1
|
Jin J, Xu X, Li F, Weng F, Zou B, Li Y, Zhao J, Zhang S, Yan D, Qiu F. Physiologically based pharmacokinetic modeling for confirming the role of CYP3A1/2 and P-glycoprotein in detoxification mechanism between glycyrrhizic acid and aconitine in rats. J Appl Toxicol 2024; 44:978-989. [PMID: 38448046 DOI: 10.1002/jat.4595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024]
Abstract
Fuzi, an effective common herb, is often combined with Gancao to treat disease in clinical practice with enhancing its efficacy and alleviating its toxicity. The major toxic and bioactive compounds in Fuzi and Gancao are aconitine (AC) and glycyrrhizic acid (GL), respectively. This study aims to elucidate detoxification mechanism between AC and GL from pharmacokinetic perspective using physiologically based pharmacokinetic (PBPK) model. In vitro experiments exhibited that AC was mainly metabolized by CYP3A1/2 in rat liver microsomes and transported by P-glycoprotein (P-gp) in Caco-2 cells. Kinetics assays showed that the Km and Vmax of AC towards CYP3A1/2 were 2.38 μM and 57.3 pmol/min/mg, respectively, whereas that of AC towards P-gp was 11.26 μM and 147.1 pmol/min/mg, respectively. GL markedly induced the mRNA expressions of CYP3A1/2 and MDR1a/b in rat primary hepatocytes. In vivo studies suggested that the intragastric and intravenous administration of GL significantly reduced systemic exposure of AC by 27% and 33%, respectively. Drug-drug interaction (DDI) model of PBPK predicted that co-administration of GL would decrease the exposure of AC by 39% and 45% in intragastric and intravenous dosing group, respectively. The consistency between predicted data and observed data confirmed that the upregulation of CYP3A1/2 and P-gp was the crucial detoxification mechanism between AC and GL. Thus, this study provides a demonstration for elucidating the compatibility mechanisms of herbal formula using PBPK modeling and gives support for the clinical co-medication of Fuzi and Gancao.
Collapse
Affiliation(s)
- Jingyi Jin
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoqing Xu
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fengling Li
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fengyi Weng
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bin Zou
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Li
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Zhao
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuang Zhang
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongming Yan
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Furong Qiu
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Yin P, Han X, Yu L, Zhou H, Yang J, Chen Y, Zhang T, Wan H. Pharmacokinetic analysis for simultaneous quantification of Saikosaponin A- paeoniflorin in normal and poststroke depression rats: A comparative study. J Pharm Biomed Anal 2023; 233:115485. [PMID: 37267872 DOI: 10.1016/j.jpba.2023.115485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023]
Abstract
Bupleurum and Paeonia are common compatibilities for the treatment of depression, most of which are used in classical prescriptions. The main active ingredients saikosaponin A (SSA) and paeoniflorin (PF) have significant therapeutic effects on poststroke depression (PSD). However, the pharmacokinetic (PK) behavior based on the combination of the two components has not been reported in rats. The aim of this study was to compare the pharmacokinetic characteristics of combined administration of SSA and PF in normal and PSD rats. Plasma samples were collected after SSA and PF were injected into the rat tail vein, and plasma pretreatments were analyzed by HPLC. Based on the concentration levels of SSA and PF in plasma, Drug and Statistics 3.2.6 (DAS 3.2.6) software was used to establish the blood drug concentration model. PK data showed that compared with the normal rats, the values of related parameters t1/2α, AUC(0-t), AUC(0-∞) were decreased in diseased rats, while the values of CL1 was increased. These findings suggest that PSD can significantly affect the PK parameters of SSA-PF. This study established a PK model to explore the time-effect relationship, in order to provide experimental and theoretical support for clinical application.
Collapse
Affiliation(s)
- Ping Yin
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xi Han
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Li Yu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Huifen Zhou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiehong Yang
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ying Chen
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ting Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Haitong Wan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
3
|
Dubey A, Dhas N, Naha A, Rani U, GS R, Shetty A, R Shetty C, Hebbar S. Cationic biopolymer decorated Asiatic Acid and Centella asiatica extract incorporated liposomes for treating early-stage Alzheimer's disease: An In-vitro and In-vivo investigation. F1000Res 2022; 11:1535. [PMID: 36761834 PMCID: PMC9887206 DOI: 10.12688/f1000research.128874.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Background: Asiatic acid (AA) is a naturally occurring triterpenoid derivative of Centella asiatica (CA) with neuroprotective effect. The study aimed to design an ideal oral drug delivery system to treat Alzheimer's disease (AD) and develop chitosan-embedded liposomes comprising an extract of CA (CLCAE) and compare them with the chitosan-coated liposomes of asiatic acid (CLAA) for oral delivery to treat the initial phases of AD. Methods: The solvent evaporation technique was used to develop CLCAE and CLAA, optimised with the experiment's design, and was further evaluated. Results: Nuclear magnetic resonance (NMR) studies confirmed coating with chitosan. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) indicated the successful formation of CLCAE and CLAA. Differential scanning colorimetry (DSC) confirmed the drug-phospholipid complex. Furthermore, the rate of in vitro release of CLCAE and CLAA was found to be 69.43±0.3 % and 85.3±0.3 %, respectively, in 24 h. Ex vivo permeation of CLCAE and CLAA was found to be 48±0.3 % and 78±0.3 %, respectively. In the Alcl3-induced AD model in rats, disease progression was confirmed by Y-maze, the preliminary histopathology evaluation showed significantly higher efficacy of the prepared liposomes (CLCAE and CLAA) compared to the Centella asiatica extract (CAE) and they were found to have equivalent efficacy to the standard drug (rivastigmine tartrate). The considerable increase in pharmacodynamic parameters in terms of neuronal count in the CLAA group indicated the protective role against Alcl3 toxicity and was also confirmed by assessing acetylcholine (Ach) levels. The pharmacokinetic study, such as C max, T max, and area under curve (AUC) parameters, proved an increase in AA bioavailability in the form of CLAA compared to the pure AA and CLCAE forms. Conclusion: The preclinical study suggested that CLAA was found to have better stability and an ideal oral drug delivery system to treat AD.
Collapse
Affiliation(s)
- Akhilesh Dubey
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore, Karnataka, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Anup Naha
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Usha Rani
- Department of Health Innovation, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ravi GS
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore, Karnataka, India
| | - Amitha Shetty
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore, Karnataka, India
| | - Chaithra R Shetty
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharma Chemistry, Mangalore, Karnataka, India
| | - Srinivas Hebbar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India,
| |
Collapse
|
4
|
Bai S, Li X, Wang Z, Xiao W, Zhao L. The systematic characterization of multiple components and metabolic profiling of bioactive constituents in Yaobitong capsule by UHPLC/Q-TOF-MS/MS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5589-5607. [PMID: 34792513 DOI: 10.1039/d1ay01564h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Yaobitong capsule is a valuable traditional Chinese medicine prescription (TCMP), which can effectively treat lumbar disc herniation clinically. However, the effective substances in Yaobitong capsule are still unclear due to a lack of metabolic studies. This poses a huge obstacle preventing the clinical safety assessment and quality control of Yaobitong capsule. In order to explore the metabolic landscape of the multiple components of Yaobitong capsule, this paper proposed a rapid and high-throughput UHPLC/Q-TOF-MS/MS method for carrying out a systematic study, including analyzing the chemical ingredients in vitro and studying the metabolic processes in rat urine, feces, and bile after the oral administration of Yaobitong capsule. A total of 90 Yaobitong-capsule-related chemical components were characterized or tentatively identified in extract solution based on the retention behaviors, measured mass values, and fragmentation patterns. Furthermore, 49 related metabolites were detected in urine, feces, and bile samples. All metabolites were also identified with the help of the Sciex OS tool from these biological samples. The results revealed that triterpenoid saponins, alkaloids, monoterpene glycosides, and phthalides were the main chemical components of Yaobitong capsule. In addition, glucuronidation, hydroxylation, sulfation, and N-acetylcysteine conjugation were the main metabolic reactions in rats after the oral administration of Yaobitong capsule. The results indicated that the established method for multicomponent metabolism identification was appropriate, and the metabolic profiling of Yaobitong capsule provides abundant material for a wide range of further research; this is of significance for carrying out studies of pharmacodynamic mechanisms.
Collapse
Affiliation(s)
- Shuru Bai
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, 110016, Shenyang, Liaoning Province, P. R. China.
| | - Xianhui Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, 110016, Shenyang, Liaoning Province, P. R. China.
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, 222001, China
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang 222001, Jiangsu, China
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, 222001, China
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang 222001, Jiangsu, China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, 110016, Shenyang, Liaoning Province, P. R. China.
| |
Collapse
|
5
|
Shang H, Wang Z, Ma H, Sun Y, Ci X, Gu Y, Liu C, Si D. Influence of verapamil on the pharmacokinetics of rotundic acid in rats and its potential mechanism. PHARMACEUTICAL BIOLOGY 2021; 59:200-208. [PMID: 33595422 PMCID: PMC7894426 DOI: 10.1080/13880209.2021.1871634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
CONTEXT Rotundic acid (RA), a plant-derived pentacyclic triterpene acid, has been reported to possess extensive pharmacological activities. The poor bioavailability limits its further development and potential clinic application. OBJECTIVE To clarify the potential mechanism for poor oral bioavailability. MATERIALS AND METHODS The single-dose pharmacokinetics of orally administered RA (10 mg/kg) in Sprague-Dawley rats without or with verapamil (25 or 50 mg/kg) were investigated. Additionally, MDCKII-MDR1 and Caco-2 cell monolayers, five recombinant human cytochrome P450 (rhCYP) enzymes (1A2, 2C8, 2C9, 2D6 and 3A4), and rat liver microsomes were also conducted to investigate its potential mechanism. RESULTS Verapamil could significantly affect the plasma concentration of RA. Co-administered verapamil at 25 and 50 mg/kg, the AUC0-∞ increased from 432 ± 64.2 to 539 ± 53.6 and 836 ± 116 ng × h/mL, respectively, and the oral clearance decreased from 23.6 ± 3.50 to 18.7 ± 1.85 and 12.2 ± 1.85 L/h/kg, respectively. The MDCKII-MDR1 cell assay showed that RA might be a P-gp substrate. The rhCYPs experiments indicated that RA was mainly metabolized by CYP3A4. Additionally, verapamil could increase the absorption of RA by inhibiting the activity of P-gp, and slow down the intrinsic clearance of RA from 48.5 ± 3.18 to 12.0 ± 1.06 µL/min/mg protein. DISCUSSION AND CONCLUSIONS These findings indicated that verapamil could significantly affect the pharmacokinetic profiles of RA in rats. It was demonstrated that P-gp and CYP3A were involved in the transport and metabolism of RA, which might contribute to the low oral bioavailability of RA.
Collapse
Affiliation(s)
- Haihua Shang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Ze Wang
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hong Ma
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Yinghui Sun
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Xiaoyan Ci
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Yuan Gu
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
- Research Unit for Drug Metabolism, Chinese Academy of Medical Sciences, Tianjin, China
| | - Changxiao Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
- CONTACT Changxiao Liu School of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenhe District, Shenyang110016, China
| | - Duanyun Si
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
- Research Unit for Drug Metabolism, Chinese Academy of Medical Sciences, Tianjin, China
- Duanyun Si State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, No. 308, Huiren Road, Binhai Hi-tech Industrial Development Park, Tianjin300301, China
| |
Collapse
|
6
|
Zhang G, Zhang Y, Ma X, Yang X, Cai Y, Yin W. Pogostone inhibits the activity of CYP3A4, 2C9, and 2E1 in vitro. PHARMACEUTICAL BIOLOGY 2021; 59:532-536. [PMID: 33915070 PMCID: PMC8871619 DOI: 10.1080/13880209.2021.1917630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/19/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
CONTEXT Pogostone possesses various pharmacological activities, which makes it widely used in the clinic. Its effect on the activity of cytochrome P450 enzymes (CYP450s) could guide its clinical combination. OBJECTIVE To investigate the effect of pogostone on the activity of human CYP450s. MATERIALS AND METHODS The effect of pogostone on the activity of CYP450s was evaluated in human liver microsomes (HLMs) compared with blank HLMs (negative control) and specific inhibitors (positive control). The corresponding parameters were obtained with 0-100 μM pogostone and various concentrations of substrates. RESULTS Pogostone was found to inhibit the activity of CYP3A4, 2C9, and 2E1 with the IC50 values of 11.41, 12.11, and 14.90 μM, respectively. The inhibition of CYP3A4 by pogostone was revealed to be performed in a non-competitive and time-dependent manner with the Ki value of 5.69 μM and the KI/Kinact value of 5.86/0.056/(μM/min). For the inhibition of CYP2C9 and 2E1, pogostone acted as a competitive inhibitor with the Ki value of 6.46 and 7.67 μM and was not affected by the incubation time. DISCUSSION AND CONCLUSIONS The inhibitory effect of pogostone on the activity of CYP3A4, 2C9, and 2E1 has been disclosed in this study, implying the potential risk during the co-administration of pogostone and drugs metabolized by these CYP450s. The study design provides a reference for further in vivo investigations to validate the potential interaction.
Collapse
Affiliation(s)
- Guiying Zhang
- Department of Pharmacy, People’s Hospital of Rizhao, Rizhao, China
| | - Yanping Zhang
- Department of Pharmacy, People’s Hospital of Rizhao, Rizhao, China
| | - Xianjie Ma
- Department of Pharmacy, People’s Hospital of Rizhao, Rizhao, China
| | - Xin Yang
- Department of Pharmacy, People’s Hospital of Rizhao, Rizhao, China
| | - Yuyan Cai
- Department of Pediatrics, People’s Hospital of Rizhao, Rizhao, China
| | - Wenli Yin
- Department of Pharmacy, People’s Hospital of Rizhao, Rizhao, China
| |
Collapse
|
7
|
Kim M, Park SC, Lee DY. Glycyrrhizin as a Nitric Oxide Regulator in Cancer Chemotherapy. Cancers (Basel) 2021; 13:cancers13225762. [PMID: 34830916 PMCID: PMC8616433 DOI: 10.3390/cancers13225762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Glycyrrhizin (GL) has anti-cancer, anti-inflammatory, anti-viral, and anti-oxidant activity. In particular, GL reduces multidrug resistance (MDR) in cancer cells, which is a major obstacle to chemotherapy. Nitric oxide (NO) also plays an important role in MDR, and GL affects NO concentration in the tumor microenvironment. However, the effects of GL and NO interaction on MDR have not been reviewed. Here, we review the role of GL as an NO regulator in cancer cells and its subsequent anti-MDR effect and posit that GL is a promising MDR inhibitor for cancer chemotherapy. Abstract Chemotherapy is used widely for cancer treatment; however, the evolution of multidrug resistance (MDR) in many patients limits the therapeutic benefits of chemotherapy. It is important to overcome MDR for enhanced chemotherapy. ATP-dependent efflux of drugs out of cells is the main mechanism of MDR. Recent studies have suggested that nitric oxide (NO) can be used to overcome MDR by inhibiting the ATPase function of ATP-dependent pumps. Several attempts have been made to deliver NO to the tumor microenvironment (TME), however there are limitations in delivery. Glycyrrhizin (GL), an active compound of licorice, has been reported to both reduce the MDR effect by inhibiting ATP-dependent pumps and function as a regulator of NO production in the TME. In this review, we describe the potential role of GL as an NO regulator and MDR inhibitor that efficiently reduces the MDR effect in cancer chemotherapy.
Collapse
Affiliation(s)
- Minsu Kim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea; (M.K.); (S.C.P.)
| | - Seok Chan Park
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea; (M.K.); (S.C.P.)
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea; (M.K.); (S.C.P.)
- Institute of Nano Science & Technology (INST), Hanyang University, Seoul 04763, Korea
- Elixir Pharmatech Inc., Seoul 04763, Korea
- Correspondence:
| |
Collapse
|
8
|
Cheng Z, Li Y, Zhu X, Wang K, Ali Y, Shu W, Zhang T, Zhu L, Murray M, Zhou F. The Potential Application of Pentacyclic Triterpenoids in the Prevention and Treatment of Retinal Diseases. PLANTA MEDICA 2021; 87:511-527. [PMID: 33761574 DOI: 10.1055/a-1377-2596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Retinal diseases are a leading cause of impaired vision and blindness but some lack effective treatments. New therapies are required urgently to better manage retinal diseases. Natural pentacyclic triterpenoids and their derivatives have a wide range of activities, including antioxidative, anti-inflammatory, cytoprotective, neuroprotective, and antiangiogenic properties. Pentacyclic triterpenoids have great potential in preventing and/or treating retinal pathologies. The pharmacological effects of pentacyclic triterpenoids are often mediated through the modulation of signalling pathways, including nuclear factor erythroid-2 related factor 2, high-mobility group box protein 1, 11β-hydroxysteroid dehydrogenase type 1, and Src homology region 2 domain-containing phosphatase-1. This review summarizes recent in vitro and in vivo evidence for the pharmacological potential of pentacyclic triterpenoids in the prevention and treatment of retinal diseases. The present literature supports the further development of pentacyclic triterpenoids. Future research should now attempt to improve the efficacy and pharmacokinetic behaviour of the agents, possibly by the use of medicinal chemistry and targeted drug delivery strategies.
Collapse
Affiliation(s)
- Zhengqi Cheng
- Sydney Pharmacy School, The University of Sydney, Camperdown, Australia
| | - Yue Li
- Sydney Pharmacy School, The University of Sydney, Camperdown, Australia
| | - Xue Zhu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Ke Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Youmna Ali
- Sydney Pharmacy School, The University of Sydney, Camperdown, Australia
| | - Wenying Shu
- Department of Pharmacy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ting Zhang
- Save Sight Institute, The University of Sydney, Sydney, Australia
| | - Ling Zhu
- Save Sight Institute, The University of Sydney, Sydney, Australia
| | - Michael Murray
- Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Fanfan Zhou
- Sydney Pharmacy School, The University of Sydney, Camperdown, Australia
| |
Collapse
|
9
|
Songvut P, Chariyavilaskul P, Khemawoot P, Tansawat R. Pharmacokinetics and metabolomics investigation of an orally modified formula of standardized Centella asiatica extract in healthy volunteers. Sci Rep 2021; 11:6850. [PMID: 33767223 PMCID: PMC7994819 DOI: 10.1038/s41598-021-86267-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/12/2021] [Indexed: 11/13/2022] Open
Abstract
The formula of a standardized extract of Centella asiatica (ECa 233) was modified to improve its dissolution, with implications for pharmacokinetics and metabolomic profile. This study aimed to understand the resultant changes in disposition kinetics of ECa 233 and alterations to human metabolome after oral administration. This study was a two-sequence of dosages (250 and 500 mg), with an open-label phase I clinical trial. The modified formula was administered in single and multiple doses to twelve healthy Thai volunteers. The major parent compounds, madecassoside and asiaticoside, were rarely absorbed, instead undergoing biotransformation into active metabolites, madecassic acid and asiatic acid with possibility to be eliminated via fecal route. Increasing the dose of ECa 233 resulted in significantly greater plasma levels of those active metabolites, with accumulation of asiatic acid after multiple oral administration for seven days. Examining the impacts of accumulation behavior on metabolomics, the study traced changes in levels pre- and post-dose of five relevant human metabolites. Administration of ECa 233 was found to be significantly associated with an increase of choline, an endogenous metabolite with documented benefits for learning and memory. Therefore, ECa 233 may be useful in mitigating cognitive impairment, through its role in modulating human metabolites.
Collapse
Affiliation(s)
- Phanit Songvut
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.,Translational Research Unit, Chulabhorn Research Institute, Bangkok, Thailand
| | - Pajaree Chariyavilaskul
- Clinical Pharmacokinetics and Pharmacogenomics Research Unit, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Phisit Khemawoot
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodhi Hospital, Mahidol University, Samut Prakarn, Thailand. .,Preclinical Pharmacokinetics and Interspecies Scaling for Drug Development Research Unit, Chulalongkorn University, Bangkok, Thailand.
| | - Rossarin Tansawat
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
10
|
Auxtero MD, Chalante S, Abade MR, Jorge R, Fernandes AI. Potential Herb-Drug Interactions in the Management of Age-Related Cognitive Dysfunction. Pharmaceutics 2021; 13:124. [PMID: 33478035 PMCID: PMC7835864 DOI: 10.3390/pharmaceutics13010124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Late-life mild cognitive impairment and dementia represent a significant burden on healthcare systems and a unique challenge to medicine due to the currently limited treatment options. Plant phytochemicals have been considered in alternative, or complementary, prevention and treatment strategies. Herbals are consumed as such, or as food supplements, whose consumption has recently increased. However, these products are not exempt from adverse effects and pharmacological interactions, presenting a special risk in aged, polymedicated individuals. Understanding pharmacokinetic and pharmacodynamic interactions is warranted to avoid undesirable adverse drug reactions, which may result in unwanted side-effects or therapeutic failure. The present study reviews the potential interactions between selected bioactive compounds (170) used by seniors for cognitive enhancement and representative drugs of 10 pharmacotherapeutic classes commonly prescribed to the middle-aged adults, often multimorbid and polymedicated, to anticipate and prevent risks arising from their co-administration. A literature review was conducted to identify mutual targets affected (inhibition/induction/substrate), the frequency of which was taken as a measure of potential interaction. Although a limited number of drugs were studied, from this work, interaction with other drugs affecting the same targets may be anticipated and prevented, constituting a valuable tool for healthcare professionals in clinical practice.
Collapse
Affiliation(s)
- Maria D. Auxtero
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Susana Chalante
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Mário R. Abade
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Rui Jorge
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
- Polytechnic Institute of Santarém, School of Agriculture, Quinta do Galinheiro, 2001-904 Santarém, Portugal
- CIEQV, Life Quality Research Centre, IPSantarém/IPLeiria, Avenida Dr. Mário Soares, 110, 2040-413 Rio Maior, Portugal
| | - Ana I. Fernandes
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| |
Collapse
|
11
|
Jiang N, Zhang M, Meng X, Sun B. Effects of curcumin on the pharmacokinetics of amlodipine in rats and its potential mechanism. PHARMACEUTICAL BIOLOGY 2020; 58:465-468. [PMID: 32432949 PMCID: PMC7301706 DOI: 10.1080/13880209.2020.1764060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/27/2020] [Indexed: 06/04/2023]
Abstract
Context: Hyperlipidaemia and hypertension are often treated together with curcumin and amlodipine. It is necessary to investigate the drug-drug interaction between curcumin and amlodipine.Objective: The interaction between curcumin and amlodipine was investigated in rats and with rat liver microsomes.Methods: The pharmacokinetics of amlodipine (1 mg/kg) was investigated in rats with or without curcumin pre-treatment (2 mg/kg), six rats in each group. The metabolic stability of amlodipine was investigated with rat liver microsomes.Results: Curcumin significantly increased the Cmax (26.19 ± 2.21 versus 17.80 ± 1.56 μg/L), AUC(0-t) (507.27 ± 60.23 versus 238.68 ± 45.59 μg·h/L), and t1/2 (14.69 ± 1.64 versus 11.43 ± 1.20 h) of amlodipine (p < 0.05). The metabolic stability of amlodipine was significantly increased with the half-life time in rat liver microsomes increased from 34.23 ± 3.33 to 44.15 ± 4.12 min, and the intrinsic rate decreased from 40.49 ± 3.26 to 31.39 ± 2.78 μL/min/mg protein.Discussion and conclusions: These results indicated that drug-drug interaction might appear during the co-administration of curcumin and amlodipine. The potential mechanism may be due to the inhibition of CYP3A4 by curcumin. Thus, this interaction should be given special attention in the clinic and needs further experiments to characterize the effect in humans.
Collapse
Affiliation(s)
- Na Jiang
- Department of Emergency, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| | - Meicheng Zhang
- Department of Cardiovascular Medicine, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| | - Xiangzhi Meng
- Department of Cardiovascular Medicine, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| | - Bin Sun
- Department of Emergency, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| |
Collapse
|
12
|
Wang H, Dong L, Qu F, He H, Sun W, Man Y, Jiang H. Effects of glycyrrhizin on the pharmacokinetics of nobiletin in rats and its potential mechanism. PHARMACEUTICAL BIOLOGY 2020; 58:352-356. [PMID: 32298152 PMCID: PMC7178892 DOI: 10.1080/13880209.2020.1751661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Context: Both nobiletin (NBL) and glycyrrhizin (GL) have anti-inflammatory and antitumor properties. These agents may be co-administered in the clinic. However, the drug-drug interaction between them is not clear.Objective: The drug-drug interaction between GL and NBL was investigated, to clarify the effect of GL on the pharmacokinetics of NBL, and its main mechanism.Materials and methods: The pharmacokinetic profiles of oral administration of NBL (50 mg/kg) in Sprague-Dawley rats of two groups with six each, with or without pre-treatment of GL (100 mg/kg/day for 7 days), were investigated. The effects of GL on the metabolic stability and transport of NBL were also investigated through the rat liver microsome and Caco-2 cell transwell models.Results: The results showed that GL significantly decreased the peak plasma concentration (from 1.74 ± 0.15 to 1.12 ± 0.10 μg/mL) and the t1/2 (7.44 ± 0.65 vs. 5.92 ± 0.68) of NBL, and the intrinsic clearance rate of NBL was increased by the pre-treatment with GL (39.49 ± 2.5 vs. 48.29 ± 3.4 μL/min/mg protein). The Caco-2 cell transwell experiments indicated that GL could increase the efflux ratio of NBL from 1.61 to 2.41.Discussion and conclusion: These results indicated that GL could change the pharmacokinetic profile of NBL, via increasing the metabolism and efflux of NBL in rats. It also suggested that the dose of NBL should be adjusted when co-administrated with GL in the clinic.
Collapse
Affiliation(s)
- Hao Wang
- Department of Pharmacy, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Lin Dong
- Department of Pharmacy, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Fangfei Qu
- Department of Special Inspection, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Huimin He
- Department of Pharmacy, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Wei Sun
- Department of Pharmacy, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Yuqing Man
- Department of Pharmacy, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Hongjie Jiang
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
- CONTACT Hongjie Jiang Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, No. 717, Jinbu Street, Yantai, Shandong, 264100, China
| |
Collapse
|
13
|
Liu J, Zhang N, Li N, Fan X, Li Y. Influence of verapamil on the pharmacokinetics of oridonin in rats. PHARMACEUTICAL BIOLOGY 2019; 57:787-791. [PMID: 31747844 PMCID: PMC6882484 DOI: 10.1080/13880209.2019.1688844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Context: Oridonin has been traditionally used in Chinese treatment of various cancers, but its poor bioavailability limits its therapeutic uses. Verapamil can enhance the absorption of some drugs with poor oral bioavailability. Whether verapamil can enhance the bioavailability of oridonin is still unclear.Objective: This study investigated the effect of verapamil on the pharmacokinetics of oridonin in rats and clarified its main mechanism.Materials and methods: The pharmacokinetic profiles of oral administration of oridonin (20 mg/kg) in Sprague-Dawley rats with two groups of six animals each, with or without pre-treatment of verapamil (10 mg/kg/day for 7 days) were investigated. The effects of verapamil on the transport and metabolic stability of oridonin were also investigated using Caco-2 cell transwell model and rat liver microsomes.Results: The results showed that verapamil could significantly increase the peak plasma concentration (from 146.9 ± 10.17 to 193.97 ± 10.53 ng/mL), and decrease the oral clearance (from 14.69 ± 4.42 to 8.09 ± 3.03 L/h/kg) of oridonin. The Caco-2 cell transwell experiments indicated that verapamil could decrease the efflux ratio of oridonin from 1.67 to 1.15, and the intrinsic clearance rate of oridonin was decreased by the pre-treatment with verapamil (40.06 ± 2.5 vs. 36.09 ± 3.7 µL/min/mg protein).Discussion and conclusions: These results indicated that verapamil could significantly change the pharmacokinetic profile of oridonin in rats, and it might exert these effects through increasing the absorption of oridonin by inhibiting the activity of P-gp, or through inhibiting the metabolism of oridonin in rat liver. In addition, the potential drug-drug interaction should be given special attention when verapamil is used with oridonin. Also, the dose of oridonin should be carefully selected in the clinic.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pediatric Medicine, Yidu Central Hospital of Weifang, Shandong, China
| | - Ning Zhang
- Department of Neonatology, Yidu Central Hospital of Weifang, Shandong, China
| | - Na Li
- Department of Neonatology, Yidu Central Hospital of Weifang, Shandong, China
| | - Xiaocheng Fan
- Department of Oncology, Jining Traditional Chinese Medicine Hospital, Jining, China
| | - Ying Li
- Department of Oncology, Jining Traditional Chinese Medicine Hospital, Jining, China
- CONTACT Ying Li Department of Oncology, Jining Traditional Chinese Medicine Hospital, No. 3, Huancheng Road, Jining, Shandong 272000, China
| |
Collapse
|
14
|
Sun H, Wang J, Lv J. Effects of glycyrrhizin on the pharmacokinetics of paeoniflorin in rats and its potential mechanism. PHARMACEUTICAL BIOLOGY 2019; 57:550-554. [PMID: 31429612 PMCID: PMC6713085 DOI: 10.1080/13880209.2019.1651876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Context: Paeoniflorin is reported to possess numerous pharmacological activities. Paeoniflorin and glycyrrhizin are always used together for the treatment of disease in China clinics; however, the drug-drug interaction between glycyrrhizin and paeoniflorin is still unknown. Objective: This study investigates the effects of glycyrrhizin on the pharmacokinetics of paeoniflorin in rats. Materials and methods: The pharmacokinetics of orally administered paeoniflorin (20 mg/kg) with or without glycyrrhizin pre-treatment (at a dose of 100 mg/kg/day for 7 days) were investigated in male Sprague-Dawley rats using LC-MS/MS. Additionally, Caco-2 cell transwell model and rat liver microsome incubation experiments were also conducted to investigate its potential mechanism. Results: The results showed that when the rats were pre-treated with glycyrrhizin, the Cmax of paeoniflorin decreased from 59.57 ± 10.24 to 45.36 ± 8.61 ng/mL, and AUC0-inf also decreased from 282.02 ± 35.06 to 202.29 ± 28.28 μg·h/L. The t1/2 value of paeoniflorin decreased from 8.48 ± 2.01 to 5.88 ± 1.15 h (p < 0.05). The Caco-2 cell transwell experiments indicated that glycyrrhizin could increase the efflux ratio of paeoniflorin from 2.71 to 3.52, and the rat liver microsome incubation experiments showed that glycyrrhizin could significantly increase its intrinsic clearance rate from 53.7 ± 4.6 to 85.6 ± 7.1 μL/min/mg protein. Conclusions: These results indicated that glycyrrhizin could affect the pharmacokinetics of paeoniflorin, and it might work through decreasing the absorption of paeoniflorin by inducing the activity of P-gp or through increasing the clearance rate in rat liver by inducing the activity of CYP450 enzyme.
Collapse
Affiliation(s)
- Hongjuan Sun
- Department of Pediatrics, Liaocheng Dongchangfu People’s Hospital, Liaocheng, China
- CONTACT Hongjuan Sun Department of Pediatrics, Liaocheng Dongchangfu People’s Hospital, No. 128, Songgui Road, Liaocheng, Shandong 252004, China
| | - Jingfeng Wang
- Department of Pharmacy, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Juan Lv
- Department of Pediatrics, Liaocheng Dongchangfu People’s Hospital, Liaocheng, China
| |
Collapse
|
15
|
Tong XF, Zhao FQ, Ren YZ, Zhang Y, Cui YL, Wang QS. Injectable hydrogels based on glycyrrhizin, alginate, and calcium for three-dimensional cell culture in liver tissue engineering. J Biomed Mater Res A 2018; 106:3292-3302. [DOI: 10.1002/jbm.a.36528] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/23/2018] [Accepted: 08/14/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Xiao-Fang Tong
- Tianjin State Key Laboratory of Modern Chinese Medicine, Research Center of Traditional Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin 300193 China
| | - Fa-Quan Zhao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Research Center of Traditional Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin 300193 China
| | - Ying-Zong Ren
- Tianjin State Key Laboratory of Modern Chinese Medicine, Research Center of Traditional Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin 300193 China
| | - Yi Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Research Center of Traditional Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin 300193 China
| | - Yuan-Lu Cui
- Tianjin State Key Laboratory of Modern Chinese Medicine, Research Center of Traditional Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin 300193 China
| | - Qiang-Song Wang
- Tianjin Key Laboratory of Biomedical Materials; Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College; Tianjin 300192 China
| |
Collapse
|