2021; 23:1041-1043. [PMID: 33864093 DOI: 10.1093/neuonc/noab099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg.,Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Anna Golebiewska
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| |
Collapse
|
21
|
Jani P, Suman S, Subramanian S, Korde A, Gohel D, Singh R, Sawant K. Development of mitochondrial targeted theranostic nanocarriers for treatment of gliomas. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Marizomib sensitizes primary glioma cells to apoptosis induced by a latest-generation TRAIL receptor agonist. Cell Death Dis 2021; 12:647. [PMID: 34168123 PMCID: PMC8225658 DOI: 10.1038/s41419-021-03927-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 12/26/2022]
Abstract
Due to the absence of curative treatments for glioblastoma (GBM), we assessed the efficacy of single and combination treatments with a translationally relevant 2nd generation TRAIL-receptor agonist (IZI1551) and the blood–brain barrier (BBB) permeant proteasome inhibitor marizomib in a panel of patient-derived glioblastoma cell lines. These cells were cultured using protocols that maintain the characteristics of primary tumor cells. IZI1551+marizomib combination treatments synergistically induced apoptotic cell death in the majority of cases, both in 2D, as well as in 3D spheroid cultures. In contrast, single-drug treatments largely failed to induce noticeable amounts of cell death. Kinetic analyses suggested that time-shifted drug exposure might further increase responsiveness, with marizomib pre-treatments indeed strongly enhancing cell death. Cell death responses upon the addition of IZI1551 could also be observed in GBM cells that were kept in a medium collected from the basolateral side of a human hCMEC/D3 BBB model that had been exposed to marizomib. Interestingly, the subset of GBM cell lines resistant to IZI1551+marizomib treatments expressed lower surface amounts of TRAIL death receptors, substantially lower amounts of procaspase-8, and increased amounts of cFLIP, suggesting that apoptosis initiation was likely too weak to initiate downstream apoptosis execution. Indeed, experiments in which the mitochondrial apoptosis threshold was lowered by antagonizing Mcl-1 re-established sensitivity to IZI1551+marizomib in otherwise resistant cells. Overall, our study demonstrates a high efficacy of combination treatments with a latest-generation TRAIL receptor agonist and the BBB permeant proteasome inhibitor marizomib in relevant GBM cell models, as well as strategies to further enhance responsiveness and to sensitize subgroups of otherwise resistant GBM cases.
Collapse
|
23
|
Targeted Therapies and Immune Checkpoint Inhibitors in Primary CNS Lymphoma. Cancers (Basel) 2021; 13:cancers13123073. [PMID: 34203062 PMCID: PMC8234854 DOI: 10.3390/cancers13123073] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 02/07/2023] Open
Abstract
This review article outlines the current development of emerging treatment strategies for primary central nervous system lymphoma, a rare brain tumor with, thus far, limited therapeutic options. Small molecule targeted tyrosine kinase inhibitors, immunomodulatory agents, and immune checkpoint inhibitors will be discussed. The mechanisms of action, results of completed clinical studies, ongoing clinical trials, and future perspectives are summarized. Among the most promising clinical developments in the field of CNS lymphomas is ibrutinib, an inhibitor of Bruton's tyrosine kinase, which relays activation of nuclear factor kappa B upon integration of constitutive B cell receptor and Toll-like receptor signals. Down-stream of nuclear factor kappa B, the thalidomide analogs lenalidomide and pomalidomide exert immunomodulatory functions and are currently explored against CNS lymphomas. Finally, immune checkpoint inhibitors, such as drugs targeting the PD-1 pathway, may become novel therapeutic options to unleash anti-tumor immunity in patients with primary CNS lymphoma.
Collapse
|
24
|
Bocharova EA, Kopytina NI, Slynko ЕЕ. Anti-tumour drugs of marine origin currently at various stages of clinical trials (review). REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oncological diseases for a long time have remained one of the most significant health problems of modern society, which causes great losses in its labour and vital potential. Contemporary oncology still faces unsolved issues as insufficient efficacy of treatment of progressing and metastatic cancer, chemoresistance, and side-effects of the traditional therapy which lead to disabilities among or death of a high number of patients. Development of new anti-tumour preparations with a broad range of pharmaceutical properties and low toxicity is becoming increasingly relevant every year. The objective of the study was to provide a review of the recent data about anti-tumour preparations of marine origin currently being at various phases of clinical trials in order to present the biological value of marine organisms – producers of cytotoxic compounds, and the perspectives of their use in modern biomedical technologies. Unlike the synthetic oncological preparations, natural compounds are safer, have broader range of cytotoxic activity, can inhibit the processes of tumour development and metastasis, and at the same time have effects on several etiopathogenic links of carcinogenesis. Currently, practical oncology uses 12 anti-tumour preparations of marine origin (Fludarabine, Cytarabine, Midostaurin, Nelarabine, Eribulin mesylate, Brentuximab vedotin, Trabectedin, Plitidepsin, Enfortumab vedotin, Polatuzumab vedotin, Belantamab mafodotin, Lurbinectedin), 27 substances are at different stages of clinical trials. Contemporary approaches to the treatment of oncological diseases are based on targeted methods such as immune and genetic therapies, antibody-drug conjugates, nanoparticles of biopolymers, and metals. All those methods employ bioactive compounds of marine origin. Numerous literature data from recent years indicate heightened attention to the marine pharmacology and the high potential of marine organisms for the biomedicinal and pharmaceutic industries.
Collapse
|
25
|
Cruz Da Silva E, Mercier MC, Etienne-Selloum N, Dontenwill M, Choulier L. A Systematic Review of Glioblastoma-Targeted Therapies in Phases II, III, IV Clinical Trials. Cancers (Basel) 2021; 13:1795. [PMID: 33918704 PMCID: PMC8069979 DOI: 10.3390/cancers13081795] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM), the most frequent and aggressive glial tumor, is currently treated as first line by the Stupp protocol, which combines, after surgery, radiotherapy and chemotherapy. For recurrent GBM, in absence of standard treatment or available clinical trials, various protocols including cytotoxic drugs and/or bevacizumab are currently applied. Despite these heavy treatments, the mean overall survival of patients is under 18 months. Many clinical studies are underway. Based on clinicaltrials.org and conducted up to 1 April 2020, this review lists, not only main, but all targeted therapies in phases II-IV of 257 clinical trials on adults with newly diagnosed or recurrent GBMs for the last twenty years. It does not involve targeted immunotherapies and therapies targeting tumor cell metabolism, that are well documented in other reviews. Without surprise, the most frequently reported drugs are those targeting (i) EGFR (40 clinical trials), and more generally tyrosine kinase receptors (85 clinical trials) and (ii) VEGF/VEGFR (75 clinical trials of which 53 involving bevacizumab). But many other targets and drugs are of interest. They are all listed and thoroughly described, on an one-on-one basis, in four sections related to targeting (i) GBM stem cells and stem cell pathways, (ii) the growth autonomy and migration, (iii) the cell cycle and the escape to cell death, (iv) and angiogenesis.
Collapse
Affiliation(s)
- Elisabete Cruz Da Silva
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| | - Marie-Cécile Mercier
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| | - Nelly Etienne-Selloum
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
- Service de Pharmacie, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Monique Dontenwill
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| | - Laurence Choulier
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| |
Collapse
|
26
|
Nguyen HM, Guz-Montgomery K, Lowe DB, Saha D. Pathogenetic Features and Current Management of Glioblastoma. Cancers (Basel) 2021; 13:cancers13040856. [PMID: 33670551 PMCID: PMC7922739 DOI: 10.3390/cancers13040856] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most common form of primary malignant brain tumor with a devastatingly poor prognosis. The disease does not discriminate, affecting adults and children of both sexes, and has an average overall survival of 12-15 months, despite advances in diagnosis and rigorous treatment with chemotherapy, radiation therapy, and surgical resection. In addition, most survivors will eventually experience tumor recurrence that only imparts survival of a few months. GBM is highly heterogenous, invasive, vascularized, and almost always inaccessible for treatment. Based on all these outstanding obstacles, there have been tremendous efforts to develop alternative treatment options that allow for more efficient targeting of the tumor including small molecule drugs and immunotherapies. A number of other strategies in development include therapies based on nanoparticles, light, extracellular vesicles, and micro-RNA, and vessel co-option. Advances in these potential approaches shed a promising outlook on the future of GBM treatment. In this review, we briefly discuss the current understanding of adult GBM's pathogenetic features that promote treatment resistance. We also outline novel and promising targeted agents currently under development for GBM patients during the last few years with their current clinical status.
Collapse
|