1
|
Ashar H, Singh A, Kishore D, Neel T, More S, Liu C, Dugat D, Ranjan A. Enabling Chemo-Immunotherapy with HIFU in Canine Cancer Patients. Ann Biomed Eng 2024; 52:1859-1872. [PMID: 37162696 DOI: 10.1007/s10439-023-03194-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/23/2023] [Indexed: 05/11/2023]
Abstract
High intensity focused ultrasound (HIFU) is a promising non-invasive technique for treating solid tumors using thermal and histotripsy-based mechanical ablation. However, its clinical significance in different tumor types is not fully understood. To assess its therapeutic efficacy and immunomodulatory properties, we compared HIFU thermal ablation and histotripsy ablation in dogs with spontaneous tumors. We also evaluated the ability of non-ablative HIFU-based mild hyperthermia (40-45 ºC) to improve Doxorubicin delivery and immunomodulation. Our results showed that HIFU thermal ablation induced tumor remission in the majority of treated patients over 60 days, while histotripsy achieved partial response to stable disease persistence. The adverse effects of thermal ablation were minor to moderate, while histotripsy exposures were relatively well-tolerated. Furthermore, we observed a correlation between HIFU-therapeutic response and serum anti-tumor cytokine profiles and the presence of functionally active cytotoxic immune cells in patients. Similarly, Doxorubicin-treated patients showed improved drug delivery, efficacy, and anti-tumor immune responses with HIFU hyperthermia. In conclusion, our study demonstrates that depending on the tumor type and treatment parameters, HIFU treatments can enable tumor growth control, immune activation, and chemotherapy in veterinary patient. These findings have significant clinical implications and highlight the potential of HIFU as a promising cancer treatment approach.
Collapse
Affiliation(s)
- Harshini Ashar
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, 169 McElroy Hall, Stillwater, OK, 74078, USA
| | - Akansha Singh
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, 169 McElroy Hall, Stillwater, OK, 74078, USA
| | | | - Tina Neel
- Neel Veterinary Hospital, Oklahoma City, OK, 73127, USA
| | - Sunil More
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Chenang Liu
- The School of Industrial Engineering & Management, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Danielle Dugat
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, 169 McElroy Hall, Stillwater, OK, 74078, USA
| | - Ashish Ranjan
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, 169 McElroy Hall, Stillwater, OK, 74078, USA.
| |
Collapse
|
2
|
Ozenne V, Bour P, Denis de Senneville B, Quesson B. 3D motion strategy for online volumetric thermometry using simultaneous multi-slice EPI at 1.5T: an evaluation study. Int J Hyperthermia 2023; 40:2194595. [PMID: 37080550 DOI: 10.1080/02656736.2023.2194595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
PURPOSE In presence of respiratory motion, temperature mapping is altered by in-plane and through-plane displacements between successive acquisitions together with periodic phase variations. Fast 2D Echo Planar Imaging (EPI) sequence can accommodate intra-scan motion, but limited volume coverage and inter-scan motion remain a challenge during free-breathing acquisition since position offsets can arise between the different slices. METHOD To address this limitation, we evaluated a 2D simultaneous multi-slice EPI sequence with multiband (MB) acceleration during radiofrequency ablation on a mobile gel and in the liver of a volunteer (no heating). The sequence was evaluated in terms of resulting inter-scan motion, temperature uncertainty and elevation, potential false-positive heating and repeatability. Lastly, to account for potential through-plane motion, a 3D motion compensation pipeline was implemented and evaluated. RESULTS In-plane motion was compensated whatever the MB factor and temperature distribution was found in agreement during both the heating and cooling periods. No obvious false-positive temperature was observed under the conditions being investigated. Repeatability of measurements results in a 95% uncertainty below 2 °C for MB1 and MB2. Uncertainty up to 4.5 °C was reported with MB3 together with the presence of aliasing artifacts. Lastly, fast simultaneous multi-slice EPI combined with 3D motion compensation reduce residual out-of-plane motion. CONCLUSION Volumetric temperature imaging (12 slices/700 ms) could be performed with 2 °C accuracy or less, and offer tradeoffs in acquisition time or volume coverage. Such a strategy is expected to increase procedure safety by monitoring large volumes more rapidly for MR-guided thermotherapy on mobile organs.
Collapse
Affiliation(s)
- Valéry Ozenne
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
- University of Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Pierre Bour
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
- University of Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | | | - Bruno Quesson
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
- University of Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| |
Collapse
|
3
|
Zhang J, He Q, Mao D, Wang C, Huang L, Wang M, Zhang J. Efficacy and adverse reaction management of oncolytic viral intervention combined with chemotherapy in patients with liver metastasis of gastrointestinal malignancy. Front Oncol 2023; 13:1159802. [PMID: 37197423 PMCID: PMC10183573 DOI: 10.3389/fonc.2023.1159802] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/17/2023] [Indexed: 05/19/2023] Open
Abstract
Background The liver is a key target organ for colorectal and gastric cancer metastasis. One of the challenges in the treatment of colorectal and gastric cancers is the management of liver metastasis. This study aimed to investigate the efficacy, adverse effects, and coping strategies of oncolytic virus injection in patients with liver metastases of gastrointestinal malignancies. Methods We prospectively analyzed patients treated at Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine from June 2021 to October 2022. 47 patients with gastrointestinal cancer liver metastasis were included in the study. The data, including clinical manifestations, imaging, tumor markers, postoperative adverse reactions, psychological intervention, dietary guidance, and adverse reaction management were evaluated. Results Oncolytic virus injection was successful in all patients, and no drug injection-related deaths occurred. The adverse effects, such as fever, pain, bone marrow suppression, nausea, and vomiting, were mild and resolved subsequently. Based on the comprehensive intervention of nursing procedures, the postoperative adverse reactions of patients were effectively alleviated and treated. None of the 47 patients had any puncture point infections, and the pain caused by the invasive operation was relieved quickly. After 2 courses of oncolytic virus injection, postoperative liver MRI showed 5 partial remissions, 30 stable diseases, and 12 progressive diseases in target organs. Conclusion Interventions based on nursing procedures can ensure the smooth treatment of recombinant human adenovirus type 5 in patients with liver metastases of gastrointestinal malignant tumors. This is of great importance for clinical treatment and significantly reduces patient complications and improves the patient's quality of life.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Nursing, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianyun He
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongliang Mao
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Wang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Huang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medical Center on Aging of Ruijin Hospital (MCARJH), Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- *Correspondence: Mei Wang, ; Lei Huang,
| | - Mei Wang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Mei Wang, ; Lei Huang,
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Carroll J, Coutermarsh-Ott S, Klahn SL, Tuohy J, Barry SL, Allen IC, Hay AN, Ruth J, Dervisis N. High intensity focused ultrasound for the treatment of solid tumors: a pilot study in canine cancer patients. Int J Hyperthermia 2022; 39:855-864. [PMID: 35848421 PMCID: PMC9724480 DOI: 10.1080/02656736.2022.2097323] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/08/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022] Open
Abstract
PURPOSE To investigate the safety, feasibility, and outcomes of High-Intensity Focused Ultrasound (HIFU) for the treatment of solid tumors in a spontaneous canine cancer model. METHODS Dogs diagnosed with subcutaneous solid tumors were recruited, staged and pretreatment biopsies were obtained. A single HIFU treatment was delivered to result in partial tumor ablation using a commercially available HIFU unit. Tumors were resected 3-6 days post HIFU and samples obtained for histopathology and immunohistochemistry. Total RNA was isolated from paired pre and post treated FFPE tumor samples, and quantitative gene expression analysis was performed using the nCounter Canine IO Panel. RESULTS A total of 20 dogs diagnosed with solid tumors were recruited and treated in the study. Tumors treated included Soft Tissue Sarcoma (n = 15), Mast Cell Tumor (n = 3), Osteosarcoma (n = 1), and Thyroid Carcinoma (n = 1). HIFU was well tolerated with only 1 dog experiencing a clinically significant adverse event. Pathology confirmed the presence of complete tissue ablation at the HIFU targeted site and immunohistochemistry indicated immune cell infiltration at the treated/untreated tumor border. Quantitative gene expression analysis indicated that 28 genes associated with T-cell activation were differentially expressed post-HIFU. CONCLUSIONS HIFU appears to be safe and feasible for the treatment of subcutaneous canine solid tumors, resulting in ablation of the targeted tissue. HIFU induced immunostimulatory changes, highlighting the canine cancer patient as an attractive model for studying the effects of focal ablation therapies on the tumor microenvironment.
Collapse
Affiliation(s)
- Jennifer Carroll
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Shawna L. Klahn
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Joanne Tuohy
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Sabrina L. Barry
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Alayna N. Hay
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Jeffrey Ruth
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Nick Dervisis
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
- Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
- ICTAS Center for Engineered Health, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
5
|
Drakos T, Giannakou M, Menikou G, Damianou C. Magnetic Resonance Imaging-Guided Focused Ultrasound Positioning System for Preclinical Studies in Small Animals. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2021; 40:1343-1352. [PMID: 33031567 PMCID: PMC8246715 DOI: 10.1002/jum.15514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/06/2020] [Accepted: 09/07/2020] [Indexed: 06/01/2023]
Abstract
OBJECTIVES A positioning device compatible with magnetic resonance imaging (MRI) used for preclinical studies in small animals was developed that fits in MRI scanners up to 7 T. The positioning device was designed with two computer-controlled linear stages. METHODS The positioning device was evaluated in an agar-based phantom, which mimics soft tissues, and in a rabbit. Experiments with this positioning device were performed in an MRI system using the agar-based phantom. The transducer used had a diameter of 50 mm, operated at 0.5 MHz, and focused energy at 60 mm. RESULTS Magnetic resonance thermometry was used to assess the functionality of the device, which showed adequate deposition of thermal energy and sufficient positional accuracy in all axes. CONCLUSIONS The proposed system fits in MRI scanners up to 7 T. Because of the size of the positioning device, at the moment, it can be used to perform preclinical studies on small animals such as mice, rats, and rabbits.
Collapse
Affiliation(s)
| | | | - Georgios Menikou
- Department of Electrical EngineeringCyprus University of TechnologyLimassolCyprus
| | - Christakis Damianou
- Department of Electrical EngineeringCyprus University of TechnologyLimassolCyprus
| |
Collapse
|
6
|
Spanoudes K, Evripidou N, Giannakou M, Drakos T, Menikou G, Damianou C. A High Intensity Focused Ultrasound System for Veterinary Oncology Applications. J Med Ultrasound 2021; 29:195-202. [PMID: 34729329 PMCID: PMC8515634 DOI: 10.4103/jmu.jmu_130_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/05/2020] [Accepted: 11/18/2020] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Magnetic resonance-guided focused ultrasound surgery is an incisionless energy-based thermal method that is used for ablating tumors in the veterinary clinic. AIMS AND OBJECTIVES In this article we describe a prototype of a veterinary system compatible with magnetic resonance imaging intended for small-to-medium-sized companion animals that was developed and tested in vivo in adult rabbits. METHODS Real-time monitoring of the ablation during the experiment was possible with MR thermometry. Experiments involved thermal monitoring of sonications applied in the thigh of the rabbits. A 38-mm diameter transducer operating at 2.6 MHz was used with a 60-mm-focal length. The robotic system employed 3 linear axes and one angular axis. For this study, only X and Y axis were enabled. Due to the target size limitations, motion in Z and Θ was not needed. The functionality of the positioning device was evaluated by means of MR thermometry, demonstrating sufficient heating and accurate motion in both axes of operation. RESULTS The postmortem findings confirm the ability of the system to induce thermal ablations in vivo in the absence of adverse effects. CONCLUSIONS The device is a reliable and affordable solution for companion animal hospitals, offering and additional tool for the veterinary oncology society.
Collapse
Affiliation(s)
- Kyriakos Spanoudes
- Department of Electrical Engineering, Cyprus University of Technology, Limassol, Cyprus
- Vet Ex Machina Ltd., Nicosia, Cyprus
| | - Nikolas Evripidou
- Department of Electrical Engineering, Cyprus University of Technology, Limassol, Cyprus
| | | | - Theocharis Drakos
- Department of Electrical Engineering, Cyprus University of Technology, Limassol, Cyprus
- Medsonic Ltd., Limassol, Cyprus
| | - George Menikou
- Medical Physics Sector, General Hospital of Nicosia, Nicosia, Cyprus
| | - Christakis Damianou
- Department of Electrical Engineering, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
7
|
Latifi M, Hay A, Carroll J, Dervisis N, Arnold L, Coutermarsh-Ott SL, Kierski KR, Klahn S, Allen IC, Vlaisavljevich E, Tuohy J. Focused ultrasound tumour ablation in small animal oncology. Vet Comp Oncol 2021; 19:411-419. [PMID: 34057278 DOI: 10.1111/vco.12742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/29/2021] [Accepted: 05/24/2021] [Indexed: 12/20/2022]
Abstract
The cancer incidence rates for humans and animals remain high, and efforts to improve cancer treatment are crucial. Cancer treatment for solid tumours includes both treatment of the primary tumour and of metastasis. Surgery is commonly employed to resect primary and metastatic tumours, but is invasive, and is not always the optimal treatment modality. Prevention and treatment of metastatic disease often utilizes a multimodal approach, but metastasis remains a major cause of death for both human and veterinary cancer patients. Focused ultrasound (FUS) tumour ablation techniques represent a novel non-invasive approach to treating cancer. FUS ablation is precise, thus sparing adjacent critical structures while ablating the tumour. FUS ablation can occur in a thermal or non-thermal fashion. Thermal FUS ablation, also known as high intensity focused ultrasound (HIFU) ablation, destroys tumour cells via heat, whereas non-thermal FUS, known as histotripsy, ablates tumour cells via mechanical disintegration of tissue. Not only can HIFU and histotripsy ablate tumours, they also demonstrate potential to upregulate the host immune system towards an anti-tumour response. The aim of this report is provide a description of HIFU and histotripsy tumour ablation, with a focus on the basic principles of their ablation mechanisms and their clinical applicability in the field of veterinary oncology.
Collapse
Affiliation(s)
- Max Latifi
- Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, Virginia, USA.,Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - Alayna Hay
- Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, Virginia, USA
| | - Jennifer Carroll
- Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, Virginia, USA
| | - Nikolaos Dervisis
- Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, Virginia, USA
| | - Lauren Arnold
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Sheryl L Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - Katharine R Kierski
- Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, Virginia, USA
| | - Shawna Klahn
- Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, Virginia, USA
| | - Irving C Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Joanne Tuohy
- Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, Virginia, USA
| |
Collapse
|
8
|
Damianou C, Giannakou M, Menikou G, Ioannou L. Magnetic resonance imaging-guided focused ultrasound robotic system with the subject placed in the prone position. ACTA ACUST UNITED AC 2020. [DOI: 10.4103/digm.digm_2_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Abstract
Over the past decade, interventional oncology techniques have become integrated into the treatment plans of companion animals with cancer on a regular basis. Although procedures such as stenting are performed commonly, other less frequently utilized techniques for locoregional therapy, such as embolization and ablation, are emerging and demonstrating promise. Tumor ablation techniques are categorized into two subgroups: chemical ablation and energy-based ablation. Increased utilization of ablation will allow for the determination of specific indications and evaluation of outcomes for these techniques.
Collapse
|
10
|
Yiannakou M, Menikou G, Yiallouras C, Ioannides C, Damianou C. MRI guided focused ultrasound robotic system for animal experiments. Int J Med Robot 2017; 13. [PMID: 28211622 DOI: 10.1002/rcs.1804] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 11/07/2022]
Abstract
BACKGROUND In this paper an MRI-guided focused ultrasound (MRgFUS) robotic system was developed that can be used for conducting experiments in small animals.The target for this robotic system regarding motion was to move a therapeutic ultrasound transducer in two Cartesian axes. METHODS A single element spherically focused transducer of 3 cm diameter, focusing at 7 cm and operating at 0.4 MHz was used. The positioning device incorporates only MRI compatible materials. The propagation of ultrasound is a bottom to top approach. The 2-D positioning device is controlled by custom-made software and a custom-made electronic system which controls the two piezoelectric motors. RESULTS The system was tested successfully in agar/silica/evaporated milk phantom for various tasks (robot motion, MR compatibility, and MR thermometry). The robotic system is capable of moving the focused ultrasound transducer to perform MR-guided focused ultrasound experiments in small animals. CONCLUSIONS This system has the potential to be deployed as a cost effective solution for performing experiments in small animals.
Collapse
Affiliation(s)
- Marinos Yiannakou
- Electrical Engineering Department, Cyprus University of Technology, Cyprus
| | | | - Christos Yiallouras
- Electrical Engineering Department, Cyprus University of Technology, Cyprus
- R&D, MEDSONIC LTD, Limassol, Cyprus
| | | | | |
Collapse
|
11
|
Yang T, Case JB, Boston S, Dark MJ, Toskich B. Microwave ablation for treatment of hepatic neoplasia in five dogs. J Am Vet Med Assoc 2017; 250:79-85. [PMID: 28001112 DOI: 10.2460/javma.250.1.79] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CASE DESCRIPTION 5 dogs between 9 and 11 years of age were evaluated for treatment of primary (n = 2) or metastatic (3) hepatic neoplasia. CLINICAL FINDINGS Patients were evaluated on an elective (n = 3) or emergency (2) basis. Two dogs with primary hepatic neoplasia were evaluated because of lethargy and inappetence. One dog was referred after an enlarged anal sac was detected via palpation per rectum during a routine physical examination. Two dogs were evaluated on an emergency basis because of lethargy and weakness, and hemoabdomen in the absence of a history of trauma was detected. All 5 dogs underwent thoracic radiography and abdominal ultrasonography, with CT performed in both dogs with primary hepatic neoplasia. All dogs had preoperative evidence of abdominal neoplasia, and none had evidence of thoracic metastasis. TREATMENT AND OUTCOME All dogs underwent ventral midline laparotomy and had diffuse hepatic neoplasia that precluded complete resection. Locoregional treatment with MWA was applied to hepatic lesions (0.5 to 2.5 cm diameter) without procedural complications. Histopathologic diagnoses were biliary adenocarcinoma (n = 1), hemangiosarcoma (2), hepatocellular carcinoma (1), and apocrine gland adenocarcinoma (1). CLINICAL RELEVANCE MWA is being increasingly used as an adjunct in the surgical treatment of human patients with primary and metastatic liver disease. Results of the present small case series suggested that MWA is feasible and potentially effective as an adjunctive treatment for appropriately selected dogs with nonresectable hepatic tumors. Further investigation is indicated.
Collapse
|
12
|
Saadatpour Z, Bjorklund G, Chirumbolo S, Alimohammadi M, Ehsani H, Ebrahiminejad H, Pourghadamyari H, Baghaei B, Mirzaei HR, Sahebkar A, Mirzaei H, Keshavarzi M. Molecular imaging and cancer gene therapy. Cancer Gene Ther 2016:cgt201662. [PMID: 27857058 DOI: 10.1038/cgt.2016.62] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 09/21/2016] [Accepted: 09/23/2016] [Indexed: 12/30/2022]
Abstract
Gene therapy is known as one of the most advanced approaches for therapeutic prospects ranging from tackling genetic diseases to combating cancer. In this approach, different viral and nonviral vector systems such as retrovirus, lentivirus, plasmid and transposon have been designed and employed. These vector systems are designed to target different therapeutic genes in various tissues and cells such as tumor cells. Therefore, detection of the vectors containing therapeutic genes and monitoring of response to the treatment are the main issues that are commonly faced by researchers. Imaging techniques have been critical in guiding physicians in the more accurate and precise diagnosis and monitoring of cancer patients in different phases of malignancies. Imaging techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are non-invasive and powerful tools for monitoring of the distribution of transgene expression over time and assessing patients who have received therapeutic genes. Here, we discuss most recent advances in cancer gene therapy and molecular approaches as well as imaging techniques that are utilized to detect cancer gene therapeutics and to monitor the patients' response to these therapies worldwide, particularly in Iranian Academic Medical Centers and Hospitals.Cancer Gene Therapy advance online publication, 18 November 2016; doi:10.1038/cgt.2016.62.
Collapse
Affiliation(s)
- Z Saadatpour
- Bozorgmehr Imaging Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - G Bjorklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | - S Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - M Alimohammadi
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran
| | - H Ehsani
- Department of Periodontology, School of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran
| | - H Ebrahiminejad
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Kerman University of Medical Sciences, Kerman, Iran
| | - H Pourghadamyari
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - B Baghaei
- Department of Endodontics, School of Dentistry, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - H R Mirzaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - A Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - H Mirzaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - M Keshavarzi
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
13
|
Saadatpour Z, Rezaei A, Ebrahimnejad H, Baghaei B, Bjorklund G, Chartrand M, Sahebkar A, Morovati H, Mirzaei HR, Mirzaei H. Imaging techniques: new avenues in cancer gene and cell therapy. Cancer Gene Ther 2016; 24:1-5. [PMID: 27834357 DOI: 10.1038/cgt.2016.61] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 09/11/2016] [Accepted: 09/12/2016] [Indexed: 12/19/2022]
Abstract
Cancer is one of the world's most concerning health problems and poses many challenges in the range of approaches associated with the treatment of cancer. Current understanding of this disease brings to the fore a number of novel therapies that can be useful in the treatment of cancer. Among them, gene and cell therapies have emerged as novel and effective approaches. One of the most important challenges for cancer gene and cell therapies is correct monitoring of the modified genes and cells. In fact, visual tracking of therapeutic cells, immune cells, stem cells and genetic vectors that contain therapeutic genes and the various drugs is important in cancer therapy. Similarly, molecular imaging, such as nanosystems, fluorescence, bioluminescence, positron emission tomography, single photon-emission computed tomography and magnetic resonance imaging, have also been found to be powerful tools in monitoring cancer patients who have received therapeutic cell and gene therapies or drug therapies. In this review, we focus on these therapies and their molecular imaging techniques in treating and monitoring the progress of the therapies on various types of cancer.
Collapse
Affiliation(s)
- Z Saadatpour
- Bozorgmehr Imaging Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - A Rezaei
- Khanevadeh Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - H Ebrahimnejad
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Kerman University of Medical Sciences, Kerman, Iran
| | - B Baghaei
- Department of Endodontics, School of Dentistry, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - G Bjorklund
- Nutritional and Environmental Medicine, Mo i Rana, Norway
| | - M Chartrand
- DigiCare Behavioral Research, Casa Grande, AZ, USA
| | - A Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - H Morovati
- Department of Medical Parasitology and Medical Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - H R Mirzaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - H Mirzaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Karakitsios I, Joy J, Mihcin S, Melzer A. Acoustic characterization of Thiel liver for magnetic resonance-guided focused ultrasound treatment. MINIM INVASIV THER 2016; 26:92-96. [PMID: 27784190 DOI: 10.1080/13645706.2016.1253589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND The purpose of this work was to measure the essential acoustic parameters, i.e., acoustic impedance, reflection coefficient, attenuation coefficient, of Thiel embalmed human and animal liver. The Thiel embalmed tissue can be a promising, pre-clinical model to study liver treatment with Magnetic Resonance-guided Focused Ultrasound (MRgFUS). MATERIAL AND METHODS Using a single-element transducer and the contact pulse-echo method, the acoustic parameters, i.e., acoustic impedance, reflection coefficient and attenuation coefficient of Thiel embalmed human and animal liver were measured. RESULTS The Thiel embalmed livers had higher impedance, similar reflection and lower attenuation compared to the fresh tissue. CONCLUSIONS Embalming liver with Thiel fluid affects its acoustic properties. During MRgFUS sonication of a Thiel organ, more focused ultrasound (FUS) will be backscattered by the organ, and higher acoustic powers are required to reach coagulation levels (temperatures >56 °C).
Collapse
Affiliation(s)
- Ioannis Karakitsios
- a Institute of Medical Science and Technology , University of Dundee , Dundee , UK
| | - Joyce Joy
- a Institute of Medical Science and Technology , University of Dundee , Dundee , UK
| | - Senay Mihcin
- a Institute of Medical Science and Technology , University of Dundee , Dundee , UK
| | - Andreas Melzer
- a Institute of Medical Science and Technology , University of Dundee , Dundee , UK
| |
Collapse
|
15
|
|
16
|
Epaminonda E, Drakos T, Kalogirou C, Theodoulou M, Yiallouras C, Damianou C. MRI guided focused ultrasound robotic system for the treatment of gynaecological tumors. Int J Med Robot 2016; 12:46-52. [PMID: 25808561 DOI: 10.1002/rcs.1653] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 02/18/2015] [Accepted: 03/02/2015] [Indexed: 11/06/2022]
Abstract
BACKGROUND A novel MRI-conditional robot that navigates focused ultrasound (FUS) for the treatment of gynaecological tumors endovaginally was developed. METHODS The robotic system has two PC-controlled axes (linear and angular). The robotic system was manufactured using a digital manufacturing 3D printer using acrylonitrile butadiene styrene (ABS) plastic. Evaluation of the device was performed in a 1.5T MRI using excised porcine tissue. RESULTS The robotic system was successfully tested for MRI safety and compatibility. The robotic system has been tested for its functionality for creating multiple (overlapping) lesions in an in vitro model. CONCLUSIONS An MRI-conditional FUS robotic system was developed that has the potential to create thermal lesions with the intention of treating gynaecological tumors. In the future a third axis will be needed that lifts the robot up or down in order to access vaginas which are at a variable height from the MRI table.
Collapse
Affiliation(s)
- Eva Epaminonda
- Cyprus University of Technology, Department of Electrical Engineering, computer engineering and Informatics, Limassol, Cyprus
| | - Theoharis Drakos
- Cyprus University of Technology, Department of Electrical Engineering, computer engineering and Informatics, Limassol, Cyprus
| | - Christina Kalogirou
- Cyprus University of Technology, Department of Electrical Engineering, computer engineering and Informatics, Limassol, Cyprus
| | - Margarita Theodoulou
- Cyprus University of Technology, Department of Electrical Engineering, computer engineering and Informatics, Limassol, Cyprus
| | - Christos Yiallouras
- City University, Department of Biomedical Engineering, London, UK
- MEDSONIC, Ltd Research and Development, Limassol, Cyprus
| | - Christakis Damianou
- Cyprus University of Technology, Department of Electrical Engineering, computer engineering and Informatics, Limassol, Cyprus
- MEDSONIC, Ltd Research and Development, Limassol, Cyprus
| |
Collapse
|
17
|
Yiallouras C, Damianou C. Review of MRI positioning devices for guiding focused ultrasound systems. Int J Med Robot 2015; 11:247-255. [PMID: 25045075 DOI: 10.1002/rcs.1601] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND This article contains a review of positioning devices that are currently used in the area of magnetic resonance imaging (MRI) guided focused ultrasound surgery (MRgFUS). METHODS The paper includes an extensive review of literature published since the first prototype system was invented in 1991. RESULTS The technology has grown into a fast developing area with application to any organ accessible to ultrasound. The initial design operated using hydraulic principles, while the latest technology incorporates piezoelectric motors. Although, in the beginning there were fears regarding MRI safety, during recent years, the deployment of MR-safe positioning devices in FUS has become routine. Many of these positioning devices are now undergoing testing in clinical trials. CONCLUSION Existing MRgFUS systems have been utilized mostly in oncology (fibroids, brain, liver, kidney, bone, pancreas, eye, thyroid, and prostate). It is anticipated that, in the near future, there will be a positioning device for every organ that is accessible by focused ultrasound.
Collapse
Affiliation(s)
- C Yiallouras
- Department of Bioengineering, City University, London, UK
- R&D, MEDSONIC LTD, Limassol, Cyprus
| | - C Damianou
- Electrical Engineering Department, Cyprus University of Technology, Cyprus
- R&D, MEDSONIC LTD, Limassol, Cyprus
| |
Collapse
|
18
|
Chanel LA, Nageotte F, Vappou J, Luo J, Cuvillon L, de Mathelin M. Robotized High Intensity Focused Ultrasound (HIFU) system for treatment of mobile organs using motion tracking by ultrasound imaging: An in vitro study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2015:2571-2575. [PMID: 26736817 DOI: 10.1109/embc.2015.7318917] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
High Intensity Focused Ultrasound (HIFU) therapy is a very promising method for ablation of solid tumors. However, intra-abdominal organ motion, principally due to breathing, is a substantial limitation that results in incorrect tumor targeting. The objective of this work is to develop an all-in-one robotized HIFU system that can compensate motion in real-time during HIFU treatment. To this end, an ultrasound visual servoing scheme working at 20 Hz was designed. It relies on the motion estimation by using a fast ultrasonic speckle tracking algorithm and on the use of an interleaved imaging/HIFU sonication sequence for avoiding ultrasonic wave interferences. The robotized HIFU system was tested on a sample of chicken breast undergoing a vertical sinusoidal motion at 0.25 Hz. Sonications with and without motion compensation were performed in order to assess the effect of motion compensation on thermal lesions induced by HIFU. Motion was reduced by more than 80% thanks to this ultrasonic visual servoing system.
Collapse
|
19
|
Yiallouras C, Mylonas N, Damianou C. MRI-compatible positioning device for guiding a focused ultrasound system for transrectal treatment of prostate cancer. Int J Comput Assist Radiol Surg 2014; 9:745-753. [PMID: 24337790 DOI: 10.1007/s11548-013-0964-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/12/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND High-intensity focused ultrasound (HIFU) is a promising treatment method for many common cancers, including prostate cancer. Magnetic resonance image (MRI) guidance of HIFU permits targeting and monitoring of therapy. A prototype MRI-compatible positioning device that navigates a HIFU transducer was designed, fabricated and tested. MATERIALS AND METHODS The positioning device has two PC-controlled and one manually driven stage that allow endorectal access to the prostate. The positioning device was constructed using a 3-D rapid prototype manufacturing device. Software was developed that controls the motion of the positioning device and enables activation of a HIFU transducer. In vitro testing of the system was performed in a 1.5T MRI scanner using ex vivo turkey tissue. Optical encoders were employed to enhance the accuracy of this positioning device. RESULT The positioning device was successfully tested for MRI compatibility. The movement error of the positioning device is approximately 20 [Formula: see text]m. The robot has the ability to accurately move the transducer for creation of discrete and overlapping lesions. CONCLUSION An MRI-compatible HIFU positioning system was developed that has the ability to create thermal lesions with MRI guidance for endorectal treatment of prostate cancer.
Collapse
|
20
|
Harnof S, Zibly Z, Shay L, Dogadkin O, Hanannel A, Inbar Y, Goor-Aryeh I, Caspi I. Magnetic resonance-guided focused ultrasound treatment of facet joint pain: summary of preclinical phase. J Ther Ultrasound 2014; 2:9. [PMID: 24921048 PMCID: PMC4036610 DOI: 10.1186/2050-5736-2-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 10/08/2013] [Indexed: 11/10/2022] Open
Abstract
STUDY DESIGN A phantom experiment, two thermocouple experiments, three in vivo pig experiments, and a simulated treatment on a healthy human volunteer were conducted to test the feasibility, safety, and efficacy of magnetic resonance-guided focused ultrasound (MRgFUS) for treating facet joint pain. OBJECTIVE The goal of the current study was to develop a novel method for accurate and safe noninvasive facet joint ablation using MRgFUS. SUMMARY OF BACKGROUND DATA Facet joints are a common source of chronic back pain. Direct facet joint interventions include medial branch nerve ablation and intra-articular injections, which are widely used, but limited in the short and long term. MRgFUS is a breakthrough technology that enables accurate delivery of high-intensity focused ultrasound energy to create a localized temperature rise for tissue ablation, using MR guidance for treatment planning and real-time feedback. METHODS We validated the feasibility, safety, and efficacy of MRgFUS for facet joint ablation using the ExAblate 2000® System (InSightec Ltd., Tirat Carmel, Israel) and confirmed the system's ability to ablate the edge of the facet joint and all terminal nerves innervating the joint. A phantom experiment, two thermocouple experiments, three in vivo pig experiments, and a simulated treatment on a healthy human volunteer were conducted. RESULTS The experiments showed that targeting the facet joint with energies of 150-450 J provides controlled and accurate heating at the facet joint edge without penetration to the vertebral body, spinal canal, or root foramina. Treating with reduced diameter of the acoustic beam is recommended since a narrower beam improves access to the targeted areas. CONCLUSIONS MRgFUS can safely and effectively target and ablate the facet joint. These results are highly significant, given that this is the first study to demonstrate the potential of MRgFUS to treat facet joint pain.
Collapse
Affiliation(s)
- Sagi Harnof
- Department of Neurological Surgery, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Zion Zibly
- Department of Neurological Surgery, Sheba Medical Center, Ramat Gan 52621, Israel.,Department of Neurological Surgery, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Lilach Shay
- Department of Neurological Surgery, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Osnat Dogadkin
- Department of Neurological Surgery, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Arik Hanannel
- The Focus Ultrasound Foundation, Charlottesville, VA 22903, USA
| | - Yael Inbar
- Department of Radiology, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Itay Goor-Aryeh
- Department of Anesthesiology, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Israel Caspi
- Department of Orthopedic Surgery, Sheba Medical Center, Ramat Gan 52621, Israel
| |
Collapse
|
21
|
Herman A, Avivi E, Brosh T, Schwartz I, Liberman B. Biomechanical properties of bone treated by magnetic resonance-guided focused ultrasound - an in vivo porcine model study. Bone 2013; 57:92-7. [PMID: 23867220 DOI: 10.1016/j.bone.2013.06.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 06/12/2013] [Accepted: 06/28/2013] [Indexed: 10/26/2022]
Abstract
The magnetic resonance-guided focused ultrasound (MRgFUS) system uses MR imaging for real-time aiming of thermal ablation of bone and soft tissue tumors. Past clinical studies showed no increase in fracture rate after MRgFUS treatment. The purpose of this study was to determine the effect of MRgFUS treatment on mechanical properties of bone and correlate the effect to histological findings of treated bone. Four fully grown mini-pigs were treated by MRgFUS. Six consecutive right normal ribs were treated in each animal, and the left corresponding ribs served as controls. The animals were sacrificed at pre-set intervals (0, 2, 6 and 12weeks after treatment), and the treated and control bones were extracted. Mechanical properties of each bone were examined using three points bending studies for comparing treated bones to the corresponding controls. Histologic properties using Masson and hematoxylin-eosin stains were also compared. The ratio between treated and control biomechanical properties showed reduction in bone biomechanical properties at 6weeks post-MRgFUS treatment. The mean±SD yield load ratio and maximum ratios were 0.69±0.11 and 0.71±0.13, respectively (both p=0.031). These findings showed some recovery trend at 12weeks after treatment. Histological analysis showed a reduction in mean osteon size at 2weeks after treatment (0.58×10(-3)±0.1×10(-3)mm and 0.16×10(-3)±0.017×10(-3)mm) in control vs. treated bones, respectively (p=0.005). Treatment with the MRgFUS system resulted in a ~30% reduction in mechanical strength at 6weeks post-treatment. The reduction showed a reversible trend, with a 25%-20% decrease in strength at 12weeks post-treatment.
Collapse
Affiliation(s)
- Amir Herman
- Department of Orthopedic Surgery, Sheba Medical Center, Tel-Hashomer, Israel affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer, Israel affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | | | | | | | | |
Collapse
|
22
|
Denis de Senneville B, Roujol S, Hey S, Moonen C, Ries M. Extended Kalman filtering for continuous volumetric MR-temperature imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2013; 32:711-718. [PMID: 23268383 DOI: 10.1109/tmi.2012.2234760] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Real time magnetic resonance (MR) thermometry has evolved into the method of choice for the guidance of high-intensity focused ultrasound (HIFU) interventions. For this role, MR-thermometry should preferably have a high temporal and spatial resolution and allow observing the temperature over the entire targeted area and its vicinity with a high accuracy. In addition, the precision of real time MR-thermometry for therapy guidance is generally limited by the available signal-to-noise ratio (SNR) and the influence of physiological noise. MR-guided HIFU would benefit of the large coverage volumetric temperature maps, including characterization of volumetric heating trajectories as well as near- and far-field heating. In this paper, continuous volumetric MR-temperature monitoring was obtained as follows. The targeted area was continuously scanned during the heating process by a multi-slice sequence. Measured data and a priori knowledge of 3-D data derived from a forecast based on a physical model were combined using an extended Kalman filter (EKF). The proposed reconstruction improved the temperature measurement resolution and precision while maintaining guaranteed output accuracy. The method was evaluated experimentally ex vivo on a phantom, and in vivo on a porcine kidney, using HIFU heating. On the in vivo experiment, it allowed the reconstruction from a spatio-temporally under-sampled data set (with an update rate for each voxel of 1.143 s) to a 3-D dataset covering a field of view of 142.5×285×54 mm(3) with a voxel size of 3×3×6 mm(3) and a temporal resolution of 0.127 s. The method also provided noise reduction, while having a minimal impact on accuracy and latency.
Collapse
|
23
|
Abstract
OBJECTIVE The purpose of this article is to evaluate MRI-guided therapies and to investigate their feasibility for focal therapy in prostate cancer patients. Relevant articles were retrieved using the PubMed online search engine. CONCLUSION Currently, MRI-guided laser ablation and MRI-guided focused ultrasound are the most promising options for focal treatment of the prostate in patients with prostate cancer. Other techniques-that is, cryosurgery, microwave ablation, and radiofrequency ablation-are, for several and different reasons, less suitable for MRI-guided focal therapy of the prostate.
Collapse
|
24
|
Wijlemans JW, Bartels LW, Deckers R, Ries M, Mali WPTM, Moonen CTW, van den Bosch MAAJ. Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablation of liver tumours. Cancer Imaging 2012; 12:387-94. [PMID: 23022541 PMCID: PMC3460556 DOI: 10.1102/1470-7330.2012.9038] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent decades have seen a paradigm shift in the treatment of liver tumours from invasive surgical procedures to minimally invasive image-guided ablation techniques. Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a novel, completely non-invasive ablation technique that has the potential to change the field of liver tumour ablation. The image guidance, using MR imaging and MR temperature mapping, provides excellent planning images and real-time temperature information during the ablation procedure. However, before clinical implementation of MR-HIFU for liver tumour ablation is feasible, several organ-specific challenges have to be addressed. In this review we discuss the MR-HIFU ablation technique, the liver-specific challenges for MR-HIFU tumour ablation, and the proposed solutions for clinical translation.
Collapse
Affiliation(s)
- J W Wijlemans
- Department of Radiology, University Medical Center Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
25
|
Bitton RR, Kaye E, Dirbas FM, Daniel BL, Pauly KB. Toward MR-guided high intensity focused ultrasound for presurgical localization: focused ultrasound lesions in cadaveric breast tissue. J Magn Reson Imaging 2011; 35:1089-97. [PMID: 22170814 DOI: 10.1002/jmri.23529] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 11/08/2011] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To investigate magnetic resonance image-guided high intensity focused ultrasound (MR-HIFU) as a surgical guide for nonpalpable breast tumors by assessing the palpability of MR-HIFU-created lesions in ex vivo cadaveric breast tissue. MATERIALS AND METHODS MR-HIFU ablations spaced 5 mm apart were made in 18 locations using the ExAblate2000 system. Ablations formed a square perimeter in mixed adipose and fibroglandular tissue. Ablation was monitored using T1-weighted fast spin echo images. MR-acoustic radiation force impulse (MR-ARFI) was used to remotely palpate each ablation location, measuring tissue displacement before and after thermal sonications. Displacement profiles centered at each ablation spot were plotted for comparison. The cadaveric breast was manually palpated to assess stiffness of ablated lesions and dissected for gross examination. This study was repeated on three cadaveric breasts. RESULTS MR-ARFI showed a collective postablation reduction in peak displacement of 54.8% ([4.41 ± 1.48] μm pre, [1.99 ± 0.82] μm post), and shear wave velocity increase of 65.5% ([10.69 ± 1.60] mm pre, [16.33 ± 3.10] mm post), suggesting tissue became stiffer after the ablation. Manual palpation and dissection of the breast showed increased palpability, a darkening of ablation perimeter, and individual ablations were visible in mixed adipose/fibroglandular tissue. CONCLUSION The results of this preliminary study show MR-HIFU has the ability to create palpable lesions in ex vivo cadaveric breast tissue, and may potentially be used to preoperatively localize nonpalpable breast tumors.
Collapse
Affiliation(s)
- Rachel R Bitton
- School of Medicine, Department of Radiology, Stanford University, Stanford, California, USA.
| | | | | | | | | |
Collapse
|
26
|
Quesson B, Laurent C, Maclair G, de Senneville BD, Mougenot C, Ries M, Carteret T, Rullier A, Moonen CTW. Real-time volumetric MRI thermometry of focused ultrasound ablation in vivo: a feasibility study in pig liver and kidney. NMR IN BIOMEDICINE 2011; 24:145-153. [PMID: 21344531 DOI: 10.1002/nbm.1563] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Revised: 04/13/2010] [Accepted: 04/14/2010] [Indexed: 05/28/2023]
Abstract
MR thermometry offers the possibility to precisely guide high-intensity focused ultrasound (HIFU) for the noninvasive treatment of kidney and liver tumours. The objectives of this study were to demonstrate therapy guidance by motion-compensated, rapid and volumetric MR temperature monitoring and to evaluate the feasibility of MR-guided HIFU ablation in these organs. Fourteen HIFU sonications were performed in the kidney and liver of five pigs under general anaesthesia using an MR-compatible Philips HIFU platform prototype. HIFU sonication power and duration were varied. Volumetric MR thermometry was performed continuously at 1.5 T using the proton resonance frequency shift method employing a multi-slice, single-shot, echo-planar imaging sequence with an update frequency of 2.5 Hz. Motion-related suceptibility artefacts were compensated for using multi-baseline reference images acquired prior to sonication. At the end of the experiment, the animals were sacrificed for macroscopic and microscopic examinations of the kidney, liver and skin. The standard deviation of the temperature measured prior to heating in the sonicated area was approximately 1 °C in kidney and liver, and 2.5 °C near the skin. The maximum temperature rise was 30 °C for a sonication of 1.2 MHz in the liver over 15 s at 300 W. The thermal dose reached the lethal threshold (240 CEM(43) ) in two of six cases in the kidney and four of eight cases in the liver, but remained below this value in skin regions in the beam path. These findings were in agreement with histological analysis. Volumetric thermometry allows real-time monitoring of the temperature at the target location in liver and kidney, as well as in surrounding tissues. Thermal ablation was more difficult to achieve in renal than in hepatic tissue even using higher acoustic energy, probably because of a more efficient heat evacuation in the kidney by perfusion.
Collapse
Affiliation(s)
- Bruno Quesson
- Laboratoire d'Imagerie Moleculaire et Fonctionnelle, UMR 5231 CNRS/Université Victor Segalen Bordeaux 2, Bordeaux, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Quesson B, Merle M, Köhler MO, Mougenot C, Roujol S, de Senneville BD, Moonen CT. A method for MRI guidance of intercostal high intensity focused ultrasound ablation in the liver. Med Phys 2010; 37:2533-40. [PMID: 20632565 DOI: 10.1118/1.3413996] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE High intensity focused ultrasound (HIFU) is a promising method for the noninvasive treatment of liver tumors. However, the presence of ribs in the HIFU beam path remains problematic since it may lead to adverse effects (skin burns) by absorption and reflection of the incident beam at or near the bone surface. This article presents a method based on magnetic resonance (MR) imaging for identification of the ribs in the HIFU beam, and for selection of the transducer elements to deactivate. METHODS The ribs are visualized on anatomical images acquired prior to heating and manually segmented. The resulting regions of interest surrounding the ribs are projected onto the transducer surface by ray tracing from the focal point. The transducer elements in the "shadow" of the ribs are then deactivated. The method was validated ex vivo and in vivo in pig liver during breathing under multislice real-time MR thermometry, using the proton resonance frequency shift method. RESULTS Ex vivo and in vivo temperature data showed that the temperature increase near the ribs was substantial when HIFU sonications were performed with all elements active, whereas the temperature was reduced with deactivation of the transducer elements located in front of the ribs. The temperature at the focal point was similar with and without deactivation of the transducer elements, indicative of no loss of heat efficiency with the proposed technique. CONCLUSIONS This method is simple, rapid, and reliable, and enables intercostal HIFU ablation while sparing ribs and their surrounding tissues.
Collapse
Affiliation(s)
- Bruno Quesson
- Laboratory for Molecular and Functional Imaging, UMR5231, CNRS, University Victor Segalen Bordeaux 2, 33076 Bordeaux, France.
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Conventional surgical treatments of liver cancer are invasive (including minimally invasive) with a high incidence of new metastasis and poor success, even after multiple resections or ablations. These limitations motivated research into new, less invasive solutions for liver cancer treatment.Focused ultrasound surgery (FUS), or high-intensity focused ultrasound, has been recognized as a noninvasive technology for benign and malignant tumor treatment. Previously, FUS was guided with ultrasound that has limited target definition and monitoring capability of the ablation process. Combining magnetic resonance imaging (MRI) with multiple-element phased-array transducers to create MRI-guided focused ultrasound thermal therapy provides more accurate targeting and real-time temperature monitoring. This treatment is hindered by the ribcage that limits the acoustic windows to the liver and the respiratory motion of the liver. New advances in MRI and transducer design will likely resolve these limitations and make MRI-guided FUS a powerful tool in local liver cancer therapy. This article reviews this technology and advances that can expand its use for cancer treatment in general and liver cancer in particular.
Collapse
|
29
|
Seinstra BA, van Delden OM, van Erpecum KJ, van Hillegersberg R, Mali WPTM, van den Bosch MAAJ. Minimally invasive image-guided therapy for inoperable hepatocellular carcinoma: What is the evidence today? Insights Imaging 2010; 1:167-81. [PMID: 23100194 PMCID: PMC3288853 DOI: 10.1007/s13244-010-0027-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 05/23/2010] [Accepted: 05/28/2010] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary malignant tumor of the liver that accounts for an important health problem worldwide. Only 10-15% of HCC patients are suitable candidates for hepatic resection and liver transplantation due to the advanced stage of the disease at time of diagnosis and shortage of donors. Therefore, several minimally invasive image-guided therapies for locoregional treatment have been developed. Tumor ablative techniques are either based on thermal tumor destruction, as in radiofrequency ablation, cryoablation, microwave ablation, laser ablation and high-intensity focused ultrasound, or chemical tumor destruction, as in percutaneous ethanol injection. Image-guided catheter-based techniques rely on intra-arterial delivery of embolic, chemoembolic or radioembolic agents. These minimally invasive image-guided therapies have revolutionized the management of inoperable HCC. This review provides a description of all minimally invasive image-guided therapies currently available, an up-to-date overview of the scientific evidence for their clinical use, and thoughts for future directions.
Collapse
Affiliation(s)
- Beatrijs A. Seinstra
- Department of Radiology, University Medical Center Utrecht, Room E.01.132, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Otto M. van Delden
- Department of Radiology, Academic Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Karel J. van Erpecum
- Department of Gastroenterology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Willem P. Th. M. Mali
- Department of Radiology, University Medical Center Utrecht, Room E.01.132, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Maurice A. A. J. van den Bosch
- Department of Radiology, University Medical Center Utrecht, Room E.01.132, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
30
|
Liberman B, Gianfelice D, Inbar Y, Beck A, Rabin T, Shabshin N, Chander G, Hengst S, Pfeffer R, Chechick A, Hanannel A, Dogadkin O, Catane R. Pain Palliation in Patients with Bone Metastases Using MR-Guided Focused Ultrasound Surgery: A Multicenter Study. Ann Surg Oncol 2009; 16:140-6. [DOI: 10.1245/s10434-008-0011-2] [Citation(s) in RCA: 235] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 05/10/2008] [Accepted: 05/10/2008] [Indexed: 01/14/2023]
|
31
|
Gianfelice D, Gupta C, Kucharczyk W, Bret P, Havill D, Clemons M. Palliative Treatment of Painful Bone Metastases with MR Imaging–guided Focused Ultrasound. Radiology 2008; 249:355-63. [DOI: 10.1148/radiol.2491071523] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
32
|
Abstract
Multiple biomedical imaging techniques are used in all phases of cancer management. Imaging forms an essential part of cancer clinical protocols and is able to furnish morphological, structural, metabolic and functional information. Integration with other diagnostic tools such as in vitro tissue and fluids analysis assists in clinical decision-making. Hybrid imaging techniques are able to supply complementary information for improved staging and therapy planning. Image guided and targeted minimally invasive therapy has the promise to improve outcome and reduce collateral effects. Early detection of cancer through screening based on imaging is probably the major contributor to a reduction in mortality for certain cancers. Targeted imaging of receptors, gene therapy expression and cancer stem cells are research activities that will translate into clinical use in the next decade. Technological developments will increase imaging speed to match that of physiological processes. Targeted imaging and therapeutic agents will be developed in tandem through close collaboration between academia and biotechnology, information technology and pharmaceutical industries.
Collapse
Affiliation(s)
- Leonard Fass
- GE Healthcare, 352 Buckingham Avenue, Slough, SL1 4ER, UK.
| |
Collapse
|
33
|
Kopelman D, Inbar Y, Hanannel A, Pfeffer RM, Dogadkin O, Freundlich D, Liberman B, Catane R. Magnetic resonance guided focused ultrasound surgery. Ablation of soft tissue at bone-muscle interface in a porcine model. Eur J Clin Invest 2008; 38:268-75. [PMID: 18339007 DOI: 10.1111/j.1365-2362.2008.01931.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Pain management treatments of patients with bone metastases have either efficacy problems or significant side effects. Percutaneous radiofrequency ablation has recently proved to be of palliative value. Magnetic resonance guided focused ultrasound surgery (MRgFUS) uses focused ultrasonic energy to non-invasively create a heat-coagulated lesion deep within the body in a controlled, accurate manner. The surgeon can monitor and control energy deposition in real time. This technology represents a potential treatment modality in oncological surgery. We investigated the ability of two MRgFUS methods to accurately and safely target and ablate soft tissue at its interface with bone. MATERIALS AND METHODS Heat-ablated lesions were created by MRgFUS at the bone-muscle interface of 15 pigs. Two different methods of energy delivery were used. Temperature rise at the target adjacent to bone was monitored by real time MR thermal images. Results were evaluated by MRI (magnetic resonance imaging), nuclear scanning and by histopathological evaluation. RESULTS Soft tissue lesion sizes by both methods were in the range of 1-2 cm in diameter. Targeting the focus 'behind' the bone, achieved the same result with a single sonication only. Follow up MRI and histopathological examination of all lesions showed focal damage at its interface with bone and localized damage to the outer cortex on the side closer to the targeted tissue. There was no damage to non-targeted tissue. CONCLUSION MRgFUS by both energy deposition methods can be used to produce controlled well-localized damage to soft tissue in close proximity to bone, with minimal collateral damage.
Collapse
|
34
|
Kopelman D, Papa M. Magnetic Resonance–Guided Focused Ultrasound Surgery for the Noninvasive Curative Ablation of Tumors and Palliative Treatments: A Review. Ann Surg Oncol 2007; 14:1540-50. [PMID: 17318277 DOI: 10.1245/s10434-006-9326-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Accepted: 10/18/2006] [Indexed: 02/01/2023]
Abstract
This article reviews and discusses the up-to-date data on and feasibility of focused ultrasound surgery. This technique uses high-energy ultrasound beams that can be directed to penetrate through the skin and various soft tissues, focus on the target, and destroy tumors by increasing the temperature at the targeted tissue volume. The boundaries of the treatment area are sharply demarcated (focused) without causing damage to the surrounding organs. Although the idea of using sound waves to ablate tumors was first demonstrated in the 1940 s, only recent developments have enabled this technology to become more controlled and, hence, more feasible. The major breakthrough toward its clinical use came with coupling the thermal ablative process to advanced imaging. The development of magnetic resonance as the foundation to guide and evaluate the end results of focused ultrasound surgery treatment, the image guidance of the ultrasound beam, and the development of a reliable method for tissue temperature measurement and real-time feedback of the extent of tissue destruction have pushed this novel technology forward in oncological practice.
Collapse
Affiliation(s)
- Doron Kopelman
- Department of Surgery B, HaEmek Medical Center, Afula, Israel.
| | | |
Collapse
|
35
|
Catane R, Beck A, Inbar Y, Rabin T, Shabshin N, Hengst S, Pfeffer RM, Hanannel A, Dogadkin O, Liberman B, Kopelman D. MR-guided focused ultrasound surgery (MRgFUS) for the palliation of pain in patients with bone metastases--preliminary clinical experience. Ann Oncol 2006; 18:163-167. [PMID: 17030549 DOI: 10.1093/annonc/mdl335] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Magnetic resonance-guided focused ultrasound surgery (MRgFUS) is a noninvasive thermal ablation technique, shown to be clinically effective in the treatment of uterine fibroids and is being evaluated as a method of thermal ablation of benign and malignant breast tumors. To evaluate the safety and initial efficacy of MRgFUS for the palliation of pain caused by bone metastases, in patients for whom other treatments are either not effective or not feasible. MATERIALS AND METHODS Thirteen patients suffering from symptomatic bone metastases underwent MRgFUS procedure. Treatment safety was evaluated by assessing the incidence and severity of device-related complications up to 6 months after treatment. Effectiveness of pain palliation was evaluated by visual analog scale, pain questionnaires and changes in the patients' medication. RESULTS Fifteen procedures were carried out. Mean follow-up was 59 days. Twelve patients received adequate treatment and were available for follow-up. Two patients died due to disease progression during the first month after treatment. No severe adverse events were recorded. The remaining 10 patients reported prolonged improvement in pain score and/or reduced analgesic dosage. CONCLUSION MRgFUS may provide a safe and effective noninvasive alternative for the palliation of pain, caused by bone metastases.
Collapse
Affiliation(s)
- R Catane
- Sheba Medical Center, Department of Oncology, Tel-Hashomer, Israel; Tel-Aviv University, Tel-Aviv
| | - A Beck
- Charite-Universitetsmedizin Berlin, Klinik for Strahlenheilkunde, Berlin, Germany
| | - Y Inbar
- Sheba Medical Center, Department of Diagnostic Imaging, Tel-Hashomer; Tel-Aviv University, Tel-Aviv
| | - T Rabin
- Sheba Medical Center, Department of Oncology, Tel-Hashomer, Israel; Tel-Aviv University, Tel-Aviv
| | - N Shabshin
- Sheba Medical Center, Department of Diagnostic Imaging, Tel-Hashomer; Tel-Aviv University, Tel-Aviv
| | - S Hengst
- Charite-Universitetsmedizin Berlin, Klinik for Strahlenheilkunde, Berlin, Germany
| | - R M Pfeffer
- Sheba Medical Center, Department of Oncology, Tel-Hashomer, Israel; Tel-Aviv University, Tel-Aviv
| | | | | | - B Liberman
- Sheba Medical Center, Division of Orthopedic Surgery, Tel-Hashomer; Tel-Aviv University, Tel-Aviv
| | - D Kopelman
- HaEmek Medical Center, Department of Surgery B', Afula; Technion, Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|