1
|
Li Y, Luo H, Pang H, Qin B. Epigenetic Targeting for Controlling Persistent Neurotropic Infections Caused by Borna Virus and HIV. Rev Med Virol 2025; 35:e70000. [PMID: 39643925 DOI: 10.1002/rmv.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 12/09/2024]
Abstract
Long-lasting persistence within infected cells is a major challenge for viral pathogens, as it necessitates an exact regulation of viral replication to reduce viral cytopathic effects. This is particularly challenging for viruses that persistently infect cells with limited renewal capabilities, such as neurons. Accordingly, neurotropic viruses have evolved various specific mechanisms to promote a long-lasting persistent infection in the host cells without inducing an exacerbated cytopathic effect. Borna disease virus (BDV) and Human immunodeficiency virus (HIV) are two neurotropic RNA viruses that, in contrast to other RNA viruses, can establish long-lasting intranuclear infections within the nervous system. These viruses interact with different cellular processes such as epigenetic modifications to develop a successful persistence infection. Studies show that cellular epigenetic mechanisms play a significant role in the pathogenesis of BDV and HIV and their neurological disorders. Hence, targeting these mechanisms by epigenetic modulator agents can be regarded as a novel therapeutic strategy to manage BDV- and HIV-associated neurological diseases. This review provides an overview of different epigenetic modulator compounds as a potential therapeutic target for controlling persistent neurotropic intranuclear infections caused by BDV and HIV.
Collapse
Affiliation(s)
- Yadi Li
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huating Luo
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Pang
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Qin
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Tietjen I, Schonhofer C, Sciorillo A, Naidu ME, Haq Z, Kannan T, Kossenkov AV, Rivera-Ortiz J, Mounzer K, Hart C, Gyampoh K, Yuan Z, Beattie KD, Rali T, Shuda McGuire K, Davis RA, Montaner LJ. The Natural Stilbenoid (-)-Hopeaphenol Inhibits HIV Transcription by Targeting Both PKC and NF-κB Signaling and Cyclin-Dependent Kinase 9. Antimicrob Agents Chemother 2023; 67:e0160022. [PMID: 36975214 PMCID: PMC10112218 DOI: 10.1128/aac.01600-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Despite effective combination antiretroviral therapy (cART), people living with HIV (PLWH) continue to harbor replication-competent and transcriptionally active virus in infected cells, which in turn can lead to ongoing viral antigen production, chronic inflammation, and increased risk of age-related comorbidities. To identify new agents that may inhibit postintegration HIV beyond cART, we screened a library of 512 pure compounds derived from natural products and identified (-)-hopeaphenol as an inhibitor of HIV postintegration transcription at low to submicromolar concentrations without cytotoxicity. Using a combination of global RNA sequencing, plasmid-based reporter assays, and enzyme activity studies, we document that hopeaphenol inhibits protein kinase C (PKC)- and downstream NF-κB-dependent HIV transcription as well as a subset of PKC-dependent T-cell activation markers, including interleukin-2 (IL-2) cytokine and CD25 and HLA-DRB1 RNA production. In contrast, it does not substantially inhibit the early PKC-mediated T-cell activation marker CD69 production of IL-6 or NF-κB signaling induced by tumor necrosis factor alpha (TNF-α). We further show that hopeaphenol can inhibit cyclin-dependent kinase 9 (CDK9) enzymatic activity required for HIV transcription. Finally, it inhibits HIV replication in peripheral blood mononuclear cells (PBMCs) infected in vitro and dampens viral reactivation in CD4+ cells from PLWH. Our study identifies hopeaphenol as a novel inhibitor that targets a subset of PKC-mediated T-cell activation pathways in addition to CDK9 to block HIV expression. Hopeaphenol-based therapies could complement current antiretroviral therapy otherwise not targeting cell-associated HIV RNA and residual antigen production in PLWH.
Collapse
Affiliation(s)
- Ian Tietjen
- The Wistar Institute, Philadelphia, Pennsylvania, USA
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Cole Schonhofer
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Maya E. Naidu
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Zahra Haq
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | | | - Karam Mounzer
- Jonathan Lax Immune Disorders Treatment Center, Philadelphia Field Initiating Group for HIV-1 Trials, Philadelphia, Pennsylvania, USA
| | - Colin Hart
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Kwasi Gyampoh
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Zhe Yuan
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Karren D. Beattie
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, Queensland, Australia
| | - Topul Rali
- School of Natural and Physical Sciences, The University of Papua New Guinea, Port Moresby, Papua New Guinea
| | | | - Rohan A. Davis
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, Queensland, Australia
| | | |
Collapse
|
3
|
de Jesus MSM, Macabeo APG, Ramos JDA, de Leon VNO, Asamitsu K, Okamoto T. Voacanga globosa Spirobisindole Alkaloids Exert Antiviral Activity in HIV Latently Infected Cell Lines by Targeting the NF-kB Cascade: In Vitro and In Silico Investigations. Molecules 2022; 27:1078. [PMID: 35164343 PMCID: PMC8840767 DOI: 10.3390/molecules27031078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 11/16/2022] Open
Abstract
Since the efficiency in the transcription of the HIV genome contributes to the success of viral replication and infectivity, we investigated the downregulating effects of the spirobisindole alkaloids globospiramine (1), deoxyvobtusine (2), and vobtusine lactone (3) from the endemic Philippine medicinal plant, Voacanga globosa, during HIV gene transcription. Alkaloids 1-3 were explored for their inhibitory activity on TNF-α-induced viral replication in two latently HIV-infected cell lines, OM10.1 and J-Lat. The induction of HIV replication from OM10.1 and J-Lat cells elicited by TNF-α was blocked by globospiramine (1) within noncytotoxic concentrations. Furthermore, globospiramine (1) was found to target the NF-ĸB activation cascade in a dose-dependent manner when the transcriptional step at which inhibitory activity is exerted was examined in TNF-α-induced 293 human cells using transient reporter (luciferase) gene expression systems (HIV LTR-luc, ĸB-luc, and mutant ĸB-luc). Interrogation through molecular docking against the NF-ĸB p50/p65 heterodimer and target sites of the subunits comprising the IKK complex revealed high binding affinities of globospiramine (1) against the S281 pocket of the p65 subunit (BE = -9.2 kcal/mol) and the IKKα activation loop (BE = -9.1 kcal/mol). These findings suggest globospiramine (1) as a molecular inspiration to discover new alkaloid-based anti-HIV derivatives.
Collapse
Affiliation(s)
- Ma. Sheila M. de Jesus
- The Graduate School, University of Santo Tomas, España Blvd., Manila 1015, Philippines;
- Department of Biological Sciences, College of Science, University of Santo Tomas, España Blvd., Manila 1015, Philippines;
| | - Allan Patrick G. Macabeo
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for Natural and Applied Sciences, University of Santo Tomas, España Blvd., Manila 1015, Philippines;
| | - John Donnie A. Ramos
- The Graduate School, University of Santo Tomas, España Blvd., Manila 1015, Philippines;
- Department of Biological Sciences, College of Science, University of Santo Tomas, España Blvd., Manila 1015, Philippines;
- Molecular Diagnostics and Therapeutics Laboratory, Research Center for Natural and Applied Sciences, University of Santo Tomas, España Blvd., Manila 1015, Philippines
| | - Von Novi O. de Leon
- Department of Biological Sciences, College of Science, University of Santo Tomas, España Blvd., Manila 1015, Philippines;
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for Natural and Applied Sciences, University of Santo Tomas, España Blvd., Manila 1015, Philippines;
| | - Kaori Asamitsu
- Department of Molecular and Cellular Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 4678601, Japan; (K.A.); (T.O.)
| | - Takashi Okamoto
- Department of Molecular and Cellular Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 4678601, Japan; (K.A.); (T.O.)
| |
Collapse
|
4
|
Saeb S, Ravanshad M, Pourkarim MR, Daouad F, Baesi K, Rohr O, Wallet C, Schwartz C. Brain HIV-1 latently-infected reservoirs targeted by the suicide gene strategy. Virol J 2021; 18:107. [PMID: 34059075 PMCID: PMC8166011 DOI: 10.1186/s12985-021-01584-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 05/21/2021] [Indexed: 12/22/2022] Open
Abstract
Reducing the pool of HIV-1 reservoirs in patients is a must to achieve functional cure. The most prominent HIV-1 cell reservoirs are resting CD4 + T cells and brain derived microglial cells. Infected microglial cells are believed to be the source of peripheral tissues reseedings and the emergence of drug resistance. Clearing infected cells from the brain is therefore crucial. However, many characteristics of microglial cells and the central nervous system make extremely difficult their eradication from brain reservoirs. Current methods, such as the "shock and kill", the "block and lock" and gene editing strategies cannot override these difficulties. Therefore, new strategies have to be designed when considering the elimination of brain reservoirs. We set up an original gene suicide strategy using latently infected microglial cells as model cells. In this paper we provide proof of concept of this strategy.
Collapse
Affiliation(s)
- Sepideh Saeb
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Mehrdad Ravanshad
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mahmoud Reza Pourkarim
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Division of Clinical and Epidemiological Virology, 3000, Leuven, Belgium
| | - Fadoua Daouad
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Kazem Baesi
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, Iran
| | - Olivier Rohr
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Clémentine Wallet
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Christian Schwartz
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France.
| |
Collapse
|
5
|
Salahong T, Schwartz C, Sungthong R. Are BET Inhibitors yet Promising Latency-Reversing Agents for HIV-1 Reactivation in AIDS Therapy? Viruses 2021; 13:v13061026. [PMID: 34072421 PMCID: PMC8228869 DOI: 10.3390/v13061026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/26/2022] Open
Abstract
AIDS first emerged decades ago; however, its cure, i.e., eliminating all virus sources, is still unachievable. A critical burden of AIDS therapy is the evasive nature of HIV-1 in face of host immune responses, the so-called "latency." Recently, a promising approach, the "Shock and Kill" strategy, was proposed to eliminate latently HIV-1-infected cell reservoirs. The "Shock and Kill" concept involves two crucial steps: HIV-1 reactivation from its latency stage using a latency-reversing agent (LRA) followed by host immune responses to destroy HIV-1-infected cells in combination with reinforced antiretroviral therapy to kill the progeny virus. Hence, a key challenge is to search for optimal LRAs. Looking at epigenetics of HIV-1 infection, researchers proved that some bromodomains and extra-terminal motif protein inhibitors (BETis) are able to reactivate HIV-1 from latency. However, to date, only a few BETis have shown HIV-1-reactivating functions, and none of them have yet been approved for clinical trial. In this review, we aim to demonstrate the epigenetic roles of BETis in HIV-1 infection and HIV-1-related immune responses. Possible future applications of BETis and their HIV-1-reactivating properties are summarized and discussed.
Collapse
Affiliation(s)
- Thanarat Salahong
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Christian Schwartz
- Research Unit 7292, DHPI, IUT Louis Pasteur, University of Strasbourg, 67300 Schiltigheim, France
- Correspondence: (C.S.); (R.S.)
| | - Rungroch Sungthong
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
- Laboratory of Hydrology and Geochemistry of Strasbourg, University of Strasbourg, UMR 7517 CNRS/EOST, 67084 Strasbourg CEDEX, France
- Correspondence: (C.S.); (R.S.)
| |
Collapse
|
6
|
Wallet C, Rohr O, Schwartz C. Evolution of a concept: From accessory protein to key virulence factor, the case of HIV-1 Vpr. Biochem Pharmacol 2020; 180:114128. [PMID: 32619426 DOI: 10.1016/j.bcp.2020.114128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022]
Abstract
Back in 1989 some studies have shown that the viral protein Vpr was dispensable for HIV-1 replication in vitro. From then the concept of accessory or auxiliary protein for Vpr has emerged and it is still used to date. However, Vpr soon appeared to be very important for in vivo virus spread and pathogenesis. Vpr has been involved in many biological functions including regulation of reverse transcriptase activity, the nuclear import of the pre-integration complex (PIC), HIV-1 transcription, gene splicing, apoptosis and in cell cycle arrest. Thus, we might rather consider Vpr as a true virulence factor instead of just an accessory factor. At present, Vpr can be regarded as a potential and promising target in different strategies aiming to fight infected cells including latently infected cells.
Collapse
Affiliation(s)
- Clémentine Wallet
- University of Strasbourg, Research Unit7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Olivier Rohr
- University of Strasbourg, Research Unit7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Christian Schwartz
- University of Strasbourg, Research Unit7292, DHPI, IUT Louis Pasteur, Schiltigheim, France.
| |
Collapse
|
7
|
Natural product-derived compounds in HIV suppression, remission, and eradication strategies. Antiviral Res 2018; 158:63-77. [PMID: 30063970 DOI: 10.1016/j.antiviral.2018.07.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/10/2018] [Accepted: 07/21/2018] [Indexed: 12/12/2022]
Abstract
While combination antiretroviral therapy (cART) has successfully converted HIV to a chronic but manageable infection in many parts of the world, HIV continues to persist within latent cellular reservoirs, which can become reactivated at any time to produce infectious virus. New therapies are therefore needed not only for HIV suppression but also for containing or eliminating HIV reservoirs. Compounds derived from plant, marine, and other natural products have been found to combat HIV infection and/or target HIV reservoirs, and these discoveries have substantially guided current HIV therapy-based studies. Here we summarize the role of natural product-derived compounds in current HIV suppression, remission, and cure strategies.
Collapse
|
8
|
Tietjen I, Williams DE, Read S, Kuang XT, Mwimanzi P, Wilhelm E, Markle T, Kinloch NN, Naphen CN, Tenney K, Mesplède T, Wainberg MA, Crews P, Bell B, Andersen RJ, Brumme ZL, Brockman MA. Inhibition of NF-κB-dependent HIV-1 replication by the marine natural product bengamide A. Antiviral Res 2018; 152:94-103. [PMID: 29476895 DOI: 10.1016/j.antiviral.2018.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 12/01/2022]
Abstract
HIV-1 inhibitors that act by mechanisms distinct from existing antiretrovirals can provide novel insights into viral replication and potentially inform development of new therapeutics. Using a multi-cycle HIV-1 replication assay, we screened 252 pure compounds derived from marine invertebrates and microorganisms and identified 6 (actinomycin Z2, bastadin 6, bengamide A, haliclonacyclamine A + B, keramamine C, neopetrosiamide B) that inhibited HIV-1 with 50% effective concentrations (EC50s) of 3.8 μM or less. The most potent inhibitor, bengamide A, blocked HIV-1 in a T cell line with an EC50 of 0.015 μM and in peripheral blood mononuclear cells with an EC50 of 0.032 μM. Bengamide A was previously described to inhibit NF-κB signaling. Consistent with this mechanism, bengamide A suppressed reporter expression from an NF-κB-driven minimal promoter and an HIV-1 long terminal repeat (LTR) with conserved NF-κB response elements, but lacked activity against an LTR construct with mutation of these elements. In single-cycle HIV-1 infection assays, bengamide A also suppressed viral protein expression when viruses encoded an intact LTR but exhibited minimal activity against those with mutated NF-κB elements. Finally, bengamide A did not inhibit viral DNA accumulation, indicating that it likely acts downstream of this step in HIV-1 replication. Our study identifies multiple new antiviral compounds including an unusually potent inhibitor of HIV-1 gene expression.
Collapse
Affiliation(s)
- Ian Tietjen
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada.
| | - David E Williams
- Departments of Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Silven Read
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Xiaomei T Kuang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Philip Mwimanzi
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Emmanuelle Wilhelm
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Tristan Markle
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Natalie N Kinloch
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Cassandra N Naphen
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Karen Tenney
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Thibault Mesplède
- McGill AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada; Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Mark A Wainberg
- McGill AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada; Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Phillip Crews
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Brendan Bell
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Raymond J Andersen
- Departments of Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada.
| | - Mark A Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada.
| |
Collapse
|
9
|
Microgels of silylated HPMC as a multimodal system for drug co-encapsulation. Int J Pharm 2017; 532:790-801. [PMID: 28755992 DOI: 10.1016/j.ijpharm.2017.07.074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 01/22/2023]
Abstract
Combined therapy is a global strategy developed to prevent drug resistance in cancer and infectious diseases. In this field, there is a need of multifunctional drug delivery systems able to co-encapsulate small drug molecules, peptides, proteins, associated to targeting functions, nanoparticles. Silylated hydrogels are alkoxysilane hybrid polymers that can be engaged in a sol-gel process, providing chemical cross linking in physiological conditions, and functionalized biocompatible hybrid materials. In the present work, microgels were prepared with silylated (hydroxypropyl)methyl cellulose (Si-HPMC) that was chemically cross linked in soft conditions of pH and temperature. They were prepared by an emulsion templating process, water in oil (W/O), as microreactors where the condensation reaction took place. The ability to functionalize the microgels, so-called FMGs, in a one-pot process, was evaluated by grafting a silylated hydrophilic model drug, fluorescein (Si-Fluor), using the same reaction of condensation. Biphasic microgels (BPMGs) were prepared to evaluate their potential to encapsulate lipophilic model drug (Nile red). They were composed of two separate compartments, one oily phase (sesame oil) trapped in the cross linked Si-HPMC hydrophilic phase. The FMGs and BPMGs were characterized by different microscopic techniques (optic, epi-fluorescence, Confocal Laser Scanning Microscopy and scanning electronic microscopy), the mechanical properties were monitored using nano indentation by Atomic Force Microscopy (AFM), and different preliminary tests were performed to evaluate their chemical and physical stability. Finally, it was demonstrated that it is possible to co-encapsulate both hydrophilic and hydrophobic drugs, in silylated microgels, that were physically and chemically stable. They were obtained by chemical cross linking in soft conditions, and without surfactant addition during the emulsification process. The amount of drug loaded was in favor of further biological activity. Mechanical stimulations should be necessary to trigger drug release.
Collapse
|
10
|
Schwartz C, Bouchat S, Marban C, Gautier V, Van Lint C, Rohr O, Le Douce V. On the way to find a cure: Purging latent HIV-1 reservoirs. Biochem Pharmacol 2017; 146:10-22. [PMID: 28687465 DOI: 10.1016/j.bcp.2017.07.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/03/2017] [Indexed: 12/29/2022]
Abstract
Introduction of cART in 1996 has drastically increased the life expectancy of people living with HIV-1. However, this treatment has not allowed cure as cessation of cART is associated with a rapid viral rebound. The main barrier to the eradication of the virus is related to the persistence of latent HIV reservoirs. Evidence is now accumulating that purging the HIV-1 reservoir might lead to a cure or a remission. The most studied strategy is the so called "shock and kill" therapy. This strategy is based on reactivation of dormant viruses from the latently-infected reservoirs (the shock) followed by the eradication of the reservoirs (the kill). This review focuses mainly on the recent advances made in the "shock and kill" therapy. We believe that a cure or a remission will come from combinatorial approaches i.e. combination of drugs to reactivate the dormant virus from all the reservoirs including the one located in sanctuaries, and combination of strategies boosting the immune system. Alternative strategies based on cell and gene therapy or based in inducing deep latency, which are evoked in this review reinforce the idea that at least a remission is attainable.
Collapse
Affiliation(s)
- Christian Schwartz
- University of Strasbourg, EA7292, DHPI, Institute of Parasitology and Tropical Pathology, Strasbourg, France; University of Strasbourg, IUT Louis Pasteur, Schiltigheim, France.
| | - Sophie Bouchat
- Université Libre de Bruxelles (ULB), Service of Molecular Virology, Institute for Molecular Biology and Medicine (IBMM), 12 rue des Profs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Céline Marban
- University of Strasbourg, Inserm UMR 1121 Faculté de Chirurgie Dentaire Pavillon Leriche 1, place de l'Hôpital Strasbourg, France
| | - Virginie Gautier
- UCD, Centre for Research in Infectious Diseases (CRID), School of Medicine University College Dublin, Belfield, Dublin 4, Ireland
| | - Carine Van Lint
- Université Libre de Bruxelles (ULB), Service of Molecular Virology, Institute for Molecular Biology and Medicine (IBMM), 12 rue des Profs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Olivier Rohr
- University of Strasbourg, EA7292, DHPI, Institute of Parasitology and Tropical Pathology, Strasbourg, France; University of Strasbourg, IUT Louis Pasteur, Schiltigheim, France
| | - Valentin Le Douce
- UCD, Centre for Research in Infectious Diseases (CRID), School of Medicine University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
11
|
Specific Inhibition of HIV Infection by the Action of Spironolactone in T Cells. J Virol 2016; 90:10972-10980. [PMID: 27681137 DOI: 10.1128/jvi.01722-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/21/2016] [Indexed: 11/20/2022] Open
Abstract
Tat protein, the HIV transactivator, regulates transcription of the HIV genome by the host transcription machinery. Efficient inhibitors of HIV transcription that target Tat or the cellular cofactor NF-κB are well known. However, inhibition of HIV Tat-dependent transcription by targeting the general transcription and DNA repair factor II human (TFIIH) has not been reported. Here, we show that spironolactone (SP), an aldosterone antagonist approved for clinical use, inhibits HIV-1 and HIV-2 infection of permissive T cells by blocking viral Tat-dependent transcription from the long terminal repeat (LTR). We found that treatment of Jurkat and primary CD4+ T cells with SP induces degradation of the XPB cellular helicase, a component of the TFIIH complex, without affecting cellular mRNA levels, T cell viability, or T cell proliferation. We further demonstrate that the effect of SP on HIV infection is independent of its aldosterone antagonist function, since the structural analogue, eplerenone, does not induce XPB degradation and does not inhibit HIV infection. Rescue experiments showed that the SP-induced block of HIV infection relies, at least partially, on XPB degradation. In addition, we demonstrate that SP specifically inhibits Tat-dependent transcription, since basal transcription from the LTR is not affected. Our results demonstrate that SP is a specific inhibitor of HIV Tat-dependent transcription in T cells, which additionally suggests that XPB is a cofactor required for HIV infection. Targeting a cellular cofactor of HIV transcription constitutes an alternative strategy to inhibit HIV infection, together with the existing antiretroviral therapy. IMPORTANCE Transcription from the HIV promoter is regulated by the combined activities of the host transcription machinery and the viral transactivator Tat protein. Here, we report that the drug spironolactone-an antagonist of aldosterone-blocks viral Tat-dependent transcription, thereby inhibiting both HIV-1 and HIV-2 infection of permissive T cells. This inhibition relies on the degradation of the cellular helicase XPB, a component of the TFIIH transcription factor complex. Consequently, XPB appears to be a novel HIV cofactor. Our discovery of the HIV-inhibitory activity of spironolactone opens the way for the development of novel anti-HIV strategies targeting a cellular cofactor without the limitations of antiretroviral therapy of drug resistance and high cost.
Collapse
|
12
|
Le Douce V, Forouzanfar F, Eilebrecht S, Van Driessche B, Ait-Ammar A, Verdikt R, Kurashige Y, Marban C, Gautier V, Candolfi E, Benecke AG, Van Lint C, Rohr O, Schwartz C. HIC1 controls cellular- and HIV-1- gene transcription via interactions with CTIP2 and HMGA1. Sci Rep 2016; 6:34920. [PMID: 27725726 PMCID: PMC5057145 DOI: 10.1038/srep34920] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023] Open
Abstract
Among many cellular transcriptional regulators, Bcl11b/CTIP2 and HGMA1 have been described to control the establishment and the persistence of HIV-1 latency in microglial cells, the main viral reservoir in the brain. In this present work, we identify and characterize a transcription factor i.e. HIC1, which physically interacts with both Bcl11b/CTIP2 and HMGA1 to co-regulate specific subsets of cellular genes and the viral HIV-1 gene. Our results suggest that HIC1 represses Tat dependent HIV-1 transcription. Interestingly, this repression of Tat function is linked to HIC1 K314 acetylation status and to SIRT1 deacetylase activity. Finally, we show that HIC1 interacts and cooperates with HGMA1 to regulate Tat dependent HIV-1 transcription. Our results also suggest that HIC1 repression of Tat function happens in a TAR dependent manner and that this TAR element may serve as HIC1 reservoir at the viral promoter to facilitate HIC1/TAT interaction.
Collapse
Affiliation(s)
- Valentin Le Douce
- University of Strasbourg, EA7292, DHPI, Institut of Parasitology and tropical pathology Strasbourg, France.,University of Strasbourg, IUT Louis Pasteur, Schiltigheim, France.,Institut des Hautes Etudes Scientifiques-Centre National de la Recherche Scientifique, 35 route de Chartres, 91440 Bures sur Yvette, France
| | - Faezeh Forouzanfar
- University of Strasbourg, EA7292, DHPI, Institut of Parasitology and tropical pathology Strasbourg, France
| | - Sebastian Eilebrecht
- Institut Universitaire de France, Paris, France.,Université Libre de Bruxelles (ULB), Service of Molecular Virology, Institute for Molecular Biology and Medicine (IBMM), 12 rue des Profs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Benoit Van Driessche
- Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, Heidelberg 69120, Germany
| | - Amina Ait-Ammar
- University of Strasbourg, EA7292, DHPI, Institut of Parasitology and tropical pathology Strasbourg, France
| | - Roxane Verdikt
- Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, Heidelberg 69120, Germany
| | - Yoshihito Kurashige
- CNRS UMR 7224, Université Pierre et Marie Curie, 7 quai Saint Bernard, 75005 Paris, France
| | - Céline Marban
- CNRS UMR 7224, Université Pierre et Marie Curie, 7 quai Saint Bernard, 75005 Paris, France
| | - Virginie Gautier
- Institut des Hautes Etudes Scientifiques-Centre National de la Recherche Scientifique, 35 route de Chartres, 91440 Bures sur Yvette, France
| | - Ermanno Candolfi
- University of Strasbourg, EA7292, DHPI, Institut of Parasitology and tropical pathology Strasbourg, France
| | - Arndt G Benecke
- Université Libre de Bruxelles (ULB), Service of Molecular Virology, Institute for Molecular Biology and Medicine (IBMM), 12 rue des Profs Jeener et Brachet, 6041 Gosselies, Belgium.,UCD Centre for Research in Infectious Diseases (CRID) School of Medicine and Medical Science University College Dublin, Ireland
| | - Carine Van Lint
- Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, Heidelberg 69120, Germany
| | - Olivier Rohr
- University of Strasbourg, EA7292, DHPI, Institut of Parasitology and tropical pathology Strasbourg, France.,University of Strasbourg, IUT Louis Pasteur, Schiltigheim, France.,Inserm UMR 1121 Faculté de Chirurgie Dentaire Pavillon Leriche 1, place de l'Hôpital Strasbourg, France
| | - Christian Schwartz
- University of Strasbourg, EA7292, DHPI, Institut of Parasitology and tropical pathology Strasbourg, France.,University of Strasbourg, IUT Louis Pasteur, Schiltigheim, France
| |
Collapse
|
13
|
Marban C, Forouzanfar F, Ait-Ammar A, Fahmi F, El Mekdad H, Daouad F, Rohr O, Schwartz C. Targeting the Brain Reservoirs: Toward an HIV Cure. Front Immunol 2016; 7:397. [PMID: 27746784 PMCID: PMC5044677 DOI: 10.3389/fimmu.2016.00397] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/20/2016] [Indexed: 12/23/2022] Open
Abstract
One of the top research priorities of the international AIDS society by the action “Towards an HIV Cure” is the purge or the decrease of the pool of all latently infected cells. This strategy is based on reactivation of latently reservoirs (the shock) followed by an intensifying combination antiretroviral therapy (cART) to kill them (the kill). The central nervous system (CNS) has potential latently infected cells, i.e., perivascular macrophages, microglial cells, and astrocytes that will need to be eliminated. However, the CNS has several characteristics that may preclude the achievement of a cure. In this review, we discuss several limitations to the eradication of brain reservoirs and how we could circumvent these limitations by making it efforts in four directions: (i) designing efficient latency-reversal agents for CNS-cell types, (ii) improving cART by targeting HIV transcription, (iii) improving delivery of HIV drugs in the CNS and in the CNS-cell types, and (iv) developing therapeutic immunization. As a prerequisite to these efforts, we also believe that a better comprehension of molecular mechanisms involved in establishment and persistence of HIV latency in brain reservoirs are essential to design new molecules for strategies aiming to achieve a cure for instance the “shock and kill” strategy.
Collapse
Affiliation(s)
- Céline Marban
- INSERM UMR 1121 Faculté de Chirurgie Dentaire, Université de Strasbourg , Strasbourg , France
| | | | - Amina Ait-Ammar
- EA7292, DHPI, Université de Strasbourg , Strasbourg , France
| | - Faiza Fahmi
- EA7292, DHPI, Université de Strasbourg , Strasbourg , France
| | - Hala El Mekdad
- EA7292, DHPI, Université de Strasbourg, Strasbourg, France; IUT Louis Pasteur de Schiltigheim, Université de Strasbourg, Schiltigheim, France
| | - Fadoua Daouad
- EA7292, DHPI, Université de Strasbourg , Strasbourg , France
| | - Olivier Rohr
- EA7292, DHPI, Université de Strasbourg, Strasbourg, France; IUT Louis Pasteur de Schiltigheim, Université de Strasbourg, Schiltigheim, France; Institut Universitaire de France, Paris, France
| | - Christian Schwartz
- EA7292, DHPI, Université de Strasbourg, Strasbourg, France; IUT Louis Pasteur de Schiltigheim, Université de Strasbourg, Schiltigheim, France
| |
Collapse
|