1
|
Qin Y, Xia Y. A negative melanin regulator, Mamrn, regulates thermo and UV tolerance via distinct mechanisms in Metarhizium. Microbiol Res 2025; 297:128190. [PMID: 40300370 DOI: 10.1016/j.micres.2025.128190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 03/27/2025] [Accepted: 04/21/2025] [Indexed: 05/01/2025]
Abstract
Melanin, a polyphenol pigment found extensively in fungi, has had its biosynthesis pathway clarified in recent years. Nonetheless, the regulatory mechanisms involved in melanin biosynthesis are still not well understood. This study uncovered a new negative regulator of melanin, Mamrn (melanin negative regulator in Metarhizium acridum), which, upon deletion, led to a 75 % increase in melanin production and significantly denser cell walls compared with the wild-type and complemented strains. Mamrn was found to influence melanin biosynthesis in Metarhizium acridum by regulating polyketide synthase (PKS) gene and 1,3,6,8-Tetrahydroxynaphthalene reductase (THR) gene through interaction with their promoter regions. Additionally, the knockdown of Mamrn resulted in delayed conidial germination, a 109.2 % conidial yield increase in nutrient-poor Sucrose yeast extract agar (SYA) medium, and a 72.2 % reduction in conidial yield in nutrient-rich Sabouraud dextrose agar (1/4 SDAY) medium, but with no significant changes in virulence against the 5th instar nymphs of Locusta migratoria compared with the control and wild-type strains. The ΔMamrn strain showed a 76 % reduction in heat shock tolerance and a 178 % increase in UV-B irradiation tolerance. Furthermore, following heat shock, the ΔMamrn strain demonstrated compromised DNA repair capability, a diminished heat shock protein (HSP) response, and a reduced reactive oxygen species (ROS) scavenging capacity of glutathione peroxidase, superoxide dismutase, and catalase. In contrast, after UV-B exposure, the DNA repair system was found to be more active. These findings suggest that Mamrn plays a crucial role in regulating thermotolerance by affecting ROS scavenging capacity and DNA repair via the HSP response, while it negatively impacts UV tolerance by affecting melanin production, cell wall density, and DNA repair mechanisms in Metarhizium acridum. In summary, Mamrn negatively regulates melanin synthesis and influences thermal and UV-B tolerance through different pathways.
Collapse
Affiliation(s)
- Yanping Qin
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China; Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing 401331, China; Coconstruction Units of National Engineering Research Center for Microbial Pesticides, Chongqing 401331, China
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China; Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing 401331, China; Coconstruction Units of National Engineering Research Center for Microbial Pesticides, Chongqing 401331, China.
| |
Collapse
|
2
|
Bhalla K, Sánchez León-Hing E, Huang YH, French V, Hu G, Wang J, Kretschmer M, Qu X, Moreira R, Foster EJ, Johnson P, Kronstad JW. Polyphosphatases have a polyphosphate-independent influence on the virulence of Cryptococcus neoformans. Infect Immun 2025; 93:e0007225. [PMID: 40071953 PMCID: PMC11977306 DOI: 10.1128/iai.00072-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 04/09/2025] Open
Abstract
Cryptococcus neoformans, an invasive basidiomycete fungal pathogen, causes one of the most prevalent, life-threatening diseases in immunocompromised individuals and accounts for ~19% of AIDS-associated deaths. Therefore, understanding the pathogenesis of C. neoformans and its interactions with the host immune system is critical for developing therapeutics against cryptococcosis. Previous studies demonstrated that C. neoformans cells lacking polyphosphate (polyP), an immunomodulatory polyanionic storage molecule, display altered cell surface architecture but unimpaired virulence in a murine model of cryptococcosis. However, the relevance of cell surface changes and the role of hyperaccumulation of polyP in the virulence of C. neoformans remain unclear. Here we show that mutants with abundant polyP due to loss of the polyphosphatases Xpp1 and Epp1 are attenuated for virulence. The double mutant differed from the wild type during disease by demonstrating a higher fungal burden in disseminated organs at the experimental endpoint and by provoking an altered immune response. An analysis of triple mutants lacking the polyphosphatases and the Vtc4 protein for polyP synthesis also caused attenuated virulence in mice, thus suggesting an influence of Xpp1 and/or Epp1 independent of polyP levels. A more detailed characterization revealed that Xpp1 and Epp1 play multiple roles by contributing to the organization of the cell surface, virulence factor production, the response to stress, and mitochondrial function. Overall, we conclude that polyphosphatases have additional functions in the pathobiology of C. neoformans beyond an influence on polyP levels.IMPORTANCECryptococcus neoformans causes one of the most prevalent fungal diseases in people with compromised immune systems and accounts for ~19% of AIDS-associated deaths worldwide. The continual increase in the incidence of fungal infections and limited treatment options necessitate the development of new antifungal drugs and improved diagnostics. Polyphosphate (polyP), an under-explored biopolymer, functions as a storage molecule, modulates the host immune response, and contributes to the ability of some fungal and bacterial pathogens to cause disease. However, the role of polyP in cryptococcal disease remains unclear. In this study, we report that the polyphosphatase enzymes that regulate polyP synthesis and turnover contribute to the virulence of C. neoformans in a mouse model of cryptococcosis. The polyphosphatases influenced the survival of C. neoformans in macrophages and altered the host immune response. In addition, the mutants lacking the enzymes have changes in cell surface architecture and size, as well as defects in both mitochondrial function and the stress response. By using mutants defective in the polyphosphatases and polyP synthesis, we demonstrate that many of the phenotypic contributions of the polyphosphatases are independent of polyP.
Collapse
Affiliation(s)
- Kabir Bhalla
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eddy Sánchez León-Hing
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yu-Hsuan Huang
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Victoria French
- Department of Chemical and Biological Engineering, BioProducts Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guanggan Hu
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jen Wang
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthias Kretschmer
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xianya Qu
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Raphaell Moreira
- Department of Chemical and Biological Engineering, BioProducts Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - E. Johan Foster
- Department of Chemical and Biological Engineering, BioProducts Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pauline Johnson
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - James W. Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Alessia C, Federica DA, Claudia P, Barbara C, Laura Z, Silvano O. A preliminary survey of the cellular responses of the black fungus Cryomyces antarcticus to long and short-term dehydration. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13309. [PMID: 39075848 PMCID: PMC11286975 DOI: 10.1111/1758-2229.13309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/08/2024] [Indexed: 07/31/2024]
Abstract
The McMurdo Dry Valleys in Southern Victoria Land, Antarctica, are known for their extreme aridity, cold, and nutrient-poor conditions. These valleys provide a valuable comparison to environments on Mars. The survival of microorganisms in these areas hinges on their ability to withstand dehydration due to the limited availability of liquid water. Some microorganisms have adapted to survive extended periods of metabolic inactivity and dehydration, a physiological response to the harsh conditions in which they exist. This adaptation is significant for astrobiology studies as it allows for testing the resilience of microorganisms under extraterrestrial conditions, exploring the boundaries and potential for life beyond Earth. In this study, we examined the survivability, metabolic activity, cellular membrane integrity, and ultrastructural damage of Cryomyces antarcticus, a eukaryotic organism used for astrobiological studies, following two dehydration processes. We conducted a fast dehydration process, simulating what happens on the surface of Antarctic rocks under typical environmental conditions, and a slow dehydration process, which is commonly used in astrobiological experiments. Our findings revealed a higher percentage of damaged cells following slow dehydration treatments, confirming that rapid dehydration reflects the adaptability of microorganisms to respond to sudden and drastic changes in the Antarctic environment.
Collapse
Affiliation(s)
- Cassaro Alessia
- Department of Ecological and Biological SciencesUniversity of TusciaViterboItaly
- Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
| | - D' Alò Federica
- Department of Ecological and Biological SciencesUniversity of TusciaViterboItaly
- Institute of Research on Terrestrial EcosystemsNational Research CouncilPorano (TR)Italy
| | - Pacelli Claudia
- Department of Ecological and Biological SciencesUniversity of TusciaViterboItaly
- Human Spaceflight and Scientific Research UnitItalian Space AgencyRomeItaly
| | - Cavalazzi Barbara
- Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
- LE STUDIUM Institute for Advanced StudiesOrléansFrance
| | - Zucconi Laura
- Department of Ecological and Biological SciencesUniversity of TusciaViterboItaly
- Institute of Polar SciencesNational Research Council of Italy (CNR‐ISP)MessinaItaly
| | - Onofri Silvano
- Department of Ecological and Biological SciencesUniversity of TusciaViterboItaly
| |
Collapse
|
4
|
Xie W, Dhinojwala A, Gianneschi NC, Shawkey MD. Interactions of Melanin with Electromagnetic Radiation: From Fundamentals to Applications. Chem Rev 2024; 124:7165-7213. [PMID: 38758918 DOI: 10.1021/acs.chemrev.3c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Melanin, especially integumentary melanin, interacts in numerous ways with electromagnetic radiation, leading to a set of critical functions, including radiation protection, UV-protection, pigmentary and structural color productions, and thermoregulation. By harnessing these functions, melanin and melanin-like materials can be widely applied to diverse applications with extraordinary performance. Here we provide a unified overview of the melanin family (all melanin and melanin-like materials) and their interactions with the complete electromagnetic radiation spectrum (X-ray, Gamma-ray, UV, visible, near-infrared), which until now has been absent from the literature and is needed to establish a solid fundamental base to facilitate their future investigation and development. We begin by discussing the chemistries and morphologies of both natural and artificial melanin, then the fundamentals of melanin-radiation interactions, and finally the exciting new developments in high-performance melanin-based functional materials that exploit these interactions. This Review provides both a comprehensive overview and a discussion of future perspectives for each subfield of melanin that will help direct the future development of melanin from both fundamental and applied perspectives.
Collapse
Affiliation(s)
- Wanjie Xie
- Department of Biology, Evolution and Optics of Nanostructure Group, University of Ghent, Gent 9000, Belgium
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Nathan C Gianneschi
- Department of Chemistry, Department of Materials Science and Engineering, Department of Biomedical Engineering, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, and International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Matthew D Shawkey
- Department of Biology, Evolution and Optics of Nanostructure Group, University of Ghent, Gent 9000, Belgium
| |
Collapse
|
5
|
Melhem MSC, Leite Júnior DP, Takahashi JPF, Macioni MB, de Oliveira L, de Araújo LS, Fava WS, Bonfietti LX, Paniago AMM, Venturini J, Espinel-Ingroff A. Antifungal Resistance in Cryptococcal Infections. Pathogens 2024; 13:128. [PMID: 38392866 PMCID: PMC10891860 DOI: 10.3390/pathogens13020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Antifungal therapy, especially with the azoles, could promote the incidence of less susceptible isolates of Cryptococcus neoformans and C. gattii species complexes (SC), mostly in developing countries. Given that these species affect mostly the immunocompromised host, the infections are severe and difficult to treat. This review encompasses the following topics: 1. infecting species and their virulence, 2. treatment, 3. antifungal susceptibility methods and available categorical endpoints, 4. genetic mechanisms of resistance, 5. clinical resistance, 6. fluconazole minimal inhibitory concentrations (MICs), clinical outcome, 7. environmental influences, and 8. the relevance of host factors, including pharmacokinetic/pharmacodynamic (PK/PD) parameters, in predicting the clinical outcome to therapy. As of now, epidemiologic cutoff endpoints (ECVs/ECOFFs) are the most reliable antifungal resistance detectors for these species, as only one clinical breakpoint (amphotericin B and C. neoformans VNI) is available.
Collapse
Affiliation(s)
- Marcia S. C. Melhem
- Graduate Program in Sciences, Secretary of Health, São Paulo 01246-002, SP, Brazil; (D.P.L.J.); (M.B.M.)
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (J.P.F.T.); (W.S.F.); (A.M.M.P.)
- Graduate Program in Tropical Diseases, State University of São Paulo, Botucatu 18618-687, SP, Brazil
| | - Diniz Pereira Leite Júnior
- Graduate Program in Sciences, Secretary of Health, São Paulo 01246-002, SP, Brazil; (D.P.L.J.); (M.B.M.)
| | - Juliana P. F. Takahashi
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (J.P.F.T.); (W.S.F.); (A.M.M.P.)
- Pathology Division, Adolfo Lutz Institute, São Paulo 01246-002, SP, Brazil
| | - Milena Bronze Macioni
- Graduate Program in Sciences, Secretary of Health, São Paulo 01246-002, SP, Brazil; (D.P.L.J.); (M.B.M.)
| | | | - Lisandra Siufi de Araújo
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (J.P.F.T.); (W.S.F.); (A.M.M.P.)
- Central Public Health Laboratory-LACEN, Mycology Unit, Adolfo Lutz Institut, São Paulo 01246-002, SP, Brazil;
| | - Wellington S. Fava
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (J.P.F.T.); (W.S.F.); (A.M.M.P.)
| | - Lucas X. Bonfietti
- Central Public Health Laboratory-LACEN, Mycology Unit, Adolfo Lutz Institut, São Paulo 01246-002, SP, Brazil;
| | - Anamaria M. M. Paniago
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (J.P.F.T.); (W.S.F.); (A.M.M.P.)
| | - James Venturini
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (J.P.F.T.); (W.S.F.); (A.M.M.P.)
| | - Ana Espinel-Ingroff
- Central Public Health Laboratory-LACEN, Campo Grande 79074-460, MS, Brazil;
- VCU Medical Center, Richmond, VA 23284, USA
| |
Collapse
|
6
|
Ullah A, Huang Y, Zhao K, Hua Y, Ullah S, Rahman MU, Wang J, Wang Q, Hu X, Zheng L. Characteristics and potential clinical applications of the extracellular vesicles of human pathogenic Fungi. BMC Microbiol 2023; 23:227. [PMID: 37598156 PMCID: PMC10439556 DOI: 10.1186/s12866-023-02945-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/14/2023] [Indexed: 08/21/2023] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of lipid membrane-enclosed compartments that contain different biomolecules and are released by almost all living cells, including fungal genera. Fungal EVs contain multiple bioactive components that perform various biological functions, such as stimulation of the host immune system, transport of virulence factors, induction of biofilm formation, and mediation of host-pathogen interactions. In this review, we summarize the current knowledge on EVs of human pathogenic fungi, mainly focusing on their biogenesis, composition, and biological effects. We also discuss the potential markers and therapeutic applications of fungal EVs.
Collapse
Affiliation(s)
- Amir Ullah
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yiyi Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Kening Zhao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Yuneng Hua
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Shafi Ullah
- Department of pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Mujeeb Ur Rahman
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Jingyu Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Qian Wang
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
| | - Xiumei Hu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
| |
Collapse
|
7
|
Daminova AG, Rassabina AE, Khabibrakhmanova VR, Beckett RP, Minibayeva FV. Topography of UV-Melanized Thalli of Lobaria pulmonaria (L.) Hoffm. PLANTS (BASEL, SWITZERLAND) 2023; 12:2627. [PMID: 37514242 PMCID: PMC10383456 DOI: 10.3390/plants12142627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Lichens are unique extremophilic organisms due to their phenomenal resistance to adverse environmental factors, including ultraviolet (UV) irradiation. Melanization plays a special role in the protection of lichens from UV-B stress. In the present study, we analyzed the binding of melanins with the components of cell walls of the mycobiont of the upper cortex in the melanized lichen thalli Lobaria pulmonaria. Using scanning electron and atomic force microscopy, the morphological and nanomechanical characteristics of the melanized layer of mycobiont cells were visualized. Melanization of lichen thalli led to the smoothing of the surface relief and thickening of mycobiont cell walls, as well as the reduction in adhesion properties of the lichen thallus. Treatment of thalli with hydrolytic enzymes, especially chitinase and lichenase, enhanced the yield of melanin from melanized thalli and promoted the release of carbohydrates, while treatment with pectinase increased the release of carbohydrates and phenols. Our results suggest that melanin can firmly bind with hyphal cell wall carbohydrates, particularly chitin and 1,4-β-glucans, strengthening the melanized upper cortex of lichen thalli, and thereby it can contribute to lichen survival under UV stress.
Collapse
Affiliation(s)
- Amina G Daminova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31, Lobachevsky Str., Kazan 420111, Russia
| | - Anna E Rassabina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31, Lobachevsky Str., Kazan 420111, Russia
| | - Venera R Khabibrakhmanova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31, Lobachevsky Str., Kazan 420111, Russia
| | - Richard P Beckett
- School of Life Sciences, University of KwaZulu-Natal, PBag X01, Scottsville 3209, South Africa
| | - Farida V Minibayeva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31, Lobachevsky Str., Kazan 420111, Russia
| |
Collapse
|
8
|
Terranova ML. Prominent Roles and Conflicted Attitudes of Eumelanin in the Living World. Int J Mol Sci 2023; 24:ijms24097783. [PMID: 37175490 PMCID: PMC10178024 DOI: 10.3390/ijms24097783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/17/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Eumelanin, a macromolecule widespread in all the living world and long appreciated for its protective action against harmful UV radiation, is considered the beneficial component of the melanin family (ευ means good in ancient Greek). This initially limited picture has been rather recently extended and now includes a variety of key functions performed by eumelanin in order to support life also under extreme conditions. A lot of still unexplained aspects characterize this molecule that, in an evolutionary context, survived natural selection. This paper aims to emphasize the unique characteristics and the consequent unusual behaviors of a molecule that still holds the main chemical/physical features detected in fossils dating to the late Carboniferous. In this context, attention is drawn to the duality of roles played by eumelanin, which occasionally reverses its functional processes, switching from an anti-oxidant to a pro-oxidant behavior and implementing therefore harmful effects.
Collapse
Affiliation(s)
- Maria Letizia Terranova
- Dipartimento Scienze e Tecnologie Chimiche, Università degli Studi di Roma "Tor Vergata", Via della Ricerca Scientifica, 00133 Roma, Italy
| |
Collapse
|
9
|
De Jesus DFF, De Freitas ALD, De Oliveira IM, De Almeida LC, Bastos RW, Spadari CDC, Melo ASDA, Santos DDA, Costa-Lotufo LV, Reis FCG, Rodrigues ML, Stefani HA, Ishida K. Organoselenium Has a Potent Fungicidal Effect on Cryptococcus neoformans and Inhibits the Virulence Factors. Antimicrob Agents Chemother 2023; 67:e0075922. [PMID: 36815840 PMCID: PMC10019174 DOI: 10.1128/aac.00759-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 01/14/2023] [Indexed: 02/24/2023] Open
Abstract
Cryptococcosis therapy is often limited by toxicity problems, antifungal tolerance, and high costs. Studies approaching chalcogen compounds, especially those containing selenium, have shown promising antifungal activity against pathogenic species. This work aimed to evaluate the in vitro and in vivo antifungal potential of organoselenium compounds against Cryptococcus neoformans. The lead compound LQA_78 had an inhibitory effect on C. neoformans planktonic cells and dispersed cells from mature biofilms at similar concentrations. The fungal growth inhibition led to an increase in budding cells arrested in the G2/M phase, but the compound did not significantly affect structural cell wall components or chitinase activity, an enzyme that regulates the dynamics of the cell wall. The compound also inhibited titan cell (Tc) and enlarged capsule yeast (NcC) growth and reduced the body diameter and capsule thickness associated with increased capsular permeability of both virulent morphotypes. LQA_78 also reduced fungal melanization through laccase activity inhibition. The fungicidal activity was observed at higher concentrations (16 to 64 μg/mL) and may be associated with augmented plasma membrane permeability, ROS production, and loss of mitochondrial membrane potential. While LQA_78 is a nonhemolytic compound, its cytotoxic effects were cell type dependent, exhibiting no toxicity on Galleria mellonella larvae at a dose ≤46.5 mg/kg. LQA_78 treatment of larvae infected with C. neoformans effectively reduced the fungal burden and inhibited virulent morphotype formation. To conclude, LQA_78 displays fungicidal action and inhibits virulence factors of C. neoformans. Our results highlight the potential use of LQA_78 as a lead molecule for developing novel pharmaceuticals for treating cryptococcosis.
Collapse
Affiliation(s)
| | | | | | | | - Rafael Wesley Bastos
- Center of Biosciences, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | | | | | - Daniel de Assis Santos
- Institute of Biomedical Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Flavia C. G. Reis
- Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Brazil
- Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Marcio L. Rodrigues
- Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Brazil
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Kelly Ishida
- Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
10
|
Cassaro A, Pacelli C, Onofri S. Survival, metabolic activity, and ultrastructural damages of Antarctic black fungus in perchlorates media. Front Microbiol 2022; 13:992077. [PMID: 36523839 PMCID: PMC9744811 DOI: 10.3389/fmicb.2022.992077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/06/2022] [Indexed: 09/12/2023] Open
Abstract
Evidence from recent Mars landers identified the presence of perchlorates salts at 1 wt % in regolith and their widespread distribution on the Martian surface that has been hypothesized as a critical chemical hazard for putative life forms. However, the hypersaline environment may also potentially preserve life and its biomolecules over geological timescales. The high concentration of natural perchlorates is scarcely reported on Earth. The presence of perchlorates in soil and ice has been recorded in some extreme environments including the McMurdo Dry Valleys in Antarctica, one of the best terrestrial analogues for Mars. In the frame of "Life in space" Italian astrobiology project, the polyextremophilic black fungus Cryomyces antarcticus, a eukaryotic test organism isolated from the Antarctic cryptoendolithic communities, has been tested for its resistance, when grown on different hypersaline substrata. In addition, C. antarcticus was grown on Martian relevant perchlorate medium (0.4 wt% of Mg(ClO4)2 and 0.6 wt% of Ca(ClO4)2) to investigate the possibility for the fungus to survive in Martian environment. Here, the results indicate a good survivability and metabolic activity recovery of the black fungus when grown on four Martian relevant perchlorates. A low percentage of damaged cellular membranes have been found, confirming the ultrastructural investigation.
Collapse
Affiliation(s)
- Alessia Cassaro
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, Viterbo, Italy
| | - Claudia Pacelli
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, Viterbo, Italy
- Human Spaceflight and Scientific Research Unit, Italian Space Agency, via del Politecnico, Rome, Italy
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, Viterbo, Italy
| |
Collapse
|
11
|
Elsayis A, Hassan SWM, Ghanem KM, Khairy H. Optimization of melanin pigment production from the halotolerant black yeast Hortaea werneckii AS1 isolated from solar salter in Alexandria. BMC Microbiol 2022; 22:92. [PMID: 35395716 PMCID: PMC8991569 DOI: 10.1186/s12866-022-02505-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/28/2022] [Indexed: 12/14/2022] Open
Abstract
Background Melanins are one of the magnificent natural pigments synthesized by a wide range of microorganisms including different species of fungi and bacteria. Marine black yeasts appear to be potential prospects for the synthesis of natural melanin pigment. As a result, the goal of this research was to isolate a marine black yeast melanin-producing strain and improve the culturing conditions in order to maximize the yield of such a valuable pigment. Results Among five locally isolated black yeast strains, the only one that demonstrated a potent remarkable melanin pigment production was identified using ITS rDNA as Hortaea werneckii AS1. The extracted pigment’s physiochemical characterization and analytical investigation with Ultraviolet-Visible (UV) spectrophotometry, Fourier Transform-Infrared spectroscopy (FTIR), and Scanning Electron Microscope (SEM) confirmed its nature as a melanin pigment. The data obtained from the polynomial model’s maximum point suggested that CaCl2, 1.125 g/L; trace element, 0.25 ml/L; and a culture volume 225 mL/500 mL at their optimal values were the critical three elements impacting melanin production. In comparison with the baseline settings, the response surface methodology (RSM) optimization approach resulted in a 2.0 - fold improvement in melanin output. Conclusions A maximum melanin yield of 0.938 g/L proved the halotolerant H. werneckii AS1 potentiality as a source for natural melanin pigment synthesis ‘when compared to some relevant black yeast strains’ and hence, facilitating its incorporation in a variety of pharmaceutical and environmental applications. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02505-1.
Collapse
Affiliation(s)
- Asmaa Elsayis
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Sahar W M Hassan
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Khaled M Ghanem
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Heba Khairy
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
12
|
Potisek M, Likar M, Vogel-Mikuš K, Arčon I, Grdadolnik J, Regvar M. 1,8-dihydroxy naphthalene (DHN) - melanin confers tolerance to cadmium in isolates of melanised dark septate endophytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112493. [PMID: 34265529 DOI: 10.1016/j.ecoenv.2021.112493] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/10/2021] [Accepted: 07/03/2021] [Indexed: 05/25/2023]
Abstract
The contribution of 1,8-dihydroxy naphthalene (DHN) melanin to cadmium (Cd) tolerance in two dark septate endophytes (DSE) of the genus Cadophora with different melanin content was investigated in vitro. The DSE isolate Cad#148 with higher melanin content showed higher tolerance to Cd than the less melanised Cad#149. Melanin synthesis was significantly reduced by Cd in both isolates with uninhibited melanin synthesis, in a dose-dependent manner. Inhibition of melanin synthesis by tricyclazole reduced the relative growth of Cad#148 exposed to Cd and did not affect Cad#149. Cd accumulation was not altered by tricyclazole in the two isolates, but it increased catalase and reduced glutathione reductase activity in more melanised Cad#148, indicating higher stress levels. In contrast, in Cad#149 the enzyme activity was less affected by tricyclazole, indicating a more pronounced role of melanin-independent Cd tolerance mechanisms. Cd ligand environment in fungal mycelia was analysed by extended EXAFS (X-ray absorption fine structure). It revealed that Cd was mainly bound to O- and S-ligands, including hydroxyl, carboxyl, phosphate and thiol groups. A similar proportion of S- and O- ligands (~35% and ~65%) were found in both isolates with uninhibited melanin synthesis. Among O-ligands two types with Cd-O-C- and Cd-O-P- coordination were identified. Tricyclazole altered Cd-O- ligand environment in both fungal isolates by reducing the proportion of Cd-O-C- and increasing the proportion of Cd-O-P coordination. DHN-melanin, among other tolerance mechanisms, significantly contributes to Cd tolerance in more melanised DSE fungi by immobilising Cd to hydroxyl groups and maintaining the integrity of the fungal cell wall.
Collapse
Affiliation(s)
- Mateja Potisek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia.
| | - Matevž Likar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Katarina Vogel-Mikuš
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia; Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Iztok Arčon
- Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; University of Nova Gorica, Vipavska 13, POB 301, SI-5001 Nova Gorica, Slovenia
| | - Jože Grdadolnik
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Marjana Regvar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
13
|
Stotz HU, Brotherton D, Inal J. Communication is key: Extracellular vesicles as mediators of infection and defence during host-microbe interactions in animals and plants. FEMS Microbiol Rev 2021; 46:6358524. [PMID: 34448857 PMCID: PMC8767456 DOI: 10.1093/femsre/fuab044] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are now understood to be ubiquitous mediators of cellular communication. In this review, we suggest that EVs have evolved into a highly regulated system of communication with complex functions including export of wastes, toxins and nutrients, targeted delivery of immune effectors and vectors of RNA silencing. Eukaryotic EVs come in different shapes and sizes and have been classified according to their biogenesis and size distributions. Small EVs (or exosomes) are released through fusion of endosome-derived multivesicular bodies with the plasma membrane. Medium EVs (or microvesicles) bud off the plasma membrane as a form of exocytosis. Finally, large EVs (or apoptotic bodies) are produced as a result of the apoptotic process. This review considers EV secretion and uptake in four eukaryotic kingdoms, three of which produce cell walls. The impacts cell walls have on EVs in plants and fungi are discussed, as are roles of fungal EVs in virulence. Contributions of plant EVs to development and innate immunity are presented. Compelling cases are sporophytic self-incompatibility and cellular invasion by haustorium-forming filamentous pathogens. The involvement of EVs in all of these eukaryotic processes is reconciled considering their evolutionary history.
Collapse
Affiliation(s)
- Henrik U Stotz
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Dominik Brotherton
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Jameel Inal
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK.,School of Human Sciences, London Metropolitan University, London, N7 8DB, UK
| |
Collapse
|
14
|
Liu S, Youngchim S, Zamith-Miranda D, Nosanchuk JD. Fungal Melanin and the Mammalian Immune System. J Fungi (Basel) 2021; 7:jof7040264. [PMID: 33807336 PMCID: PMC8066723 DOI: 10.3390/jof7040264] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Melanins are ubiquitous complex polymers that are commonly known in humans to cause pigmentation of our skin. Melanins are also present in bacteria, fungi, and helminths. In this review, we will describe the diverse interactions of fungal melanin with the mammalian immune system. We will particularly focus on Cryptococcus neoformans and also discuss other major melanotic pathogenic fungi. Melanin interacts with the immune system through diverse pathways, reducing the effectiveness of phagocytic cells, binding effector molecules and antifungals, and modifying complement and antibody responses.
Collapse
Affiliation(s)
- Sichen Liu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (S.L.); (D.Z.-M.)
| | - Sirida Youngchim
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Daniel Zamith-Miranda
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (S.L.); (D.Z.-M.)
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Joshua D. Nosanchuk
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (S.L.); (D.Z.-M.)
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Correspondence:
| |
Collapse
|
15
|
Gaber DA, Berthelot C, Camehl I, Kovács GM, Blaudez D, Franken P. Salt Stress Tolerance of Dark Septate Endophytes Is Independent of Melanin Accumulation. Front Microbiol 2020; 11:562931. [PMID: 33362727 PMCID: PMC7758464 DOI: 10.3389/fmicb.2020.562931] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Dark septate endophytes (DSEs) represent a diverse group of root-endophytic fungi that have been isolated from plant roots in many different natural and anthropogenic ecosystems. Melanin is widespread in eukaryotic organisms and possesses various functions such as protecting human skin from UV radiation, affecting the virulence of pathogens, and playing a role in development and physiology of insects. Melanin is a distinctive feature of the cell walls of DSEs and has been thought to protect these fungi from abiotic stress. Melanin in DSEs is assumed to be synthesized via the 1,8-dihydroxynaphthalene (DHN) pathway. Its function in alleviation of salt stress is not yet known. The aims of this study were: (i) investigating the growth responses of three DSEs (Periconia macrospinosa, Cadophora sp., and Leptodontidium sp.) to salt stress, (ii) analyzing melanin production under salt stress and, (iii) testing the role of melanin in salt stress tolerance of DSEs. The study shows that the three DSE species can tolerate high salt concentrations. Melanin content increased in the hyphae of all DSEs at 100 mM salt, but decreased at 500 mM. This was not reflected in the RNA accumulation of the gene encoding scytalone dehydratase which is involved in melanin biosynthesis. The application of tricyclazole, a DHN-melanin biosynthesis inhibitor, did not affect either salt stress tolerance or the accumulation of sodium in the hyphae. In addition, melanin biosynthesis mutants of Leptodontidium sp. did not show decreased growth performance compared to the wild-type, especially not at high salt concentrations. This indicates that DSEs can live under salt stress and withstand these conditions regardless of melanin accumulation.
Collapse
Affiliation(s)
- Dalia A. Gaber
- Leibniz-Institute of Vegetable and Ornamental Crops, Grossbeeren, Germany
- Institute of Biology, Humboldt University, Berlin, Germany
| | | | - Iris Camehl
- Leibniz-Institute of Vegetable and Ornamental Crops, Grossbeeren, Germany
| | - Gábor M. Kovács
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- Plant Protection Institute, Centre for Agricultural Research, Budapest, Hungary
| | | | - Philipp Franken
- Leibniz-Institute of Vegetable and Ornamental Crops, Grossbeeren, Germany
- Institute of Biology, Humboldt University, Berlin, Germany
| |
Collapse
|
16
|
de Oliveira HC, Castelli RF, Reis FCG, Rizzo J, Rodrigues ML. Pathogenic Delivery: The Biological Roles of Cryptococcal Extracellular Vesicles. Pathogens 2020; 9:pathogens9090754. [PMID: 32948010 PMCID: PMC7557404 DOI: 10.3390/pathogens9090754] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are produced by all domains of life. In fungi, these structures were first described in Cryptococcus neoformans and, since then, they were characterized in several pathogenic and non-pathogenic fungal species. Cryptococcal EVs participate in the export of virulence factors that directly impact the Cryptococcus-host interaction. Our knowledge of the biogenesis and pathogenic roles of Cryptococcus EVs is still limited, but recent methodological and scientific advances have improved our understanding of how cryptococcal EVs participate in both physiological and pathogenic events. In this review, we will discuss the importance of cryptococcal EVs, including early historical studies suggesting their existence in Cryptococcus, their putative mechanisms of biogenesis, methods of isolation, and possible roles in the interaction with host cells.
Collapse
Affiliation(s)
- Haroldo C. de Oliveira
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Rua Prof. Algacyr Munhoz Mader, 3775 CIC Curitiba/PR, Curitiba 81350-010, Brasil; (H.C.d.O.); (R.F.C.); (F.C.G.R.)
| | - Rafael F. Castelli
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Rua Prof. Algacyr Munhoz Mader, 3775 CIC Curitiba/PR, Curitiba 81350-010, Brasil; (H.C.d.O.); (R.F.C.); (F.C.G.R.)
- Programa de Pós-Graduação em Biologia Parasitária, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4.365, Pavilhão Arthur Neiva–Manguinhos, Rio de Janeiro 21040-360, Brasil
| | - Flavia C. G. Reis
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Rua Prof. Algacyr Munhoz Mader, 3775 CIC Curitiba/PR, Curitiba 81350-010, Brasil; (H.C.d.O.); (R.F.C.); (F.C.G.R.)
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (Fiocruz), Av. Brasil, 4036–Prédio Da Expansão–8˚ Andar–Sala 814, Rio De Janeiro 21040-361, Brasil
| | - Juliana Rizzo
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France;
| | - Marcio L. Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Rua Prof. Algacyr Munhoz Mader, 3775 CIC Curitiba/PR, Curitiba 81350-010, Brasil; (H.C.d.O.); (R.F.C.); (F.C.G.R.)
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, Brasil
- Correspondence:
| |
Collapse
|
17
|
Matsumoto Y, Azami S, Shiga H, Nagamachi T, Moriyama H, Yamashita Y, Yoshikawa A, Sugita T. Induction of signal transduction pathways related to the pathogenicity of Cryptococcus neoformans in the host environment. Drug Discov Ther 2020; 13:177-182. [PMID: 31534068 DOI: 10.5582/ddt.2019.01047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cryptococcus neoformans, a human pathogenic fungus, infects immunocompromised humans and causes serious diseases such as cerebral meningitis. C. neoformans controls the expression of virulence factors in response to the host environment via various signal transduction pathways. Understanding the molecular mechanisms involved in C. neoformans infection will contribute to the development of methods to prevent and treat C. neoformans-related diseases. C. neoformans produces virulence factors, such as a polysaccharide capsule and melanin, to escape host immunity. Several proteins of C. neoformans are reported to regulate production of the virulence factors. In this review, on the basis of studies using gene-deficient mutants of C. neoformans and animal infection models, we outline the signal transduction pathways involved in the regulation of virulence factors.
Collapse
Affiliation(s)
| | - Saki Azami
- Department of Microbiology, Meiji Pharmaceutical University
| | - Haruka Shiga
- Department of Microbiology, Meiji Pharmaceutical University
| | - Tae Nagamachi
- Department of Microbiology, Meiji Pharmaceutical University
| | | | - Yuki Yamashita
- Department of Microbiology, Meiji Pharmaceutical University
| | | | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University
| |
Collapse
|
18
|
Garcia-Rubio R, de Oliveira HC, Rivera J, Trevijano-Contador N. The Fungal Cell Wall: Candida, Cryptococcus, and Aspergillus Species. Front Microbiol 2020; 10:2993. [PMID: 31993032 PMCID: PMC6962315 DOI: 10.3389/fmicb.2019.02993] [Citation(s) in RCA: 437] [Impact Index Per Article: 87.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/10/2019] [Indexed: 01/23/2023] Open
Abstract
The fungal cell wall is located outside the plasma membrane and is the cell compartment that mediates all the relationships of the cell with the environment. It protects the contents of the cell, gives rigidity and defines the cellular structure. The cell wall is a skeleton with high plasticity that protects the cell from different stresses, among which osmotic changes stand out. The cell wall allows interaction with the external environment since some of its proteins are adhesins and receptors. Since, some components have a high immunogenic capacity, certain wall components can drive the host's immune response to promote fungus growth and dissemination. The cell wall is a characteristic structure of fungi and is composed mainly of glucans, chitin and glycoproteins. As the components of the fungal cell wall are not present in humans, this structure is an excellent target for antifungal therapy. In this article, we review recent data on the composition and synthesis, influence of the components of the cell wall in fungi-host interaction and the role as a target for the next generation of antifungal drugs in yeasts (Candida and Cryptococcus) and filamentous fungi (Aspergillus).
Collapse
Affiliation(s)
- Rocio Garcia-Rubio
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | | | - Johanna Rivera
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
| | - Nuria Trevijano-Contador
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
19
|
Freitas DF, Vieira-Da-Motta O, Mathias LDS, Franco RWDA, Gomes RDS, Vieira RAM, Rocha LOD, Olivares FL, Santos CDP. Synthesis and role of melanin for tolerating in vitro rumen digestion in Duddingtonia flagrans, a nematode-trapping fungus. Mycology 2019; 10:229-242. [PMID: 31632832 PMCID: PMC6781480 DOI: 10.1080/21501203.2019.1631896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 06/07/2019] [Indexed: 01/13/2023] Open
Abstract
We describe the synthesis and a function of melanin in Duddingtonia flagrans, a nematode-trapping fungus. We tested various culture media treated with L-DOPA, glucose and tricyclazole on fungal growth and melanin distribution using infrared spectroscopy (IS), electron paramagnetic resonance (EPR) and transmission electron microscopy (TEM). In vitro rumen digestion was used to test the environmental stress and then to evaluate the capacity of this fungus to trap nematode larvae. The growth and melanization of the fungus after 21 days of incubation at 30°C were best in Sabouraud dextrose medium. IS indicated the presence of melanin in D. flagrans, with similar bands for commercial melanin used as a control, and assigned the values obtained by EPR (g of 2.0051 ± 0.0001) to the production of melanin by the fungus. TEM indicated that melanin was produced in melanosomes but was not totally inhibited by tricyclazole. Within the limits of experimental error, the predatory activity of fungus treated with tricyclazole was drastically affected after 27 h of in vitro anaerobic stress with rumen inoculum. The deposition of melanin particles on the fungal cell wall contributed to the maintenance of D. flagrans predatory abilities after in vitro anaerobic ruminal stress.
Collapse
Affiliation(s)
- Deivid França Freitas
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Olney Vieira-Da-Motta
- Laboratório de Sanidade Animal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Luciana Da Silva Mathias
- Laboratório de Sanidade Animal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Roberto Weider De Assis Franco
- Laboratório de Ciências Físicas, Centro de Ciências Tecnológicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Raphael Dos Santos Gomes
- Laboratório de Zootecnia, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Ricardo Augusto Mendonça Vieira
- Laboratório de Zootecnia, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Letícia Oliveira Da Rocha
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Fabio Lopes Olivares
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Clóvis De Paula Santos
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| |
Collapse
|
20
|
Walker L, Sood P, Lenardon MD, Milne G, Olson J, Jensen G, Wolf J, Casadevall A, Adler-Moore J, Gow NAR. The Viscoelastic Properties of the Fungal Cell Wall Allow Traffic of AmBisome as Intact Liposome Vesicles. mBio 2018; 9:e02383-17. [PMID: 29437927 PMCID: PMC5801470 DOI: 10.1128/mbio.02383-17] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 01/08/2018] [Indexed: 01/25/2023] Open
Abstract
The fungal cell wall is a critically important structure that represents a permeability barrier and protective shield. We probed Candida albicans and Cryptococcus neoformans with liposomes containing amphotericin B (AmBisome), with or without 15-nm colloidal gold particles. The liposomes have a diameter of 60 to 80 nm, and yet their mode of action requires them to penetrate the fungal cell wall to deliver amphotericin B to the cell membrane, where it binds to ergosterol. Surprisingly, using cryofixation techniques with electron microscopy, we observed that the liposomes remained intact during transit through the cell wall of both yeast species, even though the predicted porosity of the cell wall (pore size, ~5.8 nm) is theoretically too small to allow these liposomes to pass through intact. C. albicans mutants with altered cell wall thickness and composition were similar in both their in vitro AmBisome susceptibility and the ability of liposomes to penetrate the cell wall. AmBisome exposed to ergosterol-deficient C. albicans failed to penetrate beyond the mannoprotein-rich outer cell wall layer. Melanization of C. neoformans and the absence of amphotericin B in the liposomes were also associated with a significant reduction in liposome penetration. Therefore, AmBisome can reach cell membranes intact, implying that fungal cell wall viscoelastic properties are permissive to vesicular structures. The fact that AmBisome can transit through chemically diverse cell wall matrices when these liposomes are larger than the theoretical cell wall porosity suggests that the wall is capable of rapid remodeling, which may also be the mechanism for release of extracellular vesicles.IMPORTANCE AmBisome is a broad-spectrum fungicidal antifungal agent in which the hydrophobic polyene antibiotic amphotericin B is packaged within a 60- to 80-nm liposome. The mode of action involves perturbation of the fungal cell membrane by selectively binding to ergosterol, thereby disrupting membrane function. We report that the AmBisome liposome transits through the cell walls of both Candida albicans and Cryptococcus neoformans intact, despite the fact that the liposome is larger than the theoretical cell wall porosity. This implies that the cell wall has deformable, viscoelastic properties that are permissive to transwall vesicular traffic. These observations help explain the low toxicity of AmBisome, which can deliver its payload directly to the cell membrane without unloading the polyene in the cell wall. In addition, these findings suggest that extracellular vesicles may also be able to pass through the cell wall to deliver soluble and membrane-bound effectors and other molecules to the extracellular space.
Collapse
Affiliation(s)
- Louise Walker
- Aberdeen Fungal Group, Institute of Medical Sciences, Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Prashant Sood
- Aberdeen Fungal Group, Institute of Medical Sciences, Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Megan D Lenardon
- Aberdeen Fungal Group, Institute of Medical Sciences, Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Gillian Milne
- Aberdeen Fungal Group, Institute of Medical Sciences, Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Jon Olson
- Gilead Sciences Inc., San Dimas, California, USA
| | | | - Julie Wolf
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Arturo Casadevall
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Neil A R Gow
- Aberdeen Fungal Group, Institute of Medical Sciences, Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| |
Collapse
|
21
|
Abstract
Melanins are ancient biological pigments found in all kingdoms of life. In fungi, their role in microbial pathogenesis is well established; however, these complex biomolecules also confer upon fungal microorganisms the faculty to tolerate extreme environments such as the Earth's poles, the International Space Station and places contaminated by toxic metals and ionizing radiation. A remarkable property of melanin is its capacity to interact with a wide range of electromagnetic radiation frequencies, functioning as a protecting and energy harvesting pigment. Other roles of fungal melanin include scavenging of free radical, thermo-tolerance, metal ion sequestration, cell development, and mechanical-chemical cellular strength. In this review, we explore the various functions ascribed to this biological pigment in fungi and its remarkable physicochemical properties.
Collapse
Affiliation(s)
- Radames JB Cordero
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| |
Collapse
|
22
|
Physiological Differences in Cryptococcus neoformans Strains In Vitro versus In Vivo and Their Effects on Antifungal Susceptibility. Antimicrob Agents Chemother 2017; 61:AAC.02108-16. [PMID: 28031206 PMCID: PMC5328578 DOI: 10.1128/aac.02108-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cryptococcus neoformans is an environmentally ubiquitous fungal pathogen that primarily causes disease in people with compromised immune systems, particularly those with advanced AIDS. There are estimated to be almost 1 million cases per year of cryptococcal meningitis in patients infected with human immunodeficiency virus, leading to over 600,000 annual deaths, with a particular burden in sub-Saharan Africa. Amphotericin B (AMB) and fluconazole (FLC) are key components of cryptococcal meningitis treatment: AMB is used for induction, and FLC is for consolidation, maintenance and, for occasional individuals, prophylaxis. However, the results of standard antifungal susceptibility testing (AFST) for AMB and FLC do not correlate well with therapeutic outcomes and, consequently, no clinical breakpoints have been established. While a number of explanations for this absence of correlation have been proffered, one potential reason that has not been adequately explored is the possibility that the physiological differences between the in vivo infection environment and the in vitro AFST environment lead to disparate drug susceptibilities. These susceptibility-influencing factors include melanization, which does not occur during AFST, the size of the polysaccharide capsule, which is larger in infecting cells than in those grown under normal laboratory conditions, and the presence of large polyploid "titan cells," which rarely occur under laboratory conditions. Understanding whether and how C. neoformans differentially expresses mechanisms of resistance to AMB and FLC in the AFST environment compared to the in vivo environment could enhance our ability to interpret AFST results and possibly lead to the development of more applicable testing methods.
Collapse
|
23
|
Noar RD, Daub ME. Bioinformatics Prediction of Polyketide Synthase Gene Clusters from Mycosphaerella fijiensis. PLoS One 2016; 11:e0158471. [PMID: 27388157 PMCID: PMC4936691 DOI: 10.1371/journal.pone.0158471] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/16/2016] [Indexed: 01/07/2023] Open
Abstract
Mycosphaerella fijiensis, causal agent of black Sigatoka disease of banana, is a Dothideomycete fungus closely related to fungi that produce polyketides important for plant pathogenicity. We utilized the M. fijiensis genome sequence to predict PKS genes and their gene clusters and make bioinformatics predictions about the types of compounds produced by these clusters. Eight PKS gene clusters were identified in the M. fijiensis genome, placing M. fijiensis into the 23rd percentile for the number of PKS genes compared to other Dothideomycetes. Analysis of the PKS domains identified three of the PKS enzymes as non-reducing and two as highly reducing. Gene clusters contained types of genes frequently found in PKS clusters including genes encoding transporters, oxidoreductases, methyltransferases, and non-ribosomal peptide synthases. Phylogenetic analysis identified a putative PKS cluster encoding melanin biosynthesis. None of the other clusters were closely aligned with genes encoding known polyketides, however three of the PKS genes fell into clades with clusters encoding alternapyrone, fumonisin, and solanapyrone produced by Alternaria and Fusarium species. A search for homologs among available genomic sequences from 103 Dothideomycetes identified close homologs (>80% similarity) for six of the PKS sequences. One of the PKS sequences was not similar (< 60% similarity) to sequences in any of the 103 genomes, suggesting that it encodes a unique compound. Comparison of the M. fijiensis PKS sequences with those of two other banana pathogens, M. musicola and M. eumusae, showed that these two species have close homologs to five of the M. fijiensis PKS sequences, but three others were not found in either species. RT-PCR and RNA-Seq analysis showed that the melanin PKS cluster was down-regulated in infected banana as compared to growth in culture. Three other clusters, however were strongly upregulated during disease development in banana, suggesting that they may encode polyketides important in pathogenicity.
Collapse
Affiliation(s)
- Roslyn D. Noar
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina, 27695-7616, United States of America
| | - Margaret E. Daub
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, 27695-7612, United States of America
- * E-mail:
| |
Collapse
|
24
|
Al-Laaeiby A, Kershaw MJ, Penn TJ, Thornton CR. Targeted Disruption of Melanin Biosynthesis Genes in the Human Pathogenic Fungus Lomentospora prolificans and Its Consequences for Pathogen Survival. Int J Mol Sci 2016; 17:444. [PMID: 27023523 PMCID: PMC4848900 DOI: 10.3390/ijms17040444] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 11/16/2022] Open
Abstract
The dematiaceous (melanised) fungus Lomentospora (Scedosporium) prolificans is a life-threatening opportunistic pathogen of immunocompromised humans, resistant to anti-fungal drugs. Melanin has been shown to protect human pathogenic fungi against antifungal drugs, oxidative killing and environmental stresses. To determine the protective role of melanin in L. prolificans to oxidative killing (H2O2), UV radiation and the polyene anti-fungal drug amphotericin B, targeted gene disruption was used to generate mutants of the pathogen lacking the dihydroxynaphthalene (DHN)-melanin biosynthetic enzymes polyketide synthase (PKS1), tetrahydroxynapthalene reductase (4HNR) and scytalone dehydratase (SCD1). Infectious propagules (spores) of the wild-type strain 3.1 were black/brown, whereas spores of the PKS-deficient mutant ΔLppks1::hph were white. Complementation of the albino mutant ΔLppks1::hph restored the black-brown spore pigmentation, while the 4HNR-deficient mutant ΔLp4hnr::hph and SCD-deficient mutant ΔLpscd1::hph both produced orange-yellow spores. The mutants ΔLppks1::hph and ΔLp4hnr::hph showed significant reductions in spore survival following H2O2 treatment, while spores of ΔLpscd1::hph and the ΔLppks1::hph complemented strain ΔLppks1::hph:PKS showed spore survivals similar to strain 3.1. Spores of the mutants ΔLp4hnr::hph and ΔLpscd1::hph and complemented strain ΔLppks1::hph:PKS showed spore survivals similar to 3.1 following exposure to UV radiation, but survival of ΔLppks1::hph spores was significantly reduced compared to the wild-type strain. Strain 3.1 and mutants ΔLp4hnr::hph and ΔLppks1::hph:PKS were resistant to amphotericin B while, paradoxically, the PKS1- and SCD1-deficient mutants showed significant increases in growth in the presence of the antifungal drug. Taken together, these results show that while melanin plays a protective role in the survival of the pathogen to oxidative killing and UV radiation, melanin does not contribute to its resistance to amphotericin B.
Collapse
Affiliation(s)
- Ayat Al-Laaeiby
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
- Cell and Biotechnology Research Unit, College of Science, University of Basrah, Basrah 61004, Iraq.
| | - Michael J Kershaw
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| | - Tina J Penn
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| | - Christopher R Thornton
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
25
|
Nosanchuk JD, Stark RE, Casadevall A. Fungal Melanin: What do We Know About Structure? Front Microbiol 2015; 6:1463. [PMID: 26733993 PMCID: PMC4687393 DOI: 10.3389/fmicb.2015.01463] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/07/2015] [Indexed: 12/22/2022] Open
Abstract
The production of melanin significantly enhances the virulence of many important human pathogenic fungi. Despite fungal melanin’s importance in human disease, as well as melanin’s contribution to the ability of fungi to survive in diverse hostile environments, the structure of melanin remains unsolved. Nevertheless, ongoing research efforts have progressively revealed several notable structural characteristics of this enigmatic pigment, which will be the focus of this review. These compositional and organizational insights could further our ability to develop novel therapeutic approaches to combat fungal disease and enhance our understanding of how melanin is inserted into the cell wall.
Collapse
Affiliation(s)
- Joshua D Nosanchuk
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of MedicineBronx, NY, USA; Microbiology and Immunology, Albert Einstein College of MedicineBronx, NY, USA
| | - Ruth E Stark
- Department of Chemistry and Biochemistry, The Graduate Center, The City College of New York, The City University of New YorkNew York, NY, USA; Institute for Macromolecular Assemblies, The City University of New YorkNew York, NY, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University Baltimore, MD, USA
| |
Collapse
|
26
|
Challenges posed by extracellular vesicles from eukaryotic microbes. Curr Opin Microbiol 2015; 22:73-8. [PMID: 25460799 DOI: 10.1016/j.mib.2014.09.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 09/09/2014] [Accepted: 09/12/2014] [Indexed: 01/22/2023]
Abstract
Extracellular vesicles (EV) produced by eukaryotic microbes play an important role during infection. EV release is thought to benefit microbial invasion by delivering a high concentration of virulence factors to distal host cells or to the cytoplasm of a host cell. EV can significantly impact the outcome of host–pathogen interaction in a cargo-dependent manner. Release of EV from eukaryotic microbes poses unique challenges when compared to their bacterial or archaeal counterparts. Firstly, the membrane-bound organelles within eukaryotes facilitate multiple mechanisms of vesicle generation. Secondly, the fungal cell wall poses a unique barrier between the vesicle release site at the plasma membrane and its destined extracellular environment. This review focuses on these eukaryotic-specific aspects of vesicle synthesis and release.
Collapse
|
27
|
Brown L, Wolf JM, Prados-Rosales R, Casadevall A. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat Rev Microbiol 2015; 13:620-30. [PMID: 26324094 DOI: 10.1038/nrmicro3480] [Citation(s) in RCA: 830] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are produced by all domains of life. In Gram-negative bacteria, EVs are produced by the pinching off of the outer membrane; however, how EVs escape the thick cell walls of Gram-positive bacteria, mycobacteria and fungi is still unknown. Nonetheless, EVs have been described in a variety of cell-walled organisms, including Staphylococcus aureus, Mycobacterium tuberculosis and Cryptococcus neoformans. These EVs contain varied cargo, including nucleic acids, toxins, lipoproteins and enzymes, and have important roles in microbial physiology and pathogenesis. In this Review, we describe the current status of vesiculogenesis research in thick-walled microorganisms and discuss the cargo and functions associated with EVs in these species.
Collapse
Affiliation(s)
- Lisa Brown
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | - Rafael Prados-Rosales
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Arturo Casadevall
- Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland 21205, USA
| |
Collapse
|
28
|
Zajc J, Džeroski S, Kocev D, Oren A, Sonjak S, Tkavc R, Gunde-Cimerman N. Chaophilic or chaotolerant fungi: a new category of extremophiles? Front Microbiol 2014; 5:708. [PMID: 25566222 PMCID: PMC4274975 DOI: 10.3389/fmicb.2014.00708] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 11/28/2014] [Indexed: 11/13/2022] Open
Abstract
It is well known that few halophilic bacteria and archaea as well as certain fungi can grow at the highest concentrations of NaCl. However, data about possible life at extremely high concentrations of various others kosmotropic (stabilizing; like NaCl, KCl, and MgSO4) and chaotropic (destabilizing) salts (NaBr, MgCl2, and CaCl2) are scarce for prokaryotes and almost absent for the eukaryotic domain including fungi. Fungi from diverse (extreme) environments were tested for their ability to grow at the highest concentrations of kosmotropic and chaotropic salts ever recorded to support life. The majority of fungi showed preference for relatively high concentrations of kosmotropes. However, our study revealed the outstanding tolerance of several fungi to high concentrations of MgCl2 (up to 2.1 M) or CaCl2 (up to 2.0 M) without compensating kosmotropic salts. Few species, for instance Hortaea werneckii, Eurotium amstelodami, Eurotium chevalieri and Wallemia ichthyophaga, are able to thrive in media with the highest salinities of all salts (except for CaCl2 in the case of W. ichthyophaga). The upper concentration of MgCl2 to support fungal life in the absence of kosmotropes (2.1 M) is much higher than previously determined to be the upper limit for microbial growth (1.26 M). No fungal representatives showed exclusive preference for only chaotropic salts (being obligate chaophiles). Nevertheless, our study expands the knowledge of possible active life by a diverse set of fungi in biologically detrimental chaotropic environments.
Collapse
Affiliation(s)
- Janja Zajc
- Department of Biology, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia
| | - Sašo Džeroski
- Department of Knowledge Technologies, Jožef Stefan InstituteLjubljana, Slovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP)Ljubljana, Slovenia
| | - Dragi Kocev
- Department of Knowledge Technologies, Jožef Stefan InstituteLjubljana, Slovenia
| | - Aharon Oren
- Department of Plant and Environmental Sciences, The Institute of Life Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Silva Sonjak
- Department of Biology, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia
| | - Rok Tkavc
- Department of Biology, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia
- Department of Pathology, Uniformed Services University of the Health SciencesBethesda, MD, USA
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP)Ljubljana, Slovenia
| |
Collapse
|
29
|
Interaction of Cryptococcus neoformans extracellular vesicles with the cell wall. EUKARYOTIC CELL 2014; 13:1484-93. [PMID: 24906412 DOI: 10.1128/ec.00111-14] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cryptococcus neoformans produces extracellular vesicles containing a variety of cargo, including virulence factors. To become extracellular, these vesicles not only must be released from the plasma membrane but also must pass through the dense matrix of the cell wall. The greatest unknown in the area of fungal vesicles is the mechanism by which these vesicles are released to the extracellular space given the presence of the fungal cell wall. Here we used electron microscopy techniques to image the interactions of vesicles with the cell wall. Our goal was to define the ultrastructural morphology of the process to gain insights into the mechanisms involved. We describe single and multiple vesicle-leaving events, which we hypothesized were due to plasma membrane and multivesicular body vesicle origins, respectively. We further utilized melanized cells to "trap" vesicles and visualize those passing through the cell wall. Vesicle size differed depending on whether vesicles left the cytoplasm in single versus multiple release events. Furthermore, we analyzed different vesicle populations for vesicle dimensions and protein composition. Proteomic analysis tripled the number of proteins known to be associated with vesicles. Despite separation of vesicles into batches differing in size, we did not identify major differences in protein composition. In summary, our results indicate that vesicles are generated by more than one mechanism, that vesicles exit the cell by traversing the cell wall, and that vesicle populations exist as a continuum with regard to size and protein composition.
Collapse
|
30
|
Tseng MN, Chung CL, Tzean SS. Mechanisms relevant to the enhanced virulence of a dihydroxynaphthalene-melanin metabolically engineered entomopathogen. PLoS One 2014; 9:e90473. [PMID: 24662974 PMCID: PMC3963850 DOI: 10.1371/journal.pone.0090473] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 02/04/2014] [Indexed: 12/25/2022] Open
Abstract
The entomopathogenic fungus Metarhizium anisopliae MA05-169 is a transformant strain that has been metabolically engineered to express dihydroxynaphthalene-melanin biosynthesis genes. In contrast to the wild type strain, the transformant displays a greater resistance to environmental stress and a higher virulence toward target insect host. However, the underlying mechanisms for these characteristics remain unclear; hence experiments were initiated to explore the possible mechanism(s) through physiological and molecular approaches. Although both transformant and wild type strains could infect and share the same insect host range, the former germinated faster and produced more appressoria than the latter, both in vivo and in vitro. The transformant showed a significantly shorter median lethal time (LT50) when infecting the diamondback moth (Plutella xylostella) and the striped flea beetle (Phyllotreta striolata), than the wild type. Additionally, the transformant was more tolerant to reactive oxygen species (ROS), produced 40-fold more orthosporin and notably overexpressed the transcripts of the pathogenicity-relevant hydrolytic enzymes (chitinase, protease, and phospholipase) genes in vivo. In contrast, appressorium turgor pressure and destruxin A content were slightly decreased compared to the wild type. The transformant's high anti-stress tolerance, its high virulence against five important insect pests (cowpea aphid Aphis craccivora, diamondback moth Pl. xylostella, striped flea beetle Ph. striolata, and silverleaf whitefly Bemisia argentifolii) and its capacity to colonize the root system are key properties for its potential bio-control field application.
Collapse
Affiliation(s)
- Min-Nan Tseng
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
- Division of Plant Protection, Kaohsiung District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Pingtung, Taiwan
| | - Chia-Ling Chung
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Shean-Shong Tzean
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
31
|
|
32
|
Kejžar A, Gobec S, Plemenitaš A, Lenassi M. Melanin is crucial for growth of the black yeast Hortaea werneckii in its natural hypersaline environment. Fungal Biol 2013; 117:368-79. [PMID: 23719222 DOI: 10.1016/j.funbio.2013.03.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/26/2013] [Indexed: 10/27/2022]
Abstract
Melanin has an important role in the ability of fungi to survive extreme conditions, like the high NaCl concentrations that are typical of hypersaline environments. The black fungus Hortaea werneckii that has been isolated from such environments has 1,8-dihydroxynaphthalene-melanin incorporated into the cell wall, which minimises the loss of glycerol at low NaCl concentrations. To further explore the role of melanin in the extremely halotolerant character of H. werneckii, we studied the effects of several melanin biosynthesis inhibitors on its growth, pigmentation and cell morphology. The most potent inhibitors were a 2,3-dihydrobenzofuran derivative and tricyclazole, which restricted the growth of H. werneckii on high-salinity media, as shown by growth curves and plate-drop assays. These inhibitors promoted release of the pigments from the H. werneckii cell surface and changed the medium colour. Inhibitor-treated H. werneckii cells exposed to high salinity showed both decreased and increased cell lengths. We speculate that this absence of melanin perturbs the integrity of the cell wall in H. werneckii, which affects its cell division and exposes it to the harmful effects of high NaCl concentrations. Surprisingly, melanin had no effect on H. werneckii survival under H₂O₂ oxidative stress.
Collapse
Affiliation(s)
- Anja Kejžar
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, SI-1000 Ljubljana, Slovenia.
| | | | | | | |
Collapse
|
33
|
Steinberg G. Cytoplasmic fungal lipases release fungicides from ultra-deformable vesicular drug carriers. PLoS One 2012; 7:e38181. [PMID: 22666476 PMCID: PMC3362563 DOI: 10.1371/journal.pone.0038181] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 05/01/2012] [Indexed: 12/17/2022] Open
Abstract
The Transfersome® is a lipid vesicle that contains membrane softeners, such as Tween 80, to make it ultra-deformable. This feature makes the Transfersome® an efficient carrier for delivery of therapeutic drugs across the skin barrier. It was reported that TDT 067 (a topical formulation of 15 mg/ml terbinafine in Transfersome® vesicles) has a much more potent antifungal activity in vitro compared with conventional terbinafine, which is a water-insoluble fungicide. Here we use ultra-structural studies and live imaging in a model fungus to describe the underlying mode of action. We show that terbinafine causes local collapse of the fungal endoplasmic reticulum, which was more efficient when terbinafine was delivered in Transfersome® vesicles (TFVs). When applied in liquid culture, fluorescently labeled TFVs rapidly entered the fungal cells (T1/2∼2 min). Entry was F-actin- and ATP-independent, indicating that it is a passive process. Ultra-structural studies showed that passage through the cell wall involves significant deformation of the vesicles, and depends on a high concentration of the surfactant Tween 80 in their membrane. Surprisingly, the TFVs collapsed into lipid droplets after entry into the cell and the terbinafine was released from their interior. With time, the lipid bodies were metabolized in an ATP-dependent fashion, suggesting that cytosolic lipases attack and degrade intruding TFVs. Indeed, the specific monoacylglycerol lipase inhibitor URB602 prevented Transfersome® degradation and neutralized the cytotoxic effect of Transfersome®-delivered terbinafine. These data suggest that (a) Transfersomes deliver the lipophilic fungicide Terbinafine to the fungal cell wall, (b) the membrane softener Tween 80 allows the passage of the Transfersomes into the fungal cell, and (c) fungal lipases digest the invading Transfersome® vesicles thereby releasing their cytotoxic content. As this mode of action of Transfersomes is independent of the drug cargo, these results demonstrate the potential of Transfersomes in the treatment of all fungal diseases.
Collapse
Affiliation(s)
- Gero Steinberg
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
34
|
Rodrigues GB, Primo FL, Tedesco AC, Braga GUL. In vitro photodynamic inactivation of Cryptococcus neoformans melanized cells with chloroaluminum phthalocyanine nanoemulsion. Photochem Photobiol 2012; 88:440-7. [PMID: 22145636 DOI: 10.1111/j.1751-1097.2011.01055.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The selection of fungi resistant to currently used fungicides and the emergence of new pathogenic species make the development of alternative fungus-control techniques highly desirable. Photodynamic antimicrobial chemotherapy (PACT) is a promising method which combines a nontoxic photosensitizer (PS) with visible light to cause selective killing of microbial cells. The development of PACT to treat mycoses or kill fungi in the environment depends on identifying effective PS for the different pathogenic species and delivery systems able to expand and optimize their use. In the present study, the in vitro susceptibility of Cryptococcus neoformans melanized cells to the photodynamic effects of the PS agent ClAlPc in nanoemulsion (ClAlPc/NE) was examined. Cells were killed in a PS concentration- and light dose-dependent manner. Treatment with ClAlPc/NE, using PS concentrations (e.g. 4.5 μm) and light doses (e.g. 10 J cm(-2)) compatible with PACT, resulted in a reduction of up to 6 logs in survival. Washing the cells to remove unbound PS before light exposure did not inhibit fungal photodynamic inactivation. Internalization of ClAlPc by C. neoformans was confirmed by confocal fluorescence microscopy, and the degree of uptake was dependent on PS concentration.
Collapse
Affiliation(s)
- Gabriela B Rodrigues
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | |
Collapse
|
35
|
Zajc J, Zalar P, Plemenitaš A, Gunde-Cimerman N. The mycobiota of the salterns. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2012; 53:133-158. [PMID: 22222830 DOI: 10.1007/978-3-642-23342-5_7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Solar salterns are constructed as shallow multi-pond systems for the production of halite through evaporation of seawater. The main feature of salterns is the discontinuous salinity gradient that provides a range of well-defined habitats with increasing salinities, from moderate to hypersaline. These present one of the most extreme environments, because of the low levels of biologically available water and the toxic concentrations of ions. Up to the year 2000, hypersaline environments were considered to be populated almost exclusively by prokaryotic microorganisms till fungi were reported to be active inhabitants of solar salterns. Since then, numerous fungal species have been described in hypersaline waters around the world. The mycobiota of salterns is represented by different species of the genus Cladosporium and the related meristematic melanized black yeasts, of non-melanized yeasts, of the filamentous genera Penicillium and Aspergillus and their teleomorphic forms (Eurotium and Emericella), and of the basidiomycetous genus Wallemia. Among these, two species became new model organisms for studying the mechanisms of extreme salt tolerance: the extremely halotolerant ascomycetous black yeast Hortaea werneckii and the obligate halophilic basidiomycete Wallemia ichthyophaga.
Collapse
Affiliation(s)
- Janja Zajc
- Biology Department, University of Ljubljana, Večna pot 111, Ljubljana, SI-1000, Slovenia
| | | | | | | |
Collapse
|
36
|
Eisenman HC, Casadevall A. Synthesis and assembly of fungal melanin. Appl Microbiol Biotechnol 2011; 93:931-40. [PMID: 22173481 DOI: 10.1007/s00253-011-3777-2] [Citation(s) in RCA: 427] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 11/17/2011] [Accepted: 11/20/2011] [Indexed: 10/14/2022]
Abstract
Melanin is a unique pigment with myriad functions that is found in all biological kingdoms. It is multifunctional, providing defense against environmental stresses such as ultraviolet (UV) light, oxidizing agents and ionizing radiation. Melanin contributes to the ability of fungi to survive in harsh environments. In addition, it plays a role in fungal pathogenesis. Melanin is an amorphous polymer that is produced by one of two synthetic pathways. Fungi may synthesize melanin from endogenous substrate via a 1,8-dihydroxynaphthalene (DHN) intermediate. Alternatively, some fungi produce melanin from L-3,4-dihydroxyphenylalanine (L-dopa). The detailed chemical structure of melanin is not known. However, microscopic studies show that it has an overall granular structure. In fungi, melanin granules are localized to the cell wall where they are likely cross-linked to polysaccharides. Recent studies suggest the fungal melanin may be synthesized in internal vesicles akin to mammalian melanosomes and transported to the cell wall. Potential applications of melanin take advantage of melanin's radioprotective properties and propensity to bind to a variety of substances.
Collapse
Affiliation(s)
- Helene C Eisenman
- Department of Natural Sciences, Baruch College and Graduate Center, the City University of New York, 17 Lexington Avenue, Box A-506, New York, NY 10010, USA.
| | | |
Collapse
|
37
|
Plemenitas A, Vaupotic T, Lenassi M, Kogej T, Gunde-Cimerman N. Adaptation of extremely halotolerant black yeast Hortaea werneckii to increased osmolarity: a molecular perspective at a glance. Stud Mycol 2011; 61:67-75. [PMID: 19287528 PMCID: PMC2610308 DOI: 10.3114/sim.2008.61.06] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Halophilic adaptations have been studied almost exclusively on prokaryotic microorganisms. Discovery of the black yeast Hortaea werneckii as the dominant fungal species in hypersaline waters enabled the introduction of a new model organism to study the mechanisms of salt tolerance in eukaryotes. Its strategies of cellular osmotic adaptations on the physiological and molecular level revealed novel, intricate mechanisms to combat fluctuating salinity. H. werneckii is an extremely halotolerant eukaryotic microorganism and thus a promising source of transgenes for osmotolerance improvement of industrially important yeasts, as well as in crops.
Collapse
Affiliation(s)
- A Plemenitas
- University of Ljubljana, Faculty of Medicine, Institute of Biochemistry, Vrazov Trg 2, 1000 Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
38
|
Olszewski MA, Zhang Y, Huffnagle GB. Mechanisms of cryptococcal virulence and persistence. Future Microbiol 2010; 5:1269-88. [PMID: 20722603 DOI: 10.2217/fmb.10.93] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cryptococcus neoformans is an environmental yeast that is a leading cause of fatal mycosis in AIDS patients and a major cause of meningoencephalitis and CNS-related mortality around the globe. Although C. neoformans infection is mostly a manifestation of immune deficiency, up to 25% of cases reported in the USA occur in patients without recognizable immune defects, indicating that C. neoformans can develop mechanisms that allow it to evade immune defenses and persist in noncompromised hosts. This article discusses mechanisms and routes of infection and the most important elements of host response as well as the mechanisms that promote cryptococcal survival within the host. Metabolic adaptation to physiological host conditions and the mechanisms limiting immune recognition, interfering with phagocytosis and extending intracellular survival of C. neoformans are highlighted. We describe the mechanisms by which C. neoformans can alter adaptive host responses, especially cell-mediated immunity, which is required for clearance of this microbe. We also review cryptococcal strategies of survival in the CNS and briefly discuss adaptations developing in response to medical treatment.
Collapse
Affiliation(s)
- Michal A Olszewski
- Ann Arbor Veterans Administration Health System (11R), 2215 Fuller Road, Ann Arbor, MI 48105, USA.
| | | | | |
Collapse
|
39
|
Walker CA, Gómez BL, Mora-Montes HM, Mackenzie KS, Munro CA, Brown AJP, Gow NAR, Kibbler CC, Odds FC. Melanin externalization in Candida albicans depends on cell wall chitin structures. EUKARYOTIC CELL 2010; 9:1329-42. [PMID: 20543065 PMCID: PMC2937336 DOI: 10.1128/ec.00051-10] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 06/01/2010] [Indexed: 01/03/2023]
Abstract
The fungal pathogen Candida albicans produces dark-pigmented melanin after 3 to 4 days of incubation in medium containing l-3,4-dihydroxyphenylalanine (l-DOPA) as a substrate. Expression profiling of C. albicans revealed very few genes significantly up- or downregulated by growth in l-DOPA. We were unable to determine a possible role for melanin in the virulence of C. albicans. However, we showed that melanin was externalized from the fungal cells in the form of electron-dense melanosomes that were free or often loosely bound to the cell wall exterior. Melanin production was boosted by the addition of N-acetylglucosamine to the medium, indicating a possible association between melanin production and chitin synthesis. Melanin externalization was blocked in a mutant specifically disrupted in the chitin synthase-encoding gene CHS2. Melanosomes remained within the outermost cell wall layers in chs3Delta and chs2Delta chs3Delta mutants but were fully externalized in chs8Delta and chs2Delta chs8Delta mutants. All the CHS mutants synthesized dark pigment at equivalent rates from mixed membrane fractions in vitro, suggesting it was the form of chitin structure produced by the enzymes, not the enzymes themselves, that was involved in the melanin externalization process. Mutants with single and double disruptions of the chitinase genes CHT2 and CHT3 and the chitin pathway regulator ECM33 also showed impaired melanin externalization. We hypothesize that the chitin product of Chs3 forms a scaffold essential for normal externalization of melanosomes, while the Chs8 chitin product, probably produced in cell walls in greater quantity in the absence of CHS2, impedes externalization.
Collapse
Affiliation(s)
- Claire A. Walker
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Aberdeen AB25 2ZD, United Kingdom
| | - Beatriz L. Gómez
- Department of Medical Microbiology, Royal Free Hampstead NHS Trust, Pond Street, London NW3 2QG, United Kingdom
| | - Héctor M. Mora-Montes
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Aberdeen AB25 2ZD, United Kingdom
| | - Kevin S. Mackenzie
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Aberdeen AB25 2ZD, United Kingdom
| | - Carol A. Munro
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Aberdeen AB25 2ZD, United Kingdom
| | - Alistair J. P. Brown
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Aberdeen AB25 2ZD, United Kingdom
| | - Neil A. R. Gow
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Aberdeen AB25 2ZD, United Kingdom
| | - Christopher C. Kibbler
- Department of Medical Microbiology, Royal Free Hampstead NHS Trust, Pond Street, London NW3 2QG, United Kingdom
| | - Frank C. Odds
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Aberdeen AB25 2ZD, United Kingdom
| |
Collapse
|
40
|
Doering TL. How sweet it is! Cell wall biogenesis and polysaccharide capsule formation in Cryptococcus neoformans. Annu Rev Microbiol 2009; 63:223-47. [PMID: 19575556 DOI: 10.1146/annurev.micro.62.081307.162753] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cryptococcus neoformans is a pathogenic fungus responsible for severe opportunistic infections. The most prominent feature of this yeast is its elaborate polysaccharide capsule, a complex structure that is required for virulence. The capsule is intimately associated with the cell wall, which underlies the capsule and offers the organism strength and flexibility in potentially hostile environments. Both structures are primarily composed of polysaccharides, offering a glimpse of the tremendous variation inherent in natural carbohydrate structures and their multiple biological functions. The steps in cell wall and capsule biosynthesis and assembly pose fascinating questions of metabolism, enzymology, cell biology, and regulation; the answers have potential application to treatment of a deadly infection. This article reviews current knowledge of cryptococcal cell wall and capsule biosynthesis and outstanding questions for the future.
Collapse
Affiliation(s)
- Tamara Lea Doering
- Department of Molecular Microbiology, Washington University Medical School, St. Louis, Missouri, USA.
| |
Collapse
|
41
|
Casadevall A, Nosanchuk JD, Williamson P, Rodrigues ML. Vesicular transport across the fungal cell wall. Trends Microbiol 2009; 17:158-62. [PMID: 19299133 DOI: 10.1016/j.tim.2008.12.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 11/27/2008] [Accepted: 12/15/2008] [Indexed: 12/17/2022]
Abstract
Recent findings indicate that fungi use vesicular transport to deliver substances across their cell walls. Fungal vesicles are similar to mammalian exosomes and could originate from cytoplasmic multivesicular bodies. Vesicular transport enables the export of large molecules across the cell wall, and vesicles contain lipids, proteins and polysaccharides, many of which are associated with virulence. Concentration of fungal products in vesicles could increase their efficiency in food acquisition and/or delivering potentially noxious substances to other cells, such as amoebae or phagocytes. The discovery of vesicular transport in fungi opens many new avenues for investigation in basic cell biology and pathogenesis.
Collapse
Affiliation(s)
- Arturo Casadevall
- Departments of Microbiology and Immunology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | |
Collapse
|
42
|
Conidiation color mutants of Aspergillus fumigatus are highly pathogenic to the heterologous insect host Galleria mellonella. PLoS One 2009; 4:e4224. [PMID: 19156203 PMCID: PMC2625396 DOI: 10.1371/journal.pone.0004224] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Accepted: 12/11/2008] [Indexed: 11/19/2022] Open
Abstract
The greater wax moth Galleria mellonella has been widely used as a heterologous host for a number of fungal pathogens including Candida albicans and Cryptococcus neoformans. A positive correlation in pathogenicity of these yeasts in this insect model and animal models has been observed. However, very few studies have evaluated the possibility of applying this heterologous insect model to investigate virulence traits of the filamentous fungal pathogen Aspergillus fumigatus, the leading cause of invasive aspergillosis. Here, we have examined the impact of mutations in genes involved in melanin biosynthesis on the pathogenicity of A. fumigatus in the G. mellonella model. Melanization in A. fumigatus confers bluish-grey color to conidia and is a known virulence factor in mammal models. Surprisingly, conidial color mutants in B5233 background that have deletions in the defined six-gene cluster required for DHN-melanin biosynthesis caused enhanced insect mortality compared to the parent strain. To further examine and confirm the relationship between melanization defects and enhanced virulence in the wax moth model, we performed random insertional mutagenesis in the Af293 genetic background to isolate mutants producing altered conidia colors. Strains producing conidia of previously identified colors and of novel colors were isolated. Interestingly, these color mutants displayed a higher level of pathogenicity in the insect model compared to the wild type. Although some of the more virulent color mutants showed increased resistance to hydrogen peroxide, overall phenotypic characterizations including secondary metabolite production, metalloproteinase activity, and germination rate did not reveal a general mechanism accountable for the enhanced virulence of these color mutants observed in the insect model. Our observations indicate instead, that exacerbated immune response of the wax moth induced by increased exposure of PAMPs (pathogen-associated molecular patterns) may cause self-damage that results in increased mortality of larvae infected with the color mutants. The current study underscores the limitations of using this insect model for inferring the pathogenic potential of A. fumigatus strains in mammals, but also points to the importance of understanding the innate immunity of the insect host in providing insights into the pathogenicity level of different fungal strains in this model. Additionally, our observations that melanization defective color mutants demonstrate increased virulence in the insect wax moth, suggest the potential of using melanization defective mutants of native insect fungal pathogens in the biological control of insect populations.
Collapse
|
43
|
Castillo L, Calvo E, Martínez AI, Ruiz-Herrera J, Valentín E, Lopez JA, Sentandreu R. A study of the Candida albicans cell wall proteome. Proteomics 2008; 8:3871-81. [DOI: 10.1002/pmic.200800110] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Taborda CP, da Silva MB, Nosanchuk JD, Travassos LR. Melanin as a virulence factor of Paracoccidioides brasiliensis and other dimorphic pathogenic fungi: a minireview. Mycopathologia 2008; 165:331-9. [PMID: 18777637 PMCID: PMC2586806 DOI: 10.1007/s11046-007-9061-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Melanin pigments are substances produced by a broad variety of pathogenic microorganisms, including bacteria, fungi, and helminths. Microbes predominantly produce melanin pigment via tyrosinases, laccases, catecholases, and the polyketide synthase pathway. In fungi, melanin is deposited in the cell wall and cytoplasm, and melanin particles ("ghosts") can be isolated from these fungi that have the same size and shape of the original cells. Melanin has been reported in several human pathogenic dimorphic fungi including Paracoccidioides brasiliensis, Sporothrix schenckii, Histoplasma capsulatum, Blastomyces dermatitidis, and Coccidioides posadasii. Melanization appears to contribute to virulence by reducing the susceptibility of melanized fungi to host defense mechanisms and antifungal drugs.
Collapse
Affiliation(s)
- Carlos P Taborda
- Institute of Biomedical Sciences, Department of Microbiology, University of São Paulo, Ave. Prof. Lineu Prestes, 1374, 2 andar, São Paulo, SP 05508-900, Brazil.
| | | | | | | |
Collapse
|
45
|
Kogej T, Stein M, Volkmann M, Gorbushina AA, Galinski EA, Gunde-Cimerman N. Osmotic adaptation of the halophilic fungus Hortaea werneckii: role of osmolytes and melanization. Microbiology (Reading) 2007; 153:4261-4273. [DOI: 10.1099/mic.0.2007/010751-0] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Tina Kogej
- University of Ljubljana, Biotechnology Faculty, Department of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Marlene Stein
- Institut für Mikrobiologie und Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, D-53115 Bonn, Germany
| | - Marc Volkmann
- Geomicrobiology, ICBM, Carl von Ossietzky Universität Oldenburg, POB 2503, D-26111 Oldenburg, Germany
| | - Anna A. Gorbushina
- Geomicrobiology, ICBM, Carl von Ossietzky Universität Oldenburg, POB 2503, D-26111 Oldenburg, Germany
| | - Erwin A. Galinski
- Institut für Mikrobiologie und Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, D-53115 Bonn, Germany
| | - Nina Gunde-Cimerman
- University of Ljubljana, Biotechnology Faculty, Department of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
46
|
Steiner U, Oerke EC. Localized Melanization of Appressoria Is Required for Pathogenicity of Venturia inaequalis. PHYTOPATHOLOGY 2007; 97:1222-30. [PMID: 18943680 DOI: 10.1094/phyto-97-10-1222] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
ABSTRACT During formation of appressoria produced from conidia and ascospores of Venturia inaequalis, a dark brown ring structure was detected at the base of appressoria. This melanized appressorial ring structure (MARS) was attached to the leaf surface like a sealing ring and formed the fungus-plant interface; it is believed to be required for pathogen penetration of the cuticle. Neither germ tubes nor infection structures beneath the cuticle were found to be visibly melanized. MARS were formed not only on apple leaves but also on leaves of nonhost plants and artificial surfaces differing in hydrophobicity; the formation of appressoria and MARS was confined to hard surfaces. The melanin nature of the ring was confirmed by using melanin biosynthesis inhibitors. Applications prior to inoculation largely inhibited the melanization and reduced infection rate by 45 to 80%; curative applications were not effective. Transmission electron microscopy verified a localized melanization of the cell wall around the penetration pore, and melanin was incorporated into all layers of the fungal cell wall. Appressoria without MARS were not able to infect the plant, suggesting that this structure can be considered to be a pathogenicity factor in V. inaequalis.
Collapse
|
47
|
Nosanchuk JD, Casadevall A. Impact of melanin on microbial virulence and clinical resistance to antimicrobial compounds. Antimicrob Agents Chemother 2006; 50:3519-28. [PMID: 17065617 PMCID: PMC1635213 DOI: 10.1128/aac.00545-06] [Citation(s) in RCA: 266] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Joshua D Nosanchuk
- Department of Medicine, Division of Infectious Diseases, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | |
Collapse
|
48
|
Some recently developed fractionation procedures and their application to peptide and protein hormones. PURE APPL CHEM 1963. [DOI: 10.1351/pac196306030233] [Citation(s) in RCA: 339] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|