1
|
Eerik K, Kasepalu T, Post H, Eha J, Kals M, Kals J. Editor's Choice - Daily Remote Ischaemic Preconditioning for Intermittent Claudication: A Sham Controlled Randomised Trial. Eur J Vasc Endovasc Surg 2025; 69:295-302. [PMID: 39522584 DOI: 10.1016/j.ejvs.2024.10.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 08/13/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE Remote ischaemic preconditioning (RIPC) is a promising non-invasive strategy in which brief episodes of ischaemia and reperfusion can increase skeletal muscle resistance to ischaemia and improve mobility. This study aimed to determine whether 28 consecutive days of RIPC improved intermittent claudication (IC) symptoms compared with sham intervention. METHODS This single centre, parallel, randomised, sham controlled, double blind trial was conducted from January 2022 to April 2023 in outpatient settings. Forty two patients with stable IC Fontaine stage IIa or IIb were randomised to RIPC or sham for 28 days. The pre-specified primary outcome was a change in the maximum walking distance (MWD) after 28 days measured with a treadmill test. A > 10% change in MWD was considered clinically significant. Change in intermittent claudication distance (ICD), time to relief from claudication (TRC), and health related quality of life (HRQoL) measured with the VascuQoL-6 questionnaire were the secondary outcomes (ClinicalTrials.gov ID: NCT05084066). RESULTS Forty one men (RIPC = 23, sham = 18) aged 64.9 ± 7.4 years were analysed. A change of > 10% in MWD occurred in 14 patients in the RIPC group vs. eight patients in the sham group (relative risk 1.37, 95% confidence interval 0.74 - 2.25; p = .35). Changes in ICD, TRC, and HRQoL between the groups were not statistically significant. CONCLUSION In this trial, RIPC did not significantly improve MWD, ICD, or TRC compared with treatment with a sham device.
Collapse
Affiliation(s)
- Kadri Eerik
- Endothelial Research Centre, University of Tartu, Tartu, Estonia; Department of Surgery, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia; Heart Clinic, Tartu University Hospital, Tartu, Estonia.
| | - Teele Kasepalu
- Endothelial Research Centre, University of Tartu, Tartu, Estonia; Heart Clinic, Tartu University Hospital, Tartu, Estonia; Department of Cardiology, Institute of Clinical Medicine, Tartu, Estonia
| | - Holger Post
- Endothelial Research Centre, University of Tartu, Tartu, Estonia; Department of Surgery, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Jaan Eha
- Endothelial Research Centre, University of Tartu, Tartu, Estonia; Heart Clinic, Tartu University Hospital, Tartu, Estonia; Department of Cardiology, Institute of Clinical Medicine, Tartu, Estonia
| | - Mart Kals
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Jaak Kals
- Endothelial Research Centre, University of Tartu, Tartu, Estonia; Department of Surgery, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia; Surgery Clinic, Tartu University Hospital, Tartu, Estonia
| |
Collapse
|
2
|
Johnson ACM, Zager RA. RBT-1, a "preconditioning" agent, mitigates syndecan-1 shedding in patients undergoing "on pump" cardiac surgery and following experimental AKI. Physiol Rep 2025; 13:e70218. [PMID: 39905680 DOI: 10.14814/phy2.70218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 02/06/2025] Open
Abstract
During systemic stress, syndecan-1 (SDC-1) shedding into plasma results, implying endothelial damage. RBT-1, a "preconditioning" agent, has been shown to mitigate postoperative complications following cardiac surgeries. This study assessed whether RBT-1 preconditioning attenuated SDC-1 shedding in these patients, implying a vascular protective effect. Patients (n, 112) were randomized to receive low-dose RBT-1, high-dose RBT-1, or placebo 24-48 h prior to surgery. Plasma samples were obtained before and 2 days postsurgery and assayed for SDC-1 (ELISA). To gain further insights, male CD-1 mice were subjected to acute renal injuries, and RBT-1's impact on plasma SDC-1 increases, vascular/aortic stress responses (NGAL/KIM-1/IL-6 gene induction), and two vascular cytoprotective pathways (Nrf2; ferritin) were assessed. Baseline plasma SDC-1 levels did not differ between patient groups. The placebo group developed an approximate 50% plasma SDC-1 (ng/mL) increase (p, 0.012). Conversely, no significant SDC-1 increases were seen in the RBT-1 treatment groups. Experimental injury markedly increased plasma SDC-1 concentrations, and these were significantly blunted by RBT-1 preconditioning. RBT-1 also mitigated AKI-induced aortic NGAL/KIM-1/IL-6 mRNA increases, activated aortic Nrf2, and increased vascular ferritin levels. RBT-1 preconditioning diminishes SDC-1 release and upregulates vascular ferritin and Nrf2. Hence, RBT-1 preconditioning can confer select vasoprotective effects.
Collapse
Affiliation(s)
| | - Richard A Zager
- Renibus Therapeutics, Southlake, Texas, USA
- Fred Hutch Cancer Center, Seattle, WA, USA
- The University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Huh J, Chae MS. Impact of Paired Remote Ischemic Preconditioning on Postreperfusion Syndrome in Living-Donor Liver Transplantation: A Propensity-Score Matching Analysis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1830. [PMID: 39597016 PMCID: PMC11596776 DOI: 10.3390/medicina60111830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
Background and Objectives: Postreperfusion syndrome (PRS) is a significant challenge in liver transplantation (LT), leading to severe circulatory and metabolic complications. Ischemic preconditioning (IPC), including remote IPC (RIPC), can mitigate ischemia-reperfusion injury, although its efficacy in LT remains unclear. This study evaluated the impact of paired RIPC, involving the application of RIPC to both the recipient and the living donor, on the incidence of PRS and the need for rescue epinephrine during living-donor LT (LDLT). Materials and Methods: This retrospective observational cohort analysis included 676 adult patients who had undergone elective LDLT between September 2012 and September 2022. After applying exclusion criteria and propensity score matching (PSM), 664 patients were categorized into the paired RIPC and non-RIPC groups. The primary outcomes were the occurrence of PRS and the need for rescue epinephrine during reperfusion. Results: The incidence of PRS and the need for rescue epinephrine were significantly lower in the paired RIPC group than in the non-RIPC group. Furthermore, the incidence of postoperative acute kidney injury was lower in the paired RIPC group. Multivariable logistic regression adjusted for propensity scores indicated that paired RIPC was significantly associated with a reduced occurrence of PRS (odds ratio: 0.672, 95% confidence interval: 0.479-0.953, p = 0.021). Conclusions: Paired RIPC, involving both the recipient and the living donor, effectively reduces the occurrence of PRS and the need for rescue epinephrine during LDLT. These findings suggest that paired RIPC protects against ischemia-reperfusion injury in LDLT. Future randomized controlled trials are needed to verify our results and to explore the underlying mechanisms of the protective effects of RIPC.
Collapse
Affiliation(s)
| | - Min Suk Chae
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| |
Collapse
|
4
|
Xu X, Zhang Y, Chen Y, Yang C, Guo X, Zhang Q, Li Y, Wu J, Cao X, Chen X, Cai G. The effect of short-term remote ischemic preconditioning on endothelial function of patients with chronic kidney disease: A randomized pilot study. Nephrology (Carlton) 2024; 29:344-353. [PMID: 38438117 DOI: 10.1111/nep.14282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/04/2024] [Accepted: 02/12/2024] [Indexed: 03/06/2024]
Abstract
AIM Patients with chronic kidney disease (CKD) are more susceptible to endothelial dysfunction and cardiovascular disease (CV). Remote ischemic preconditioning (rIPC) has been proven efficient in improving endothelial function and lowering the risk of CV. However, the safety and effect of rIPC on endothelial function in patients with CKD have not been effectively assessed. METHODS 45 patients with CKD (average estimated glomerular filtration rate: 48.4 mL/min/1.73 m2) were randomly allocated to either 7-day daily upper-arm rIPC (4 × 5 min 200 mmHg, interspaced by 5-min reperfusion) or control (4 × 5 min 60 mmHg, interspaced by 5-min reperfusion). Vascular endothelial function was assessed by natural log-transformed reactive hyperemia index (LnRHI) before and after a 7-day intervention. Arterial elasticity was assessed by augmentation index (AI). RESULTS The results showed that LnRHI could be improved by rIPC treatment (Pre = 0.57 ± 0.04 vs. Post = 0.67 ± 0.04, p = .001) with no changes relative to control (Pre = 0.68 ± 0.06 vs. Post = 0.64 ± 0.05, p = .470). Compared with the control group, the improvement of LnRHI was greater after rIPC treatment (rIPC vs. Control: 0.10 ± 0.03 vs. -0.04 ± 0.06, between-group mean difference, -0.15 [95% CI, -0.27 to -0.02], p = .027), while there was no significant difference in the change of AI@75 bpm (p = .312) between the two groups. CONCLUSION RIPC is safe and well tolerated in patients with CKD. This pilot study suggests that rIPC seems to have the potential therapeutic effect to improve endothelial function. Of note, further larger trials are still warranted to confirm the efficacy of rIPC in improving endothelial function in CKD patients.
Collapse
Affiliation(s)
- Xieguanxuan Xu
- Medical School of Chinese PLA, Beijing, China
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Yu Zhang
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Yuhao Chen
- Medical School of Chinese PLA, Beijing, China
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Chen Yang
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xinru Guo
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Qiuyue Zhang
- Medical School of Chinese PLA, Beijing, China
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Yisha Li
- Medical School of Chinese PLA, Beijing, China
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Jie Wu
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Xueying Cao
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - XiangMei Chen
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| |
Collapse
|
5
|
Li J, Yan Z, Wang Q, Wei S, Liu Q, Liu T, Hu Z. Pretreatment with remote ischemic conditioning attenuates testicular damage after testicular ischemia and reperfusion injury in rats. PLoS One 2023; 18:e0287987. [PMID: 37883446 PMCID: PMC10602300 DOI: 10.1371/journal.pone.0287987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/17/2023] [Indexed: 10/28/2023] Open
Abstract
Testicular torsion is a urological emergency. However, surgical detorsion of the torsed spermatic cord can cause testicular reperfusion injury. Although remote ischemic preconditioning (RIPC) has been convincingly shown to protect organs against ischemia/reperfusion (I/R) injury, little is known regarding the effect of RIPC on testicular torsion/detorsion-induced reperfusion injury. Therefore, we aimed to evaluate the effect of RIPC on testes after testicular I/R injury in a rat model in vivo. Male Sprague-Dawley rats were randomly classified into 4 groups: sham-operated (sham), testicular I/R (TI/R), or remote liver (RIPC liver) and limb (RIPC limb) ischemic preconditioning groups. Testis I/R was induced by 3 h of right spermatic cord torsion (720° clockwise), and reperfusion was allowed for 3 hours. In the RIPC group, four cycles of 5 min of ischemia and 5 min of reperfusion were completed 30 min prior to testicular torsion. The ERK1/2 inhibitor U0126 was administered intravenously at the beginning of reperfusion (1 mg/kg). The testes were taken for the oxidative stress evaluations, histology, apoptosis, immunohistochemical and western blotting analysis. Remote liver and limb ischemic preconditioning attenuated ipsilateral and contralateral testicular damage after testicular I/R injury. For example. RIPC reduced testicular swelling and oxidative stress, lessened structural damage, and inhibited the testicular inflammatory response and apoptosis. Furthermore, RIPC treatment enhanced testicular ERK1/2 phosphorylation postI/R. Inhibition of ERK1/2 activity using U0126 eliminated the protection offered by RIPC. Our data demonstrate for the first time that RIPC protects testes against testicular I/R injury via activation of the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Jiaxue Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhibing Yan
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qifeng Wang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shichao Wei
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Quanhua Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Liu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhaoyang Hu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Effects of RIPC on the Metabolome in Patients Undergoing Vascular Surgery: A Randomized Controlled Trial. Biomolecules 2022; 12:biom12091312. [PMID: 36139151 PMCID: PMC9496371 DOI: 10.3390/biom12091312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND remote ischemic preconditioning (RIPC) is a phenomenon in which short episodes of ischemia are applied to distant organs to prepare target organs for more prolonged ischemia and to induce protection against ischemia-reperfusion injury. This study aims to evaluate whether preoperatively performed RIPC affects the metabolome and to assess whether metabolomic changes correlate with heart and kidney injury markers after vascular surgery. METHODS a randomized sham-controlled, double-blinded trial was conducted at Tartu University Hospital. Patients undergoing elective open vascular surgery were recruited and RIPC was applied before operation. Blood was collected preoperatively and 24 h postoperatively. The metabolome was analyzed using the AbsoluteIDQ p180 Kit. RESULTS final analysis included 45 patients from the RIPC group and 47 from the sham group. RIPC did not significantly alter metabolites 24 h postoperatively. There was positive correlation of change in the kynurenine/tryptophan ratio with change in hs-troponin T (r = 0.570, p < 0.001), NT-proBNP (r = 0.552, p < 0.001), cystatin C (r = 0.534, p < 0.001) and beta-2-microglobulin (r = 0.504, p < 0.001) only in the RIPC group. CONCLUSIONS preoperative RIPC did not significantly affect the metabolome 24 h after vascular surgery. The positive linear correlation of kynurenine/tryptophan ratio with heart and kidney injury markers suggests that the kynurenine-tryptophan pathway can play a role in RIPC-associated cardio- and nephroprotective effects.
Collapse
|
7
|
Remote ischemic preconditioning can extend the tolerance to extended drug-coated balloon inflation time by reducing myocardial damage during percutaneous coronary intervention. Int J Cardiol 2022; 353:3-8. [DOI: 10.1016/j.ijcard.2022.01.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 11/24/2022]
|
8
|
Effects of remote ischemic preconditioning (RIPC) and chronic remote ischemic preconditioning (cRIPC) on levels of plasma cytokines, cell surface characteristics of monocytes and in-vitro angiogenesis: a pilot study. Basic Res Cardiol 2021; 116:60. [PMID: 34651218 PMCID: PMC8516789 DOI: 10.1007/s00395-021-00901-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 12/24/2022]
Abstract
Remote ischemic preconditioning (RIPC) protects the heart against myocardial ischemia/reperfusion (I/R) injury and recent work also suggested chronic remote ischemic conditioning (cRIPC) for cardiovascular protection. Based on current knowledge that systemic immunomodulatory effects of RIPC and the anti-inflammatory capacity of monocytes might be involved in cardiovascular protection, the aim of our study was to evaluate whether RIPC/cRIPC blood plasma is able to induce in-vitro angiogenesis, identify responsible factors and evaluate the effects of RIPC/cRIPC on cell surface characteristics of circulating monocytes. Eleven healthy volunteers were subjected to RIPC/cRIPC using a blood pressure cuff inflated to > 200 mmHg for 3 × 5 min on the upper arm. Plasma and peripheral blood monocytes were isolated before RIPC (Control), after 1 × RIPC (RIPC) and at the end of 1 week of daily RIPC (cRIPC) treatment. Plasma concentrations of potentially pro-angiogenic humoral factors (CXCL5, Growth hormone, IGFBP3, IL-1α, IL-6, Angiopoietin 2, VEGF, PECAM-1, sTie-2, IL-8, MCSF) were measured using custom made multiplex ELISA systems. Tube formation assays for evaluation of in-vitro angiogenesis were performed with donor plasma, monocyte conditioned culture media as well as IL-1α, CXCL5 and Growth hormone. The presence of CD14, CD16, Tie-2 and CCR2 was analyzed on monocytes by flow cytometry. Employing in-vitro tube formation assays, several parameters of angiogenesis were significantly increased by cRIPC plasma (number of nodes, P < 0.05; number of master junctions, P < 0.05; number of segments, P < 0.05) but were not influenced by culture medium from RIPC/cRIPC treated monocytes. While RIPC/cRIPC treatment did not lead to significant changes of the median plasma concentrations of any of the selected potentially pro-angiogenic humoral factors, in-depth analysis of the individual subjects revealed differences in plasma levels of IL-1α, CXCL5 and Growth hormone after RIPC/cRIPC treatment in some of the volunteers. Nevertheless, the positive effects of RIPC/cRIPC plasma on in-vitro angiogenesis could not be mimicked by the addition of the respective humoral factors alone or in combination. While monocyte conditioned culture media did not affect in-vitro tube formation, flow cytometry analyses of circulating monocytes revealed a significant increase in the number of Tie-2 positive and a decrease of CCR2 positive monocytes after RIPC/cRIPC (Tie-2: cRIPC, P < 0.05; CCR2: RIPC P < 0.01). Cardiovascular protection may be mediated by RIPC and cRIPC via a regulation of plasma cytokines as well as changes in cell surface characteristics of monocytes (e.g. Tie-2). Our results suggest that a combination of humoral and cellular factors could be responsible for the RIPC/cRIPC mediated effects and that interindividual variations seem to play a considerable part in the RIPC/cRIPC associated mechanisms.
Collapse
|
9
|
Mi L, Zhang N, Wan J, Cheng M, Liao J, Zheng X. Remote ischemic post‑conditioning alleviates ischemia/reperfusion‑induced intestinal injury via the ERK signaling pathway‑mediated RAGE/HMGB axis. Mol Med Rep 2021; 24:773. [PMID: 34490475 PMCID: PMC8441982 DOI: 10.3892/mmr.2021.12413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Intestinal ischemia reperfusion (I/R) injury is a tissue and organ injury that frequently occurs during surgery and significantly contributes to the pathological processes of severe infection, injury, shock, cardiopulmonary insufficiency and other diseases. However, the mechanism of intestinal I/R injury remains to be elucidated. A mouse model of intestinal I/R injury was successfully established and the model mice were treated with remote ischemic post‑conditioning (RIPOC) and/or an ERK inhibitor (CC‑90003), respectively. Histopathological changes of the intestinal mucosa were determined by hematoxylin and eosin staining. In addition, the levels of high‑mobility group box 1 (HMGB1) and receptor for advanced glycation end products (RAGE) expression were confirmed by reverse transcription‑quantitative polymerase chain reaction, western blotting and immunohistochemistry assays. The levels of antioxidants, oxidative stress markers (8‑OHdG) and interleukin 1 family members were evaluated by ELISA assays and the levels of NF‑κB pathway proteins were analyzed by western blotting. The data demonstrated that RIPOC could attenuate the histopathological features of intestinal mucosa in the intestinal I/R‑injury mouse models via the ERK pathway. It was also revealed that HMGB1 and RAGE expression in the mouse models could be markedly reduced by RIPOC (P<0.05) and that these reductions were associated with inhibition of the ERK pathway. Furthermore, it was demonstrated that RIPOC produced significant antioxidant and anti‑inflammatory effects following an intestinal I/R injury and that these effects were mediated via the ERK pathway (P<0.05). In addition, RIPOC was demonstrated to suppress the NF‑κB (p65)/NLR family pyrin domain containing 3 (NLRP3) inflammatory pathways in the intestinal I/R injury mouse models via the ERK pathway. The findings of the present study demonstrated that RIPOC helped to protect mice with an intestinal I/R injury by downregulating the ERK pathway.
Collapse
Affiliation(s)
- Lei Mi
- Department of Gastrointestinal Surgery, Tai'an City Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Nan Zhang
- Department of Gastrointestinal Surgery, Tai'an City Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Jiyun Wan
- Department of Gastrointestinal Surgery, Tai'an City Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Ming Cheng
- Department of Gastrointestinal Surgery, Tai'an City Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Jianping Liao
- Department of Gastrointestinal Surgery, Tai'an City Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Xiao Zheng
- Department of Gastrointestinal Surgery, Tai'an City Central Hospital, Tai'an, Shandong 271000, P.R. China
| |
Collapse
|
10
|
Kundumani-Sridharan V, Subramani J, Owens C, Das KC. Nrg1β Released in Remote Ischemic Preconditioning Improves Myocardial Perfusion and Decreases Ischemia/Reperfusion Injury via ErbB2-Mediated Rescue of Endothelial Nitric Oxide Synthase and Abrogation of Trx2 Autophagy. Arterioscler Thromb Vasc Biol 2021; 41:2293-2314. [PMID: 34039018 PMCID: PMC8288485 DOI: 10.1161/atvbaha.121.315957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/04/2021] [Indexed: 12/02/2022]
Abstract
OBJECTIVE: Remote ischemic preconditioning (RIPC) is an intervention process where the application of multiple cycles of short ischemia/reperfusion (I/R) in a remote vascular bed provides protection against I/R injury. However, the identity of the specific RIPC factor and the mechanism by which RIPC alleviates I/R injury remains unclear. Here, we have investigated the identity and the mechanism by which the RIPC factor provides protection. APPROACH AND RESULTS: Using fluorescent in situ hybridization and immunofluorescence, we found that RIPC induces Nrg1β expression in the endothelial cells, which is secreted into the serum. Whereas, RIPC protected against myocardial apoptosis and infarction, treatment with neutralizing-Nrg1 antibodies abolished the protective effect of RIPC. Further, increased superoxide anion generated in RIPC is required for Nrg1 expression. Improved myocardial perfusion and nitric oxide production were achieved by RIPC as determined by contrast echocardiography and electron spin resonance. However, treatment with neutralizing-Nrg1β antibody abrogated these effects, suggesting Nrg1β is a RIPC factor. ErbB2 (Erb-B2 receptor tyrosine kinase 2) is not expressed in the adult murine cardiomyocytes, but expressed in the endothelial cells of heart which is degraded in I/R. RIPC-induced Nrg1β interacts with endothelial ErbB2 and thereby prevents its degradation. Mitochondrial Trx2 (thioredoxin) is degraded in I/R, but rescue of ErbB2 by Nrg1β prevents Trx-2 degradation that decreased myocardial apoptosis in I/R. CONCLUSIONS: Nrg1β is a RIPC factor that interacts with endothelial ErbB2 and prevents its degradation, which in turn prevents Trx2 degradation due to phosphorylation and inactivation of ATG5 (autophagy-related 5) by ErbB2. Nrg1β also restored loss of eNOS (endothelial nitric oxide synthase) function in I/R via its interaction with Src.
Collapse
Affiliation(s)
| | - Jaganathan Subramani
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock
| | - Cade Owens
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock
| | - Kumuda C. Das
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock
| |
Collapse
|
11
|
Danková M, Domoráková I, Fagová Z, Stebnický M, Mechírová E. Induction of ischemic tolerance by remote perconditioning or postconditioning as neuroprotective strategy for spinal cord motor neurons. Life Sci 2021; 283:119789. [PMID: 34256043 DOI: 10.1016/j.lfs.2021.119789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 11/28/2022]
Abstract
AIMS The study is focused on the investigation of the mechanisms leading to ischemic tolerance acquisition in the spinal cord neurons via application of non-invasive method of remote conditioning. MATERIAL AND METHODS We have verified the possibility of neuroprotection of spinal cord in rabbit by using remote perconditioning (PerC) applied during last 12 min of spinal cord ischemia (SC-ischemia) or postconditioning (PostC) applied after 1st (early) or 3rd (late) h of reperfusion. Spinal cord ischemia was induced by occlusion of the aorta below the left renal artery for 20 min. Reperfusion period was 24 or 72 h. Remote conditioning was induced by compression of left forelimb with a tourniquet in 3 cycles of 2 min of ischemia, each followed by 2 min of reperfusion. Damaged neurons were detected by Fluoro Jade B method and the modified Tarlov score was used for functional assessment. KEY FINDINGS The remote conditioning significantly attenuated degeneration of motor neurons in all remote conditioned groups versus both SC-ischemia groups. We detected significant changes in number of Hsp70 positive motor neurons. At 72time point, in the group with remote late PostC we observed significant increase (p < 0.001) of Hsp70 positive motor neurons versus SC- ischemia group and sham control. There was a trend towards improvement of hindlimbs movement. SIGNIFICANCE This study showed the effectiveness of remote conditioning as a neuroprotective strategy, evidenced by induction of ischemic tolerance leading to decrease of motor neuron degeneration.
Collapse
Affiliation(s)
- Marianna Danková
- Comenius University in Bratislava, Faculty of Medicine, Institute of Histology and Embryology, Sasinkova 4, 811 04 Bratislava, Slovak Republic
| | - Iveta Domoráková
- Pavol Jozef Šafárik University, Faculty of Medicine, Department of Histology and Embryology, Šrobárova 2, 040 01 Košice, Slovak Republic
| | - Zuzana Fagová
- Pavol Jozef Šafárik University, Faculty of Medicine, Department of Histology and Embryology, Šrobárova 2, 040 01 Košice, Slovak Republic
| | - Milan Stebnický
- Pavol Jozef Šafárik University, Faculty of Medicine, Department of Histology and Embryology, Šrobárova 2, 040 01 Košice, Slovak Republic; Pavol Jozef Šafárik University, Faculty of Medicine, 2nd Department of Surgery and L. Pasteur University Hospital, Rastislavova 43, 040 01 Košice, Slovak Republic.
| | - Eva Mechírová
- Pavol Jozef Šafárik University, Faculty of Medicine, Department of Histology and Embryology, Šrobárova 2, 040 01 Košice, Slovak Republic
| |
Collapse
|
12
|
Wagner S, Sutter L, Wagenblast F, Walther A, Schiff JH. Short term cognitive function after sevoflurane anesthesia in patients suspect to obstructive sleep apnea syndrome: an observational study. BMC Anesthesiol 2021; 21:150. [PMID: 34006226 PMCID: PMC8130360 DOI: 10.1186/s12871-021-01363-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The obstructive sleep apnea syndrome (OSAS) is characterized by intermittent cerebral hypoxia which can cause cognitive alterations. Likewise, hypoxia induced neurocognitive deficits are detectable after general anesthesia using volatile anesthetics. The objective of this study was to evaluate the association between a moderate to high risk patients of OSAS and postoperative cognitive dysfunction after volatile anesthesia. METHODS In this single center prospective, observational study between May 2013 and September 2013, 46 patients aged 55 to 80 years with an estimated hospital stay of at least 3 days undergoing surgery were enrolled. Patients were screened using the STOP-BANG test with score of 3 or higher indicating moderate to high risk of OSAS. The cognitive function was assessed using a neuropsychological assessment battery, including the DemTect test for cognitive impairment among other tests e.g. SKT memory, the day before surgery and within 2 days after extubation. RESULTS Twenty-three of the 46 analyzed patients were identified with a moderate to high risk of OSAS. When comparing post- to preoperative phase a significant better performance for the SKT was found for both groups (p < 0.001). While the moderate to high risk group scores increased postoperative in the DemTect test, they decreased in the low risk group (p < 0.003). When comparing the changes between groups, the moderate to high risk patients showed significant better test result for DemTect testing after anaesthesia. This effect remained robust when adjusting for potential confounding variables using a two-factor ANOVA. CONCLUSION Compared to low risk, a moderate to high risk of OSAS based on the STOP-BANG score was associated with improved postoperative cognitive function measured by the DemTect test. TRIAL REGISTRATION The study was approved by the local Ethics committee (Ethikkommission der Medizinischen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany) (reference number: 87_12 B ) on 19.04.2012.
Collapse
Affiliation(s)
- Soeren Wagner
- Department of Anesthesiology and Intensive Care, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Ismaninger Straße 22, 81675, Munich, Germany.
| | - Lorenz Sutter
- Department of Old Age Psychiatry and Psychotherapy, Klinikum Stuttgart, Krankenhaus Bad Cannstatt, Prießnitzweg, 2470374, Stuttgart, Germany
| | - Fabian Wagenblast
- Department of Anesthesiology and Intensive Care, Katharinenhospital Klinikum Stuttgart, Kriegsbergstrasse 60, 70174, Stuttgart, Germany
| | - Andreas Walther
- Department of Anesthesiology and Intensive Care, Katharinenhospital Klinikum Stuttgart, Kriegsbergstrasse 60, 70174, Stuttgart, Germany
| | - Jan-Henrik Schiff
- Philipps-University Marburg Department of Anesthesia and Intensive Care, University Hospital Giessen-Marburg, Marburg Campus, Baldingerstraße, 35033, Marburg, Germany
| |
Collapse
|
13
|
Cacciottola L, Nguyen TYT, Amorim CA, Donnez J, Dolmans MM. Modulating hypoxia and oxidative stress in human xenografts using adipose tissue-derived stem cells. F&S SCIENCE 2021; 2:141-152. [PMID: 35559749 DOI: 10.1016/j.xfss.2021.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 01/28/2023]
Abstract
OBJECTIVE To investigate whether adipose tissue-derived stem cells (ASCs) modulate hypoxia and oxidative stress in human ovarian tissue transplants. DESIGN Prospective experimental study SETTING: Gynecological research unit in a university hospital PATIENT(S): Cryopreserved ovarian cortex from 5 adult women. INTERVENTION(S) Thirty mice were grafted with frozen-thawed human ovarian tissue, with or without ASCs (2-step/ASCs+ovarian tissue [OT] group and OT group). The ovarian grafts were retrieved on days 3 (n = 5), 10 (n = 5), and 21 (n = 5). The 10 animals grafted for 21 days underwent in vivo evaluations using microdialysis. One piece of ovarian tissue per patient was fixed for analysis after thawing (non-grafted controls). MAIN OUTCOME MEASURE(S) Direct reactive oxygen species were collected every second day after grafting by means of microdialysis. Analyses of ovarian fragments included immunolabeling for double CD34 (revascularization by host and graft components); immunofluorescence for hypoxia-inducible factor 1α (hypoxia-related response), nuclear factor erythroid 2-related factor 2 (oxidative stress-related response), and 8-hydroxy-deoxyguanosine (oxidative stress-related DNA damage); and gene expression (quantitative reverse transcription polymerase chain reaction) for vascular endothelial growth factor-A (neoangiogenesis), superoxide dismutase 2 (antioxidant activity), and nuclear respiratory factor 1 (mitochondrial biogenesis). RESULT(S) Reactive oxygen species peaked earlier in the ASC group (day 2) compared with that in the OT group (day 10) after grafting. Total vascularization was stable in the ASC group at all time points, while it was lower in the OT group 3 days after grafting. Hypoxia-inducible factor 1α expression, also detected in non-grafted controls, was significantly lower in the ASC group than in the OT group on days 3 and 10. The increase in VEGF gene expression lasted significantly longer in the ASC group than in the OT group. There was no significant upturn in the oxidative stress-related response (nuclear factor erythroid 2-related factor 2 pathway) or oocyte DNA damage (8-hydroxy-deoxyguanosine) in any of the grafted groups. CONCLUSION(S) Use of ASCs allows faster ovarian graft reperfusion and mitigates the hypoxia-related response through rapid revascularization, sustained by prolonged increase in vascular endothelial growth factor after grafting. No evidence of oxidative stress-related damage was detected irrespective of the transplantation strategy.
Collapse
Affiliation(s)
- Luciana Cacciottola
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Thu Y T Nguyen
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Christiani A Amorim
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jacques Donnez
- Society for Research into Infertility, Brussels, Belgium
| | - Marie-Madeleine Dolmans
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium; Department of Gynecology, Cliniques Universitaires Saint-Luc, Brussels, Belgium.
| |
Collapse
|
14
|
Morphogenic fields: A coming of age. Explore (NY) 2021; 18:187-194. [PMID: 33903061 DOI: 10.1016/j.explore.2021.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 11/22/2022]
Abstract
Morphogenesis, the coming-into-being of living organisms, was first described in the 4th century BC by Aristotle, progenitor of biology and embryology. Over the centuries it has been the subject of innumerable commentaries by philosophers, theologians and scientists but no consensus has ever been reached as to its causes. In the late 19th century, along with the emergence of cellular and molecular biology, embryology underwent a renaissance and became a topic of great interest and research. Early on the discipline divided into two opposing factions, those who attempted to explain fetal development on the basis of cellular and molecular mechanisms, and those who invoked the presence of organizing fields. The morphogenic field was first articulated in the early decades of the 20th century by multiple researchers independently of each other. The field became an extremely useful conceptual tool by which to explain a wide range of developmental phenomena. While embryology and genetics originally formed a unified discipline, during the 1930s 40 s geneticists became progressively skeptical of the field notion. The discovery of the DNA structure by Watson and Crick in the early 1950s decisively settled matters and thereafter the two disciplines pursued different lines of inquiry. After World War II embryology and the field concept went into a decades-long decline. By the 1980s an increasing number of scientists began to critically reexamine the morphogenic field concept and it underwent a second renaissance. In this paper I examine the development and evolution of the field concept, both experimentally and conceptually, and highlight the failure of genetic mechanisms to explain morphogenesis. I provide three instances from the medical literature of developmental phenomena which are only explainable on the basis of morphogenic field dynamics and argue that the field concept must be readmitted into mainstream scientific discourse.
Collapse
|
15
|
Maxwell JD, France M, Finnigan LEM, Carter HH, Thijssen DHJ, Jones H. Can exercise training enhance the repeated remote ischaemic preconditioning stimulus on peripheral and cerebrovascular function in high-risk individuals? Eur J Appl Physiol 2021; 121:1167-1178. [PMID: 33507363 PMCID: PMC7966185 DOI: 10.1007/s00421-020-04580-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 11/25/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Repeated exposure to remote ischaemic preconditioning (rIPC; short bouts of non-lethal ischaemia) enhances peripheral vascular function within 1 week; whereas, longer periods of rIPC (~ 1 year) may improve cerebral perfusion. Increasing the 'dose' of rIPC may lead to superior effects. Given the similarities between exercise and rIPC, we examined whether adding exercise to the rIPC stimulus leads to greater adaptation in systemic vascular function. METHODS Nineteen individuals with increased risk for cardiovascular disease (CVD) were randomly allocated to either 8 weeks of rIPC (n = 9) or 8 weeks of rIPC + exercise (rIPC + Ex) (n = 10). rIPC was applied three times per week in both conditions, and exercise consisted of 50 min (70% heart rate max) of cycling 3 times per week. Peripheral endothelial function was assessed using flow-mediated dilation (FMD) before and after ischaemia-reperfusion (IR). Cerebrovascular function was assessed by dynamic cerebral autoregulation (dCA) and cerebrovascular reactivity (CVR), and cardio-respiratory fitness (VO2peak) using a maximal aerobic capacity test. RESULTS FMD% increased by 1.6% (95% CI, 0.4, 2.8) following rIPC + Ex and by 0.3% (- 1.1, 1.5) in the only rIPC but this did not reach statistical significance (P = 0.65). Neither intervention evoked a change in dCA or in CVR (P > 0.05). VO2peak increased by 2.8 ml/kg/min (1.7, 3.9) following the rIPC + Ex and by 0.1 ml/kg/min (- 1.0, 1.4) following the rIPC only intervention (P = 0.69). CONCLUSION Combining exercise with rIPC across an 8-week intervention does not lead to superior effects in cerebrovascular and peripheral vascular function compared to a repeated rIPC intervention in individuals at risk of CVD.
Collapse
Affiliation(s)
- Joseph D Maxwell
- Research Institute of Sports and Exercise Science, Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool, L3 3AF, UK.
| | - Madeleine France
- Research Institute of Sports and Exercise Science, Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool, L3 3AF, UK
| | - Lucy E M Finnigan
- Research Institute of Sports and Exercise Science, Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool, L3 3AF, UK
| | - Howard H Carter
- Research Institute of Sports and Exercise Science, Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool, L3 3AF, UK.,Department of Nutrition, Exercise and Sports, Integrative Physiology Group, University of Copenhagen, Copenhagen, Denmark
| | - Dick H J Thijssen
- Research Institute of Sports and Exercise Science, Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool, L3 3AF, UK.,Department of Physiology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Helen Jones
- Research Institute of Sports and Exercise Science, Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool, L3 3AF, UK
| |
Collapse
|
16
|
Effects of remote ischemic preconditioning on liver injury following hepatectomy: a systematic review and meta-analysis of randomized control trials. Surg Today 2021; 51:1251-1260. [PMID: 33464413 DOI: 10.1007/s00595-020-02205-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/02/2020] [Indexed: 01/27/2023]
Abstract
The protective effect of remote ischemic preconditioning (RIPC) against liver ischemia-reperfusion injury caused by hepatectomy remains controversial. We conducted this meta-analysis to evaluate the effectiveness and safety of RIPC strategies. PubMed, SinoMed, Embase, Cochrane Library, Medline, and Web of Science databases were searched for randomized controlled trials (RCT) that assessed the effectiveness and safety of RIPC strategies. The primary outcomes were operation time, index of liver function on postoperative day (POD) 1, postoperative complications, and postoperative hospital stay. The pooled odds ratios and weighted mean differences at 95% confidence interval (95% CI) were estimated using a fixed-effects or random-effects model. A total of 459 patients were included in seven RCTs. The alanine aminotransferase (ALT) and alanine aminotransferase (AST) values on POD1 were significantly different between the RIPC group and the N-RIPC group (P = 0.009 and P = 0.02, respectively). However, the heterogeneity was significant (I2 = 84% and I2 = 86%), and the results of a sensitivity analysis were unstable. There was no significant difference in the total bilirubin levels (P = 0.25) between the two groups on POD1. Subgroup analysis revealed no significant difference in the AST and ALT levels on POD1 between the RIIPC group and the N-RIPC group, regardless of whether the vascular control technique was used (all P > 0.05). Based on current evidence, RIPC does not alleviate liver injury caused by IRI after hepatectomy.
Collapse
|
17
|
Feige K, Raupach A, Torregroza C, Muehlenbernd J, Stroethoff M, Bunte S, Hollmann MW, Huhn R. Effluent from ischemic preconditioned hearts confers cardioprotection independent of the number of preconditioning cycles. PLoS One 2020; 15:e0243220. [PMID: 33270768 PMCID: PMC7714116 DOI: 10.1371/journal.pone.0243220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/17/2020] [Indexed: 11/17/2022] Open
Abstract
Coronary effluent collected from ischemic preconditioning (IPC) treated hearts induces myocardial protection in non-ischemic-preconditioned hearts. So far, little is known about the number of IPC cycles required for the release of cardioprotective factors into the coronary effluent to successfully induce cardioprotection. This study investigated the cardioprotective potency of effluent obtained after various IPC cycles in the rat heart. Experiments were performed on isolated hearts of male Wistar rats, mounted onto a Langendorff system and perfused with Krebs-Henseleit buffer. In a first part, effluent was taken before (Con) and after each IPC cycle (Eff 1, Eff 2, Eff 3). IPC was induced by 3 cycles of 5 min of global myocardial ischemia followed by 5 minutes of reperfusion. In a second part, hearts of male Wistar rats were randomized to four groups (each group n = 4–5) and underwent 33 min of global ischemia followed by 60 min of reperfusion. The previously obtained coronary effluent was administered for 10 minutes before ischemia as a preconditioning stimulus. Infarct size was determined at the end of reperfusion by triphenyltetrazoliumchloride (TTC) staining. Infarct size with control effluent was 54±12%. Effluent obtained after IPC confers a strong infarct size reduction independent of the number of IPC cycles (Eff 1: 27±5%; Eff 2: 35±7%; Eff 3: 35±8%, each P<0.05 vs. Con). Effluent extracted after one cycle IPC is comparably protective as after two or three cycles IPC.
Collapse
Affiliation(s)
- Katharina Feige
- Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Annika Raupach
- Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Carolin Torregroza
- Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Jan Muehlenbernd
- Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Martin Stroethoff
- Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Sebastian Bunte
- Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany.,Department of Internal Medicine, Elbe Clinics Stade-Buxtehude, Stade, Germany
| | - Markus W Hollmann
- Department of Anesthesiology, Amsterdam University Medical Center (AUMC), Amsterdam, The Netherlands
| | - Ragnar Huhn
- Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
18
|
Choi EK, Jung H, Jeon S, Lim JA, Lee J, Kim H, Hong SW, Jang MH, Lim DG, Kwak KH. Role of Remote Ischemic Preconditioning in Hepatic Ischemic Reperfusion Injury. Dose Response 2020; 18:1559325820946923. [PMID: 32848526 PMCID: PMC7427033 DOI: 10.1177/1559325820946923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/25/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022] Open
Abstract
The effect of remote ischemic preconditioning (RIPC) has been proposed that mediates the protective response in ischemia reperfusion injury (IRI) of various organs. In this study, we investigated the effect of RIPC in hepatic IRI, by assessing biomarker of oxidative stress and inflammatory cytokines. Moreover, we intended to demonstrate any such protective effect through nitric oxide (NO). Twenty-five rats were divided into the 5 groups: (1) Sham; (2) RIPC; (3) hepatic IRI; (4) RIPC + hepatic IRI; (5) C-PTIO, 2-(4-carboxyphenyl)-4,5dihydro-4,4,5,5-tetramethyl-1H-imidazolyl-1-oxy-3oxide, + RIPC + hepatic IRI. RIPC downregulated the level of aspartate aminotransferase (AST), alanine aminotransferase (ALT), histologic damage, and activity of Malondialdehyde (MDA). However, there was no significant reduction in the level of tumor necrosis factor-alpha (TNF-α) and nuclear factor kappa B (NF-κB). AST and ALT levels, and hepatic tissue morphology in the C-PTIO group showed a significant improvement compared to those of the RIPC + hepatic IRI group. The application of RIPC before hepatic ischemia downregulated the oxidative stress, not the inflammatory cytokines. Moreover, these protective effect of RIPC would be mediated through the activation of NO as well as anti-oxidant effect.
Collapse
Affiliation(s)
- Eun Kyung Choi
- Department of Anesthesiology and Pain Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Hoon Jung
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sungmin Jeon
- Department of Anesthesiology and Pain Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Jung A Lim
- Department of Anesthesiology and Pain Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Jungwon Lee
- Department of Anesthesiology and Pain Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Hyunjee Kim
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seong Wook Hong
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Min Hye Jang
- Department of Pathology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Dong Gun Lim
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung Hwa Kwak
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
19
|
Kostyuk AI, Kokova AD, Podgorny OV, Kelmanson IV, Fetisova ES, Belousov VV, Bilan DS. Genetically Encoded Tools for Research of Cell Signaling and Metabolism under Brain Hypoxia. Antioxidants (Basel) 2020; 9:E516. [PMID: 32545356 PMCID: PMC7346190 DOI: 10.3390/antiox9060516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 02/08/2023] Open
Abstract
Hypoxia is characterized by low oxygen content in the tissues. The central nervous system (CNS) is highly vulnerable to a lack of oxygen. Prolonged hypoxia leads to the death of brain cells, which underlies the development of many pathological conditions. Despite the relevance of the topic, different approaches used to study the molecular mechanisms of hypoxia have many limitations. One promising lead is the use of various genetically encoded tools that allow for the observation of intracellular parameters in living systems. In the first part of this review, we provide the classification of oxygen/hypoxia reporters as well as describe other genetically encoded reporters for various metabolic and redox parameters that could be implemented in hypoxia studies. In the second part, we discuss the advantages and disadvantages of the primary hypoxia model systems and highlight inspiring examples of research in which these experimental settings were combined with genetically encoded reporters.
Collapse
Affiliation(s)
- Alexander I. Kostyuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Aleksandra D. Kokova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Oleg V. Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Koltzov Institute of Developmental Biology, 119334 Moscow, Russia
| | - Ilya V. Kelmanson
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Elena S. Fetisova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Vsevolod V. Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Institute for Cardiovascular Physiology, Georg August University Göttingen, D-37073 Göttingen, Germany
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
| | - Dmitry S. Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
20
|
Davila S, Jaquiss RD. Commentary: Remote Ischemic Preconditioning-Too Good to Be True? Semin Thorac Cardiovasc Surg 2020; 32:325-326. [PMID: 32057967 DOI: 10.1053/j.semtcvs.2020.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/04/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Samuel Davila
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center & Children's Health System of Texas, Dallas, Texas
| | - Robert Db Jaquiss
- Division of Pediatric Cardiothoracic Surgery, Department of Thoracic and Cardiovascular Surgery, University of Texas Southwestern Medical Center & Children's Health System of Texas, Dallas, Texas.
| |
Collapse
|
21
|
Heiberger C, Mehta T, Kim J, Sandhu D. Remote ischemic conditioning: the brain's endogenous defense against stroke. Neural Regen Res 2020; 15:2249-2250. [PMID: 32594041 PMCID: PMC7749480 DOI: 10.4103/1673-5374.284987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
22
|
Müller J, Taebling M, Oberhoffer R. Remote Ischemic Preconditioning Has No Short Term Effect on Blood Pressure, Heart Rate, and Arterial Stiffness in Healthy Young Adults. Front Physiol 2019; 10:1094. [PMID: 31496958 PMCID: PMC6712092 DOI: 10.3389/fphys.2019.01094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/08/2019] [Indexed: 11/13/2022] Open
Abstract
Objective Remote ischemic preconditioning (RIPC) are short episodes of ischemia and reperfusion applied to remote tissue to trigger responses in a specific organ or cardiovascular bed. This study investigates whether RIPC has a short-term effect on blood pressure (BP), heart rate, and arterial stiffness. Patients and Methods From March 2018 to August 2018, we included 40 healthy volunteers (23 female, age 25.6 ± 2.8 years) into this single-blinded randomized-controlled crossover trial. After measuring BP, heart rate, and arterial stiffness in supine position participants were randomized into intervention or SHAM group. The intervention group then underwent a RIPC protocol (3 cycles of 5 min of 200 mmHg ischemia followed by 5 min reperfusion) at the thigh. The SHAM group followed the same protocol just on the upper arm with 40 mmHg pressure inflation. Directly after this 30-min procedure a reassessment of hemodynamic measures was conducted. Results There were no significant changes in all five outcome parameters when comparing the effect of RIPC to SHAM. In peripheral systolic BP the mean difference between groups was Δ1.14 ± 6.5 mmHg (p = 0.672), and for diastolic BP Δ−0.69 ± 4.5 mmHg (p = 0.507). Heart rate shoed a Δ−0.8 ± 4.7 beats/min (p = 0.397). Regarding arterial stiffness measures, there was also no significant improvements thru RIPC. The mean difference between RIPC and SHAM for central systolic BP was Δ0.40 ± 7.2 mmHg (p = 0.951) and for PWV Δ0.01 ± 0.26 m/s (p = 0.563). Conclusion This study could not find any short-term effects of RIPC on arterial stiffness, BP, and heart rate in a RCT in young healthy adults.
Collapse
Affiliation(s)
- Jan Müller
- Institute of Preventive Pediatrics, Technische Universität München, Munich, Germany
| | - Marius Taebling
- Institute of Preventive Pediatrics, Technische Universität München, Munich, Germany
| | - Renate Oberhoffer
- Institute of Preventive Pediatrics, Technische Universität München, Munich, Germany
| |
Collapse
|
23
|
Qiao J, Zhou M, Li Z, Ren J, Gao G, Cao G, Shen H, Lu S. Comparison of remote ischemic preconditioning and intermittent hypoxia training in fracture healing. Mol Med Rep 2018; 19:1867-1874. [PMID: 30592272 DOI: 10.3892/mmr.2018.9788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 11/07/2018] [Indexed: 11/06/2022] Open
Abstract
Fracture healing in elderly patients is an emerging public health concern. As non‑drug treatments, intermittent hypoxia training (IHT) and remote ischemic preconditioning (RIPC) are considered to have substantial advantages and to aid fracture healing in elderly patients. The purpose of the present study was to evaluate and compare the effects of IHT and RIPC on fracture healing. Micro‑computed tomography (micro‑CT) and biomechanical testing were used to assess the morphology and structural properties of bone callus dissected from aged rats with tibial fractures. In addition, hypoxia‑inducible factor‑1α (HIF‑1α) and its target gene, associated with the healing process, were investigated by reverse transcription‑quantitative polymerase chain reaction and western blot analyses. The micro‑CT‑based parameters, including bone mineral density and trabecular number, were measured, and significant differences were identified between the experimental and control groups. The IHT group exhibited superior bone formation and mineralization rates compared with the RIPC group. The biomechanical testing revealed that the ultimate loading and stiffness values were significantly higher in the IHT group compared with those in the RIPC group. In accordance with previous studies, RIPC exerted a similar effect in increasing the expression of HIF‑1α, and its downstream genes, throughout the course of healing. In addition, the IHT group exhibited increased expression levels of HIF‑1α compared with the RIPC group. Taken together, the results suggested that IHT and RIPC significantly enhanced fracture healing; however, IHT exhibited superior bone formation and healing effects compared with RIPC.
Collapse
Affiliation(s)
- Junjie Qiao
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Meng Zhou
- Department of Orthopedics, Beijing Jishuitan Hospital, 4th Medical College of Peking University, Beijing 100035, P.R. China
| | - Zheng Li
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Jie Ren
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Guanghan Gao
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Guanglei Cao
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Huiliang Shen
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| |
Collapse
|
24
|
Farré R, Almendros I, Montserrat JM, Gozal D, Navajas D. Gas Partial Pressure in Cultured Cells: Patho-Physiological Importance and Methodological Approaches. Front Physiol 2018; 9:1803. [PMID: 30618815 PMCID: PMC6300470 DOI: 10.3389/fphys.2018.01803] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/29/2018] [Indexed: 12/19/2022] Open
Abstract
Gas partial pressures within the cell microenvironment are one of the key modulators of cell pathophysiology. Indeed, respiratory gases (O2 and CO2) are usually altered in respiratory diseases and gasotransmitters (CO, NO, H2S) have been proposed as potential therapeutic agents. Investigating the pathophysiology of respiratory diseases in vitro mandates that cultured cells are subjected to gas partial pressures similar to those experienced by each cell type in its native microenvironment. For instance, O2 partial pressures range from ∼13% in the arterial endothelium to values as low as 2-5% in cells of other healthy tissues and to less than 1% in solid tumor cells, clearly much lower values than those used in conventional cell culture research settings (∼19%). Moreover, actual cell O2 partial pressure in vivo changes with time, at considerably different timescales as illustrated by tumors, sleep apnea, or mechanical ventilation. Unfortunately, the conventional approach to modify gas concentrations at the above culture medium precludes the tight and exact control of intra-cellular gas levels to realistically mimic the natural cell microenvironment. Interestingly, well-controlled cellular application of gas partial pressures is currently possible through commercially available silicone-like material (PDMS) membranes, which are biocompatible and have a high permeability to gases. Cells are seeded on one side of the membrane and tailored gas concentrations are circulated on the other side of the membrane. Using thin membranes (50-100 μm) the value of gas concentration is instantaneously (<0.5 s) transmitted to the cell microenvironment. As PDMS is transparent, cells can be concurrently observed by conventional or advanced microscopy. This procedure can be implemented in specific-purpose microfluidic devices and in settings that do not require expensive or complex technologies, thus making the procedure readily implementable in any cell biology laboratory. This review describes the gas composition requirements for a cell culture in respiratory research, the limitations of current experimental settings, and also suggests new approaches to better control gas partial pressures in a cell culture.
Collapse
Affiliation(s)
- Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Josep M. Montserrat
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Sleep Lab, Hospital Clinic of Barcelona, Barcelona, Spain
| | - David Gozal
- Department of Child Health, University of Missouri School of Medicine, Columbia, MO, United States
| | - Daniel Navajas
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
25
|
Abstract
OBJECTIVES Cardiac surgery-associated acute kidney injury is common in children and associates with negative outcomes. Novel interventions to reduce cardiac surgery-associated acute kidney injury require knowledge of its pathophysiology. States of altered perfusion, oxygen delivery, and energy consumption occur during cardiopulmonary bypass and could protect against or contribute to renal cellular injury and recovery. Near-infrared spectroscopy is noninvasive technology for monitoring regional blood flow and tissue oxygenation. This study evaluated the relationship between renal regional oxygen saturation and cardiac surgery-associated acute kidney injury, using near-infrared spectroscopy monitoring before, during, and after cardiopulmonary bypass in children. DESIGN Prospective cohort study. SETTING Single-center, tertiary care pediatric hospital (Stollery Children's Hospital, Edmonton, AB, Canada). PATIENTS Children less than or equal to 10 kg undergoing congenital heart disease repair with cardiopulmonary bypass. Heart transplant, preoperative dialysis, sepsis, extracorporeal life support, congenital renal disease, and preoperative nephrotoxins were exclusions. INTERVENTIONS Renal regional near-infrared spectroscopy monitoring before, during, and after cardiopulmonary bypass. MEASUREMENTS AND MAIN RESULTS Outcome measure was cardiac surgery-associated acute kidney injury (defined according to Kidney Disease: Improving Global Outcomes criteria). Regional oxygen saturation was measured continuously using near-infrared spectroscopy (INVOS 5100C Cerebral/Somatic Oximeter; Medronic, Troy, MI) from time of anesthesia to time of transfer to intensive care. Cardiac surgery-associated acute kidney injury occurred in 65%. Lower baseline (precardiopulmonary bypass) regional oxygen saturation was associated with decreased risk of cardiac surgery-associated acute kidney injury (p = 0.01); children with baseline regional oxygen saturation in the highest tertile were 7.14 times more likely to get cardiac surgery- associated acute kidney injury (vs lowest tertile). Area under the curve for ability of baseline regional oxygen saturation to predict cardiac surgery-associated acute kidney injury was 0.73 (95% CI, 0.60-0.85). Children with lower baseline glomerular filtration rate had lower mean renal regional oxygen saturation. CONCLUSIONS Findings demonstrate that preoperative oxygen supply/demand balance is an important predictor of cardiac surgery-associated acute kidney injury, suggesting lower preoperative (and intraoperative) renal blood flow may be protective. There is not yet a definite link between remote ischemic preconditioning and prevention of cardiac surgery-associated acute kidney injury; however, renal protective effects of sublethal ischemia should continue to be explored.
Collapse
|
26
|
Wang W, Huang X, Lin W, Qiu Y, He Y, Yu J, Xi Y, Ye X. Hypoxic preconditioned bone mesenchymal stem cells ameliorate spinal cord injury in rats via improved survival and migration. Int J Mol Med 2018; 42:2538-2550. [PMID: 30106084 PMCID: PMC6192716 DOI: 10.3892/ijmm.2018.3810] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/06/2018] [Indexed: 12/20/2022] Open
Abstract
The unique hypoxic inflammatory microenvironment observed in the spinal cord following spinal cord injury (SCI) limits the survival and efficacy of transplanted bone mesenchymal stem cells (BMSCs). The aim of the present study was to determine whether hypoxic preconditioning (HP) increased the therapeutic effects of BMSC on SCI. BMSCs were pretreated with cobalt chloride (CoCl2) in vitro, and the proliferative apoptotic and migratory abilities of these hypoxic BMSCs (H‑BMSCs) were assessed. BMSCs and H‑BMSCs derived from green fluorescent protein (GFP) rats were transplanted into SCI rats in vivo. The neurological function, histopathology, inflammation, and number and migration of transplanted cells were examined. HP significantly enhanced BMSC migration (increased hypoxia inducible factor 1α and C‑X‑C motif chemokine receptor 4 expression) and tolerance to apoptotic conditions (decreased caspase‑3 and increased B‑cell lymphoma 2 expression) in vitro. In vivo, H‑BMSC transplantation significantly improved neurological function, decreased spinal cord damage and suppressed the inflammatory response associated with microglial activation. The number of GFP‑positive cells in the SCI core and peripheral region of H‑BMSC animals was increased compared with that in those of BMSC animals, suggesting that HP may increase the survival and migratory abilities of BMSCs and highlights their therapeutic potential for SCI.
Collapse
Affiliation(s)
- Weiheng Wang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Xiaodong Huang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Wenbo Lin
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Yuanyuan Qiu
- Department of Respiration, Shanghai Electric Power Hospital, Shanghai 200050, P.R. China
| | - Yunfei He
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Jiangming Yu
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Yanhai Xi
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Xiaojian Ye
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
27
|
Bao N, Fang B, Lv H, Jiang Y, Chen F, Wang Z, Ma H. Upregulation of miR-199a-5p Protects Spinal Cord Against Ischemia/Reperfusion-Induced Injury via Downregulation of ECE1 in Rat. Cell Mol Neurobiol 2018; 38:1293-1303. [PMID: 29948551 PMCID: PMC11481941 DOI: 10.1007/s10571-018-0597-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/31/2018] [Indexed: 12/18/2022]
Abstract
Ischemia-reperfusion (I/R)-induced spinal cord injury can cause apoptotic damage and subsequently act as a blood-spinal cord barrier damage. MicroRNAs (miRNAs) contributed to the process of I/R injury by regulating their target mRNAs. miR-199a-5p is involved in brain and heart I/R injury; however, its function in the spinal cord is not yet completely clarified. In this study, we investigated the role of miR-199a-5p on spinal cord I/R via the endothelin-converting enzyme 1, especially the apoptosis pathway. In the current study, the rat spinal cord I/R injury model was established, and the Basso Beattie Bresnahan scoring, Evans blue staining, HE staining, and TUNEL assay were used to assess the I/R-induced spinal cord injury. The differentially expressed miRNAs were screened using microarray. miR-199a-5p was selected by unsupervised hierarchical clustering analysis. The dual-luciferase reporter assay was used for detecting the regulatory effects of miR-199a-5p on ECE1. In addition, neuron expression was detected by immunostaining assay, while the expressions of p-ERK, ERK, p-JNK, JNK, caspase-9, Bcl-2, and ECE1 were evaluated by Western blot. The results indicated the successful establishment of the I/R-induced spinal cord injury model; the I/R induced the damage to the lower limb motor. Furthermore, 18 differentially expressed miRNAs were detected in the I/R group compared to the sham group, and miR-199a-5p protected the rat spinal cord injury after I/R. Moreover, miR-199a-5p negatively regulated ECE1, and silencing the ECE1 gene also protected the rat spinal cord injury after I/R. miR-199a-5p or silencing of ECE1 also regulated the expressions of caspase-9, Bcl-2, p-JNK, p-ERK, and ECE1 in rat spinal cord injury after I/R. Therefore, we demonstrated that miR-199a-5p might protect the spinal cord against I/R-induced injury by negatively regulating the ECE1, which could aid in developing new therapeutic strategies for I/R-induced spinal cord injury.
Collapse
Affiliation(s)
- Ning Bao
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, Liaoning, People's Republic of China
- Shenyang Women's and Children's Hospital, No. 87 Danan Street, Shenhe Dinstrict, Shenyang, Liaoning, People's Republic of China
| | - Bo Fang
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, Liaoning, People's Republic of China
| | - Huangwei Lv
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, Liaoning, People's Republic of China
| | - Yanhua Jiang
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, Liaoning, People's Republic of China
| | - Fengshou Chen
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, Liaoning, People's Republic of China
| | - Zhilin Wang
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, Liaoning, People's Republic of China
| | - Hong Ma
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
28
|
Almohanna AM, Wray S. Hypoxic conditioning in blood vessels and smooth muscle tissues: effects on function, mechanisms, and unknowns. Am J Physiol Heart Circ Physiol 2018; 315:H756-H770. [PMID: 29702009 DOI: 10.1152/ajpheart.00725.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hypoxic preconditioning, the protective effect of brief, intermittent hypoxic or ischemic episodes on subsequent more severe hypoxic episodes, has been known for 30 yr from studies on cardiac muscle. The concept of hypoxic preconditioning has expanded; excitingly, organs beyond the heart, including the brain, liver, and kidney, also benefit. Preconditioning of vascular and visceral smooth muscles has received less attention despite their obvious importance to health. In addition, there has been no attempt to synthesize the literature in this field. Therefore, in addition to overviewing the current understanding of hypoxic conditioning, in the present review, we consider the role of blood vessels in conditioning and explore evidence for conditioning in other smooth muscles. Where possible, we have distinguished effects on myocytes from other cell types in the visceral organs. We found evidence of a pivotal role for blood vessels in conditioning and for conditioning in other smooth muscle, including the bladder, vascular myocytes, and gastrointestinal tract, and a novel response in the uterus of a hypoxic-induced force increase, which helps maintain contractions during labor. To date, however, there are insufficient data to provide a comprehensive or unifying mechanism for smooth muscles or visceral organs and the effects of conditioning on their function. This also means that no firm conclusions can be drawn as to how differences between smooth muscles in metabolic and contractile activity may contribute to conditioning. Therefore, we have suggested what may be general mechanisms of conditioning occurring in all smooth muscles and tabulated tissue-specific mechanistic findings and suggested ideas for further progress.
Collapse
Affiliation(s)
- Asmaa M Almohanna
- Department of Molecular and Cellular Physiology, Institute of Translational Medicine University of Liverpool , Liverpool , United Kingdom.,Princess Nourah bint Abdulrahman University , Riyadh , Saudi Arabia
| | - Susan Wray
- Department of Molecular and Cellular Physiology, Institute of Translational Medicine University of Liverpool , Liverpool , United Kingdom
| |
Collapse
|
29
|
Tártaro RR, Jorge GL, Dianin AH, Escanhoela CAF, Boin IFSF. Ischemia With Preconditioning in Wistar Rats Maintains Mitochondrial Respiration, Even With Mild Hepatocellular Disturbance. Transplant Proc 2018; 50:848-852. [PMID: 29661451 DOI: 10.1016/j.transproceed.2018.02.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION In hepatectomy or liver transplantation, preconditioning is a procedure indicated to protect the organ from ischemia-reperfusion injury (I-R). OBJECTIVE Evaluate the effect of preconditioning after hepatic I-R in Wistar rats, through mitochondrial respiration, liver histology, and profile. METHOD Twenty male Wistar rats, weighing on average 307.1 g, were anesthetized with sodium thiopental (25 mg/kg) intravenously and xylazine hydrochloride (30 mg/kg) intramuscularly. The animals were divided into 2 groups: the preconditioning group (PCG), which contained 10 animals, and the hepatic pedicle was isolated and submitted to clamping with microvascular clamp (10 minutes of ischemia and 10 minutes of reperfusion, followed by 30 minutes of ischemia and 30 minutes of reperfusion); and the simulated operation group (SOG), which contained 10 animals submitted to manipulation of the hepatic pedicle and observation for the same length of time, with blood collected for transaminase dosage measurements, and liver biopsy for evaluation of mitochondrial respiration and histologic liver analysis and after sacrificed under anesthesia. The project was approved by the Ethics Committee on Animal Experimentation CEEA/UNICAMP under protocol number 3905-1. RESULT The PCG mitochondria showed the same respiration level as the SOG, when stimulated with the addition of adenosine diphosphate or carbonyl cyanide p-trifluoromethoxyphenylhydrazone. In the respiratory control ratio and resting of velocity of respiration the groups behaved in a similar way. The PCG presented high aspartate and alanine transaminases (P < .03) and about 60% of sinusoidal congestion and venous congestion in the histologic analysis when compared with SOG. CONCLUSION We found that ischemia with preconditioning in Wistar rats can lead to mild histologic and biochemical dysfunction without leading to impairment of mitochondrial respiration.
Collapse
Affiliation(s)
- R R Tártaro
- Hepatic Surgical Laboratory, Nucleus of Medicine and Experimental Surgery, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - G L Jorge
- Hepatic Surgical Laboratory, Nucleus of Medicine and Experimental Surgery, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - A H Dianin
- Hepatic Surgical Laboratory, Nucleus of Medicine and Experimental Surgery, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - C A F Escanhoela
- Department of Pathological Anatomy, Hospital de Clínicas, State University of Campinas, Campinas, Brazil
| | - I F S F Boin
- Unit of Liver Transplantation, Hospital de Clínicas, State University of Campinas, Campinas, Brazil.
| |
Collapse
|
30
|
Remote Ischemic Preconditioning Is Efficient in Reducing Hepatic Ischemia-Reperfusion Injury in a Growing Rat Model and Does Not Promote Histologic Lesions in Distant Organs. Transplant Proc 2018; 50:3840-3844. [PMID: 30385044 DOI: 10.1016/j.transproceed.2018.04.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/30/2018] [Accepted: 04/12/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Ischemic preconditioning (IPC) was developed to diminish ischemia-reperfusion injury (IRI). There are two main ways of performing it: direct ischemic-preconditioning (DIP) and remote ischemic-preconditioning (RIP). The objectives of this study were to investigate local and systemic effects of DIP and RIP in liver IRI. METHODS Thirty-two weaning rats (50-70 g body weight; 21 days old) were divided into 4 groups: control (C); ischemia followed by reperfusion (IR); DIP followed by ischemia and reperfusion; and RIP followed by ischemia and reperfusion. In the IR group, the vascular pedicles of medial and left lateral liver lobes were clamped for 60 minutes and then unclamped. In the DIP group, a 10-minute cycle of ischemia followed by a 10-minute reperfusion of the same lobes was performed before 60 minutes of ischemia. In the RIP group, three 5-minute cycles of clamping and unclamping of the femoral vessels were performed before liver ischemia. The animals were euthanized 24 hours after the surgical procedures. RESULTS The serum levels of liver enzymes were significantly lower in the RIP group compared to the control and IR groups and to the DIP group. The scores of histologic hepatic lesions were significantly lower in RIP animals than those of IR animals (P = .002) and similar to the C group animals. The Bax/BCl-xl relation was lower in the DIP group than that in the RIP group (P = .045) and no differences were observed in histologic analyses of kidney, lung, intestine, and heart. CONCLUSION In young animals, the beneficial effects of RIP are more evident than those of DIP.
Collapse
|
31
|
Remote Ischemic Preconditioning Does Not Affect the Release of Humoral Factors in Propofol-Anesthetized Cardiac Surgery Patients: A Secondary Analysis of the RIPHeart Study. Int J Mol Sci 2018; 19:ijms19041094. [PMID: 29621201 PMCID: PMC5979505 DOI: 10.3390/ijms19041094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 12/15/2022] Open
Abstract
In contrast to several smaller studies, which demonstrate that remote ischemic preconditioning (RIPC) reduces myocardial injury in patients that undergo cardiovascular surgery, the RIPHeart study failed to demonstrate beneficial effects of troponin release and clinical outcome in propofol-anesthetized cardiac surgery patients. Therefore, we addressed the potential biochemical mechanisms triggered by RIPC. This is a predefined prospective sub-analysis of the randomized and controlled RIPHeart study in cardiac surgery patients (n = 40) that was recently published. Blood samples were drawn from patients prior to surgery, after RIPC of four cycles of 5 min arm ischemia/5 min reperfusion (n = 19) and the sham (n = 21) procedure, after connection to cardiopulmonary bypass (CPB), at the end of surgery, 24 h postoperatively, and 48 h postoperatively for the measurement of troponin T, macrophage migration inhibitory factor (MIF), stromal cell-derived factor 1 (CXCL12), IL-6, CXCL8, and IL-10. After RIPC, right atrial tissue samples were taken for the measurement of extracellular-signal regulated kinase (ERK1/2), protein kinase B (AKT), Glycogen synthase kinase 3 (GSK-3β), protein kinase C (PKCε), and MIF content. RIPC did not significantly reduce the troponin release when compared with the sham procedure. MIF serum levels intraoperatively increased, peaking at intensive care unit (ICU) admission (with an increase of 48.04%, p = 0.164 in RIPC; and 69.64%, p = 0.023 over the baseline in the sham procedure), and decreased back to the baseline 24 h after surgery, with no differences between the groups. In the right atrial tissue, MIF content decreased after RIPC (1.040 ± 1.032 Arbitrary units [au] in RIPC vs. 2.028 ± 1.631 [au] in the sham procedure, p < 0.05). CXCL12 serum levels increased significantly over the baseline at the end of surgery, with no differences between the groups. ERK1/2, AKT, GSK-3β, and PKCɛ phosphorylation in the right atrial samples were no different between the groups. No difference was found in IL-6, CXCL8, and IL10 serum levels between the groups. In this cohort of cardiac surgery patients that received propofol anesthesia, we could not show a release of potential mediators of signaling, nor an effect on the inflammatory response, nor an activation of well-established protein kinases after RIPC. Based on these data, we cannot exclude that confounding factors, such as propofol, may have interfered with RIPC.
Collapse
|
32
|
singh L, Randhawa PK, Singh N, Jaggi AS. Redox signaling in remote ischemic preconditioning-induced cardioprotection: Evidences and mechanisms. Eur J Pharmacol 2017; 809:151-155. [DOI: 10.1016/j.ejphar.2017.05.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 12/16/2022]
|
33
|
Ravingerová T, Farkašová V, Griecsová L, Muráriková M, Carnická S, Lonek L, Ferko M, Slezak J, Zálešák M, Adameova A, Khandelwal VKM, Lazou A, Kolar F. Noninvasive approach to mend the broken heart: Is "remote conditioning" a promising strategy for application in humans? Can J Physiol Pharmacol 2017; 95:1204-1212. [PMID: 28683229 DOI: 10.1139/cjpp-2017-0200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Currently, there are no satisfactory interventions to protect the heart against the detrimental effects of ischemia-reperfusion injury. Although ischemic preconditioning (PC) is the most powerful form of intrinsic cardioprotection, its application in humans is limited to planned interventions, due to its short duration and technical requirements. However, many organs/tissues are capable of producing "remote" PC (RPC) when subjected to brief bouts of ischemia-reperfusion. RPC was first described in the heart where brief ischemia in one territory led to protection in other area. Later on, RPC started to be used in patients with acute myocardial infarction, albeit with ambiguous results. It is hypothesized that the connection between the signal triggered in remote organ and protection induced in the heart can be mediated by humoral and neural pathways, as well as via systemic response to short sublethal ischemia. However, although RPC has a potentially important clinical role, our understanding of the mechanistic pathways linking the local stimulus to the remote organ remains incomplete. Nevertheless, RPC appears as a cost-effective and easily performed intervention. Elucidation of protective mechanisms activated in the remote organ may have therapeutic and diagnostic implications in the management of myocardial ischemia and lead to development of pharmacological RPC mimetics.
Collapse
Affiliation(s)
- Táňa Ravingerová
- a Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Veronika Farkašová
- a Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Griecsová
- a Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martina Muráriková
- a Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Slavka Carnická
- a Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | - L'ubomír Lonek
- a Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Miroslav Ferko
- a Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jan Slezak
- a Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marek Zálešák
- a Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Adriana Adameova
- b Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | | | - Antigone Lazou
- d School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Frantisek Kolar
- e Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
34
|
Zhang F, Zhang R, He L, Yin J, Wang F, Li J. Effects of preoperative chronic hypoxemia on geriatrics outcomes after hip arthroplasty: A hospital-based retrospective analysis study. Medicine (Baltimore) 2017; 96:e6587. [PMID: 28403091 PMCID: PMC5403088 DOI: 10.1097/md.0000000000006587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The partial pressure of oxygen decreases as altitude increases, the preoperative chronic hypoxemia (CH) may have a plausible clinical impact. Risk factors for postoperative serious adverse events (pSAEs) in patients living in high altitudes during primary hip arthroplasty (HA) are not clear.This is an observational study embracing patients from January 1, 2011 to December 31, 2015 at Yan'an Hospital of Kunming City, a 1338-bed municipal teaching hospital of Kunming Medical University. Univariate analysis revealed that significant differences between patients with and without preoperative CH occurred in intraoperative hypotension (77 [33%] vs 34 [47%], P = .040) and that significant differences between patients with and without pSAEs occurred in following variables: preoperative CH (32 [57%] vs 199 [80%], P < .001), intraoperative hypotension (37 [66%] vs 74 [30%], P < .001), highest noradrenaline support (.09 [.01-.21] vs .03 [.01-.05] μg/kg/min, P < .001), higher application of general anesthesia (15 [27%] vs 29 [12%], P = .004), and lower of combined-spinal epidural anesthesia (CSEA) (21 [37%] vs 165 [66%], P < .001). The general anesthesia and intraoperative hypotension remained the independent risk factors for pSAEs (P < .05), while the preoperative CH presented by decreasing its risk (P < .05).This study suggests that various intraoperative events including general anesthesia, hypotension were risk factors for the development of pSAEs. Preoperative CH, presenting with decreased incidence of intensive care unit (ICU) admission and pSAEs, may mimic hypoxic preconditioning in organic protection, for which further study is needed to uncover the underlying mechanisms.
Collapse
MESH Headings
- Age Factors
- Aged
- Aged, 80 and over
- Altitude
- Anesthesia, Epidural/adverse effects
- Anesthesia, Epidural/methods
- Anesthesia, General/adverse effects
- Anesthesia, Spinal/adverse effects
- Anesthesia, Spinal/methods
- Arthroplasty, Replacement, Hip/adverse effects
- Arthroplasty, Replacement, Hip/methods
- Chronic Disease
- Female
- Humans
- Hypotension/etiology
- Hypoxia/complications
- Intraoperative Care/adverse effects
- Intraoperative Care/methods
- Intraoperative Complications/etiology
- Male
- Multivariate Analysis
- Norepinephrine/administration & dosage
- Partial Pressure
- Postoperative Complications/etiology
- Preoperative Period
- Retrospective Studies
- Risk Factors
- Treatment Outcome
Collapse
Affiliation(s)
| | | | | | | | | | - Junmin Li
- Department of Orthopedics, Yan’an Hospital of Kunming City, Kunming Medical University, Kunming, China
| |
Collapse
|
35
|
Gjesdal K. Scandinavian Cardiovascular Journal - 50 years anniversary. SCAND CARDIOVASC J 2016; 50:251-252. [PMID: 27735190 DOI: 10.1080/14017431.2016.1249021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Knut Gjesdal
- a Cardiology Department , Oslo University Hospital Ullevål, Institute of Clinical Medicine, Oslo University , Oslo , Norway
| |
Collapse
|