1
|
Qin N, Liu H, Wang X, Liu Y, Chang H, Xia X. Sargassum fusiforme polysaccharides protect mice against Citrobacter rodentium infection via intestinal microbiota-driven microRNA-92a-3p-induced Muc2 production. Int J Biol Macromol 2025; 300:140271. [PMID: 39863236 DOI: 10.1016/j.ijbiomac.2025.140271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/07/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Sargassum fusiforme, widely consumed in Asian countries, has been proven to have various biological activities. However, the impacts and mechanisms of Sargassum fusiforme polysaccharides (SFPs) on intestinal bacterial infection are not yet fully understood. Our findings indicate that SFPs pretreatment ameliorates intestinal inflammation by reducing C. rodentium colonization, increasing colon length and levels of IL-10 and IL-22, decreasing IL-1β, IL-6, TNF-α, and IL-17 levels, inhibiting colonic crypt elongation and hyperplasia, and enhancing the intestinal mucosal barrier. The protective effects against intestinal bacterial infection are linked to enhanced clearance of C. rodentium and improvements in the intestinal mucosal barrier and C. rodentium-induced intestinal microbiota dysbiosis. Fecal microbiota transplantation experiments were conducted to evaluate the functional impact of microbiota induced by SFPs. The results suggest that intestinal microbiota modified by SFPs effectively countered C. rodentium infection. In addition, our study identified that miRNA-92a-3p is partially complementary to the 3'-UTR of the Notch1 gene, thereby repressing the Notch1-Hes1 signaling pathway and enhancing Muc2 secretion. Taken together, these findings reveal that SFPs protect mice from C. rodentium infection by activating the miR-92a-3p/Notch1-Hes1 regulatory axis driven by the intestinal microbiota, which stimulates Muc2 production to maintain intestinal barrier homeostasis.
Collapse
Affiliation(s)
- Ningbo Qin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Hongxu Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xinru Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hong Chang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaodong Xia
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
2
|
Babadag S, Altundag-Erdogan Ö, Akkaya-Ulum YZ, Çelebi-Saltik B. The role of telocytes and miR-21-5p in tumorigenicity and metastasis of breast cancer stem cells. Mol Biol Rep 2024; 51:395. [PMID: 38446251 DOI: 10.1007/s11033-024-09352-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/14/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND This study aims to investigate the roles of telocytes on the metastatic properties of breast cancer stem cells (CSCs), and to re-evaluate the effect of miR-21-5p expression on CSCs following the addition of telocytes. METHODS AND RESULTS Telocytes from human bone marrow mononuclear cells were isolated/characterised. This was followed by the isolation/characterisation of CSCs from the MDA-MB-231. miR-21-5p was both overexpressed/inhibited in CSCs. Through co-culture studies, EMT transition and oncogenic properties of CSCs were investigated by analysing changes in ALDH1 and vimentin protein levels as well as changes in the ABCC11, SNAI1, LZTFL1, Oct 3/4, E- and N-cadherin gene expression levels. With the inhibition of miR-21-5p, significant increases in LZTFL and ABCC11 were observed with the addition of telocytes. The expression of the LZTFL gene, which decreased with the overexpression of miR-21-5p, increased in CSCs after co-culture with telocytes. While an increase expression of ABCC11, SNAI1, N-Cadherin, vimentin and ALDH was observed in CSCs after overexpression of miR-21-5p, significant decreases in these expressions were observed after co-culture with telocyte. CONCLUSIONS In our study, by gene/protein level analysis we demonstrated that telocytes may have the potential to reduce cancer metastasis through miR-21-5p in breast cancer progression and reduce EMT transition.
Collapse
Affiliation(s)
- Sena Babadag
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Sihhiye, Ankara, 06100, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Sihhiye, Ankara, 06100, Turkey
| | - Özlem Altundag-Erdogan
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Sihhiye, Ankara, 06100, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Sihhiye, Ankara, 06100, Turkey
| | - Yeliz Z Akkaya-Ulum
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, 06100, Turkey
| | - Betül Çelebi-Saltik
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Sihhiye, Ankara, 06100, Turkey.
- Center for Stem Cell Research and Development, Hacettepe University, Sihhiye, Ankara, 06100, Turkey.
| |
Collapse
|
3
|
XIANG Y, JIANG B, ZHONG S, WU Y, LIU J, WANG Z, WU Y. Protective effect of five-flavor sophora flavescens enteric-coated capsules on inflammatory bowel disease and its molecular mechanism. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.125522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Yanru XIANG
- The First Affiliated Hospital of Nanchang University, China
| | - Bing JIANG
- Gansu University of Traditional Chinese Medicine, China
| | | | - Yinglin WU
- The First Affiliated Hospital of Nanchang University, China
| | - Jiaqi LIU
- The First Affiliated Hospital of Nanchang University, China
| | - Zhizhi WANG
- The First Affiliated Hospital of Nanchang University, China
| | - Yan WU
- The First Affiliated Hospital of Nanchang University, China
| |
Collapse
|
4
|
Tang J, Chen J, Wang Y, Zhou S. The role of
MiRNA
‐433 in malignant tumors of digestive tract as tumor suppressor. Cancer Rep (Hoboken) 2022; 5:e1694. [PMID: 35976177 PMCID: PMC9458491 DOI: 10.1002/cnr2.1694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 12/24/2022] Open
Abstract
Background MicroRNAs (miRNAs) are a class of short non‐coding RNAs with a length of approximate 22 nuclei acids that can be expressed both as an oncogene and tumor suppressor gene in human cancers. MiRNAs can participate in the post‐ transcriptional regulation of gene expression, and regulate the several cancer‐related processes, including proliferation, apoptosis, metastasis, etc. Recent findings Expression of miRNA‐433 has been reported to vary in different tumors and affected by various factors. We have summarized the different previous studies and found that miRNA‐433 can significantly inhibit the growth of the cancer cells not only in malignant tumors of the digestive tract, but also in lung cancer, breast cancer, cervical cancer, ovarian cancer, bladder cancer, renal carcinoma, glioma, retinoblastoma and osteosarcoma. Conclusion When the expression of miRNA‐433 was up‐regulated, the proliferation, metastasis and invasion abilities of the malignant tumor cells were significantly inhibited. At the same time, the potential mechanisms through which miRNA‐433 can suppress the growth and metastasis of the cancer cells were found to be basically the same, and involved modulation of the specific signaling pathways or target genes in the malignant tumors. Overall, it can be concluded that miRNA‐433 can serve as potential and valuable therapeutic target.
Collapse
Affiliation(s)
- Jie Tang
- General Surgery The Second Affiliated Hospital of Bengbu Medical College Bengbu China
| | - Jiawei Chen
- General Surgery The Second Affiliated Hospital of Bengbu Medical College Bengbu China
| | - Yongqiang Wang
- General Surgery The Second Affiliated Hospital of Bengbu Medical College Bengbu China
| | - Shaobo Zhou
- General Surgery The Second Affiliated Hospital of Bengbu Medical College Bengbu China
| |
Collapse
|
5
|
Xiao X, Mao X, Chen D, Yu B, He J, Yan H, Wang J. miRNAs Can Affect Intestinal Epithelial Barrier in Inflammatory Bowel Disease. Front Immunol 2022; 13:868229. [PMID: 35493445 PMCID: PMC9043318 DOI: 10.3389/fimmu.2022.868229] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/18/2022] [Indexed: 11/17/2022] Open
Abstract
The most obvious pathological characterization of inflammatory bowel disease (IBD) is intestinal epithelium erosion and severe inflammation invasion. Micro-ribonucleic acids (miRNA or microRNA), single-stranded noncoding RNAs of ~22 nucleotides, have been considered as the potential therapeutic targets in the pathogenesis of IBD. Many previous studies have focused on the mechanisms that miRNAs use to regulate inflammation, immunity, and microorganisms in IBD. The review highlights in detail the findings of miRNAs in the intestinal epithelial barrier of IBD, and focuses on their gene targets, signaling pathways associated with IBD, and some potential therapies. It will be beneficial for the elucidation of the interaction between miRNAs and the intestinal epithelial barrier in IBD and provide a theoretical reference for preventing and treating IBD in the future.
Collapse
Affiliation(s)
- Xiangjun Xiao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Chengdu, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Chengdu, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Chengdu, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Chengdu, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Chengdu, China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Chengdu, China
| | - Jianping Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Chengdu, China
| |
Collapse
|
6
|
Yan S, Wei H, Jia R, Zhen M, Bao S, Wang W, Liu F, Li J. Wu-Mei-Wan Ameliorates Murine Ulcerative Colitis by Regulating Macrophage Polarization. Front Pharmacol 2022; 13:859167. [PMID: 35387334 PMCID: PMC8978603 DOI: 10.3389/fphar.2022.859167] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/02/2022] [Indexed: 12/24/2022] Open
Abstract
An increasing body of evidence shows that macrophages play an important role in the pathogenesis of ulcerative colitis (UC). Macrophage polarization and changes in related signaling pathways are reported to have a protective effect on intestinal inflammation. The well-known Chinese medicine Wumeiwan (WMW) has been used to treat diarrhea, one of the main symptoms of colitis, for more than 2,000 years. Increasing evidence shows that WMW can inhibit intestinal inflammation and repair damaged intestinal mucosa, but its effector mechanisms are unknown. Therefore, we studied the prophylactic effects of WMW in dextran sulfate sodium (DSS)-induced UC and its effects on macrophage mechanisms and polarization. The results show that colitis was significantly alleviated in mice in the WMW group, and the secretion and expression of pro-inflammatory factors TNF-α, IL-1, and IL-6 were inhibited in the serum and colonic tissues of mice with WMW-treated colitis, whereas anti-inflammatory factors IL-10, Arg-1, and TGF-β1 were increased. Subsequent studies found that WMW could inhibit M1 polarization and promote M2 polarization in colonic macrophages in DSS-induced colitis mice. Network pharmacology was used to predict potential targets and pathways, and further studies confirmed the related targets The results showed that WMW gradually inhibits the activation of the P38MAPK and NF-κB signaling pathways and further activates the STAT6 signaling pathway. In summary, WMW interferes with the p38MAPK, NF-κB and STAT6 signaling pathways to regulate M1/M2 polarization in macrophages, thereby protecting mice against DSS-induced colitis.
Collapse
Affiliation(s)
- Shuguang Yan
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China.,Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Hailiang Wei
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, China.,Department of General Surgery, The Affliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Rui Jia
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China.,Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Meijia Zhen
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China.,Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Shengchuan Bao
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China.,Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Wenba Wang
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China.,Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Fanrong Liu
- Department of Gastroenterology, Yulin Hospital of Traditional Chinese Medicine in Shaanxi Province, Yulin, China
| | - Jingtao Li
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, China.,Departments of Infectious Disease, The Affliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
7
|
Alterations in plasma miR-21, miR-590, miR-192 and miR-215 in idiopathic pulmonary fibrosis and their clinical importance. Mol Biol Rep 2022; 49:2237-2244. [PMID: 35066768 DOI: 10.1007/s11033-021-07045-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Many studies have revealed that microRNA (miRNA) molecules may take part in idiopathic pulmonary fibrosis (IPF). But, the role of miRNAs in the development of IPF is not yet clear. METHODS We investigated the plasma levels of miR-21, miR-590, miR-192, and miR-215 in IPF (n = 88) and healthy control (n = 20) groups in this study. We compared the expression levels of target miRNAs in patients with IPF and healthy participants. We grouped the patients with IPF according to age, forced vital capacity, carbon monoxide diffusing capacity (DLCO), gender-Age-pulmonary physiology (GAP) score, the presence of honeycombing and compared the expression levels of target miRNAs in these clinical subgroups. RESULTS 82 (93.18%) of the patients with IPF were male and the mean age was 66.6 ± 8.6 years. There was no significant difference between the gender and age distributions of IPF and the control group. The mean plasma miR-21 and miR-590 levels in IPF group were significantly higher than in the control group (p < 0.0001, p < 0.0001, respectively). There was no significant difference between the miR-192 and miR-215 expression levels of the IPF and control group. Both miR-21 and miR-590 correlated positively with age (p = 0.041, p = 0.007, respectively) while miR-192 and miR-215 displayed a negative correlation with age (p = 0.0002, p < 0.0001, respectively). The levels of miR-192 and miR-215 increased as the GAP score decreased. The levels of miR-192 in patients with honeycombing were significantly lower than in those without honeycombing (p = 0.003). CONCLUSIONS Our study showed that both miR-21 and miR-590 were overexpressed in IPF. The miR-21 and miR-590 were associated with DLCO, while miR-192 and miR-215 were associated with the GAP score and honeycombing.
Collapse
|
8
|
Li E, Wang T, Zhou R, Zhou Z, Zhang C, Wu W, He K. Myricetin and myricetrin alleviate liver and colon damage in a chronic colitis mice model: Effects on tight junction and intestinal microbiota. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
9
|
Wang Y, Wang N, Cui L, Li Y, Cao Z, Wu X, Wang Q, Zhang B, Ma C, Cheng Y. Long Non-coding RNA MEG3 Alleviated Ulcerative Colitis Through Upregulating miR-98-5p-Sponged IL-10. Inflammation 2021; 44:1049-1059. [PMID: 33394187 DOI: 10.1007/s10753-020-01400-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 10/22/2022]
Abstract
Ulcerative colitis (UC) is a refractory chronic colitis disease with the particularly complex cause. Recently, long noncoding RNAs (lncRNAs) have been reported to be related to the development of UC. LncRNA MEG3 has been proved to play an anti-inflammatory role in a variety of inflammatory diseases, which share similar pathogenesis with UC, indicating the potential involvement of lncRNA MEG3 in UC. This study aims to investigate the functional role and underlying mechanism of lncRNA MEG3 in UC. Gradient concentration of H2O2 (0, 20, 50, 100, and 200 μM) was used to induce Caco-2 damage models in vitro. Cell viability was detected by cell counting kit-8 (CCK-8) assay. LncRNA MEG3, miR-98-5p, and IL-10 levels in H2O2-treated Caco-2 cells were assessed by performing real-time quantitative polymerase chain reaction (RT-qPCR). Moreover, the binding relationship between lncRNA MEG3 and miR-98-5p, as well as the binding relationship between miR-98-5p and IL-10, was validated using dual-luciferase reporter assay. 2, 4, 6-Trinitrobenzenesulfonic acid solution (TNBS) was applied to induce ulcerative colitis in young rats. The body weight, disease activity index (DAI), length and weight of the colons, pathological scores of UC rats, reactive oxygen species (ROS), and inflammatory cytokines were determined to evaluate the effects of lncRNA MEG3 on the progression of UC. Besides, hematoxylin-eosin (HE) staining was exploited to observe histological changes of UC rat colons. In addition, western blotting analysis was also performed to evaluate the apoptosis and pyroptosis-related protein levels. Moreover, lncRNA MEG3, miR-98-5p, and IL-10 levels in UC rat colons were further assessed by RT-qPCR. Meanwhile, IL-10 expression was determined using immunohistochemistry. LncRNA MEG3 and IL-10 levels were distinctly decreased while miR-98-5p was increased in Caco-2 damage models and UC rats. Bioinformatics analysis predicted the binding sites of lncRNA MEG3 to miR-98-5p and miR-98-5p to IL-10. Besides, dual-luciferase reporter assay validated the negative correlation between lncRNA MEG3 and miR-98-5p, miR-98-5p, and IL-10. Overexpressed lncRNA MEG3 reduced. DAI scores and colon weight/length ratio improved UC ulceration. In addition, upregulation of lncRNA MEG3 relieved oxidative stress, inflammatory response, apoptosis, and pyroptosis of UC rat colons. LncRNA MEG3 overexpression alleviates the serve ulceration of UC rat colons by upregulating IL-10 expression via sponging miR-98-5p. To sum up, this study reveals the protective role of lncRNA MEG3 in the development of UC and may provide potential therapeutic targets for UC.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pediatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan Province, China
| | - Nan Wang
- Department of Pediatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan Province, China
| | - Lianlian Cui
- Department of Pediatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan Province, China
| | - Yan Li
- Department of Pediatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan Province, China
| | - Zhenfeng Cao
- Department of Pediatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan Province, China
| | - Xing Wu
- Department of Pediatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan Province, China
| | - Qianhan Wang
- Department of Pediatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan Province, China
| | - Bo Zhang
- Department of Pediatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan Province, China
| | - Caixia Ma
- Department of Pediatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan Province, China
| | - Yanbo Cheng
- Department of Pediatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan Province, China.
| |
Collapse
|
10
|
Zhai W, Sun H, Li Z, Li L, Jin A, Li Y, Chen J, Yang X, Sun Q, Lu S, Roth M. PRMT1 Modulates Processing of Asthma-Related Primary MicroRNAs (Pri-miRNAs) into Mature miRNAs in Lung Epithelial Cells. THE JOURNAL OF IMMUNOLOGY 2020; 206:11-22. [PMID: 33239422 DOI: 10.4049/jimmunol.2000887] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/28/2020] [Indexed: 01/07/2023]
Abstract
Protein arginine methyltransferase-1 (PRMT1) is an important epigenetic regulator of cell function and contributes to inflammation and remodeling in asthma in a cell type-specific manner. Disease-specific expression patterns of microRNAs (miRNA) are associated with chronic inflammatory lung diseases, including asthma. The de novo synthesis of miRNA depends on the transcription of primary miRNA (pri-miRNA) transcript. This study assessed the role of PRMT1 on pri-miRNA to mature miRNA process in lung epithelial cells. Human airway epithelial cells, BEAS-2B, were transfected with the PRMT1 expression plasmid pcDNA3.1-PRMT1 for 48 h. Expression profiles of miRNA were determined by small RNA deep sequencing. Comparing these miRNAs with datasets of microarrays from five asthma patients (Gene Expression Omnibus dataset), 12 miRNAs were identified that related to PRMT1 overexpression and to asthma. The overexpression or knockdown of PRMT1 modulated the expression of the asthma-related miRNAs and their pri-miRNAs. Coimmunoprecipitation showed that PRMT1 formed a complex with STAT1 or RUNX1 and thus acted as a coactivator, stimulating the transcription of pri-miRNAs. Stimulation with TGF-β1 promoted the interaction of PRMT1 with STAT1 or RUNX1, thereby upregulating the transcription of two miRNAs: let-7i and miR-423. Subsequent chromatin immunoprecipitation assays revealed that the binding of the PRMT1/STAT1 or PRMT1/RUNX1 coactivators to primary let-7i (pri-let-7i) and primary miR (pri-miR) 423 promoter was critical for pri-let-7i and pri-miR-423 transcription. This study describes a novel role of PRMT1 as a coactivator for STAT1 or RUNX1, which is essential for the transcription of pri-let-7i and pri-miR-423 in epithelial cells and might be relevant to epithelium dysfunction in asthma.
Collapse
Affiliation(s)
- Weiqi Zhai
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haoming Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Li Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ai Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuwen Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jian Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China;
| | - Qingzhu Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; .,Pneumology and Pulmonary Cell Research, Department of Biomedicine, University Hospital Basel, CH-4031 Basel, Switzerland; and
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Michael Roth
- Pneumology and Pulmonary Cell Research, Department of Biomedicine, University Hospital Basel, CH-4031 Basel, Switzerland; and
| |
Collapse
|