1
|
Xie S, Hofmann JN, Sampson JN, Josse PR, Madrigal JM, Chang VC, Deziel NC, Andreotti G, Keil AP, Ward MH, Beane Freeman LE, Friesen MC. Quantitative measures of recent and lifetime agricultural pesticide use are associated with increased pesticide concentrations in house dust. ENVIRONMENT INTERNATIONAL 2024; 193:109123. [PMID: 39541787 PMCID: PMC11620478 DOI: 10.1016/j.envint.2024.109123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE Elevated pesticide concentrations have been found in dust from homes with residents who use agricultural pesticides, but few studies have compared these concentrations to quantitative measures of their use. We evaluated household pesticide dust concentrations in relation to quantitative, active ingredient-specific metrics of agricultural pesticide use in the Biomarkers of Exposure and Effect in Agriculture Study. METHODS Participants provided vacuum dust samples (2013-2018) and information regarding recent (last 12 months) and lifetime pesticide use. Thirty-two pesticide analytes were measured in 295 dust samples from 213 participants; 54 had repeated measurements (median = 96 days between visits). We used mixed-effects quantile regression models to estimate relative differences in pesticide concentrations for recent and lifetime agricultural use (number of days, intensity-weighted days), recent home/garden use (yes/no), and household characteristics. Only household characteristics were examined for dacthal because of no use information. We calculated intraclass correlation coefficients (ICCs) to evaluate temporal variability. We report only descriptive statistics for pesticides with detection rates <25 %. RESULTS For currently used pesticides, quantitative measures of recent agricultural use were associated with significantly increased household pesticide dust concentrations for malathion, metolachlor, acetochlor, cyfluthrin, and atrazine (p-trends < 0.001), but not permethrin. Similarly, quantitative measures of lifetime use were associated with increased concentrations of malathion, metolachlor, carbaryl, diazinon, and atrazine (p-trends < 0.001), but not permethrin, chlorpyrifos, or chlorothalonil. For banned pesticides, ever agricultural use was associated with elevated chlordane and heptachlor concentrations and non-significantly elevated dieldrin concentrations, but not lindane, p,p-DDD, p,p-DDE, or p,p-DDT. Recent home/garden use predicted increased malathion, carbaryl, and cyfluthrin concentrations. ICCs (range = 0.57-0.90) suggested moderate to high correlation over 3-6 months. Detection rates were <25 % for alachlor, butylate, EPTC, metribuzin, simazine, carbofuran, coumaphos, as well as for three banned pesticides (cyanazine, aldrin, endosulfan). CONCLUSIONS Household pesticide dust concentrations were strongly associated with the frequency of agricultural pesticide use.
Collapse
Affiliation(s)
- Shuai Xie
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
| | - Jonathan N Hofmann
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Joshua N Sampson
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Pabitra R Josse
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jessica M Madrigal
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Vicky C Chang
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Nicole C Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Gabriella Andreotti
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Alexander P Keil
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Mary H Ward
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Laura E Beane Freeman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Melissa C Friesen
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
2
|
Bennett DH, Sellen J, Moran R, Alaimo CP, Young TM. Personal air sampling for pesticides in the California San Joaquin Valley. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024:10.1038/s41370-024-00708-4. [PMID: 39251871 PMCID: PMC11891082 DOI: 10.1038/s41370-024-00708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND California is a leading agricultural state and with that, has significant applications of pesticides. Levels of exposure have been measured to be higher among residents in agricultural areas, but measures of personal inhalation exposure to a wide range of pesticides are lacking. Community members in the San Joaquin Valley have expressed concern over pesticide exposures. Working with community members, a wide range of pesticides in personal air samples were measured. METHODS Adult and school-aged participants were recruited from small agricultural towns in the San Joaquin Valley. Participants wore a backpack sampler for 8-14 h on 1-3 days. Samples were collected on two tubes, one with Tenax-TA resin and the other with XAD-2 resin. In total, 21 pesticides were analyzed using both LC/MS and GC/MS methods. RESULTS Thirty-one adult participants and 11 school aged participants were recruited, and sampling occurred on a total of 92 days. Seven adults, 22% of adult participants, and one school child had detectable levels of at least one pesticide. Pesticides detected above the limit of detection were 1,3-dichloropropene, chlorpyrifos, pyrimethanil, burprofezin and penthiopyrad. When these samples were collected, chlorpyrifos was not permitted to be used in California. IMPACT STATEMENT California, a leading agricultural state, has significant pesticide use, leading to concern about exposures among community members. Thirty-one adult and 11 school aged participants wore personal air sampling backpacks from 1-3 days. Twenty-two percent of adult participants had detectable levels of at least one pesticide. Two pesticides with established toxicity, 1,3-dichloropropene and chlorpyrifos were detected, along with first time measurements of pyrimethanil, burprofezin and penthiopyrad in the United States, which all have potential indications of toxicity. This study suggests the need to expand which pesticides are measured in agricultural communities.
Collapse
Affiliation(s)
- Deborah H Bennett
- Department of Public Health Sciences, University of California at Davis, Davis, CA, USA.
| | - Jane Sellen
- Californians for Pesticide Reform, Berkeley, CA, USA
| | - Rebecca Moran
- Department of Public Health Sciences, University of California at Davis, Davis, CA, USA
| | - Christopher P Alaimo
- Department of Civil and Environmental Engineering, University of California at Davis, Davis, CA, USA
| | - Thomas M Young
- Department of Civil and Environmental Engineering, University of California at Davis, Davis, CA, USA
| |
Collapse
|
3
|
Hakme E, Poulsen ME, Lassen AD. A Comprehensive Review on Pesticide Residues in Human Urine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17706-17729. [PMID: 39090814 DOI: 10.1021/acs.jafc.4c02705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Numerous studies worldwide have evaluated pesticide residues detected in urine. This review serves as a contribution to this field by presenting an overview of scientific research studies published from 2001 to 2023, including details of study characteristics and research scope. Encompassing 72 papers, the review further delves into addressing key challenges in study design and method used such as sampling and analytical approaches, results adjustments, risk assessment, estimations, and results evaluation. The review explores urinary concentrations and detection frequency of metabolites of organophosphates and pyrethroids, as well as herbicides such as 2,4-D and glyphosate and their metabolites, across various studies. The association of the results with demographic and lifestyle variables were explored. While farmers generally have higher pesticide exposure, adopting organic farming practices can reduce the levels of pesticides detected in their urine. Residence close to agricultural areas has shown high exposure in some cases. Dietary exposure is especially high among people adopting a conventionally grown plant-rich dietary pattern. A higher detection level and frequency of detection are generally found in females and children compared to males. The implications of transitioning to organic and sustainable plant-rich diets for reducing pesticide exposure and potential health benefits for both adults and children require further investigation.
Collapse
Affiliation(s)
- Elena Hakme
- Technical University of Denmark, National Food Institute, 2800 Lyngby, Denmark
| | | | - Anne Dahl Lassen
- Technical University of Denmark, National Food Institute, 2800 Lyngby, Denmark
| |
Collapse
|
4
|
Khan KM, Gaine ME, Daniel AR, Chilamkuri P, Rohlman DS. Organophosphorus pesticide exposure from house dust and parent-reported child behavior in Latino children from an orchard community. Neurotoxicology 2024; 102:29-36. [PMID: 38453034 PMCID: PMC11684323 DOI: 10.1016/j.neuro.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/31/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Organophosphorus pesticide (OP) exposure is known to have adverse effects on the nervous system. Children from agricultural communities are at risk of exposure to these chemicals from their indoor environments that can lead to neurological and developmental problems, including changes in behavior. OBJECTIVE The aim of this study is to evaluate whether the take-home pathway exposure is associated with behavioral and emotional problems in Latino Orchid Community children. METHOD The study was implemented over a period of two years (2008-2010) in an orchard farming community with a total of 324 parents who had children between the ages of 5-12 years old. Mothers of the children were asked to complete the Child Behavior Checklist (CBCL) and dust from their carpets was collected. Emotional and behavioral deficits were assessed based on the CBCL and house dust was assessed for OP concentrations. In this study, correlations between OPs in house dust and CBCL subscales were estimated using linear regression models with total OP concentrations classified by tertiles. This study also facilitated the comparison between the agricultural and non-agricultural families in terms of behavioral deficits and house dust concentrations of pesticides. RESULTS The data from the study shows that there was a positive association between the concentration of OP residues in house dust and internalizing behavior (β=2.06, p=0.05) whereas the association with externalizing behavior was not significant after accounting for sociocultural covariates. Significant positive associations of OP residues with somatic problems (p=0.02) and thought problems (p=0.05) were also found. CONCLUSION The data support a potential role of OP exposure in childhood development, with a specific focus on internalizing behavior. Future work focused on longitudinal studies may uncover the long-term consequences of OP exposure and behavior.
Collapse
Affiliation(s)
- Khalid M Khan
- Department of Public Health, College of Health Sciences, Sam Houston State University, 1901 Ave I, Huntsville, TX 77340, USA.
| | - Marie E Gaine
- Department of Pharmaceutical Sciences and Experimental Therapeutics (PSET), College of Pharmacy, University of Iowa, 546 CPB, 180 S Grand Ave, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA
| | - Alyssa R Daniel
- Department of Pharmaceutical Sciences and Experimental Therapeutics (PSET), College of Pharmacy, University of Iowa, 546 CPB, 180 S Grand Ave, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA
| | - Pavani Chilamkuri
- Department of Public Health, College of Health Sciences, Sam Houston State University, 1901 Ave I, Huntsville, TX 77340, USA
| | - Diane S Rohlman
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, S143 CPHB 145 N. Riverside Drive, Iowa City, IA 52242, USA
| |
Collapse
|
5
|
Navarro I, de la Torre A, Sanz P, Baldi I, Harkes P, Huerta-Lwanga E, Nørgaard T, Glavan M, Pasković I, Pasković MP, Abrantes N, Campos I, Alcon F, Contreras J, Alaoui A, Hofman J, Vested A, Bureau M, Aparicio V, Mandrioli D, Sgargi D, Mol H, Geissen V, Silva V, Martínez MÁ. Occurrence of pesticide residues in indoor dust of farmworker households across Europe and Argentina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167797. [PMID: 37838044 DOI: 10.1016/j.scitotenv.2023.167797] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Pesticides are widely used as plant protection products (PPPs) in farming systems to preserve crops against pests, weeds, and fungal diseases. Indoor dust can act as a chemical repository revealing occurrence of pesticides in the indoor environment at the time of sampling and the (recent) past. This in turn provides information on the exposure of humans to pesticides in their homes. In the present study, part of the Horizon 2020 funded SPRINT project, the presence of 198 pesticide residues was assessed in 128 indoor dust samples from both conventional and organic farmworker households across Europe, and in Argentina. Mixtures of pesticide residues were found in all dust samples (25-121, min-max; 75, median). Concentrations varied in a wide range (<0.01 ng/g-206 μg/g), with glyphosate and its degradation product AMPA, permethrin, cypermethrin and piperonyl butoxide found in highest levels. Regarding the type of pesticides, insecticides showed significantly higher levels than herbicides and fungicides. Indoor dust samples related to organic farms showed a significantly lower number of residues, total and individual concentrations than those related to conventional farms. Some pesticides found in indoor dust were no longer approved ones (29 %), with acute/chronic hazards to human health (32 %) and with environmental toxicity (21 %).
Collapse
Affiliation(s)
- Irene Navarro
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain.
| | - Adrián de la Torre
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain
| | - Paloma Sanz
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain
| | - Isabelle Baldi
- University of Bordeaux, INSERM, BPH, U1219 Bordeaux, France
| | - Paula Harkes
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - Esperanza Huerta-Lwanga
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | | | - Matjaž Glavan
- Agronomy Department, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Igor Pasković
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Porec, Croatia
| | - Marija Polić Pasković
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Porec, Croatia
| | - Nelson Abrantes
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Isabel Campos
- Department of Environment and Planning and CESAM, University of Aveiro, Aveiro, Portugal
| | - Francisco Alcon
- Department of Business Economics, Universidad Politécnica de Cartagena, Spain
| | - Josefina Contreras
- Department Agricultural Engineering, Universidad Politécnica de Cartagena, Spain
| | - Abdallah Alaoui
- Institute of Geography, University of Bern, Bern, Switzerland
| | - Jakub Hofman
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Anne Vested
- Department of Public Health - Unit for Environment, Occupation, and Health, Danish Ramazzini Centre, Aarhus University, Denmark
| | | | | | - Daniele Mandrioli
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | - Daria Sgargi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | - Hans Mol
- Wageningen Food Safety Research - part of Wageningen University & Research, Wageningen, Netherlands
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - Vera Silva
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - María Ángeles Martínez
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain
| |
Collapse
|
6
|
Lepetit C, Gaber M, Zhou K, Chen H, Holmes J, Summers P, Anderson KA, Scott RP, Pope CN, Hester K, Laurienti PJ, Quandt SA, Arcury TA, Vidi PA. Follicular DNA Damage and Pesticide Exposure Among Latinx Children in Rural and Urban Communities. EXPOSURE AND HEALTH 2023; 16:1039-1052. [PMID: 39220725 PMCID: PMC11362388 DOI: 10.1007/s12403-023-00609-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/04/2023] [Accepted: 09/29/2023] [Indexed: 09/04/2024]
Abstract
The intersectional risks of children in United States immigrant communities include environmental exposures. Pesticide exposures and their biological outcomes are not well characterized in this population group. We assessed pesticide exposure and related these exposures to DNA double-strand breaks (DSBs) in Latinx children from rural, farmworker families (FW; N = 30) and from urban, non-farmworker families (NFW; N = 15) living in North Carolina. DSBs were quantified in hair follicular cells by immunostaining of 53BP1, and exposure to 72 pesticides and pesticide degradation products were determined using silicone wristbands. Cholinesterase activity was measured in blood samples. DSB frequencies were higher in FW compared to NFW children. Seasonal effects were detected in the FW group, with highest DNA damage levels in April-June and lowest levels in October-November. Acetylcholinesterase depression had the same seasonality and correlated with follicular DNA damage. Organophosphate pesticides were more frequently detected in FW than in NFW children. Participants with organophosphate detections had increased follicular DNA damage compared to participants without organophosphate detection. Follicular DNA damage did not correlate with organochlorine or pyrethroid detections and was not associated with the total number of pesticides detected in the wristbands. These results point to rural disparities in pesticide exposures and their outcomes in children from vulnerable immigrant communities. They suggest that among the different classes of pesticides, organophosphates have the strongest genotoxic effects. Assessing pesticide exposures and their consequences at the individual level is key to environmental surveillance programs. To this end, the minimally invasive combined approach used here is particularly well suited for children. Supplementary Information The online version contains supplementary material available at 10.1007/s12403-023-00609-1.
Collapse
Affiliation(s)
- Cassandra Lepetit
- Laboratoire InGenO, Institut de Cancérologie de l’Ouest, 49055 Angers, France
| | - Mohamed Gaber
- Laboratoire InGenO, Institut de Cancérologie de l’Ouest, 49055 Angers, France
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Ke Zhou
- Sciences Humaines et Sociales, Institut de Cancérologie de l’Ouest, 44805 Saint Herblain, France
| | - Haiying Chen
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Julia Holmes
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Phillip Summers
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Kim A. Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331 USA
| | - Richard P. Scott
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331 USA
| | - Carey N. Pope
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078 USA
| | - Kirstin Hester
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078 USA
| | - Paul J. Laurienti
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Sara A. Quandt
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Thomas A. Arcury
- Department of Family and Community Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Pierre-Alexandre Vidi
- Laboratoire InGenO, Institut de Cancérologie de l’Ouest, 49055 Angers, France
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| |
Collapse
|
7
|
Guzman-Torres H, Sandoval-Pinto E, Cremades R, Ramírez-de-Arellano A, García-Gutiérrez M, Lozano-Kasten F, Sierra-Díaz E. Frequency of urinary pesticides in children: a scoping review. Front Public Health 2023; 11:1227337. [PMID: 37711246 PMCID: PMC10497881 DOI: 10.3389/fpubh.2023.1227337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/26/2023] [Indexed: 09/16/2023] Open
Abstract
Pesticides are any mix of ingredients and substances used to eliminate or control unwanted vegetable or animal species recognized as plagues. Its use has been discussed in research due to the scarcity of strong scientific evidence about its health effects. International literature is still insufficient to establish a global recommendation through public policy. This study aims to explore international evidence of the presence of pesticides in urine samples from children and their effects on health through a scoping review based on the methodology described by Arksey and O'Malley. The number of articles resulting from the keyword combination was 454, and a total of 93 manuscripts were included in the results and 22 were complementary. Keywords included in the search were: urinary, pesticide, children, and childhood. Children are exposed to pesticide residues through a fruit and vegetable intake environment and household insecticide use. Behavioral effects of neural damage, diabetes, obesity, and pulmonary function are health outcomes for children that are commonly studied. Gas and liquid chromatography-tandem mass spectrometry methods are used predominantly for metabolite-pesticide detection in urine samples. Dialkylphosphates (DAP) are common in organophosphate (OP) metabolite studies. First-morning spot samples are recommended to most accurately characterize OP dose in children. International evidence in PubMed supports that organic diets in children are successful interventions that decrease the urinary levels of pesticides. Several urinary pesticide studies were found throughout the world's population. However, there is a knowledge gap that is important to address (public policy), due to farming activities that are predominant in these territories.
Collapse
Affiliation(s)
- Horacio Guzman-Torres
- Departamento de Salud Pública, Centro Universitario en Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Elena Sandoval-Pinto
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológico Agropecuarias, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Rosa Cremades
- Departamento de Microbiología y Parasitología, Centro Universitario en Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Adrián Ramírez-de-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Mariana García-Gutiérrez
- Centro Metropolitano de Atención de la Diabetes Tipo 1, OPD Servicios de Salud, Secretaría de Salud Jalisco, Guadalajara, Jalisco, Mexico
| | - Felipe Lozano-Kasten
- Departamento de Salud Pública, Centro Universitario en Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Erick Sierra-Díaz
- Departamentos de Clínicas Quirúrgicas y Salud Pública, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- División de Epidemiología, UMAE Hospital de Especialidades Centro Médico Nacional de Occidente del IMSS, Guadalajara, Mexico
| |
Collapse
|
8
|
Xie S, Hofmann JN, Sampson JN, Josse PR, Andreotti G, Madrigal JM, Ward MH, Beane Freeman LE, Friesen MC. Elevated 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide concentrations in the household dust of farmers with recent occupational use. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2023; 20:207-218. [PMID: 37017362 DOI: 10.1080/15459624.2023.2198588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Pesticide dust concentrations in homes have been previously associated with occupational and home/garden use of pesticides, hygiene practices, and other factors. This study evaluated the relationship between self-reported use of 2,4-dichlorophenoxyacetic acid (2,4-D) and house dust concentrations and these factors in the Biomarkers of Exposure and Effect in Agriculture (BEEA) Study, a molecular epidemiologic study of farmers in Iowa and North Carolina. The vacuum dust from the homes of 35 BEEA participants was analyzed for the presence of 2,4-D. Participants provided detailed information on occupational and home/garden pesticide use during the past 12 months and reported household characteristics via questionnaires. Linear regression models were used to examine the association between 2,4-D concentrations and four exposure metrics for occupational use in the last 12 months (yes/no, days since last use, days of use, intensity-weighted days of use), home/garden use (yes/no), as well as several household characteristics. 2,4-D was detected in all homes and was used occupationally by 54% of the participants. In a multi-variable model, compared to homes with no occupational or home/garden 2,4-D use reported in the past 12 months, concentrations were 1.6 (95% confidence interval (CI): 0.5, 4.9) times higher in homes with low occupational 2,4-D use (intensity-weighted days < median) and 3.1 (95% CI: 1.0, 9.8) times higher in homes of participants with high use (≥median intensity-weighted days) (p-trend = 0.06). Similar patterns were observed with other occupational metrics. Additionally, 2,4-D dust concentrations were non-significantly elevated (relative difference (RD) = 1.8, 95% CI: 0.5, 6.2) in homes with home/garden use and were significantly lower in homes that did not have carpets (RD = 0.20, 95% CI: 0.04, 0.98). These analyses suggest that elevated 2,4-D dust concentrations were associated with several metrics of recent occupational use and may be influenced by home/garden use and household characteristics.
Collapse
Affiliation(s)
- Shuai Xie
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Jonathan N Hofmann
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Joshua N Sampson
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Pabitra R Josse
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Gabriella Andreotti
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Jessica M Madrigal
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Mary H Ward
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Laura E Beane Freeman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Melissa C Friesen
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| |
Collapse
|
9
|
Szafran BN, Nichols J, Nicaise A, Borazjani A, Carr RL, Wilson JR, Ross MK, Kaplan BLF. Cnr1 -/- has minimal impact on chlorpyrifos-mediated effects in the mouse endocannabinoid system, but it does alter lipopolysaccharide-induced cytokine levels in splenocytes. Chem Biol Interact 2023; 375:110425. [PMID: 36858108 PMCID: PMC10150269 DOI: 10.1016/j.cbi.2023.110425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023]
Abstract
Chlorpyrifos (CPF) is an organophosphate pesticide that can inhibit endocannabinoid (eCB) metabolizing enzymes in animal models at levels that do not significantly alter acetylcholinesterase (AChE) in the central nervous system (CNS). Previous studies indicated that repeated low-level CPF exposure in developing rats increased the levels of eCBs in the brain. Because eCBs play a role in immune homeostasis through their engagement with cannabinoid receptors, we investigated the role of cannabinoid receptor 1 (CB1, encoded by the Cnr1 gene) on the CPF-mediated effects in the spleen and lung of neonatal and adult female mice. We treated neonatal and adult female Cnr1-/- mice with 2.5 mg/kg oral CPF or vehicle for 7 days. Tissues were harvested 4 h after the last CPF dose to evaluate eCB metabolic enzyme activity, levels of eCBs, and tissue immunophenotype. There were a small number of genotype-dependent alterations noted in the endpoints following CPF treatment that were specific to age and tissue type, and differences in eCB metabolism caused by CPF treatment did not correlate to changes in eCB levels. To explore the role of CB1 in CPF-mediated effects on immune endpoints, in vitro experiments were performed with WT murine splenocytes exposed to chlorpyrifos oxon (CPO; oxon metabolite of CPF) and challenged with lipopolysaccharide (LPS). While CPO did not alter LPS-induced pro-inflammatory cytokine levels, inactivation of CB1 by the antagonist SR141716A augmented LPS-induced IFN-γ levels. Additional experiments with WT and Cnr1-/- murine splenocytes confirmed a role for CB1 in altering the production of LPS-induced pro-inflammatory cytokine levels. We conclude that CPF-mediated effects on the eCB system are not strongly dependent on CB1, although abrogation of CB1 does alter LPS-induced cytokine levels in splenocytes.
Collapse
Affiliation(s)
- Brittany N Szafran
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, MS, USA
| | - James Nichols
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, MS, USA
| | - Ashleigh Nicaise
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, MS, USA
| | - Abdolsamad Borazjani
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, MS, USA
| | - Russell L Carr
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, MS, USA
| | - Juliet R Wilson
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, MS, USA
| | - Matthew K Ross
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, MS, USA
| | - Barbara L F Kaplan
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, MS, USA.
| |
Collapse
|
10
|
Stanaway IB, Wallace JC, Hong S, Wilder CS, Green FH, Tsai J, Knight M, Workman T, Vigoren EM, Smith MN, Griffith WC, Thompson B, Shojaie A, Faustman EM. Alteration of oral microbiome composition in children living with pesticide-exposed farm workers. Int J Hyg Environ Health 2023; 248:114090. [PMID: 36516690 PMCID: PMC9898171 DOI: 10.1016/j.ijheh.2022.114090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/30/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Our prior work shows that azinphos-methyl pesticide exposure is associated with altered oral microbiomes in exposed farmworkers. Here we extend this analysis to show the same association pattern is also evident in their children. Oral buccal swab samples were analyzed at two time points, the apple thinning season in spring-summer 2005 for 78 children and 101 adults and the non-spray season in winter 2006 for 62 children and 82 adults. The pesticide exposure for the children were defined by the farmworker occupation of the cohabitating household adult and the blood azinphos-methyl detection of the cohabitating adult. Oral buccal swab 16S rRNA sequencing determined taxonomic microbiota proportional composition from concurrent samples from both adults and children. Analysis of the identified bacteria showed significant proportional changes for 12 of 23 common oral microbiome genera in association with azinphos-methyl detection and farmworker occupation. The most common significantly altered genera had reductions in the abundance of Streptococcus, suggesting an anti-microbial effect of the pesticide. Principal component analysis of the microbiome identified two primary clusters, with association of principal component 1 to azinphos-methyl blood detection and farmworker occupational status of the household. The children's buccal microbiota composition clustered with their household adult in ∼95% of the households. Household adult farmworker occupation and household pesticide exposure is associated with significant alterations in their children's oral microbiome composition. This suggests that parental occupational exposure and pesticide take-home exposure pathways elicit alteration of their children's microbiomes.
Collapse
Affiliation(s)
- Ian B Stanaway
- Department of Environmental and Occupational Health Sciences, Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA, USA
| | - James C Wallace
- Department of Environmental and Occupational Health Sciences, Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA, USA
| | - Sungwoo Hong
- Department of Environmental and Occupational Health Sciences, Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA, USA
| | - Carly S Wilder
- Department of Environmental and Occupational Health Sciences, Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA, USA
| | - Foad H Green
- Department of Environmental and Occupational Health Sciences, Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA, USA
| | - Jesse Tsai
- Department of Environmental and Occupational Health Sciences, Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA, USA
| | - Misty Knight
- Department of Environmental and Occupational Health Sciences, Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA, USA
| | - Tomomi Workman
- Department of Environmental and Occupational Health Sciences, Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA, USA
| | - Eric M Vigoren
- Department of Environmental and Occupational Health Sciences, Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA, USA
| | - Marissa N Smith
- Department of Environmental and Occupational Health Sciences, Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA, USA
| | - William C Griffith
- Department of Environmental and Occupational Health Sciences, Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA, USA
| | - Beti Thompson
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ali Shojaie
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Elaine M Faustman
- Department of Environmental and Occupational Health Sciences, Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA, USA.
| |
Collapse
|
11
|
Andersen HR, Rambaud L, Riou M, Buekers J, Remy S, Berman T, Govarts E. Exposure Levels of Pyrethroids, Chlorpyrifos and Glyphosate in EU-An Overview of Human Biomonitoring Studies Published since 2000. TOXICS 2022; 10:789. [PMID: 36548622 PMCID: PMC9788618 DOI: 10.3390/toxics10120789] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Currently used pesticides are rapidly metabolised and excreted, primarily in urine, and urinary concentrations of pesticides/metabolites are therefore useful biomarkers for the integrated exposure from all sources. Pyrethroid insecticides, the organophosphate insecticide chlorpyrifos, and the herbicide glyphosate, were among the prioritised substances in the HBM4EU project and comparable human biomonitoring (HBM)-data were obtained from the HBM4EU Aligned Studies. The aim of this review was to supplement these data by presenting additional HBM studies of the priority pesticides across the HBM4EU partner countries published since 2000. We identified relevant studies (44 for pyrethroids, 23 for chlorpyrifos, 24 for glyphosate) by literature search using PubMed and Web of Science. Most studies were from the Western and Southern part of the EU and data were lacking from more than half of the HBM4EU-partner countries. Many studies were regional with relatively small sample size and few studies address residential and occupational exposure. Variation in urine sampling, analytical methods, and reporting of the HBM-data hampered the comparability of the results across studies. Despite these shortcomings, a widespread exposure to these substances in the general EU population with marked geographical differences was indicated. The findings emphasise the need for harmonisation of methods and reporting in future studies as initiated during HBM4EU.
Collapse
Affiliation(s)
- Helle Raun Andersen
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark (SDU), 5000 Odense, Denmark
| | - Loïc Rambaud
- Santé Publique France, Environmental and Occupational Health Division, 94410 Saint-Maurice, France
| | - Margaux Riou
- Santé Publique France, Environmental and Occupational Health Division, 94410 Saint-Maurice, France
| | - Jurgen Buekers
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Tamar Berman
- Israel Ministry of Health (MOH-IL), Jerusalem 9446724, Israel
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| |
Collapse
|
12
|
Ortí E, Cuenca A, Pérez M, Torregrosa A, Ortiz C, Rovira-Más F. Preliminary Evaluation of a Blast Sprayer Controlled by Pulse-Width-Modulated Nozzles. SENSORS 2022; 22:s22134924. [PMID: 35808413 PMCID: PMC9269797 DOI: 10.3390/s22134924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023]
Abstract
Precision spraying relies on the response of the spraying equipment to the features of the targeted canopy. PWM technology manages the flow rate using a set of electronically actuated solenoid valves to regulate flow rate at the nozzle level. Previous studies have found that PWM systems may deliver incorrect flow rates. The objective of the present study was to characterize the performance of a commercial blast sprayer modified with pulse-width-modulated nozzles under laboratory conditions, as a preliminary step before its further field validation. Four different duty cycles (25 percent, 50 percent, 75 percent and 100 percent) and four different pressures (400 kPa, 500 kPa, 600 kPa and 700 kPa) were combined to experimentally measure the flow rate of each nozzle. Results showed that the PWM nozzles mounted in the commercial blast sprayer, under static conditions, were capable of modulating flow rate according to the duty cycle. However, the reduction of flow rates for the tested duty cycles according to pressure was lower than the percentage expected. A good linear relation was found between the pressure registered by the control system feedback sensor and the pressure measured by a reference conventional manometer located after the pump. High-speed video recordings confirmed the accurate opening and closing of the nozzles according to the duty cycle; however, substantial pressure variations were found at nozzle level. Further research to establish the general suitability of PWM systems for regulating nozzle flow rates in blast sprayers without modifying the system pressure still remains to be addressed.
Collapse
|
13
|
Arcury TA, Chen H, Arnold TJ, Quandt SA, Anderson KA, Scott RP, Talton JW, Daniel SS. Pesticide exposure among Latinx child farmworkers in North Carolina. Am J Ind Med 2021; 64:602-619. [PMID: 34036619 DOI: 10.1002/ajim.23258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/06/2021] [Accepted: 05/06/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND Although pesticides have adverse effects on child health and development, little research has examined pesticide exposure among child farmworkers. This analysis addresses two specific aims: (1) describes pesticide exposure among Latinx child farmworkers in North Carolina, and (2) delineates factors associated with this pesticide exposure. METHODS In 2018 (n = 173) and 2019 (n = 156) Latinx child farmworkers completed interviews and wore silicone wristbands for a single day to measure pesticide exposure. Wristbands were analyzed for 70 pesticides. RESULTS Most Latinx child farmworkers were exposed to multiple pesticides; the most frequent were pyrethroids (69.9% in 2018, 67.9% in 2019), organochlorines (51.4% in 2018, 55.1% in 2019), and organophosphates (51.4% in 2018, 34.0% in 2019). Children were exposed to a mean of 2.15 pesticide classes in 2018 and 1.91 in 2019, and to a mean of 4.06 pesticides in 2018 and 3.34 in 2019. Younger children (≤15 years) had more detections than older children; children not currently engaged in farm work had more detections than children currently engaged in farm work. Migrant child farmworkers had more detections than nonmigrants. For specific pesticides with at least 20 detections, detections and concentrations were generally greater among children not currently engaged in farm work than children currently engaged. CONCLUSIONS Children who live in farmworker communities are exposed to a plethora of pesticides. Although further research is needed to document the extent of pesticide exposure and its health consequences, sufficient information is available to inform the policy needed to eliminate this pesticide exposure in agricultural communities.
Collapse
Affiliation(s)
- Thomas A. Arcury
- Department of Family and Community Medicine Wake Forest School of Medicine Winston‐Salem North Carolina USA
- Center for Worker Health Wake Forest School of Medicine Winston‐Salem North Carolina USA
| | - Haiying Chen
- Center for Worker Health Wake Forest School of Medicine Winston‐Salem North Carolina USA
- Department of Biostatistics and Data Science, Division of Public Health Sciences Wake Forest School of Medicine Winston‐Salem North Carolina USA
| | - Taylor J. Arnold
- Department of Family and Community Medicine Wake Forest School of Medicine Winston‐Salem North Carolina USA
| | - Sara A. Quandt
- Center for Worker Health Wake Forest School of Medicine Winston‐Salem North Carolina USA
- Department of Epidemiology and Prevention, Division of Public Health Sciences Wake Forest School of Medicine Winston‐Salem North Carolina USA
| | - Kim A. Anderson
- Department of Environmental and Molecular Toxicology Oregon State University Corvallis Oregon USA
| | - Richard P. Scott
- Department of Environmental and Molecular Toxicology Oregon State University Corvallis Oregon USA
| | - Jennifer W. Talton
- Department of Biostatistics and Data Science, Division of Public Health Sciences Wake Forest School of Medicine Winston‐Salem North Carolina USA
| | - Stephanie S. Daniel
- Department of Family and Community Medicine Wake Forest School of Medicine Winston‐Salem North Carolina USA
| |
Collapse
|
14
|
Szafran BN, Borazjani A, Seay CN, Carr RL, Lehner R, Kaplan BLF, Ross MK. Effects of Chlorpyrifos on Serine Hydrolase Activities, Lipid Mediators, and Immune Responses in Lungs of Neonatal and Adult Mice. Chem Res Toxicol 2021; 34:1556-1571. [PMID: 33900070 DOI: 10.1021/acs.chemrestox.0c00488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chlorpyrifos (CPF) is an organophosphate (OP) pesticide that causes acute toxicity by inhibiting acetylcholinesterase (AChE) in the nervous system. However, endocannabinoid (eCB) metabolizing enzymes in brain of neonatal rats are more sensitive than AChE to inhibition by CPF, leading to increased levels of eCBs. Because eCBs are immunomodulatory molecules, we investigated the association between eCB metabolism, lipid mediators, and immune function in adult and neonatal mice exposed to CPF. We focused on lung effects because epidemiologic studies have linked pesticide exposures to respiratory diseases. CPF was hypothesized to disrupt lung eCB metabolism and alter lung immune responses to lipopolysaccharide (LPS), and these effects would be more pronounced in neonatal mice due to an immature immune system. We first assessed the biochemical effects of CPF in adult mice (≥8 weeks old) and neonatal mice after administering CPF (2.5 mg/kg, oral) or vehicle for 7 days. Tissues were harvested 4 h after the last CPF treatment and lung microsomes from both age groups demonstrated CPF-dependent inhibition of carboxylesterases (Ces), a family of xenobiotic and lipid metabolizing enzymes, whereas AChE activity was inhibited in adult lungs only. Activity-based protein profiling (ABPP)-mass spectrometry of lung microsomes identified 31 and 32 individual serine hydrolases in neonatal lung and adult lung, respectively. Of these, Ces1c/Ces1d/Ces1b isoforms were partially inactivated by CPF in neonatal lung, whereas Ces1c/Ces1b and Ces1c/BChE were partially inactivated in adult female and male lungs, respectively, suggesting age- and sex-related differences in their sensitivity to CPF. Monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH) activities in lung were unaffected by CPF. When LPS (1.25 mg/kg, i.p.) was administered following the 7-day CPF dosing period, little to no differences in lung immune responses (cytokines and immunophenotyping) were noted between the CPF and vehicle groups. However, a CPF-dependent increase in the amounts of dendritic cells and certain lipid mediators in female lung following LPS challenge was observed. Experiments in neonatal and adult Ces1d-/- mice yielded similar results as wild type mice (WT) following CPF treatment, except that CPF augmented LPS-induced Tnfa mRNA in adult Ces1d-/- mouse lungs. This effect was associated with decreased expression of Ces1c mRNA in Ces1d-/- mice versus WT mice in the setting of LPS exposure. We conclude that CPF exposure inactivates several Ces isoforms in mouse lung and, during an inflammatory response, increases certain lipid mediators in a female-dependent manner. However, it did not cause widespread altered lung immune effects in response to an LPS challenge.
Collapse
Affiliation(s)
- Brittany N Szafran
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Abdolsamad Borazjani
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Caitlin N Seay
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Russell L Carr
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Richard Lehner
- Departments of Cell Biology and Pediatrics, Group on Molecular & Cell Biology of Lipids, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Barbara L F Kaplan
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Matthew K Ross
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
15
|
Molomo RN, Basera W, Chetty-Mhlanga S, Fuhrimann S, Mugari M, Wiesner L, Röösli M, Dalvie MA. Relation between organophosphate pesticide metabolite concentrations with pesticide exposures, socio-economic factors and lifestyles: A cross-sectional study among school boys in the rural Western Cape, South Africa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116660. [PMID: 33582632 DOI: 10.1016/j.envpol.2021.116660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 05/27/2023]
Abstract
Evidence on the relationship between lifestyle, socio-economic factors and pesticide exposure and urinary concentrations of organophosphate (OP) pesticide metabolites among children is generally incomplete. This study investigated the relationship between socio-economic factors and reported pesticide exposures and the sum of three urinary concentrations of dialkyl phosphate metabolites (DAP) among boys living in the rural areas of the Western Cape, South Africa. Data was collected during a cross-sectional study of 183 boys from three agricultural intense areas. Measurements included a questionnaire on socio-economic and pesticide exposures and urinary DAP concentrations. Most boys (70%) lived on farms with a median age of 12 years (range: 5.0-19.5 years). Children aged >14 years had lower DAP urine concentrations (median = 39.9 ng/ml; β = -68.1 ng/ml; 95% CI: -136.8, 0.6) than children aged 9 years and younger (median = 107.0 ng/ml). DAP concentrations also varied significantly with area, with concentrations in the grape farming area, Hex River Valley (median = 61.8 ng/ml; β = -52.1; 95% CI: -97.9, -6.3 ng/ml) and the wheat farming area, Piketberg (median = 72.4 ng/ml; β = -54.2; 95% CI: 98.8, -9.7 ng/ml) lower than those in the pome farming area, Grabouw (median = 79.9 ng/ml). Other weaker and non-significant associations with increased DAP levels were found with increased household income, member of household working with pesticides, living on a farm, drinking water from an open water source and eating crops from the vineyard and or garden. The study found younger age and living in and around apple and grape farms to be associated with increased urinary DAP concentrations. Additionally, there were other pesticide exposures and socio-economic and lifestyle factors that were weakly associated with elevated urinary DAP levels requiring further study. The study provided more evidence on factors associated to urinary DAP concentrations especially in developing country settings.
Collapse
Affiliation(s)
- Regina Ntsubise Molomo
- Centre for Environment and Occupational Health Research, School of Public Health and Family Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, 7729, Cape Town, South Africa.
| | - Wisdom Basera
- Centre for Environment and Occupational Health Research, School of Public Health and Family Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, 7729, Cape Town, South Africa.
| | - Shala Chetty-Mhlanga
- Swiss Tropical and Public Health Institute (Swiss TPH), 4002, Basel, Switzerland.
| | - Samuel Fuhrimann
- Swiss Tropical and Public Health Institute (Swiss TPH), 4002, Basel, Switzerland; Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 Utrecht, The Netherlands.
| | - Mufaro Mugari
- Centre for Environment and Occupational Health Research, School of Public Health and Family Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, 7729, Cape Town, South Africa; Hair and Skin Research Laboratory, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa.
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa.
| | - Martin Röösli
- Swiss Tropical and Public Health Institute (Swiss TPH), 4002, Basel, Switzerland; University of Basel, 4002 Basel, Switzerland.
| | - Mohamed Aqiel Dalvie
- Centre for Environment and Occupational Health Research, School of Public Health and Family Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, 7729, Cape Town, South Africa.
| |
Collapse
|
16
|
Arcury TA, Chen H, Quandt SA, Talton JW, Anderson KA, Scott RP, Jensen A, Laurienti PJ. Pesticide exposure among Latinx children: Comparison of children in rural, farmworker and urban, non-farmworker communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:144233. [PMID: 33385842 PMCID: PMC7855950 DOI: 10.1016/j.scitotenv.2020.144233] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 05/05/2023]
Abstract
Personal pesticide exposure is not well characterized among children in vulnerable, immigrant communities. We used silicone wristbands in 2018-2019 to assess pesticide exposure in 8 year old Latinx boys and girls in rural, farmworker families (n = 73) and urban, non-farmworker families (n = 60) living in North Carolina who were enrolled in the PACE5 Study, a community-based participatory research study. We determined the detection and concentrations (ng/g) of 75 pesticides and pesticide degradation products in the silicone wristbands worn for one week using gas chromatography electron capture detection and employed gas chromatography mass spectrometry. Differences by personal and family characteristics were tested using analysis of variance or Wilcoxon Rank Sum tests when necessary. Pesticide concentrations above the limit of detection were analyzed, and reported as geometric means and 95% confidence intervals (CI). The most frequently detected pesticide classes were organochlorines (85.7%), pyrethroids (65.4%), and organophosphates (59.4%), with the most frequently detected specific pesticides being alpha-chlordane (69.2%), trans-nonachlor (67.7%), gamma-chlordane (66.2%), chlorpyrifos (54.9%), cypermethrin (49.6%), and trans-permethrin (39.1%). More of those children in urban, non-farmworker families had detections of organochlorines (93.3% vs. 79.5, p = 0.0228) and pyrethroids (75.0% vs. 57.5%, p = 0.0351) than did those in rural, farmworker families; more children in rural, farmworker families had detections for organophosphates (71.2% vs. 45.0%, p= 0.0022). Children in urban, non-farmworker families had greater concentrations of alpha-chlordane (geometric mean (GM) 18.98, 95% CI 14.14, 25.47 vs. 10.25, 95% CI 7.49, 14.03; p= 0.0055) and dieldrin (GM 17.38, 95% CI 12.78 23.62 vs. 8.10, 95% CI 5.47, 12.00; p= 0.0034) than did children in rural, farmworker families. These results support the position that pesticides are ubiquitous in the living environment for children in vulnerable, immigrant communities, and argue for greater effort in documenting the widespread nature of pesticide exposure among children, with greater effort to reduce pesticide exposure.
Collapse
Affiliation(s)
- Thomas A Arcury
- Department of Family and Community Medicine, Center for Worker Health, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Haiying Chen
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Sara A Quandt
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Center for Worker Health, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Jennifer W Talton
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Kim A Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, 2750 SW Campus Way, Corvallis, OR 97331, USA.
| | - Richard P Scott
- Department of Environmental and Molecular Toxicology, Oregon State University, 2750 SW Campus Way, Corvallis, OR 97331, USA.
| | - Anna Jensen
- North Carolina Farmworkers Project, 1238 NC Highway 50 S, Benson, NC 27504, USA.
| | - Paul J Laurienti
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
17
|
Sapbamrer R, Hongsibsong S, Khacha-Ananda S. Urinary organophosphate metabolites and oxidative stress in children living in agricultural and urban communities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:25715-25726. [PMID: 32356062 DOI: 10.1007/s11356-020-09037-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/22/2020] [Indexed: 05/27/2023]
Abstract
Exposure to organophosphate (OP) pesticides in children may increase oxidative stress, resulting in the development of chronic diseases. This study aims to compare urinary OP metabolites and oxidative stress between children in agricultural and urban communities. The study also investigated the factors associated with urinary OP metabolites among children. Urine samples were collected from children for measuring levels of OP metabolites, glutathione (GSH), and malondialdehyde (MDA). The remarkable findings were that total dialkylphosphate (DAP) levels detected among children in this agricultural community were significantly higher than those from the urban community (P = 0.001). Multiple linear regression showed that total diethylphosphate (DEP) levels among children in the agricultural community were negatively associated with distances from children's residence to the agricultural fields (β ± SE. = - 1.535 ± 0.334, 95%CI = - 2.202, - 0.863) and positively associated with playing on farms (β ± SE. = 0.720 ± 0.342, 95%CI = 0.036, 1.405). In addition, total dimethylphosphate (DMP) levels were positively associated with children working on farms (β ± SE. = 0.619 ± 0.264, 95%CI = 0.091, 1.147). Importantly, GSH levels among children in the agricultural community were significantly lower than those in the urban community (P < 0.001), but MDA levels did not differ. These results therefore suggest that children can be exposed to OPs both outdoors and indoors. Our results also provide supporting evidence that OP exposure can cause oxidative stress in children. As oxidative stress contributes to several chronic diseases, a good proposed strategy for the future would include measurement of oxidative stress biomarkers among children exposed to OPs as an early warning of chronic diseases.
Collapse
Affiliation(s)
- Ratana Sapbamrer
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, 110 Inthavaroros Road, Sri Phum Subdistrict, Muang District, Chiang Mai, 50200, Thailand.
| | - Surat Hongsibsong
- School of Health Sciences, Research Institute for Health Sciences, Chiang Mai University, 110 Inthavaroros Road, Sriphum Subdistrict, Muang District, Chiang Mai, 50200, Thailand
| | - Supakit Khacha-Ananda
- Toxicology Unit, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, 110 Inthavaroros Road, Sri Phum Subdistrict, Muang District, Chiang Mai, 50200, Thailand
| |
Collapse
|
18
|
An Intelligent Multi-Sensor Variable Spray System with Chaotic Optimization and Adaptive Fuzzy Control. SENSORS 2020; 20:s20102954. [PMID: 32456053 PMCID: PMC7285310 DOI: 10.3390/s20102954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 11/30/2022]
Abstract
During the variable spray process, the micro-flow control is often held back by such problems as low initial sensitivity, large inertia, large hysteresis, nonlinearity as well as the inevitable difficulties in controlling the size of the variable spray droplets. In this paper, a novel intelligent double closed-loop control with chaotic optimization and adaptive fuzzy logic is developed for a multi-sensor based variable spray system, where a Bang-Bang relay controller is used to speed up the system operation, and adaptive fuzzy nonlinear PID is employed to improve the accuracy and stability of the system. With the chaotic optimization of controller parameters, the system is globally optimized in the whole solution space. By applying the proposed double closed-loop control, the variable pressure control system includes the pressure system as the inner closed-loop and the spray volume system as the outer closed-loop. Thus, the maximum amount of spray droplets deposited on the plant surface may be achieved with the minimum medicine usage for plants. Multiple sensors (for example: three pressure sensors and two flow rate sensors) are employed to measure the system states. Simulation results show that the chaotic optimized controller has a rise time of 0.9 s, along with an adjustment time of 1.5 s and a maximum overshoot of 2.67% (in comparison using PID, the rise time is 2.2 s, the adjustment time is 5 s, and the maximum overshoot is 6.0%). The optimized controller parameters are programmed into the hardware to control the established variable spray system. The experimental results show that the optimal spray pressure of the spray system is approximately 0.3 MPa, and the flow rate is approximately 0.08 m3/h. The effective droplet rate is 89.4%, in comparison to 81.3% using the conventional PID control. The proposed chaotically optimized composite controller significantly improved the dynamic performance of the control system, and satisfactory control results are achieved.
Collapse
|
19
|
Proskocil BJ, Grodzki ACG, Jacoby DB, Lein PJ, Fryer AD. Organophosphorus Pesticides Induce Cytokine Release from Differentiated Human THP1 Cells. Am J Respir Cell Mol Biol 2020; 61:620-630. [PMID: 30978295 DOI: 10.1165/rcmb.2018-0257oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epidemiologic studies link organophosphorus pesticides (OPs) to increased incidence of asthma. In guinea pigs, OP-induced airway hyperreactivity requires macrophages and TNF-α. Here, we determined whether OPs interact directly with macrophages to alter cytokine expression or release. Human THP1 cells were differentiated into macrophages and then exposed to parathion, chlorpyrifos, or diazinon, or their oxon, phosphate, or phosphorothioate metabolites for 24 hours in the absence or presence of reagents that block cholinergic receptors. TNF-α, IL-1β, platelet-derived growth factor, and transforming growth factor-β mRNA and protein were quantified by qPCR and ELISA, respectively. The effects of OPs on NF-κB, acetylcholinesterase, and intracellular calcium were also measured. Parent OPs and their oxon metabolites upregulated cytokine mRNA and stimulated cytokine release. TNF-α release, which was the most robust response, was triggered by parent, but not oxon, compounds. Cytokine expression was also increased by diethyl dithiophosphate but not diethyl thiophosphate or diethyl phosphate metabolites. Parent OPs, but not oxon metabolites, activated NF-κB. Parent and oxon metabolites decreased acetylcholinesterase activity, but comparable acetylcholinesterase inhibition by eserine did not mimic OP effects on cytokines. Consistent with the noncholinergic mechanisms of OP effects on macrophages, pharmacologic antagonism of muscarinic or nicotinic receptors did not prevent OP-induced cytokine expression or release. These data indicate that phosphorothioate OP compounds directly stimulate macrophages to release TNF-α, potentially via activation of NF-κB, and suggest that therapies that target NF-κB may prevent OP-induced airway hyperreactivity.
Collapse
Affiliation(s)
- Becky J Proskocil
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon; and
| | - Ana Cristina G Grodzki
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - David B Jacoby
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon; and
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Allison D Fryer
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon; and
| |
Collapse
|
20
|
Bennett B, Workman T, Smith MN, Griffith WC, Thompson B, Faustman EM. Characterizing the Neurodevelopmental Pesticide Exposome in a Children's Agricultural Cohort. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1479. [PMID: 32106530 PMCID: PMC7084326 DOI: 10.3390/ijerph17051479] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 01/08/2023]
Abstract
The exposome provides a conceptual model for identifying and characterizing lifetime environmental exposures and resultant health effects. In this study, we applied key exposome concepts to look specifically at the neurodevelopmental pesticide exposome, which focuses on exposures to pesticides that have the potential to cause an adverse neurodevelopmental impact. Using household dust samples from a children's agricultural cohort located in the Yakima Valley of Washington state, we identified 87 individual pesticides using liquid chromatography-tandem mass spectrometry. A total of 47 of these have evidence of neurotoxicity included in the Environmental Protection Agency (EPA) (re)registration materials. We used a mixed effects model to model trends in pesticide exposure. Over the two study years (2005 and 2011), we demonstrate a significant decrease in the neurodevelopmental pesticide exposome across the cohort, but particularly among farmworker households. Additional analysis with a non-parametric binomial analysis that weighted the levels of potentially neurotoxic pesticides detected in household dust by their reference doses revealed that the decrease in potentially neurotoxic pesticides was largely a result of decreases in some of the most potent neurotoxicants. Overall, this study provides evidence that the neurodevelopmental pesticide exposome framework is a useful tool in assessing the effectiveness of specific interventions in reducing exposure as well as setting priorities for future targeted actions.
Collapse
Affiliation(s)
- Breana Bennett
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, DC 98105, USA; (B.B.); (T.W.); (M.N.S.); (W.C.G.)
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, DC 98105, USA
| | - Tomomi Workman
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, DC 98105, USA; (B.B.); (T.W.); (M.N.S.); (W.C.G.)
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, DC 98105, USA
| | - Marissa N. Smith
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, DC 98105, USA; (B.B.); (T.W.); (M.N.S.); (W.C.G.)
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, DC 98105, USA
| | - William C. Griffith
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, DC 98105, USA; (B.B.); (T.W.); (M.N.S.); (W.C.G.)
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, DC 98105, USA
| | - Beti Thompson
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, DC 98105, USA;
| | - Elaine M. Faustman
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, DC 98105, USA; (B.B.); (T.W.); (M.N.S.); (W.C.G.)
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, DC 98105, USA
| |
Collapse
|
21
|
López-Gálvez N, Wagoner R, Quirós-Alcalá L, Ornelas Van Horne Y, Furlong M, Avila E, Beamer P. Systematic Literature Review of the Take-Home Route of Pesticide Exposure via Biomonitoring and Environmental Monitoring. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16122177. [PMID: 31248217 PMCID: PMC6617019 DOI: 10.3390/ijerph16122177] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/10/2019] [Accepted: 06/18/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND Exposure to pesticides via take-home can be an important pathway for farmworkers' families. OBJECTIVE The aim of this review was to summarize and analyze the literature published during the last decade of exposure to pesticides via take-home pathway in farmworkers' families. METHODS We conducted a systematic review to identify peer-reviewed articles of interest; only articles related to take-home pathway that included some sort of pesticide monitoring were considered for inclusion. Systematic reviews, literature reviews, and meta-analyses were excluded, resulting in a total of 39 articles elected for analysis. The articles were summarized based on the location of the study, population (sample size), pesticide analyzed, and type of sample. RESULTS The majority of the reviewed studies were conducted in the U.S., but there seems to be an increase in literature on pesticide take-home pathway in developing countries. Most of the articles provided evidence that farmworkers' families are exposed to pesticides at higher levels than non-farmworkers' families. The levels may depend on several factors such as seasonality, parental occupation, cohabitation with a farmworker, behavior at work/home, age, and gender. Community-based interventions disrupting the take-home pathway seem to be effective at reducing pesticide exposure. DISCUSSION/CONCLUSION The take-home pathway is an important contributor to overall residential exposures, but other pathways such as pesticide drift, indoor-residential applications, and dietary intake need to be considered. A more comprehensive exposure assessment approach is necessary to better understand exposures to pesticides.
Collapse
Affiliation(s)
- Nicolas López-Gálvez
- Department of Community, Environment & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ 85724, USA.
| | - Rietta Wagoner
- Department of Community, Environment & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ 85724, USA.
| | - Lesliam Quirós-Alcalá
- Department of Environmental Health & Engineering, Johns Hopkins University, Baltimore, MD 21205, USA.
- Maryland Institute of Applied Environmental Health, University of Maryland, MD 20740, USA.
| | - Yoshira Ornelas Van Horne
- Department of Community, Environment & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ 85724, USA.
| | - Melissa Furlong
- Department of Community, Environment & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ 85724, USA.
| | - El'gin Avila
- Department of Community, Environment & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ 85724, USA.
| | - Paloma Beamer
- Department of Community, Environment & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
22
|
Harley KG, Parra KL, Camacho J, Bradman A, Nolan JES, Lessard C, Anderson KA, Poutasse CM, Scott RP, Lazaro G, Cardoso E, Gallardo D, Gunier RB. Determinants of pesticide concentrations in silicone wristbands worn by Latina adolescent girls in a California farmworker community: The COSECHA youth participatory action study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:1022-1029. [PMID: 30380470 PMCID: PMC6309742 DOI: 10.1016/j.scitotenv.2018.10.276] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 05/18/2023]
Abstract
Personal exposure to pesticides has not been well characterized, especially among adolescents. We used silicone wristbands to assess pesticide exposure in 14 to 16 year old Latina girls (N = 97) living in the agricultural Salinas Valley, California, USA and enrolled in the COSECHA (CHAMACOS of Salinas Examining Chemicals in Homes and Agriculture) Study, a youth participatory action study in an agricultural region of California. We determined pesticide concentrations (ng/g/day) in silicone wristbands worn for one week using gas chromatography electron capture detection and employed gas chromatography mass spectrometry to determine the presence or absence of over 1500 chemicals. Predictors of pesticide detections and concentrations were identified using logistic regression, Wilcoxon rank sum tests, and Tobit regression models. The most frequently detected pesticides in wristbands were fipronil sulfide (87%), cypermethrin (56%), dichlorodiphenyldichloroethylene (DDE) (56%), dacthal (53%), and trans-permethrin (52%). Living within 100 m of active agricultural fields, having carpeting in the home, and having an exterminator treat the home in the past six months were associated with higher odds of detecting certain pesticides. Permethrin concentrations were lower for participants who cleaned their homes daily (GM: 1.9 vs. 6.8 ng/g/day, p = 0.01). In multivariable regression models, participants with doormats in the entryway of their home had lower concentrations (p < 0.05) of cypermethrin (87%), permethrin (99%), fipronil sulfide (69%) and DDE (75%). The results suggest that both nearby agricultural pesticide use and individual behaviors are associated with pesticide exposures.
Collapse
Affiliation(s)
- Kim G Harley
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Ave Suite 265, Berkeley, CA 94704, USA.
| | - Kimberly L Parra
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Ave Suite 265, Berkeley, CA 94704, USA
| | - Jose Camacho
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Ave Suite 265, Berkeley, CA 94704, USA
| | - Asa Bradman
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Ave Suite 265, Berkeley, CA 94704, USA
| | - James E S Nolan
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Ave Suite 265, Berkeley, CA 94704, USA
| | - Chloe Lessard
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Ave Suite 265, Berkeley, CA 94704, USA
| | - Kim A Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, 2750 SW Campus Way, Corvallis, OR 97331, USA
| | - Carolyn M Poutasse
- Department of Environmental and Molecular Toxicology, Oregon State University, 2750 SW Campus Way, Corvallis, OR 97331, USA
| | - Richard P Scott
- Department of Environmental and Molecular Toxicology, Oregon State University, 2750 SW Campus Way, Corvallis, OR 97331, USA
| | - Giselle Lazaro
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Ave Suite 265, Berkeley, CA 94704, USA
| | - Edgar Cardoso
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Ave Suite 265, Berkeley, CA 94704, USA
| | - Daisy Gallardo
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Ave Suite 265, Berkeley, CA 94704, USA
| | - Robert B Gunier
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Ave Suite 265, Berkeley, CA 94704, USA
| |
Collapse
|
23
|
Bennett B, Workman T, Smith MN, Griffith WC, Thompson B, Faustman EM. Longitudinal, Seasonal, and Occupational Trends of Multiple Pesticides in House Dust. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:17003. [PMID: 30624099 PMCID: PMC6381820 DOI: 10.1289/ehp3644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
BACKGROUND Children are especially vulnerable to pesticide exposure and can suffer lasting health effects. Because children of farmworkers are exposed to a variety of pesticides throughout development, it is important to explore temporal patterns of coexposures. OBJECTIVES The objectives of this study were to characterize the pesticide co-exposures, determine how they change over time, and assess differences between farmworker and nonfarmworker households. METHODS Dust collected from 40 farmworker and 35 nonfarmworker households in the Yakima Valley of the State of Washington in 2005 and then again in 2011 was analyzed for 99 pesticides. Eighty-seven pesticides representing over 28 classes were detected. Pesticides were grouped into classes using U.S. EPA pesticide chemical classifications, and trends in concentrations were analyzed at the class level. RESULTS Levels of organophosphates, pyridazinones, and phenols significantly decreased between 2005 and 2011 in both farmworker and nonfarmworker households. Levels of anilides, 2,6-dinitroanilines, chlorophenols, triclosan, and guanidines significantly increased in both farmworker and nonfarmworker households in 2011 vs. 2005. Among farmworkers alone, there were significantly lower levels of N-methyl carbamates and neonicotinoids in 2011. CONCLUSIONS We observed significant reductions in the concentrations of many pesticides over time in both farmworker and nonfarmworker households. Although nonfarmworker households generally had lower concentrations of pesticides, it is important to note that in comparison with NHANES participants, nonfarmworkers and their families still had significantly higher concentrations of urinary pesticide metabolites. This finding highlights the importance of detailed longitudinal exposure monitoring to capture changes in agricultural and residential pesticide use over time. This foundation provides an avenue to track longitudinal pesticide exposures in an intervention or regulatory context. https://doi.org/10.1289/EHP3644.
Collapse
Affiliation(s)
- Breana Bennett
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, USA
| | - Tomomi Workman
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, USA
| | - Marissa N Smith
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, USA
| | - William C Griffith
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, USA
| | - Beti Thompson
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Elaine M Faustman
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, USA
| |
Collapse
|
24
|
Hung CC, Huang FJ, Yang YQ, Hsieh CJ, Tseng CC, Yiin LM. Pesticides in indoor and outdoor residential dust: a pilot study in a rural county of Taiwan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:23349-23356. [PMID: 29872983 DOI: 10.1007/s11356-018-2413-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/24/2018] [Indexed: 05/24/2023]
Abstract
We conducted a pilot study to examine pesticides in dust of homes in a rural county of Taiwan. A total of 56 homes of pregnant women were included in the study. Indoor and outdoor dust was collected by a vacuum sampler and a dustpan/brush set, respectively. Nine pesticides were selected for analysis on gas chromatography-mass spectrometry with the detection limits being 0.088 ng/g or lower. The most detected pesticides were cypermethrin and chlorpyrifos, which appeared in 82.7 and 78.8% of indoor samples and 48.2 and 39.3% of outdoor samples, respectively. The detection of pesticides from indoor and outdoor dust, however, was not consistent, indicating different sources of pesticides. In addition to those two most detected, permethrin, prallethrin, and tetramethrin, which were common ingredients of insecticide products for indoor use, were also frequently found in indoor dust, suggesting that indoor use of such pesticide products may have been a major source. Fewer pesticides were found in outdoor dust, but the outdoor detection of chlorpyrifos was significantly associated with farms present inside the circles with radii of 50 and 100 m surrounding the homes (P = 0.021, 0.016). It is suggested that pesticide drift from agricultural areas to residential environments may have occurred. No seasonal effect on distribution of pesticides in dust was found, indicating that pesticides could be routinely used in Taiwan regardless of season. Compared with other international studies, this study shows relatively high levels of chlorpyrifos but low levels of pyrethroids (i.e., cypermethrin), reflecting a different pattern of pesticide use in Taiwan. Further studies need to be warranted for a better understanding of exposure to pesticides and the associated health effects.
Collapse
Affiliation(s)
- Chien-Che Hung
- Institute of Medical Sciences, Tzu Chi University, 701, Sec. 3, Zhongyang Road, Hualien City, 97004, Taiwan
| | - Feng-Jung Huang
- Department of Public Health, Tzu Chi University, 701, Sec. 3, Zhongyang Road, Hualien City, 97004, Taiwan
| | - Ya-Qing Yang
- Department of Public Health, Tzu Chi University, 701, Sec. 3, Zhongyang Road, Hualien City, 97004, Taiwan
| | - Chia-Jung Hsieh
- Department of Public Health, Tzu Chi University, 701, Sec. 3, Zhongyang Road, Hualien City, 97004, Taiwan
| | - Chun-Chieh Tseng
- Department of Public Health, Tzu Chi University, 701, Sec. 3, Zhongyang Road, Hualien City, 97004, Taiwan
| | - Lih-Ming Yiin
- Department of Public Health, Tzu Chi University, 701, Sec. 3, Zhongyang Road, Hualien City, 97004, Taiwan.
| |
Collapse
|