1
|
Pagano N, Perez GA, Garcia-Milian R, Manuelidis L. Proliferative arrest induces neuronal differentiation and innate immune responses in normal and Creutzfeldt-Jakob Disease agent (CJ) infected rat septal neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.26.605349. [PMID: 39131355 PMCID: PMC11312452 DOI: 10.1101/2024.07.26.605349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Rat post-mitotic septal neurons, engineered to proliferate and arrest under physiological conditions can be maintained for weeks without cytotoxic effects. Nine independent cDNA libraries were made to follow arrest-induced neural differentiation and innate immune responses in normal uninfected and CJ agent infected septal neurons for weeks. CJ infection created a non-productive latent (CJ-) and a productive (CJ+) high infectivity model (10 logs/gm). Arrest of normal uninfected cells upregulated a plethora of anti-proliferative transcripts and known neuronal differentiation transcripts (e.g., Agtr2, Neuregulin-1, GDF6, SFRP4 and Prnp). Notably, many activated IFN innate immune genes were simultaneously upregulated (e.g., OAS1, RTP4, ISG20, GTB4, CD80, cytokines, chemokines and complement) along with clusterin (CLU) that binds misfolded proteins. Arrest of latently infected CJ- cells induced even more profound global transcript differences. CJ+ cells markedly downregulated the anti-proliferative controls seen in arrested normal cells. CJ+ infection also suppressed neuronal differentiation transcripts, including Prnp which is essential for CJ agent infection. Additionally, IFN and cytokine/chemokine pathways were also strongly enhanced. Analysis of the 342 CJ+ unique transcripts revealed additional innate immune and anti-viral-linked transcripts, e.g., Il17, ISG15, and RSAD2 (viperin). These data show: 1) innate immune transcripts are produced by normal neurons during differentiation; 2) CJ infection enhances and expands anti-viral responses; 3) non-productive latent infection can epigenetically imprint many proliferative pathways to thwart complete arrest. Consequently, human blood and intestinal myeloid peripheral cells that are latently infected (silent) for many years may be stimulated in vitro to produce CJ+ linked diagnostic transcripts.
Collapse
Affiliation(s)
- Nathan Pagano
- Yale University Medical School, 333 Cedar Street, Room FMB11, New Haven CT 06510
| | | | | | - Laura Manuelidis
- Yale University Medical School, 333 Cedar Street, Room FMB11, New Haven CT 06510
| |
Collapse
|
2
|
Aguilar G, Pagano N, Manuelidis L. Reduced Expression of Prion Protein With Increased Interferon-β Fail to Limit Creutzfeldt-Jakob Disease Agent Replication in Differentiating Neuronal Cells. Front Physiol 2022; 13:837662. [PMID: 35250638 PMCID: PMC8895124 DOI: 10.3389/fphys.2022.837662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/20/2022] [Indexed: 11/17/2022] Open
Abstract
Immortalized uninfected septal (SEP) neurons proliferate but after physiological mitotic arrest they express differentiated neuronal characteristics including enhanced cell-to-cell membrane contacts and ≥ 8 fold increases in host prion protein (PrP). We compared proliferating uninfected and Creutzfeldt-Jakob Disease (CJD) agent infected cells with their arrested counterparts over 33 days by quantitative mRNA and protein blot analyses. Surprisingly, uninfected arrested cells increased interferon-β (IFN-β) mRNA by 2.5–8 fold; IFN-β mRNA elevations were not previously associated with neuronal differentiation. SEP cells with high CJD infectivity titers produced a much larger 40–68-fold increase in IFN-β mRNA, a classic host anti-viral response that is virucidal for RNA but not DNA viruses. High titers of CJD agent also induced dramatic decreases in host PrP, a protein needed for productive agent replication. Uninfected arrested cells produced large sustained 20–30-fold increases in PrP mRNA and protein, whereas CJD arrested cells showed only transient small 5-fold increases in PrP. A > 10-fold increase in infectivity, but not PrP misfolding, induced host PrP reductions that can limit CJD agent replication. In contrast to neuronal lineage cells, functionally distinct migratory microglia with high titers of CJD agent do not induce an IFN-β mRNA response. Because they have 1/50th of PrP of an average brain cell, microglia would be unable to produce the many new infectious particles needed to induce a large IFN-β response by host cells. Instead, microglia and related cells can be persistent reservoirs of infection and spread. Phase separations of agent-associated molecules in neurons, microglia and other cell types can yield new insights into the molecular structure, persistent, and evasive behavior of CJD-type agents.
Collapse
|
3
|
Wang Y, Wang Y, Li S, Cui Y, Liang X, Shan J, Gu W, Qiu J, Li Y, Wang G. Functionalized nanoparticles with monocyte membranes and rapamycin achieve synergistic chemoimmunotherapy for reperfusion-induced injury in ischemic stroke. J Nanobiotechnology 2021; 19:331. [PMID: 34674712 PMCID: PMC8529766 DOI: 10.1186/s12951-021-01067-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Ischemic stroke is an acute and severe neurological disease, and reperfusion is an effective way to reverse brain damage after stroke. However, reperfusion causes secondary tissue damage induced by inflammatory responses, called ischemia/reperfusion (I/R) injury. Current therapeutic strategies that control inflammation to treat I/R are less than satisfactory. RESULTS We report a kind of shield and sword nano-soldier functionalized nanoparticles (monocyte membranes-coated rapamycin nanoparticles, McM/RNPs) that can reduce inflammation and relieve I/R injury by blocking monocyte infiltration and inhibiting microglia proliferation. The fabricated McM/RNPs can actively target and bind to inflammatory endothelial cells, which inhibit the adhesion of monocytes to the endothelium, thus acting as a shield. Subsequently, McM/RNPs can penetrate the endothelium to reach the injury site, similar to a sword, and release the RAP drug to inhibit the proliferation of inflammatory cells. In a rat I/R injury model, McM/RNPs exhibited improved active homing to I/R injury areas and greatly ameliorated neuroscores and infarct volume. Importantly, in vivo animal studies revealed good safety for McM/RNPs treatment. CONCLUSION The results demonstrated that the developed McM/RNPs may serve as an effective and safe nanovehicles for I/R injury therapy.
Collapse
Affiliation(s)
- Yanyun Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Shuyu Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yuliang Cui
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Xiping Liang
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Juanjuan Shan
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Wei Gu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| | - Yiliang Li
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, Guangdong, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
4
|
Mabbott NA, Bradford BM, Pal R, Young R, Donaldson DS. The Effects of Immune System Modulation on Prion Disease Susceptibility and Pathogenesis. Int J Mol Sci 2020; 21:E7299. [PMID: 33023255 PMCID: PMC7582561 DOI: 10.3390/ijms21197299] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Prion diseases are a unique group of infectious chronic neurodegenerative disorders to which there are no cures. Although prion infections do not stimulate adaptive immune responses in infected individuals, the actions of certain immune cell populations can have a significant impact on disease pathogenesis. After infection, the targeting of peripherally-acquired prions to specific immune cells in the secondary lymphoid organs (SLO), such as the lymph nodes and spleen, is essential for the efficient transmission of disease to the brain. Once the prions reach the brain, interactions with other immune cell populations can provide either host protection or accelerate the neurodegeneration. In this review, we provide a detailed account of how factors such as inflammation, ageing and pathogen co-infection can affect prion disease pathogenesis and susceptibility. For example, we discuss how changes to the abundance, function and activation status of specific immune cell populations can affect the transmission of prion diseases by peripheral routes. We also describe how the effects of systemic inflammation on certain glial cell subsets in the brains of infected individuals can accelerate the neurodegeneration. A detailed understanding of the factors that affect prion disease transmission and pathogenesis is essential for the development of novel intervention strategies.
Collapse
Affiliation(s)
- Neil A. Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK; (B.M.B.); (R.P.); (R.Y.); (D.S.D.)
| | | | | | | | | |
Collapse
|
5
|
Novel Nasal Epithelial Cell Markers of Parkinson's Disease Identified Using Cells Treated with α-Synuclein Preformed Fibrils. J Clin Med 2020; 9:jcm9072128. [PMID: 32640699 PMCID: PMC7408990 DOI: 10.3390/jcm9072128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/26/2020] [Accepted: 07/04/2020] [Indexed: 12/16/2022] Open
Abstract
Parkinson’s disease (PD) is the most common neurodegenerative movement disorder, characterized by olfactory dysfunction in the early stages. α-Synuclein pathologies in the olfactory organs are shown to spread to the brain through the nose-brain axis. We first developed a nasal epithelial PD cellular model by treating RPMI-2650 cells with α-synuclein preformed fibrils (PFF). Upon uptake of PFF, RPMI-2650 cells showed mitochondrial proteome alteration and downregulation of parkin, which has previously been identified as a nasal biomarker of PD. Functional cluster analysis of differentially expressed genes in RPMI-2650 cells revealed various pathways affected by α-synuclein pathology, including the detection of chemical stimulus involved in sensory perception, olfactory receptor activity, and sensory perception of smell. Among genes that were most affected, we validated, by real-time quantitative PCR, the downregulation of MAP3K8, OR10A4, GRM2, OR51B6, and OR9A2, as well as upregulation of IFIT1B, EPN1, OR1D5, LCN, and OTOL1 in PFF-treated RPMI-2650 cells. Subsequent analyses of clinical samples showed a downregulation of OR10A4 and OR9A2 transcripts and an upregulation of IFIT1B in cells isolated from the nasal fluid of PD patients, as compared to those from the controls (cutoff value = 0.5689 for OR9A2, with 72.4% sensitivity and 75% specificity, and 1.4658 for IFIT1B, with 81.8% sensitivity and 77.8% specificity). Expression levels of these nasal PD markers were not altered in nasal fluid cells from SWEDD (scans without evidence of dopaminergic deficits) patients with PD-like motor symptoms. These nasal markers were significantly altered in patients of PD with hyposmia compared to the control hyposmic subjects. Our results validated the α-synuclein-treated nasal epithelial cell model to identify novel biomarkers for PD and suggest the utility of olfactory transcripts, along with olfactory dysfunction, in the diagnosis of PD.
Collapse
|
6
|
Ishibashi D, Homma T, Nakagaki T, Fuse T, Sano K, Satoh K, Mori T, Atarashi R, Nishida N. Type I interferon protects neurons from prions in in vivo models. Brain 2019; 142:1035-1050. [PMID: 30753318 PMCID: PMC6439327 DOI: 10.1093/brain/awz016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/12/2018] [Accepted: 12/03/2018] [Indexed: 12/17/2022] Open
Abstract
Infectious prions comprising abnormal prion protein, which is produced by structural conversion of normal prion protein, are responsible for transmissible spongiform encephalopathies including Creutzfeldt-Jakob disease in humans. Prions are infectious agents that do not possess a genome and the pathogenic protein was not thought to evoke any immune response. Although we previously reported that interferon regulatory factor 3 (IRF3) was likely to be involved in the pathogenesis of prion diseases, suggesting the protective role of host innate immune responses mediated by IRF3 signalling, this remained to be clarified. Here, we investigated the reciprocal interactions of type I interferon evoked by IRF3 activation and prion infection and found that infecting prions cause the suppression of endogenous interferon expression. Conversely, treatment with recombinant interferons in an ex vivo model was able to inhibit prion infection. In addition, cells and mice deficient in type I interferon receptor (subunit interferon alpha/beta receptor 1), exhibited higher susceptibility to 22L-prion infection. Moreover, in in vivo and ex vivo prion-infected models, treatment with RO8191, a selective type I interferon receptor agonist, inhibited prion invasion and prolonged the survival period of infected mice. Taken together, these data indicated that the interferon signalling interferes with prion propagation and some interferon-stimulated genes might play protective roles in the brain. These findings may allow for the development of new strategies to combat fatal diseases.
Collapse
Affiliation(s)
- Daisuke Ishibashi
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Takehiro Nakagaki
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takayuki Fuse
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazunori Sano
- Department of Physiology and Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Katsuya Satoh
- Department of Locomotive Rehabilitation Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tsuyoshi Mori
- Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ryuichiro Atarashi
- Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Noriyuki Nishida
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
7
|
Ishibashi D. [Protective Role of the Host Innate Immune System in Prion Pathogenesis]. YAKUGAKU ZASSHI 2019; 139:993-998. [PMID: 31257258 DOI: 10.1248/yakushi.18-00165-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prion diseases, including human Creutzfeldt-Jakob disease, are infectious, intractable central neurodegenerative diseases, which are also zoonoses that commonly infect not only higher organisms but also a wide variety of animals. Pathogenic prions induce abnormal prion protein (PrP), which is produced by structural conversion of normal PrP, a beta-sheet-rich structure with high aggregation propensity. Thus, it is believed that the host is immunotolerant against prions because there is no difference in the primary structure of normal and abnormal PrP, and prions do not induce a marked immune response. Recently, using mutated Toll-like receptor (TLR) 4-transgenic mice, a bioassay after prion inoculation has intriguingly found that the TLR4-signaling pathway may have a protective role against prion infection. Meanwhile, we reported that a transcription factor, interferon regulatory factor-3 (IRF-3), located downstream of TLR4 signaling, showed resistance to prions. IRF-3-inducing type I interferon (I-IFN) is a critical factor for the host defense against pathogen invasion. These findings indicate that the TLR-signaling pathway of the innate immune system might regulate prion invasion. However, the details have not been fully determined. In this symposium, we will introduce new findings including the relationship between I-IFN and prions.
Collapse
Affiliation(s)
- Daisuke Ishibashi
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University
| |
Collapse
|
8
|
Nazmi A, Field RH, Griffin EW, Haugh O, Hennessy E, Cox D, Reis R, Tortorelli L, Murray CL, Lopez-Rodriguez AB, Jin L, Lavelle EC, Dunne A, Cunningham C. Chronic neurodegeneration induces type I interferon synthesis via STING, shaping microglial phenotype and accelerating disease progression. Glia 2019; 67:1254-1276. [PMID: 30680794 PMCID: PMC6520218 DOI: 10.1002/glia.23592] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 12/13/2022]
Abstract
Type I interferons (IFN‐I) are the principal antiviral molecules of the innate immune system and can be made by most cell types, including central nervous system cells. IFN‐I has been implicated in neuroinflammation during neurodegeneration, but its mechanism of induction and its consequences remain unclear. In the current study, we assessed expression of IFN‐I in murine prion disease (ME7) and examined the contribution of the IFN‐I receptor IFNAR1 to disease progression. The data indicate a robust IFNβ response, specifically in microglia, with evidence of IFN‐dependent genes in both microglia and astrocytes. This IFN‐I response was absent in stimulator of interferon genes (STING−/−) mice. Microglia showed increased numbers and activated morphology independent of genotype, but transcriptional signatures indicated an IFNAR1‐dependent neuroinflammatory phenotype. Isolation of microglia and astrocytes demonstrated disease‐associated microglial induction of Tnfα, Tgfb1, and of phagolysosomal system transcripts including those for cathepsins, Cd68, C1qa, C3, and Trem2, which were diminished in IFNAR1 and STING deficient mice. Microglial increases in activated cathepsin D, and CD68 were significantly reduced in IFNAR1−/− mice, particularly in white matter, and increases in COX‐1 expression, and prostaglandin synthesis were significantly mitigated. Disease progressed more slowly in IFNAR1−/− mice, with diminished synaptic and neuronal loss and delayed onset of neurological signs and death but without effect on proteinase K‐resistant PrP levels. Therefore, STING‐dependent IFN‐I influences microglial phenotype and influences neurodegenerative progression despite occurring secondary to initial degenerative changes. These data expand our mechanistic understanding of IFN‐I induction and its impact on microglial function during chronic neurodegeneration.
Collapse
Affiliation(s)
- Arshed Nazmi
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland
| | - Robert H Field
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland
| | - Eadaoin W Griffin
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland
| | - Orla Haugh
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland
| | - Edel Hennessy
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland
| | - Donal Cox
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland
| | - Renata Reis
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland
| | - Lucas Tortorelli
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland
| | - Carol L Murray
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland
| | - Ana Belen Lopez-Rodriguez
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland
| | - Lei Jin
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Florida
| | - Ed C Lavelle
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland
| | - Aisling Dunne
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland
| |
Collapse
|
9
|
Malachin G, Reiten MR, Salvesen Ø, Aanes H, Kamstra JH, Skovgaard K, Heegaard PMH, Ersdal C, Espenes A, Tranulis MA, Bakkebø MK. Loss of prion protein induces a primed state of type I interferon-responsive genes. PLoS One 2017. [PMID: 28651013 PMCID: PMC5484497 DOI: 10.1371/journal.pone.0179881] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The cellular prion protein (PrPC) has been extensively studied because of its pivotal role in prion diseases; however, its functions remain incompletely understood. A unique line of goats has been identified that carries a nonsense mutation that abolishes synthesis of PrPC. In these animals, the PrP-encoding mRNA is rapidly degraded. Goats without PrPC are valuable in re-addressing loss-of-function phenotypes observed in Prnp knockout mice. As PrPC has been ascribed various roles in immune cells, we analyzed transcriptomic responses to loss of PrPC in peripheral blood mononuclear cells (PBMCs) from normal goat kids (n = 8, PRNP+/+) and goat kids without PrPC (n = 8, PRNPTer/Ter) by mRNA sequencing. PBMCs normally express moderate levels of PrPC. The vast majority of genes were similarly expressed in the two groups. However, a curated list of 86 differentially expressed genes delineated the two genotypes. About 70% of these were classified as interferon-responsive genes. In goats without PrPC, the majority of type I interferon-responsive genes were in a primed, modestly upregulated state, with fold changes ranging from 1.4 to 3.7. Among these were ISG15, DDX58 (RIG-1), MX1, MX2, OAS1, OAS2 and DRAM1, all of which have important roles in pathogen defense, cell proliferation, apoptosis, immunomodulation and DNA damage response. Our data suggest that PrPC contributes to the fine-tuning of resting state PBMCs expression level of type I interferon-responsive genes. The molecular mechanism by which this is achieved will be an important topic for further research into PrPC physiology.
Collapse
Affiliation(s)
- Giulia Malachin
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Malin R. Reiten
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Øyvind Salvesen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Håvard Aanes
- Department of Microbiology, Division of diagnostics and intervention, Institute of Clinical Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Jorke H. Kamstra
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Kerstin Skovgaard
- Innate Immunology Group, Section for Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Peter M. H. Heegaard
- Innate Immunology Group, Section for Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Cecilie Ersdal
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Arild Espenes
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Michael A. Tranulis
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
- * E-mail:
| | - Maren K. Bakkebø
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
10
|
The Good, the Bad, and the Ugly of Dendritic Cells during Prion Disease. J Immunol Res 2015; 2015:168574. [PMID: 26697507 PMCID: PMC4677227 DOI: 10.1155/2015/168574] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/15/2015] [Indexed: 12/11/2022] Open
Abstract
Prions are a unique group of proteinaceous pathogens which cause neurodegenerative disease and can be transmitted by a variety of exposure routes. After peripheral exposure, the accumulation and replication of prions within secondary lymphoid organs are obligatory for their efficient spread from the periphery to the brain where they ultimately cause neurodegeneration and death. Mononuclear phagocytes (MNP) are a heterogeneous population of dendritic cells (DC) and macrophages. These cells are abundant throughout the body and display a diverse range of roles based on their anatomical locations. For example, some MNP are strategically situated to provide a first line of defence against pathogens by phagocytosing and destroying them. Conventional DC are potent antigen presenting cells and migrate via the lymphatics to the draining lymphoid tissue where they present the antigens to lymphocytes. The diverse roles of MNP are also reflected in various ways in which they interact with prions and in doing so impact on disease pathogenesis. Indeed, some studies suggest that prions exploit conventional DC to infect the host. Here we review our current understanding of the influence of MNP in the pathogenesis of the acquired prion diseases with particular emphasis on the role of conventional DC.
Collapse
|
11
|
Kipkorir T, Colangelo CM, Manuelidis L. Proteomic analysis of host brain components that bind to infectious particles in Creutzfeldt-Jakob disease. Proteomics 2015; 15:2983-98. [PMID: 25930988 DOI: 10.1002/pmic.201500059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/26/2015] [Accepted: 04/29/2015] [Indexed: 11/07/2022]
Abstract
Transmissible encephalopathies (TSEs), such as Creutzfeldt-Jakob disease (CJD) and scrapie, are caused by infectious agents that provoke strain-specific patterns of disease. Misfolded host prion protein (PrP-res amyloid) is believed to be the causal infectious agent. However, particles that are stripped of PrP retain both high infectivity and viral proteins not detectable in uninfected mouse controls. We here detail host proteins bound with FU-CJD agent infectious brain particles by proteomic analysis. More than 98 proteins were differentially regulated, and 56 FU-CJD exclusive proteins were revealed after PrP, GFAP, C1q, ApoE, and other late pathologic response proteins were removed. Stripped FU-CJD particles revealed HSC70 (144× the uninfected control), cyclophilin B, an FU-CJD exclusive protein required by many viruses, and early endosome-membrane pathways known to facilitate viral processing, replication, and spread. Synaptosomal elements including synapsin-2 (at 33×) and AP180 (a major FU-CJD exclusive protein) paralleled the known ultrastructural location of 25 nm virus-like TSE particles and infectivity in synapses. Proteins without apparent viral or neurodegenerative links (copine-3), and others involved in viral-induced protein misfolding and aggregation, were also identified. Human sCJD brain particles contained 146 exclusive proteins, and heat shock, synaptic, and viral pathways were again prominent, in addition to Alzheimer, Parkinson, and Huntington aggregation proteins. Host proteins that bind TSE infectious particles can prevent host immune recognition and contribute to prolonged cross-species transmissions (the species barrier). Our infectious particle strategy, which reduces background sequences by >99%, emphasizes host targets for new therapeutic initiatives. Such therapies can simultaneously subvert common pathways of neurodegeneration.
Collapse
|
12
|
Abstract
The recently concluded Tenth International Congress on Systemic Lupus Erythematosus (SLE) held in Buenos Aires was a resounding success. This overview summarizes some of the origins of the First International Congress held in Calgary, Canada in 1986, predictions offered by past Congress Presidents, and a perspective on the trends in autoantibody testing, which remains one of the key approaches to the early and accurate diagnosis of SLE. The last few decades have witnessed a remarkable proliferation of new diagnostic technologies including addressable laser bead immunoassays and, more recently, chemiluminescence and lateral flow technologies that could find a clinical niche in point-of-care diagnostics. Against the backdrop of these constantly emerging technologies, indirect immunofluorescence has remained the platform of choice for many laboratories and diagnosticians. The notion that autoantibodies are pathogenic has been challenged by evidence that some autoantibodies are protective, some may have catalytic capacity while others may be neutral or have no function at all. The latter notion of functionless or "junk" autoantibodies needs to be taken under some advisement, because there was a time when a great proportion of the human genome was considered to include "junk DNA". The butterfly as a symbol of hope and progress in SLE research over the past 27 years since the First International Congress on SLE is almost certainly to be even more appropriate when future Congresses are held in Geneva (2015), Melbourne (2017) and eventually one in 2050.
Collapse
|
13
|
Bradford BM, Mabbott NA. Prion disease and the innate immune system. Viruses 2012; 4:3389-419. [PMID: 23342365 PMCID: PMC3528271 DOI: 10.3390/v4123389] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 11/14/2012] [Accepted: 11/22/2012] [Indexed: 02/06/2023] Open
Abstract
Prion diseases or transmissible spongiform encephalopathies are a unique category of infectious protein-misfolding neurodegenerative disorders. Hypothesized to be caused by misfolding of the cellular prion protein these disorders possess an infectious quality that thrives in immune-competent hosts. While much has been discovered about the routing and critical components involved in the peripheral pathogenesis of these agents there are still many aspects to be discovered. Research into this area has been extensive as it represents a major target for therapeutic intervention within this group of diseases. The main focus of pathological damage in these diseases occurs within the central nervous system. Cells of the innate immune system have been proven to be critical players in the initial pathogenesis of prion disease, and may have a role in the pathological progression of disease. Understanding how prions interact with the host innate immune system may provide us with natural pathways and mechanisms to combat these diseases prior to their neuroinvasive stage. We present here a review of the current knowledge regarding the role of the innate immune system in prion pathogenesis.
Collapse
Affiliation(s)
- Barry M Bradford
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| | | |
Collapse
|
14
|
Ishibashi D, Atarashi R, Nishida N. Protective role of MyD88-independent innate immune responses against prion infection. Prion 2012; 6:443-6. [PMID: 23093799 PMCID: PMC3510862 DOI: 10.4161/pri.22579] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Despite recent progress in the understanding of prion diseases, little is known about the host-defense mechanisms against prion. Although it has long been thought that type I interferon (IFN-I) has no protective effect on prion infection, certain key molecules in innate immunity such as toll-like receptor (TLR) 4 seemed to be involved in the host response. For this reason we decided to focus on TLRs and investigate the role of a transcription factor, interferon regulatory factor 3 (IRF3), because the absence of MyD88, a major adaptor signaling molecule of TLRs, has no effect on the survival of prion infected mice. Intriguingly, survival periods of prion inoculated IRF3-knockout mice became significantly shorter than those of wild-type mice. In addition, IRF3 stimulation inhibited PrPSc replication in prion persistently-infected cells, and a de novo prion infection assay revealed that IRF3-overexpression could make host cells resistant to prion infection. Our work suggests that IRF3 may play a key role in innate immune responses against invasion of prion pathogens. Activated IRF3 could upregulate several anti-pathogen factors, including IFN-I, and induce sequential responses. Although the mechanism for the anti-prion effects mediated by IRF3 has yet to be clarified, certain interferon responsive genes might be involved in the anti-prion host-defense mechanism.
Collapse
Affiliation(s)
- Daisuke Ishibashi
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | | | | |
Collapse
|
15
|
Fritzler MJ. Toward a new autoantibody diagnostic orthodoxy: understanding the bad, good and indifferent. AUTO- IMMUNITY HIGHLIGHTS 2012; 3:51-8. [PMID: 26000127 PMCID: PMC4389070 DOI: 10.1007/s13317-012-0030-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 03/07/2012] [Indexed: 02/07/2023]
Abstract
Rapid advances in diagnostic technologies used to detect autoantibodies have made it difficult for even the most modern laboratory to keep abreast of the changing approaches and platforms, not to mention the clinicians who are hard pressed to keep abreast of evolving diagnostic paradigms attended by these newer techniques. While autoantibody testing is traditionally considered to be primarily serving the realm of diagnostic medicine, there is little doubt that autoantibodies are also being recognized as an approach to providing prognostic and therapeutic information. Accordingly, along with related proteomics, genomics and metabolomics, it is taking on increasing importance in the realm of personalized medicine. In today's world of autoantibody diagnostics, overarching concerns about false-negative and false-positive autoantibodies tests cannot be summarily dismissed by citing pros or cons of any one technology or diagnostic platform, but often point to persisting gaps in our knowledge about, and understanding of, the origin and roles of autoantibodies. Before we can hope to completely understand the enigmas that attend the results of autoantibody diagnostic tests, perhaps it is time to step back and re-examine long-accepted paradigms and beliefs. This review will address some of the issues that impact on autoantibody detection technologies and some of the considerations and issues that will attend a new orthodoxy of autoantibody diagnostics. These issues will be addressed in the context of "bad" (pathogenic), "good" (protective) or "indifferent" (no apparent role in disease) autoantibodies.
Collapse
Affiliation(s)
- Marvin J. Fritzler
- Faculty of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1 Canada
| |
Collapse
|
16
|
Protective role of interferon regulatory factor 3-mediated signaling against prion infection. J Virol 2012; 86:4947-55. [PMID: 22379081 DOI: 10.1128/jvi.06326-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abnormal prion protein (PrP(Sc)) generated from the cellular isoform of PrP (PrP(C)) is assumed to be the main or sole component of the pathogen, called prion, of transmissible spongiform encephalopathies (TSE). Because PrP is a host-encoded protein, acquired immune responses are not induced in TSE. Meanwhile, activation of the innate immune system has been suggested to partially block the progression of TSE; however, the mechanism is not well understood. To further elucidate the role of the innate immune system in prion infection, we investigated the function of interferon regulatory factor 3 (IRF3), a key transcription factor of the MyD88-independent type I interferon (IFN) production pathway. We found that IRF3-deficient mice exhibited significantly earlier onset with three murine TSE strains, namely, 22L, FK-1, and murine bovine spongiform encephalopathy (mBSE), following intraperitoneal transmission, than with wild-type controls. Moreover, overexpression of IRF3 attenuated prion infection in the cell culture system, while PrP(Sc) was increased in prion-infected cells treated with small interfering RNAs (siRNAs) against IRF3, suggesting that IRF3 negatively regulates PrP(Sc) formation. Our findings provide new insight into the role of the host innate immune system in the pathogenesis of prion diseases.
Collapse
|
17
|
Miyazawa K, Emmerling K, Manuelidis L. Replication and spread of CJD, kuru and scrapie agents in vivo and in cell culture. Virulence 2011; 2:188-99. [PMID: 21527829 DOI: 10.4161/viru.2.3.15880] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Transmissible Spongiform Encephalopathy (TSE) agents are defined by their virulence for particular species, their spread in the population, their incubation time to cause disease, and their neuropathological sequelae. Murine adapted human agents, including sporadic CJD (sCJD), New Guinea kuru, and Japanese CJD agents, display particularly distinct incubation times and maximal infectious brain titers. They also induce agent-specific patterns of neurodegeneration. When these TSE agents are transmitted to cultured hypothalamic GT1 cells they maintain their unique identities. Nevertheless, the human kuru (kCJD) and Japanese FU-CJD agents, as well as the sheep 22L and 263K scrapie agents display doubling times that are 8x to 33x faster in cells than in brain, indicating release from complex innate immune responses. These data are most consistent with a foreign viral structure, rather than an infectious form of host prion protein (PrP-res). Profound agent-specific inhibitory effects are also apparent in GT1 cells, and maximal titer plateau in kCJD and FU-CJD differed by 1,000-fold in a cell-based assay. Remarkably, the lower titer kCJD agent rapidly induced de novo PrP-res in GT1 cells, whereas the high titer FU-CJD agent replicated silently for multiple passages. Although PrP-res is often considered to be toxic, PrP-res instead may be part of a primal defense and/or clearance mechanism against TSE environmental agents. Limited spread of particular TSE agents through nanotubes and cell-to-cell contacts probably underlies the long peripheral phase of human CJD.
Collapse
Affiliation(s)
- Kohtaro Miyazawa
- Yale Medical School, Section of Neuropathology, New Haven, CT, USA
| | | | | |
Collapse
|
18
|
Moody LR, Herbst AJ, Aiken JM. Upregulation of interferon-gamma-induced genes during prion infection. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2011; 74:146-153. [PMID: 21218343 PMCID: PMC4621959 DOI: 10.1080/15287394.2011.529064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Global gene expression analysis allows for the identification of transcripts that are differentially regulated during a disease state. Many groups, including our own, have identified hundreds of genes differentially regulated in response to prion infection. Eleven transcripts, upregulated in the brains of prion-infected animals, which were classified in the literature as stimulated by the cytokine interferon-gamma (IFN-γ), were identified. This is intriguing, as IFN-γ has recently been detected in the brains of prion-infected animals. Quantitation of several genes, categorized as IFN-γ inducible, by quantitative real-time polymerase chain reaction (qRT-PCR) confirms that these transcripts are upregulated. Future approaches for delineating the role of IFN-γ-induced transcripts and their function in prion infection are described.
Collapse
Affiliation(s)
- Laura R. Moody
- Cellular and Molecular Biology Graduate Program; Department of Comparative Biosciences; University of Wisconsin, Madison, Wisconsin, USA
| | - Allen J. Herbst
- Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
| | - Judd M. Aiken
- Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
| |
Collapse
|
19
|
Field R, Campion S, Warren C, Murray C, Cunningham C. Systemic challenge with the TLR3 agonist poly I:C induces amplified IFNalpha/beta and IL-1beta responses in the diseased brain and exacerbates chronic neurodegeneration. Brain Behav Immun 2010; 24:996-1007. [PMID: 20399848 PMCID: PMC3334265 DOI: 10.1016/j.bbi.2010.04.004] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 04/12/2010] [Accepted: 04/12/2010] [Indexed: 11/28/2022] Open
Abstract
The role of inflammation in the progression of neurodegenerative disease remains unclear. We have shown that systemic bacterial insults accelerate disease progression in animals and in patients with Alzheimer's disease. Disease exacerbation is associated with exaggerated CNS inflammatory responses to systemic inflammation mediated by microglia that become 'primed' by the underlying neurodegeneration. The impact of systemic viral insults on existing neurodegenerative disease has not been investigated. Polyinosinic:polycytidylic acid (poly I:C) is a toll-like receptor-3 (TLR3) agonist and induces type I interferons, thus mimicking inflammatory responses to systemic viral infection. In the current study we hypothesized that systemic challenge with poly I:C, during chronic neurodegenerative disease, would amplify CNS inflammation and exacerbate disease. Using the ME7 model of prion disease and systemic challenge with poly I:C (12 mg/kg i.p.) we have shown an amplified expression of IFN-alpha and beta and of the pro-inflammatory genes IL-1beta and IL-6. Similarly amplified expression of specific IFN-dependent genes confirmed that type I IFNs were secreted and active in the brain and this appeared to have anti-inflammatory consequences. However, prion-diseased animals were susceptible to heightened acute sickness behaviour and acute neurological impairments in response to poly I:C and this treatment also accelerated disease progression in diseased animals without effect in normal animals. Increased apoptosis coupled with double-stranded RNA-dependent protein kinase (PKR) and Fas transcription suggested activation of interferon-dependent, pro-apoptotic pathways in the brain of ME7+poly I:C animals. That systemic poly I:C accelerates neurodegeneration has implications for the control of systemic viral infection during chronic neurodegeneration and indicates that type I interferon responses in the brain merit further study.
Collapse
Affiliation(s)
- Robert Field
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Suzanne Campion
- Weatherall Institute of Molecular Medicine, University of Oxford. Oxford, OX3 9DS, UK
| | - Colleen Warren
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Carol Murray
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland,Corresponding author. Address: School of Biochemistry and Immunology, Trinity College Institute of Neuroscience, Lloyd Building, TCD, Ireland. Fax: +353 1 896 3183.
| |
Collapse
|
20
|
Agent-specific Shadoo responses in transmissible encephalopathies. J Neuroimmune Pharmacol 2010; 5:155-63. [PMID: 20112073 DOI: 10.1007/s11481-010-9191-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 01/05/2010] [Indexed: 10/19/2022]
Abstract
Transmissible spongiform encephalopathies (TSE) are neurodegenerative diseases caused by an infectious agent with viral properties. Host prion protein (PrP), a marker of late stage TSE pathology, is linked to a similar protein called Shadoo (Sho). Sho is reduced in mice infected with the RML scrapie agent, but has not been investigated in other TSEs. Although PrP is required for infection by TSE agents, it is not known if Sho is similarly required. Presumably Sho protects cells from toxic effects of misfolded PrP. We compared Sho and PrP changes after infection by very distinct TSE agents including sporadic CJD, Asiatic CJD, New Guinea kuru, vCJD (the UK epidemic bovine agent) and 22L sheep scrapie, all passaged in standard mice. We found that Sho reductions were agent-specific. Variable Sho reductions in standard mice could be partly explained by agent-specific differences in regional neuropathology. However, Sho did not follow PrP misfolding in any quantitative or consistent way. Tga20 mice with high murine PrP levels revealed additional agent-specific differences. Sho was unaffected by Asiatic CJD yet was markedly reduced by the kuru agent in Tga20 mice; in standard mice both agents induced the same Sho reductions. Analyses of neural GT1 cells demonstrated that Sho was not essential for TSE infections. Furthermore, because all infected GT1 cells appeared as healthy as uninfected controls, Sho was not needed to protect infected cells from their "toxic" burden of abundant abnormal PrP and intracellular amyloid.
Collapse
|
21
|
Segarra C, Lehmann S, Coste J. Prion protein expression and processing in human mononuclear cells: the impact of the codon 129 prion gene polymorphism. PLoS One 2009; 4:e5796. [PMID: 19495414 PMCID: PMC2686158 DOI: 10.1371/journal.pone.0005796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 04/22/2009] [Indexed: 01/19/2023] Open
Abstract
Background So far, all clinical cases of new variant Creutzfeldt-Jakob disease (vCJD), thought to result from the Bovine Spongiform Encephalopathy (BSE) prion agent, have shown Methionine–Methionine (M/M) homozygosity at the M129V polymorphism of the PRNP gene. Although established, this relationship is still not understood. In both vCJD and experimental BSE models prion agents do reach the bloodstream, raising concerns regarding disease transmission through blood transfusion. Methodology/Principal Findings We investigated the impact of the M129V polymorphism on the expression and processing of the prion protein in human peripheral blood mononuclear cells (PBMCs) from three blood donor populations with Methionine-Methionine (M/M), Valine-Valine (V/V) and M/V genotypes. Using real-time PCR, ELISA and immunoblot assays we were unable to find differences in prion protein expression and processing relating to the M129V polymorphism. Conclusions/Significance These results suggest that in PBMCs, the M129V PrP polymorphism has no significant impact on PrP expression, processing and the apparent glycoform distribution. Prion propagation should be investigated further in other cell types or tissues.
Collapse
Affiliation(s)
- Christiane Segarra
- Etablissement Français du Sang de Pyrénées Méditerranée, Montpellier, France
| | - Sylvain Lehmann
- Institut de Génétique Humaine, UPR1142 CNRS, /CHU Montpellier/UM1 Montpellier, Montpellier, France
| | - Joliette Coste
- Etablissement Français du Sang de Pyrénées Méditerranée, Montpellier, France
- * E-mail:
| |
Collapse
|
22
|
Kim HO, Snyder GP, Blazey TM, Race RE, Chesebro B, Skinner PJ. Prion disease induced alterations in gene expression in spleen and brain prior to clinical symptoms. Adv Appl Bioinform Chem 2008; 1:29-50. [PMID: 21918605 PMCID: PMC3169940 DOI: 10.2147/aabc.s3411] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Prion diseases are fatal neurodegenerative disorders that affect animals and humans. There is a need to gain understanding of prion disease pathogenesis and to develop diagnostic assays to detect prion diseases prior to the onset of clinical symptoms. The goal of this study was to identify genes that show altered expression early in the disease process in the spleen and brain of prion disease-infected mice. Using Affymetrix microarrays, we identified 67 genes that showed increased expression in the brains of prion disease-infected mice prior to the onset of clinical symptoms. These genes function in many cellular processes including immunity, the endosome/lysosome system, hormone activity, and the cytoskeleton. We confirmed a subset of these gene expression alterations using other methods and determined the time course in which these changes occur. We also identified 14 genes showing altered expression prior to the onset of clinical symptoms in spleens of prion disease infected mice. Interestingly, four genes, Atp1b1, Gh, Anp32a, and Grn, were altered at the very early time of 46 days post-infection. These gene expression alterations provide insights into the molecular mechanisms underlying prion disease pathogenesis and may serve as surrogate markers for the early detection and diagnosis of prion disease.
Collapse
Affiliation(s)
- Hyeon O Kim
- Department of Veterinary and Biomedical Sciences, University of Minnesota, USA
| | | | | | | | | | | |
Collapse
|
23
|
Austbø L, Kampmann A, Müller-Ladner U, Neumann E, Olsaker I, Skretting G. Identification of differentially expressed genes in ileal Peyer's patch of scrapie-infected sheep using RNA arbitrarily primed PCR. BMC Vet Res 2008; 4:12. [PMID: 18373840 PMCID: PMC2322967 DOI: 10.1186/1746-6148-4-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Accepted: 03/28/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In scrapie and prion diseases, the knowledge concerning genes involved in host response during the early infection period in the lymphoid tissues, still remains limited. In the present study, we have examined differential gene expression in ileal Peyer's patches and in laser microdissected follicles of sheep infected with scrapie. METHODS Ileal Peyer's patches and laser microdissected follicles were of scrapie and control lambs with susceptible genotypes for classical scrapie. Potential regulated genes were found using RNA arbitrarily primed polymerase chain reaction (RAP-PCR) and fingerprinting. The differentially expressed genes were confirmed using real-time RT-PCR. RESULTS The expression of three genes (MAPRE3, LOC729073 and DNAJC3), were found to be significantly altered in scrapie infected lambs (P < 0.05). CONCLUSION The three genes have not previously been associated with prion diseases and are interesting as they may reflect biological processes involved in the molecular pathogenesis of prion diseases.
Collapse
Affiliation(s)
- Lars Austbø
- Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, P.O. Box 8146 Dep., N-0033, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
24
|
A versatile prion replication assay in organotypic brain slices. Nat Neurosci 2007; 11:109-17. [PMID: 18066056 DOI: 10.1038/nn2028] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 11/15/2007] [Indexed: 01/24/2023]
Abstract
Methods enabling prion replication ex vivo are important for advancing prion studies. However, few such technologies exist, and many prion strains are not amenable to them. Here we describe a prion organotypic slice culture assay (POSCA) that allows prion amplification and titration ex vivo under conditions that closely resemble intracerebral infection. Thirty-five days after contact with prions, mouse cerebellar slices had amplified the abnormal isoform of prion protein, PrP(Sc), >10(5)-fold. This is quantitatively similar to amplification in vivo, but fivefold faster. PrP(Sc) accumulated predominantly in the molecular layer, as in infected mice. The POSCA detected replication of prion strains from disparate sources, including bovines and ovines, with variable detection efficiency. Pharmacogenetic ablation of microglia from POSCA slices led to a 15-fold increase in prion titers and PrP(Sc) concentrations over those in microglia-containing slices, as well as an increase in susceptibility to infection. This suggests that the extensive microglial activation accompanying prion diseases represents an efficacious defensive reaction.
Collapse
|
25
|
Induced prion protein controls immune-activated retroviruses in the mouse spleen. PLoS One 2007; 2:e1158. [PMID: 17987132 PMCID: PMC2063463 DOI: 10.1371/journal.pone.0001158] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 10/16/2007] [Indexed: 01/18/2023] Open
Abstract
The prion protein (PrP) is crucially involved in transmissible spongiform encephalopathies (TSE), but neither its exact role in disease nor its physiological function are known. Here we show for mice, using histological, immunochemical and PCR-based methods, that stimulation of innate resistance was followed by appearance of numerous endogenous retroviruses and ensuing PrP up-regulation in germinal centers of the spleen. Subsequently, the activated retroviruses disappeared in a PrP-dependent manner. Our results reveal the regular involvement of endogenous retroviruses in murine immune responses and provide evidence for an essential function of PrP in the control of the retroviral activity. The interaction between PrP and ubiquitous endogenous retroviruses may allow new interpretations of TSE pathophysiology and explain the evolutionary conservation of PrP.
Collapse
|
26
|
Manuelidis L. A 25 nm virion is the likely cause of transmissible spongiform encephalopathies. J Cell Biochem 2007; 100:897-915. [PMID: 17044041 DOI: 10.1002/jcb.21090] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The transmissible spongiform encephalopathies (TSEs) such as endemic sheep scrapie, sporadic human Creutzfeldt-Jakob disease (CJD), and epidemic bovine spongiform encephalopathy (BSE) may all be caused by a unique class of "slow" viruses. This concept remains the most parsimonious explanation of the evidence to date, and correctly predicted the spread of the BSE agent to vastly divergent species. With the popularization of the prion (infectious protein) hypothesis, substantial data pointing to a TSE virus have been largely ignored. Yet no form of prion protein (PrP) fulfills Koch's postulates for infection. Pathologic PrP is not proportional to, or necessary for infection, and recombinant and "amplified" prions have failed to produce significant infectivity. Moreover, the "wealth of data" claimed to support the existence of infectious PrP are increasingly contradicted by experimental observations, and cumbersome speculative notions, such as spontaneous PrP mutations and invisible strain-specific forms of "infectious PrP" are proposed to explain the incompatible data. The ability of many "slow" viruses to survive harsh environmental conditions and enzymatic assaults, their stealth invasion through protective host-immune defenses, and their ability to hide in the host and persist for many years, all fit nicely with the characteristics of TSE agents. Highly infectious preparations with negligible PrP contain nucleic acids of 1-5 kb, even after exhaustive nuclease digestion. Sedimentation as well as electron microscopic data also reveal spherical infectious particles of 25-35 nm in diameter. This particle size can accommodate a viral genome of 1-4 kb, sufficient to encode a protective nucleocapsid and/or an enzyme required for its replication. Host PrP acts as a cellular facilitator for infectious particles, and ultimately accrues pathological amyloid features. A most significant advance has been the development of tissue culture models that support the replication of many different strains of agent and can produce high levels of infectivity. These models provide new ways to rapidly identify intrinsic viral and strain-specific molecules so important for diagnosis, prevention, and fundamental understanding.
Collapse
|
27
|
Sawiris GP, Becker KG, Elliott EJ, Moulden R, Rohwer RG. Molecular analysis of bovine spongiform encephalopathy infection by cDNA arrays. J Gen Virol 2007; 88:1356-1362. [PMID: 17374782 DOI: 10.1099/vir.0.82387-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Here, the first cDNA array analysis of differential gene expression in bovine spongiform encephalopathy (BSE) is reported, using a spotted cDNA array platform representing nearly 17 000 mouse genes. Array analysis identified 296 gene candidates for differential expression in brain tissue from VM mice in late-stage infection with the 301V strain of BSE, compared with brain tissue from normal, age-matched VM mice. Real-time PCR confirmed differential expression of 25 of 31 genes analysed. Some of the genes identified by array analysis as being expressed differentially are associated with ubiquitin/proteasome function, lysosomal function, molecular chaperoning of protein folding or apoptosis. Other genes are involved in calcium ion binding/homeostasis, zinc ion binding/homeostasis or regulation of transcription. Principal-component analysis shows that the global gene-expression profiles of the BSE-infected samples have gene-expression signatures that are markedly different from, and completely non-overlapping with, those obtained from the normal controls.
Collapse
Affiliation(s)
- G Peter Sawiris
- Research Service, VA Maryland Healthcare System, Baltimore, MD, USA
| | - Kevin G Becker
- Gene Expression and Genomics Unit, National Institute on Aging, Baltimore, MD, USA
| | - Ellen J Elliott
- Research Service, VA Maryland Healthcare System, Baltimore, MD, USA
| | - Robert Moulden
- Research Service, VA Maryland Healthcare System, Baltimore, MD, USA
| | - Robert G Rohwer
- Research Service, VA Maryland Healthcare System, Baltimore, MD, USA
| |
Collapse
|
28
|
Stobart MJ, Parchaliuk D, Simon SLR, LeMaistre J, Lazar J, Rubenstein R, Knox JD. Differential expression of interferon responsive genes in rodent models of transmissible spongiform encephalopathy disease. Mol Neurodegener 2007; 2:5. [PMID: 17367538 PMCID: PMC1847514 DOI: 10.1186/1750-1326-2-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 03/16/2007] [Indexed: 11/26/2022] Open
Abstract
Background The pathological hallmarks of transmissible spongiform encephalopathy (TSE) diseases are the deposition of a misfolded form of a host-encoded protein (PrPres), marked astrocytosis, microglial activation and spongiosis. The development of powerful gene based technologies has permitted increased levels of pro-inflammatory cytokines to be demonstrated. However, due to the use of assays of differing sensitivities and typically the analysis of a single model system it remained unclear whether this was a general feature of these diseases or to what extent different model systems and routes of infection influenced the relative levels of expression. Similarly, it was not clear whether the elevated levels of cytokines observed in the brain were accompanied by similar increases in other tissues that accumulate PrPres, such as the spleen. Results The level of expression of the three interferon responsive genes, Eif2ak2, 2'5'-OAS, and Mx2, was measured in the brains of Syrian hamsters infected with scrapie 263K, VM mice infected with bovine spongiform encephalopathy and C57BL/6 mice infected with the scrapie strain ME7. Glial fibrillary acidic expression confirmed the occurrence of astrocytosis in all models. When infected intracranially all three models showed a similar pattern of increased expression of the interferon responsive genes at the onset of clinical symptoms. At the terminal stage of the disease the level and pattern of expression of the three genes was mostly unchanged in the mouse models. In contrast, in hamsters infected by either the intracranial or intraperitoneal routes, both the level of expression and the expression of the three genes relative to one another was altered. Increased interferon responsive gene expression was not observed in a transgenic mouse model of Alzheimer's disease or the spleens of C57BL/6 mice infected with ME7. Concurrent increases in TNFα, TNFR1, Fas/ApoI receptor, and caspase 8 expression in ME7 infected C57BL/6 mice were observed. Conclusion The identification of increased interferon responsive gene expression in the brains of three rodent models of TSE disease at two different stages of disease progression suggest that this may be a general feature of the disease in rodents. In addition, it was determined that the increased interferon responsive gene expression was confined to the CNS and that the TSE model system and the route of infection influenced the pattern and extent of the increased expression. The concurrent increase in initiators of Eif2ak2 mediated apoptotic pathways in C57BL/6 mice infected with ME7 suggested one mechanism by which increased interferon responsive gene expression may enhance disease progression.
Collapse
Affiliation(s)
- Michael J Stobart
- Division of Host Genetics and Prion Diseases, Public Health Agency of Canada, Canadian Science Centre for Human and Animal Health, Winnipeg, MB R3E 3R2, Canada
- Department of Medical Microbiology and Infectious Diseases, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0W3, Canada
| | - Debra Parchaliuk
- Division of Host Genetics and Prion Diseases, Public Health Agency of Canada, Canadian Science Centre for Human and Animal Health, Winnipeg, MB R3E 3R2, Canada
| | - Sharon LR Simon
- Division of Host Genetics and Prion Diseases, Public Health Agency of Canada, Canadian Science Centre for Human and Animal Health, Winnipeg, MB R3E 3R2, Canada
| | - Jillian LeMaistre
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0W3, Canada
| | - Jozef Lazar
- Department of Dermatology and Human Molecular Genetics Center, MCW, Milwaukee, WI 53226, USA
| | - Richard Rubenstein
- Department of Biochemistry, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - J David Knox
- Division of Host Genetics and Prion Diseases, Public Health Agency of Canada, Canadian Science Centre for Human and Animal Health, Winnipeg, MB R3E 3R2, Canada
- Department of Medical Microbiology and Infectious Diseases, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0W3, Canada
| |
Collapse
|
29
|
Bate C, Kempster S, Last V, Williams A. Interferon-gamma increases neuronal death in response to amyloid-beta1-42. J Neuroinflammation 2006; 3:7. [PMID: 16569229 PMCID: PMC1435873 DOI: 10.1186/1742-2094-3-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Accepted: 03/28/2006] [Indexed: 11/10/2022] Open
Abstract
Background Alzheimer's disease is a neurodegenerative disorder characterized by a progressive cognitive impairment, the consequence of neuronal dysfunction and ultimately the death of neurons. The amyloid hypothesis proposes that neuronal damage results from the accumulation of insoluble, hydrophobic, fibrillar peptides such as amyloid-β1-42. These peptides activate enzymes resulting in a cascade of second messengers including prostaglandins and platelet-activating factor. Apoptosis of neurons is thought to follow as a consequence of the uncontrolled release of second messengers. Biochemical, histopathological and genetic studies suggest that pro-inflammatory cytokines play a role in neurodegeneration during Alzheimer's disease. In the current study we examined the effects of interferon (IFN)-γ, tumour necrosis factor (TNF)α, interleukin (IL)-1β and IL-6 on neurons. Methods Primary murine cortical or cerebellar neurons, or human SH-SY5Y neuroblastoma cells, were grown in vitro. Neurons were treated with cytokines prior to incubation with different neuronal insults. Cell survival, caspase-3 activity (a measure of apoptosis) and prostaglandin production were measured. Immunoblots were used to determine the effects of cytokines on the levels of cytoplasmic phospholipase A2 or phospholipase C γ-1. Results While none of the cytokines tested were directly neurotoxic, pre-treatment with IFN-γ sensitised neurons to the toxic effects of amyloid-β1-42 or HuPrP82-146 (a neurotoxic peptide found in prion diseases). The effects of IFN-γ were seen on cortical and cerebellar neurons, and on SH-SY5Y neuroblastoma cells. However, pre-treatment with IFN-γ did not affect the sensitivity to neurons treated with staurosporine or hydrogen peroxide. Pre-treatment with IFN-γ increased the levels of cytoplasmic phospholipase A2 in SH-SY5Y cells and increased prostaglandin E2 production in response to amyloid-β1-42. Conclusion Treatment of neuronal cells with IFN-γ increased neuronal death in response to amyloid-β1-42 or HuPrP82-146. IFN-γ increased the levels of cytoplasmic phospholipase A2 in cultured neuronal cells and increased expression of cytoplasmic phospholipase A2 was associated with increased production of prostaglandin E2 in response to amyloid-β1-42 or HuPrP82-146. Such observations suggest that IFN-γ produced within the brain may increase neuronal loss in Alzheimer's disease.
Collapse
Affiliation(s)
- Clive Bate
- Department of Pathology and Infectious Diseases, Royal Veterinary College, Hawkshead Lane, North Mymms, Herts, AL9 7TA, UK
| | - Sarah Kempster
- Department of Pathology and Infectious Diseases, Royal Veterinary College, Hawkshead Lane, North Mymms, Herts, AL9 7TA, UK
| | - Victoria Last
- Department of Pathology and Infectious Diseases, Royal Veterinary College, Hawkshead Lane, North Mymms, Herts, AL9 7TA, UK
| | - Alun Williams
- Department of Pathology and Infectious Diseases, Royal Veterinary College, Hawkshead Lane, North Mymms, Herts, AL9 7TA, UK
| |
Collapse
|
30
|
McBride SM. Prion protein: a pattern recognition receptor for viral components and uric acid responsible for the induction of innate and adaptive immunity. Med Hypotheses 2005; 65:570-7. [PMID: 15913900 DOI: 10.1016/j.mehy.2005.02.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Accepted: 02/23/2005] [Indexed: 10/25/2022]
Abstract
Prion protein, known as Prp(c), is a GPI-anchored membrane bound glycoprotein ubiquitously expressed in the body. To date, the precise nature of its physiological role remains a mystery. The prion protein's presence on neurons and immune effector cells suggests a dual neurological and immunological function. Some consensus exists regarding the proposed involvement of Prp(c) in neurodevelopment, where it would serve to mediate interactions between the extra-cellular matrix (ECM) and the neuron. There is also evidence that Prp plays a part in immunity, although the exact nature of the role remains unclear. Interestingly, a role in both immunity and development is a functional division seen in other types of receptors, most notably the Toll Receptor. In mammals, toll-like receptors (TLRs) are partly responsible for both innate and adaptive immune activity. However, recently several TLR independent pathways have been identified that initiate such responses. Unfortunately, receptors for such pathways remain unidentified. But based upon its functional homology to Toll Receptors, its known interactions with several viruses, and its possible downstream effector proteins, it is proposed that Prp(c) represents a new type of pattern recognition receptor responsible for TLR-independent induction of myeloid dendritic cell and macrophage maturation and later T-cell activation. From what is known of the ligands for the prion protein, it is proposed that this response would be initiated via the binding of uric acid, viral RNA, or viral structural proteins to Prp(c). It will further be proposed that Prp(c)'s ability to interact with viral components stems from its evolutionary origin as a horizontally transferred gene from an early RNA virus. Finally, Prp(c)'s functional role in immunity will be related to the pathophysiology of TSEs, with observations made concerning immune response to infection and agent composition.
Collapse
Affiliation(s)
- Sean M McBride
- Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.
| |
Collapse
|
31
|
Lu ZY, Baker CA, Manuelidis L. New molecular markers of early and progressive CJD brain infection. J Cell Biochem 2005; 93:644-52. [PMID: 15660413 DOI: 10.1002/jcb.20220] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs), including human Creutzfeldt-Jakob disease (CJD), are caused by a related group of infectious agents that can be transmitted to many mammalian species. Because the infectious component of TSE agents has not been identified, we examined myeloid cell linked inflammatory pathways to find if they were activated early in CJD infection. We here identify a specific set of transcripts in CJD infected mouse brains that define early and later stages of progressive disease. Serum amyloid A3 and L-selectin mRNAs were elevated as early as 20 days after intracerebral inoculation. Transcripts of myeloid cell recruitment factors such as MIP-1alpha, MIP-1beta, and MCP1, as well as IL1alpha and TNFalpha were upregulated > 10 fold between 30 and 40 days, well before prion protein (PrP) abnormalities that begin only after 80 days. At later stages of symptomatic neurodegenerative disease (100-110 days), a selected set of transcripts rose by as much as 100 fold. In contrast, normal brain inoculated controls showed no similar sequential changes. In sum, rapid and simple PCR tests defined progressive stages of CJD brain infection. These markers may also facilitate early diagnosis of CJD in accessible peripheral tissues such as spleen and blood. Because some TSE strains can differentially target particular cell types such as microglia, several of these molecular changes may also distinguish specific agent strains. The many host responses to the CJD agent challenge the assumption that the immune system does not recognize TSE infections because these agents are composed only of the host's own PrP.
Collapse
Affiliation(s)
- Zhi Yun Lu
- Yale Medical School, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|
32
|
Colton CA, Brown CM, Vitek MP. Sex steroids, APOE genotype and the innate immune system. Neurobiol Aging 2005; 26:363-72. [PMID: 15639315 DOI: 10.1016/j.neurobiolaging.2004.08.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Revised: 08/05/2004] [Accepted: 08/20/2004] [Indexed: 01/13/2023]
Abstract
Microglia are a primary cellular component of the CNS innate immune system. Their response to conserved pathogen motifs is inherent and leads to the release of cytoactive factors that impact surrounding neurons and glia. The microglial response is modified by the local tissue environment and by "global" factors such as gender. Exposure to estrogen and testosterone, in general, down regulate microglia and peripheral macrophage function, promoting an anti-inflammatory phenotype. Other global factors, however, can "override" the gender-based effects demonstrated by estrogen or testosterone. Apolipoprotein E (APOE) genotype and the expression of specific isoforms of apolipoprotein E differentially regulate microglial and peripheral macrophage function. Our studies have shown that the presence of the APOE4 gene, a known risk factor for AD and other neurodegenerative diseases, promotes a pro-inflammatory macrophage phenotype in neonatal microglia. However, in adult mice, the APOE genotype-specific effect depends on gender. Peritoneal macrophages from female adult APOE3 and APOE4 targeted replacement mice do not demonstrate an APOE genotype-specific response, whereas adult male APOE4 targeted replacement mice show enhanced macrophage responsiveness compared to adult male APOE3 mice. At least part of the altered macrophage response in APOE4 male mice may be due to differences in androgen receptor sensitivity to testosterone. These data re-enforce the concept that classical activation in macrophages has multiple levels of regulation, dictated by competing or synergistic factors and genotype.
Collapse
Affiliation(s)
- Carol A Colton
- Division of Neurology, Duke University Medical Center, Box 2900, Bryan Research Bldg, Durham, NC 27710, USA.
| | | | | |
Collapse
|
33
|
Lee HP, Jun YC, Choi JK, Kim JI, Carp RI, Kim YS. The expression of RANTES and chemokine receptors in the brains of scrapie-infected mice. J Neuroimmunol 2005; 158:26-33. [PMID: 15589034 DOI: 10.1016/j.jneuroim.2004.08.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 07/30/2004] [Accepted: 08/02/2004] [Indexed: 01/08/2023]
Abstract
While chemokines play an important role in host defense, it has become abundantly clear that their expression is not solely restricted to immune cells. In this study, to investigate the role of chemokines in pathogenic mechanism of neurodegeneration in prion diseases, we determined the cerebral expression of RANTES, a major chemoattractant of monocytes and activated lymphocytes, and its receptors CCR1, CCR3 and CCR5 in ME7 scrapie-infected mice. The mRNA of RANTES gene was upregulated in the brains of scrapie-infected mice. Intense immunoreactivity of RANTES was observed only in glial fibrillary acidic protein (GFAP)-positive astrocytes of the hippocampus of the infected mice. In addition, the levels of mRNA expression of CCR1, CCR3, and CCR5 were increased in hippocampus of scrapie-infected brains compared to the values in controls. Immunostaining of CCR1, CCR3, and CCR5 was observed in reactive astrocytes of the hippocampal region of scrapie-infected brains. In addition, immunoreactivity of CCR5 was also observed in microglia of scrapie-infected brains. These results suggest that RANTES and its receptors may participate in amplifying proinflammatory responses and, thereby, exacerbate the neurodegeneration of prion diseases.
Collapse
Affiliation(s)
- Hyun-Pil Lee
- Ilsong Institute of Life Science, Hallym University, 1605-4 Kwanyangdong, Dongangu, Anyang, Kyeonggi-Do 431-060, Republic of Korea
| | | | | | | | | | | |
Collapse
|
34
|
Burwinkel M, Riemer C, Schwarz A, Schultz J, Neidhold S, Bamme T, Baier M. Role of cytokines and chemokines in prion infections of the central nervous system. Int J Dev Neurosci 2004; 22:497-505. [PMID: 15465279 DOI: 10.1016/j.ijdevneu.2004.07.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Accepted: 07/12/2004] [Indexed: 11/22/2022] Open
Abstract
Prion infections of the central nervous system (CNS) are characterised by a reactive gliosis and the subsequent degeneration of neuronal tissue. The activation of glial cells, which precedes neuronal death, is likely to be initially caused by the deposition of misfolded, proteinase K-resistant, isoforms (termed PrP(res)) of the prion protein (PrP) in the brain. Cytokines and chemokines released by PrP(res)-activated glia cells may contribute directly or indirectly to the disease development by enhancement and generalisation of the gliosis and via cytotoxicity for neurons. However, the actual role of prion-induced glia activation and subsequent cytokine/chemokine secretion in disease development is still far from clear. In the present work, we review our present knowledge concerning the functional biology of cytokines and chemokines in prion infections of the CNS.
Collapse
|
35
|
Riemer C, Neidhold S, Burwinkel M, Schwarz A, Schultz J, Krätzschmar J, Mönning U, Baier M. Gene expression profiling of scrapie-infected brain tissue. Biochem Biophys Res Commun 2004; 323:556-64. [PMID: 15369787 DOI: 10.1016/j.bbrc.2004.08.124] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Indexed: 11/30/2022]
Abstract
The underlying pathomechanisms in prion infections of the central nervous system are still insufficiently understood. The identification of genes with altered expression patterns in the diseased brain may provide insight into the disease development on the molecular level, which ultimately leads to neuronal loss. To provide a detailed analysis of changes in the molecular level in prion disease pathology we used a large-scale gene array based approach, which covers more than 11,000 functionally characterised sequences and expressed sequence tags, for the analysis of gene expression profile alterations in the cortex, medulla, and pons of scrapie-infected mice. The study identified in total 114 genes with altered mRNA levels, the majority of which were previously not known to be affected by the disease. Overall the gene array data demonstrate the presence of a strong inflammatory reaction and stress response, and show similarities to gene expression patterns found in brains affected by Alzheimer's disease and aging, respectively.
Collapse
|
36
|
Arjona A, Simarro L, Islinger F, Nishida N, Manuelidis L. Two Creutzfeldt-Jakob disease agents reproduce prion protein-independent identities in cell cultures. Proc Natl Acad Sci U S A 2004; 101:8768-73. [PMID: 15161970 PMCID: PMC423270 DOI: 10.1073/pnas.0400158101] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human Creutzfeldt-Jakob disease (CJD) and similar neurodegenerative diseases such as sheep scrapie are caused by a variety of related infectious agents. They are associated with abnormal host prion protein (PrP), which is assessed by limited proteolysis to yield resistant PrP bands (PrP-res). Although PrP-res has been posited as the infectious agent, purified PrP-res itself is not infectious. To establish the independence of CJD agent characteristics from those of PrP-res, two different mouse-passaged CJD strains were propagated in neuronal cell lines whose PrP-res patterns differ markedly from each other and from those found in infected brain. In mouse brain, the fast CJD strain, FU, elicits many PrP-res deposits, whereas the slow SY strain elicits few. Both strains evoked PrP-res in cultured murine cells, although SY induced PrP-res only transiently. PrP-res patterns in FU- and SY-infected GT1 cells were identical, and were significantly different from those in brain and in N2a cells. Nevertheless, all FU-infected cell lines reproduced their original fast disease in mice, even after extensive subculture, whereas SY-infected cells produced only slow disease. These data indicate PrP-res neither encodes nor alters agent-specific characteristics. PrP-res was also a poor predictor of infectivity because SY cells that had lost PrP-res were approximately 10-fold more infectious than PrP-res-positive cultures. Furthermore, FU titers increased 650-fold, whereas PrP-res remained constant. Passaged FU-infected cells had titers comparable to brain, and >30% of cells displayed abundant cytoplasmic PrP-res aggregates that may trap agent. The continuous substantial replication of CJD in monotypic cells will further the discrimination of agent-specific molecules from pathological host responses to infection.
Collapse
Affiliation(s)
- Alvaro Arjona
- Yale Medical School, 333 Cedar Street, Farnum Memorial Basement 11, New Haven, CT 06510, USA
| | | | | | | | | |
Collapse
|